

Evaluation Report for Category B, Subcategory 2.1, 2.3, 2.4, 2.5, 3.1, 3.11, 3.12, 3.3 Application

Application Number:	2013-3553
Application:	Product chemistry – guarantee, identify and proportion of
	formulants, formulation type
	Product labels – application rate increase, new pests, new site/host,
	application number or frequency
Product:	Botector
Registration Number:	31248
Active ingredients (a.i.):	Aureobasidium pullulans strain DSM 14940 and strain DSM
_	14941 [ABC]
PMRA Document Numbe	r : 2351227

Purpose of Application

The purpose of this application is to register a new end-use product, Botector, containing the active ingredients *Aureobasidium pullulans* strain DSM 14940 and strain DSM 14941 to control *Botrytis cinerea* on grapes.

Chemistry Assessment

The domestic class end-use product, Botector, has the same guarantee as the registered end-use product BLOSSOM PROTECTTM (PCP Registration Number 30552). No further data are required for the product characterization and analysis assessment.

Health Assessments

The domestic class end-use product, Botector, has the same guarantee as the registered end-use product BLOSSOM PROTECTTM. The Botector formulation is also toxicologically equivalent to the BLOSSOM PROTECTTM formulation. The proposed use pattern for Botector, with respect to occupational, bystander and food exposure, is not different from the registered use pattern for BLOSSOM PROTECTTM. No further data are required to assess occupational, bystander, and food exposure.

Since April 26, 2007, registrants have been required by law to report incidents, including adverse effects to health and the environment, to the Pest Management Regulatory Agency (PMRA) within a set time frame. Information on the reporting of incidents can be found on the Pesticides and Pest Management portion of Health Canada's website

www.healthcanada.gc.ca/pesticideincident. As of January 2, 2014, there were no incidents related to health or the environment reported in the PMRA Incident reporting database or the California Department of Pesticide Regulation (CalDPR) for products containing *Aureobasidium*

pullulans for use as pesticides since April 26, 2012, the date of the previous incident report assessment for these active ingredients.

Environmental Assessment

The domestic class end-use product, Botector, has the same guarantee as the registered end-use product BLOSSOM PROTECTTM. The Botector formulation is also toxicologically equivalent to the BLOSSOM PROTECTTM formulation. The use pattern for Botector, with respect to non-target organism exposure, is not different from the registered use pattern for BLOSSOM PROTECTTM. No further data are required to assess risks to non-target organisms.

Since April 26, 2007, registrants have been required by law to report incidents, including adverse effects to health and the environment, to the PMRA within a set time frame. Information on the reporting of incidents can be found on the Pesticides and Pest Management portion of Health Canada's website www.healthcanada.gc.ca/pesticideincident. As of January 2, 2014, there were no environmental incidents reported in the PMRA Incident reporting database nor in the United States-Environmental Protection Agency's (US-EPA) Ecological Incident Information System (EIIS) for products containing *Aureobasidium pullulans* for use as pesticides since April 26, 2012, the date of the previous incident report assessment for these active ingredients.

Value Assessment

A total of 18 field trials were submitted and reviewed to support the claim. Overall, Botector provided good suppression on grey mold infection on grapes when applied according to the use pattern, especially under low and moderate disease pressure. In five out of seven trials with moderate disease pressure where commercial standards performed adequately, Botector significantly reduced grey mold incidence by average 66% (49 – 79%) compared to average 77% (68 – 79%) disease reduction obtained by the commercial standards. A level of acceptable grey mold control was achieved only in one of the six trials under high disease pressure, where Botector reduced disease incidence and severity by 64% and 76%, respectively, compared to a disease reduction of 79% (incidence) and 85% (severity) by the commercial standard applied in the same trial. The efficacy of Botector was consistently and numerically lower than the commercial standards in most field trials. A scientific rationale was provided to justify the use of value information from Europe to support the proposed use in Canada. The rationale was considered acceptable. The value of registering Botector is that it will provide Canadian growers an additional tool against this important disease on grapes, especially in the organic market.

Based on the value information provided, the use of Botector to suppress grey mold in grapes is supported according to the proposed use pattern. Label amendments are required.

Conclusion

The PMRA has completed the assessment of the available information and is able to support the registration of Botector containing the active ingredient *Aureobasidium pullulans* strain DSM 14940 and strain DSM 14941 to control *Botrytis cinerea* on grapes.

References

PMRA Reference Number	Title
2322708	2013, Tier 2 Summary of the Data on Application on the Microbial Pest Control Product BOTECTOR, DACO: 12.7, Document M, IIIM 3.1, M1.1, M1.2
2322712	2013, Tier 2 Summary of efficacy data and information for the microbial pest control product BOTECTOR, DACO: 12.7, Document M, IIIM 6.1, M10.2.1, M10.2.2
2322660	2013, 18_Toth 2012b Nizne Valice SK Testing efficacy of biofungicide -Botector against Botrytis, DACO: Document K, IIIM 6.2.1, M10.2.2
2322661	2013, 17_Toth 2012a Busince SK Testing efficacy of biofungicide -Botector against Botrytis, DACO: Document K, IIIM 6.2.1, M10.2.2
2322662	2010, 16_Hiebler 2010 Poellau AT Evaluation of for control of <i>Botryotinia fuckeliana</i> , DACO: Document K, IIIM 6.2.1, M10.2.2
2322663	2010, 15_Anonymous 2010a Neustadt GE_EN Trial Report, DACO: Document K, IIIM 6.2.1, M10.2.2
2322664	2011, 14_Bleyer 2010 Freiburg GE_EN Final Report of biological effects of a spraying strategy against <i>Botrytis cinerea</i> in grapes, DACO: Document K, IIIM 6.2.1, M10.2.2
2322665	2009, 13_Biro 2009 Csopak HU Report on fungicide trial 2009, DACO: Document K, IIIM 6.2.1, M10.2.2
2322667	2009, 12_Hiebler 2009b Sinabelkirchen AT Evaluation of Botector for control of <i>Botryotinia fuckeliana</i> , DACO: Document K, IIIM 6.2.1, M10.2.2
2322668	2009, 11_Hiebler 2009a Auersbach AT Evaluation of Botector for control of <i>Botryotinia fuckeliana</i> , DACO: Document K, IIIM 6.2.1, M10.2.2
2322669	2008, 10_Hiebler 2008b Auersbach AT Evaluation of Boni Protect Forte for control of <i>Botryotinia fuckeliana</i> , DACO: Document K, IIIM 6.2.1, M10.2.2
2322670	2008, 09_Hiebler 2008a Gamlitz AT Evaluation of Boni protect forte for control of <i>Botryotinia fuckeliana</i> , DACO: Document K, IIIM 6.2.1, M10.2.2
2322671	2008, 01-08_Redl 2008 AT BOTRYTIS-efficacy trials with the yeast product Boni Protect, DACO: Document K, IIIM 6.2.1, M10.2.2
2322611	2013, Mode of Action and Contribution to IPM strategies and practices, DACO: 0.8 (OECD)
2322609	2013, Nature and economics of <i>Botrytis cinerea</i> in Canada, DACO: 0.8 (OECD)
2322614	2013, Justification for the comparability of the climate conditions in Central Europe and Canada, DACO: 0.8 (OECD)
2322676	Pezet R.; Pont V.; Hoang-Van K., 1992, Enzymatic detoxication of stilbenes by <i>Botrytis cinerea</i> and inhibition by grape berries proanthocyanes, DACO: M7.0
2322677	JEANDET P; BESSIS R.; SBAGHI M.; MEUNIER P., 1994, Production of the Phytoalexin Resveratrol by Grapes as a Response to Botrytis Attack Under Natural Conditions, DACO: M7.0
2322681	2004, Field trial to control fungi causing apple decay 2004b, DACO: M7.0
2322682	Granado J.; Thurig B.; Kieffer E.; Petrini L.; Fliebach A.; Tamm L.; Weibel F.P.; Wyss G.S., 2008, Culturable Fungi of Stored Golden Delicious Apple Fruits: A One-Season Comparison Study of Organic and Integrated Production Systems in

	Switzerland, DACO: M7.0
2322683	Mounir R.; Durieux A.; Bodo E.; Allard C.; Simon JP.; Achbani EH.; El-
	Jaafari S.; Douira A.; Jijakli MH., 2007, Production, formulation and
	antagonistic activity of the biocontrol like-yeast Aureobasidium pullulans against
	Penicillium expansum, DACO: M7.0
2322684	Schena L.; Ippolito A.; Zahavi T.; Cohen L.; Nigro F.; Droby S., 1999, Genetic
	diversity and biocontrol activity of Aureobasidium pullulans isolates against
	postharvest rots, DACO: M7.0
2322685	Ippolito A.; El Ghaouth A.; Wilson C.L.; Wisniewski M., 2000, Control of
	postharvest decay of apple fruit by Aureobasidium pullulans and induction of
	defense responses, DACO: M10.2.1, M10.2.2, M7.0
2322686	Prakitchaiwattana C.J.; Fleet G.H.; Heard G.M., 2004, Application and evaluation
	of denaturing gradient gel electrophoresis to analyse the yeast ecology of wine
	grapes, DACO: M10.2.1,M10.2.2,M7.0
2322713	2013, Tier 2 Summary of the Metabolism and Residues Studies on the Microbial
	Pest Control Product BOTECTOR, DACO: M7.0
2322631	Castoria R.; De Curtis F.; Lima G.; Caputo L.; Pacifico S.; De Cicco V., 2000,
	Aureobasidium pullulans (LS-30) an antagonist of postharvest pathogens of
	fruits: study on its modes of action, DACO: M1.1, M1.2, M10.2.1, M10.2.2, M7.0
2322632	Adikaram N.K.B.; Joyce D.C.; Terry L.A., 2002, Biocontrol activity and induced
	resistance as a possible mode of action for Aureobasidium pullulans against grey
	mould of strawberry fruit, DACO: M1.1, M1.2, M10.2.1, M10.2.2, M7.0
2322633	Dimakopoulou M.; Tjamos S.E.; Antoniou P.P.; Pietri A.; Battilani P.; Avramidis
	N.; Markakis E.A.; Tjamos E.C., 2008, Phyllosphere grapevine yeast
	Aureobasidium pullulans reduces Aspergillus carbonarius (sour rot) incidence in
	wine-producing vineyards in Greece, DACO: M1.1, M1.2, M10.2.1, M10.2.2,
	M7.0
2322635	Lima G.; De Curtis F.; Castoria R.; De Cicco V., 2002, Integrated control of apple
	postharvest pathogens and survival of biocontrol yeasts in semi-commercial
	conditions, DACO: M1.1, M1.2, M7.0
2322637	Bencheqroun S.K.; Bajji M.; Massart S.; Labhilili M.; Jaafari S.; Jijakli M.H.,
	2007, In vitro and in situ study of postharvest apple blue mold biocontrol by
	Aureobasidium pullulans: Evidence for the involvement of competition for
	nutrients, DACO: M1.1, M1.2, M10.2.1, M10.2.2, M7.0

ISSN: 1911-8082

[®] Her Majesty the Queen in Right of Canada, represented by the Minister of Public Works and Government Services Canada 2014

All rights reserved. No part of this information (publication or product) may be reproduced or transmitted in any form or by any means, electronic, mechanical photocopying, recording or otherwise, or stored in a retrieval system, without prior written permission of the Minister of Public Works and Government Services Canada, Ottawa, Ontario K1A 0S5.