

Proposed Registration Decision

PRD2011-26

Penthiopyrad

(publié aussi en français)

This document is published by the Health Canada Pest Management Regulatory Agency. For further information, please contact:

Publications Pest Management Regulatory Agency Health Canada 2720 Riverside Drive A.L. 6604-E2 Ottawa, Ontario K1A 0K9 Internet: pmra.publications@hc-sc.gc.ca healthcanada.gc.ca/pmra Facsimile: 613-736-3758 Information Service: 1-800-267-6315 or 613-736-3799 pmra.infoserv@hc-sc.gc.ca

ISSN: 1925-0878 (print) 1925-0886 (online)

Catalogue number: H113-9/H113-9/2011-26E (print version) H113-9/H113-9/2011-26E-PDF (PDF version)

© Her Majesty the Queen in Right of Canada, represented by the Minister of Health Canada, 2011

All rights reserved. No part of this information (publication or product) may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, or stored in a retrieval system, without prior written permission of the Minister of Public Works and Government Services Canada, Ottawa, Ontario K1A 0S5.

Table of Contents

Overview		1
Registrat	ion Decision for Penthiopyrad	1
What Do	es Health Canada Consider When Making a Registration Decision?	1
What Is I	Penthiopyrad?	2
Health C	onsiderations	2
Environn	nental Considerations	5
Value Co	onsiderations	6
Measures	s to Minimize Risk	6
Next Step	DS	7
Other Inf	ormation	7
Science Ev	aluation	9
1.0 The	Active Ingredient, Its Properties and Uses	9
1.1	Identity of the Active Ingredient	9
1.2	Physical and Chemical Properties of the Active Ingredients and End-Use Product	t.9
1.3	Directions for Use	. 12
1.4	Mode of Action	. 13
2.0 Met	hods of Analysis	. 13
2.1	Methods for Analysis of the Active Ingredient	. 13
2.2	Method for Formulation Analysis	. 13
2.3	Methods for Residue Analysis	. 13
3.0 Imp	act on Human and Animal Health	. 14
3.1	Toxicology Summary	. 14
3.1.1	PCPA Hazard Characterization	. 19
3.2	Determination of Acute Reference Dose	. 20
3.3	Determination of Acceptable Daily Intake	. 21
3.4	Occupational and Residential Risk Assessment	. 21
3.4.1	Toxicological Endpoints	. 21
3.4.2	Occupational Exposure and Risk	. 24
3.4.3	Residential Exposure and Risk Assessment	. 25
3.5	Food Residues Exposure Assessment	. 26
3.5.1	Residues in Plant and Animal Foodstuffs	. 26
3.5.2	Dietary Risk Assessment	. 27
3.5.3	Aggregate Exposure and Risk	. 27
3.5.4	Maximum Residue Limits	. 28
4.0 Imp	act on the Environment	. 29
4.1	Fate and Behaviour in the Environment	. 29
4.2	Environmental Risk Characterization	. 30
4.2.1	Risks to Terrestrial Organisms	. 31
4.2.2	Risks to Aquatic Organisms	. 33
5.0 Val	ue	. 35
5.1	Effectiveness Against Pests	. 35
5.1.1	Acceptable Efficacy Claims	. 35
5.2	Economics	. 38

5.3	Sustainability	38
5.3.1	Survey of Alternatives	38
5.3.2	Compatibility with Current Management Practices Including Integrated Pest	
	Management	39
5.3.3	Information on the Occurrence or Possible Occurrence of the Development of	
	Resistance	39
5.3.4	Contribution to Risk Reduction and Sustainability	39
6.0 Pest	Control Product Policy Considerations	39
6.1	Toxic Substances Management Policy Considerations	39
6.2	Formulants and Contaminants of Health or Environmental Concern	40
7.0 Sum	mary	41
7.1	Human Health and Safety	41
7.2	Environmental Risk	43
7.3	Value	44
7.4	Unsupported Uses	44
8.0 Regi	alatory Decision	45
List of Abbr	reviations	47
Appendix I	Tables and Figures	51
Table 1	Residue Analysis	51
Table 2	Toxicity Profiles of Vertisan Fungicide, Fontelis Fungicide, Treoris Fungicide	
	and DPX-LEM17 50WG	52
Table 3	Toxicity Profile of Technical Penthiopyrad	55
Table 4	Toxicology Endpoints for Use in Health Risk Assessment for Penthiopyrad	64
Table 5	Mixer/Loader/Applicator Dermal Exposure Estimates and Margin of Exposure	
	(MOE)	65
Table 6	Postapplication Margin of Exposures	66
Table 7	Residential Dermal Exposure and Margins of Exposure (MOEs)	67
Table 8	Incidental Oral Exposure and Margins of Exposure (MOEs) for Toddlers	68
Table 9	Integrated Food Residue Chemistry Summary	68
Table 10	Food Residue Chemistry Overview of Metabolism Studies and Risk	
	Assessment	87
Table 11	Physical/Chemical Properties, Fate and Behaviour of Penthiopyrad in the	
Terrestria	l Environment	88
Table 12	Fate and Behaviour of the Transformation Products of Penthiopyrad in the	
	Terrestrial Environment	91
Table 13	Fate and Behaviour of Penthiopyrad in the Aquatic Environment	92
Table 14	Endpoints Considered in the Risk Assessment	93
Table 15	Risk to Terrestrial Organisms Other Than Birds and Mammals	94
Table 16	Screening Level Risk to Birds and Mammals: Field Crops	97
Table 17	Screening Level Risk to Birds and Mammals: Orchards	98
Table 18	Screening Level Risk to Birds and Mammals: Turf	99
Table 19	Screening Level Risk to Aquatic Organisms	100
Table 20	Refined Risk to Aquatic Organisms	102
Table 21	Refined Spray Drift Assessment for Treoris Fungicide	105

Toxic Substances Management Policy Considerations-Comparison to TSMP	
Track 1 Criteria	. 106
Registered Alternative Products for the Crops and Pests Proposed for	
Registration on the Fontelis Fungicide Label	. 107
Registered Alternative Products for the Crops and Pests Proposed for	
Registration on the Vertisan Fungicide Label	. 108
Registered Alternative Products for the Crops and Pests Proposed for	
Registration on the Treoris Fungicide Label	. 108
Registered Alternative Products for the Crops and Pests Proposed for	
Registration on the DPX-LEM17 50WG Fungicide Label	. 109
Use (label) Claims Proposed by Applicant for Fontelis Fungicide and	
Whether Acceptable or Unsupported	. 109
Use (label) Claims Proposed by Applicant for Vertisan Fungicide and	
Whether Acceptable or Unsupported	. 113
Use (label) Claims Proposed by Applicant for Treoris Fungicide and	
Whether Acceptable or Unsupported	. 115
Use (label) Claims Proposed by Applicant for DPX-LEM17 50WG	
Fungicide and Whether Acceptable or Unsupported	. 115
Supplemental Maximum Residue Limit Information—International	
Situation and Trade Implications	. 117
Differences Between Canadian MRLs and in Other Jurisdictions	. 117
	. 119
	Toxic Substances Management Policy Considerations-Comparison to TSMP Track 1 Criteria

Overview

Registration Decision for Penthiopyrad

Health Canada's Pest Management Regulatory Agency (PMRA), under the authority of the *Pest Control Products Act* and Regulations, is proposing full registration for the sale and use of Penthiopyrad Technical Fungicide, Fontelis Fungicide, Vertisan Fungicide, Treoris Fungicide and DPX-LEM17 50WG Fungicide, containing the technical grade active ingredient penthiopyrad, to control or suppress various fungal diseases on a broad range of agricultural crops and turfgrass.

An evaluation of available scientific information found that, under the approved conditions of use, the product has value and does not present an unacceptable risk to human health or the environment.

This Overview describes the key points of the evaluation, while the Science Evaluation provides detailed technical information on the human health, environmental and value assessments of Penthiopyrad Technical Fungicide, Fontelis Fungicide, Vertisan Fungicide, Treoris Fungicide and DPX-LEM17 50WG Fungicide.

What Does Health Canada Consider When Making a Registration Decision?

The key objective of the *Pest Control Products Act* is to prevent unacceptable risks to people and the environment from the use of pest control products. Health or environmental risk is considered acceptable¹ if there is reasonable certainty that no harm to human health, future generations or the environment will result from use or exposure to the product under its proposed conditions of registration. The Act also requires that products have value² when used according to the label directions. Conditions of registration may include special precautionary measures on the product label to further reduce risk.

¹ "Acceptable risks" as defined by subsection 2(2) of the *Pest Control Products Act*.

² "Value" as defined by subsection 2(1) of the *Pest Control Products Act*: "the product's actual or potential contribution to pest management, taking into account its conditions or proposed conditions of registration, and includes the product's (*a*) efficacy; (*b*) effect on host organisms in connection with which it is intended to be used; and (*c*) health, safety and environmental benefits and social and economic impact."

To reach its decisions, the PMRA applies modern, rigorous risk-assessment methods and policies. These methods consider the unique characteristics of sensitive subpopulations in humans (for example, children) as well as organisms in the environment (for example, those most sensitive to environmental contaminants). These methods and policies also consider the nature of the effects observed and the uncertainties when predicting the impact of pesticides. For more information on how the PMRA regulates pesticides, the assessment process and risk-reduction programs, please visit the Pesticides and Pest Management portion of Health Canada's website at healthcanada.gc.ca/pmra.

Before making a final registration decision on penthiopyrad, the PMRA will consider all comments received from the public in response to this consultation document.³ The PMRA will then publish a Registration Decision⁴ on penthiopyrad, which will include the decision, the reasons for it, a summary of comments received on the proposed final registration decision and the PMRA's response to these comments.

For more details on the information presented in this Overview, please refer to the Science Evaluation of this consultation document.

What Is Penthiopyrad?

Penthiopyrad is a systemic fungicide that can be applied to plant foliage or in-furrow to control or suppress various fungal diseases on a broad range of agricultural crops and turfgrass. This fungicide is a new active ingredient found in four end-use products; one of which, is in combination with chlorothalonil (Treoris Fungicide).

Health Considerations

Can Approved Uses of Penthiopyrad Fungicide Affect Human Health?

Products containing penthiopyrad are unlikely to affect your health when used according to label directions.

Potential exposure to Penthiopyrad Technical Fungicide (referred to as penthiopyrad) may occur through the diet (food and water), when handling and applying the product or when entering treated sites. When assessing health risks, two key factors are considered: the levels where no health effects occur and the levels to which people may be exposed. The dose levels used to assess risks are established to protect the most sensitive human population (for example, children and nursing mothers). Only uses for which the exposure is well below levels that cause no effects in animal testing are considered acceptable for registration.

³ "Consultation statement" as required by subsection 28(2) of the *Pest Control Products Act*.

⁴ "Decision statement" as required by subsection 28(5) of the *Pest Control Products Act*.

Toxicology studies in laboratory animals describe potential health effects from varying levels of exposure to a chemical and identify the dose where no effects are observed. The health effects noted in animals occur at doses more than 100-times higher (and often much higher) than levels to which humans are normally exposed when pesticide products are used according to label directions.

In laboratory animals, the acute toxicity of the active ingredient penthiopyrad was low via the oral, dermal and inhalation routes of exposure. Penthiopyrad was minimally irritating to the eyes, non-irritating to the skin and did not cause an allergic skin reaction.

The acute toxicity of the end-use product Vertisan Fungicide was low via the oral, dermal and inhalation routes of exposure. It was mildly irritating to the skin and severely irritating to the eyes; consequently, the hazard signal words "DANGER – EYE IRRITANT" and "SKIN IRRITANT" are required on the label. Vertisan Fungicide has the potential to cause allergic skin reactions; consequently, the hazard signal words "POTENTIAL SKIN SENSITIZER" are required on the label.

The acute toxicity of the end-use product Fontelis Fungicide was low via the oral, dermal and inhalation routes of exposure. It was non-irritating to the skin and minimally irritating to the eyes. Fontelis Fungicide is considered to have the potential to cause an allergic skin reaction; consequently, the hazard signal words "POTENTIAL SKIN SENSITIZER" are required on the label.

The acute toxicity of the end-use product Treoris Fungicide was low via the oral and dermal routes of exposure. It was slightly toxic via the inhalation route following acute exposure; consequently, the hazard signal words "CAUTION - POISON" are required on the label. Treoris Fungicide was mildly irritating to the skin, minimally irritating to the eyes and has the potential to cause allergic skin reactions; consequently, the hazard signal words "SKIN IRRITANT" and "POTENTIAL SKIN SENSITIZER" are required on the label.

The acute toxicity of the end-use product DPX-LEM17 50WG Fungicide was low via the oral, dermal and inhalation routes of exposure. It was slightly irritating to the skin, mildly irritating to the eyes and did not cause an allergic skin reaction; consequently, the hazard signal words "CAUTION - EYE IRRITANT" are required on the label.

Health effects in animals given repeated doses of penthiopyrad included changes in the liver, thyroid, adrenals and kidneys. Penthiopyrad did not cause birth defects in animals and there were no effects on the ability to reproduce. When penthiopyrad was given to pregnant or nursing animals, effects on the developing fetus and juvenile animal (reduced survival, pup and litter weights, body size, thymus weight, altered thymus development and/or delayed sexual development) were observed at doses that were toxic to the mother, indicating that the young do not appear to be more sensitive to penthiopyrad than the adult animal. Penthiopyrad caused temporary functional effects, possibly related to the nervous system, however, there was no indication that penthiopyrad caused damage to the nervous system. There was no evidence to suggest that penthiopyrad damaged genetic material. Penthiopyrad did, however, cause thyroid tumours in rats. There was also evidence of an effect on the immune system at high doses.

The risk assessment protects against the effects of penthiopyrad by ensuring that the level of human exposure is well below the lowest dose at which these effects occurred in animal tests.

Residues in Water and Food

Dietary risks from food and water are not of concern.

Aggregate dietary intake estimates (food plus water) revealed that the general population and infants, the subpopulation which would ingest the most penthiopyrad relative to body weight, are expected to be exposed to less than 19% of the acceptable daily intake. Based on these estimates, the chronic dietary risk from penthiopyrad is not of concern for all population sub-groups. There were no cancer risks of concern.

An aggregate (food and water) dietary intake estimate for the highest exposed population (infants) was 6% of the acute reference dose, which is not a health concern.

The *Food and Drugs Act* prohibits the sale of adulterated food, that is, food containing a pesticide residue that exceeds the established maximum residue limit (MRL). Pesticide MRLs are established for *Food and Drugs Act* purposes through the evaluation of scientific data under the *Pest Control Products Act*. Food containing a pesticide residue that does not exceed the established MRL does not pose an unacceptable health risk.

Residue trials conducted throughout Canada and the United States using penthiopyrad on carrot, radish, sugar beet, potato, turnip, dry bulb onion, green onion, lettuce, spinach, celery, broccoli, cauliflower, cabbage, mustard green, pea, bean, soybean, tomato, pepper, cucumber, squash, cantaloupe, apple, pear, peach, plum, cherry, strawberry, almond, pecan, wheat, barley, sorghum, corn, canola, sunflower, cotton, peanut and alfalfa were acceptable. The MRLs for this active ingredient can be found in the Science Evaluation section of this consultation document.

Occupational Risks From Handling Fontelis Fungicide, Vertisan Fungicide, Treoris Fungicide and DPX-LEM17 50WG Fungicide

Occupational risks are not of concern when products containing penthiopyrad are used according to the proposed label directions, which include protective measures.

Farmers and custom applicators who mix, load or apply Fontelis Fungicide, Vertisan Fungicide, Treoris Fungicide and DPX-LEM17 50WG Fungicide, as well as field workers entering freshly treated fields and greenhouses, can come in direct contact with penthiopyrad residues on the skin. Therefore, the label specifies that anyone mixing/loading and applying products containing penthiopyrad must wear a long-sleeved shirt, long pants, shoes, socks and chemical resistant gloves while mixing/loading, applying and during clean-up and repair. In addition, when handling Vertisan Fungicide, goggles or a face shield are required during mixing/loading and during clean-up and repair. The label also requires that workers do not enter corn fields for three days after application for detasseling and for 12 hours after application for all other agricultural activities, or until sprays have dried for turf. Taking into consideration these label statements, the number of applications and the expectation of the exposure period, risk to handlers and workers is not a concern. There were no cancer risks of concern.

Risks in Residential and Other Non-Occupational Environments

Non-occupational risks are not of concern when Fontelis Fungicide and DPX-LEM17 50WG Fungicide are used according to label directions.

Adults and youth may be exposed to penthiopyrad while golfing on treated courses. Based on the expected short- to intermediate-term duration of this activity, risk to golfers is not a concern. Adults, youths and toddlers may be exposed to penthiopyrad when entering treated lawns or during pick-your-own harvesting activities. In addition, toddlers may have incidental oral exposure during hand-to-mouth activities or from ingesting treated grass or soil. Based on the expected short- to intermediate-term duration of these activities, risk to the general population is not of concern. There were no cancer risks of concern.

Environmental Considerations

What Happens When Penthiopyrad Is Introduced Into the Environment?

When applied as a foliar spray to control diseases on a variety of crops, penthiopyrad does not leach appreciably and is degraded rapidly on the soil surface. When applied in furrow, or if it leaches below the soil surface, penthiopyrad does not readily degrade. Penthiopyrad is not volatile and is not expected to bioaccumulate.

Penthiopyrad will be persistent in aquatic environments and can potentially affect aquatic life. Aquatic life stages of amphibians would potentially be at the highest risk through exposure from off-target spray drift and surface runoff entering aquatic systems. There is also a risk to freshwater invertebrates and fish and algae. The effects of penthiopyrad on aquatic ecosystems can be mitigated with the observance of precautionary measures, including spray drift buffer zones.

Value Considerations

What Is the Value of Fontelis Fungicide, Vertisan Fungicide, Treoris Fungicide and DPX-LEM17 50WG Fungicide?

Fontelis Fungicide is a suspension concentrate product for foliar and in-furrow uses on a broad range of crops, including cereals, fruit crops, vegetable crops and nuts.

Vertisan Fungicide is an emulsifiable concentrate for foliar and in-furrow application to field crops, including cereals, oilseeds, sugarbeets, legumes, and root and corm vegetables.

Treoris Fungicide is a pre-mix with chlorothalonil to control diseases on potatoes and cucurbits.

DPX-LEM17 50WG Fungicide is a water dispersible granule formulation to control turf diseases.

Penthiopyrad is a new mode of action fungicide for many crops that can be integrated into a spray program as a rotational product or tank mix partner. These products address primary diseases of major field crops as well as minor crops grown in Canada.

Measures to Minimize Risk

Labels of registered pesticide products include specific instructions for use. Directions include risk-reduction measures to protect human and environmental health. These directions must be followed by law.

The key risk-reduction measures being proposed on the label of Fontelis Fungicide, Vertisan Fungicide, Treoris Fungicide and DPX-LEM17 50WG Fungicide to address the potential risks identified in this assessment are as follows.

Key Risk-Reduction Measures

Human Health

As users may come into direct contact with penthiopyrad on the skin or through inhalation of spray mists, anyone mixing, loading and applying Fontelis Fungicide, Vertisan Fungicide, Treoris Fungicide and DPX-LEM17 50WG Fungicide must wear a long-sleeved shirt, long pants, shoes, socks and chemical resistant gloves, and users mixing/loading Vertisan Fungicide must also wear goggles or a face shield. For products that may be applied by aerial application equipment, pilots are not allowed to mix chemical-resistant gloves, coveralls and goggles or face shield during mixing/loading. In addition, standard label statements to protect against drift during application were added to the label, and entry into treated areas is restricted for three days before performing detasseling activities on corn, for 12 hours after application for all other agricultural postapplication activities, and until sprays have dried for entering treated turf.

Environment

Label statements and no-spray buffer zones to mitigate the risk of spray drift to aquatic ecosystems are required. As well, label statements to identify sensitive components and mitigation measures to help reduce contamination of aquatic habitats are required.

Next Steps

Before making a final registration decision on penthiopyrad, the PMRA will consider all comments received from the public in response to this consultation document. The PMRA will accept written comments on this proposal up to 45 days from the date of publication of this document. Please note that, to comply with Canada's international trade obligations, consultation on the proposed MRLs will also be conducted internationally via a notification to the World Trade Organization. Please forward all comments to Publications (contact information on the cover page of this document). The PMRA will then publish a Registration Decision, which will include its decision, the reasons for it, a summary of comments received on the proposed final decision and the Agency's response to these comments.

Other Information

When the PMRA makes its registration decision, it will publish a Registration Decision on penthiopyrad (based on the Science Evaluation of this consultation document). In addition, the test data referenced in this consultation document will be available for public inspection, upon application, in the PMRA's Reading Room (located in Ottawa).

Science Evaluation

Penthiopyrad

1.0 The Active Ingredient, Its Properties and Uses

1.1 Identity of the Active Ingredient

Active substance		Penthiopyrad
Function		Fungicide
Ch	emical name	
1.	International Union of Pure and Applied Chemistry (IUPAC)	(<i>RS</i>)- <i>N</i> -[2-(1,3-dimethylbutyl)-3-thienyl]-1-methyl-3- (trifluoromethyl)pyrazole-4-carboxamide
2.	Chemical Abstracts Service (CAS)	<i>N</i> -[2-(1,3-dimethylbutyl)-3-thienyl]-1-methyl-3- (trifluoromethyl)-1 <i>H</i> -pyrazole-4-carboxamide
CA	AS number	183675-82-3
Mo	olecular formula	$C_{16}H_{20}F_3N_3OS$
Mo	blecular weight	359.4 g/mol
Str	ructural formula	CF3 N, N H S
Pu ing	rity of the active gredient	99.5%

1.2 Physical and Chemical Properties of the Active Ingredients and End-Use Product

Technical Product—Penthiopyrad Technical Fungicide

Property	Result
Colour and physical state	White solid
Odour	Odourless
Melting range	$108.7^{\circ}C \pm 0.2^{\circ}C$
Boiling point or range	Not applicable
Relative density at 20°C	1.256

Property		Result
Vapour pressure at 25°C	6.43 x 10 ⁻⁶ Pa	
Ultraviolet (UV)-visible spectrum	$\lambda_{max} \approx 226 \text{ nm under }$	neutral, acidic and basic conditions
Solubility in water at 20°C	рН	Solubility (mg/L)
	4	2.535
	7	1.375
	10	1.657
Solubility in organic solvents at	Solvent	Solubility (g/L)
20°C	Acetone	557
	Dichloromethane	531
	Methanol	402
	Ethyl acetate	349
	Ethanol	234.5
	Toluene	67.0
	Xylene	42.7
	Hexane	0.75
	Heptane	0.74
<i>n</i> -Octanol-water partition	рН	$\log K_{ow}$
coefficient ($K_{\rm OW}$)	4	4.36
	7	4.62
	10	4.54
Dissociation constant (pK _a)	$pK_a = 10.0 \pm 0.16$	
Stability (temperature, metal)	Thermally stable in a 10°C/minute).	ir under the test conditions (25 to 150°C at

End-Use Product—Vertisan Fungicide

Property	Result
Colour	Pale yellow
Odour	Noticeable pineapple odour
Physical state	Liquid
Formulation type	Emulsifiable concentrate
Guarantee	200 g/L nominal
Container material and description	1-1500 L glass or plastic jugs or totes
Relative density at 20°C	0.9681
pH of 1% dispersion in water	5.80
Oxidizing or reducing action	Product does not have oxidizing properties

Property	Result
Storage stability	Stable for 24 months at ambient temperature in polyethylene/ethyl vinyl alcohol and for 12 months under warehouse conditions in HDPE
Corrosion characteristics	Product was not corrosive to the packaging material
Explodability	Product is not explosive

End-Use Product—Fontelis Fungicide

Property	Result
Colour	Off-white
Odour	Faint ester-like odour
Physical state	Liquid
Formulation type	Suspension
Guarantee	200 g/L nominal
Container material and description	1-1500 L glass or plastic jugs or totes
Relative density at 20°C	0.9789
pH of 1% dispersion in water	6.66
Oxidizing or reducing action	Product does not have oxidizing properties
Storage stability	Stable under warehouse conditions for two years in HDPE
Corrosion characteristics	Product was not corrosive to the packaging material
Explodability	Product is not explosive

End-Use Product—Treoris Fungicide

Property	Result
Colour	Off-white
Odour	Mild ester-like polymeric odour
Physical state	Liquid
Formulation type	Suspension
Guarantee	Penthiopyrad 100 g/L nominal
	Chlorothalonil 250 g/L nominal
Container material and	1-1500 L plastic jugs or totes
description	
Density at 20°C	1.1245 g/mL
pH of 1% dispersion in water	6.33
Oxidizing or reducing action	Product does not contain any oxidizing or reducing agents

Property	Result
Storage stability	Stable for one year in HDPE at temperatures between 18 and 26°C and a relative humidity range of 40 to 60%. Stable for two years in HDPE under warehouse conditions.
Corrosion characteristics	Product was not corrosive to the packaging material
Explodability	Product is not explosive

End-Use Product—DPX-LEM17 50WG Fungicide

Property	Result
Colour	Off-white
Odour	Moderate sharp sour odour
Physical state	Solid
Formulation type	Wettable granules
Guarantee	50% nominal
Container material and description	500 g to 1000 kg plastic jugs, drums, bags or super sacks
Density (tapped)	0.52 g/mL
pH of 1% dispersion in water	8.4
Oxidizing or reducing action	Product does not contain any oxidizing or reducing agents
Storage stability	Stable for one year in HDPE at temperatures between 18 and 26°C and a relative humidity range of 40 to 60%.
Corrosion characteristics	Product was not corrosive to the packaging material
Explodability	Product is not explosive

1.3 Directions for Use

Fontelis Fungicide and Vertisan Fungicide may be applied to foliage at rates ranging between 1.0 - 2.25 L/ha (200 - 450 g a.i./ha). Vertisan may also be applied as an in-furrow application at 15.5 - 31.0 mL/100 m row (3.1 - 6.2 g a.i./100 m row).

Treoris Fungicide may be applied to potatoes and cucurbits at rates ranging between 1.5 - 2.5 L/ha (450 - 875 g a.i./ha). These rates will deliver between 150 - 250 g penthiopyrad/ha and 300 - 652 g chlorothalonil/ha.

DPX-LEM17 50WG may be applied to turf at rates ranging between $9 - 15 \text{ g}/100 \text{ m}^2$ (4.5 - 7.5 g a.i./100 m²). These rates may also be expressed as 0.9 - 1.5 kg/ha (450 - 750 g a.i./ha).

Please consult the respective product labels for details regarding use directions.

1.4 Mode of Action

Penthiopyrad stops growth of plant pathogenic fungi by blocking respiration and controls plant diseases caused by many Ascomycete and Basidiomycete fungi by blocking both spore germination and mycelial growth. By binding to the protein succinate:ubiquinone reductase in complex II of the electron transport chain, penthiopyrad inhibits two critical respiratory pathways, the citric acid cycle and mitochondrial electron transport. Foliar application exhibits translaminar movement across leaf surfaces and in-furrow application demonstrates systemic movement from root to foliar parts of plants.

2.0 Methods of Analysis

2.1 Methods for Analysis of the Active Ingredient

The methods provided for the analysis of the active ingredient and the impurities in Penthiopyrad Technical Fungicide, with the exception of one impurity method, have been validated and assessed to be acceptable for the determinations.

2.2 Method for Formulation Analysis

The methods provided for the analysis of the active ingredient(s) in the formulations have been validated and assessed to be acceptable for use as enforcement analytical methods.

2.3 Methods for Residue Analysis

In plant and animal commodities, liquid chromatography methods with tandem mass spectrometry (LC-MS/MS) were developed and proposed for data generation and enforcement purposes. These methods fulfilled the requirements with regards to specificity, accuracy and precision at the respective method limit of quantitation. Acceptable recoveries (70-120%) were obtained in plant and animal matrices. The proposed enforcement methods were successfully validated in several plant and animal matrices by an independent laboratory. Adequate extraction efficiencies were demonstrated using radiolabelled cabbage leaf and wheat straw samples analyzed with the enforcement method.

In environmental media, high-performance liquid chromatography methods with tandem mass spectrometry (HPLC-MS/MS) were developed and proposed for data generation and enforcement purposes. These methods fulfilled the requirements with regards to selectivity, accuracy and precision at the respective method limit of quantitation. Acceptable recoveries (70-120%) were obtained in environmental media, with the exception of the method for the metabolite 753-T-DO in drinking water (recovery not possible due to instability of the analyte).

Methods for residue analysis are summarized in Appendix I, Table 1.

3.0 Impact on Human and Animal Health

3.1 Toxicology Summary

Penthiopyrad is a mitochondrial succinate dehydrogenase inhibitor, belonging to the pyrazole carboxamide class of chemicals.

A detailed review of the toxicological database for penthiopyrad was conducted. The database is complete, consisting of the full array of toxicity studies currently required for hazard assessment purposes. The database also includes neurotoxicity, immunotoxicity, and special cancer mode of action (MOA) studies. In addition, the genotoxic potential of five metabolites/degradates (PAM, PCA, DM-PCA, 753-AOH and 753-T-DO) was characterized. The acute oral toxicity of these metabolites, except 753-T-DO, and the short-term oral toxicity of PCA and DM-PCA were also investigated. The studies were carried out in accordance with currently accepted international testing protocols and Good Laboratory Practices. The scientific quality of the data is high and the database is considered adequate to define the majority of the toxic effects that may result from exposure to penthiopyrad.

The single-dose toxicokinetic behaviour, as well as the absorption, distribution, metabolism and excretion characteristics of single and multiple doses, were evaluated in rats. Orally administered penthiopyrad was rapidly and extensively absorbed at 10 and 100 mg/kg bw, the doses investigated. Maximal tissue concentrations were achieved within one hour of dosing. The systemic exposure was linearly dependent on the dose and slightly higher in females compared to males. With repeated dosing, the plasma radioactivity reached a plateau of approximately three times that of the single dose result. The absorption characteristics were not otherwise affected by repeated dosing, or by the dose level and sex of the animal. Absorbed penthiopyrad was widely distributed, with the concentration in the plasma being exceeded by the maximal levels in each of the following organs and tissues: the liver, fat, lymph nodes, adrenals, kidneys, ovaries and pancreas. With repeated dosing, there were small increases in the residues in these organs and tissues, as well as in the blood, lung and thyroid gland, compared to single dose administration. There were no major sex- or dose-related differences in tissue distribution. Excretion of penthiopyrad was rapid and dose-independent. Penthiopyrad was eliminated predominantly via the bile, with appreciable amounts also excreted in the urine. After cessation of dosing, organ and tissue concentrations of radioactivity decreased rapidly. There was no evidence that penthiopyrad accumulated in the tissues. Fecal elimination was essentially complete within 48 hours, and at 96 hours, mean residues were very low in the GI tract and in the carcass. Elimination of penthiopyrad via respired volatiles and CO₂ was negligible. There were no apparent or major sex- or dose-related differences in the tissue residues or in the extent or route of elimination.

Penthiopyrad was extensively metabolized via N-demethylation of the pyrazole ring, alkyl sidechain hydroxylation with subsequent dehydration or oxidation to carboxylic acids, thienyl ring oxidation with subsequent cleavage of the two ring structure, amide hydrolysis of the pyrazole moiety, or thienvl ring opening with subsequent breakdown via intermediary metabolism. Hydroxylated derivatives were also subject to either glucuronidation or glutathione conjugation with subsequent amino acid conjugation. The most abundant metabolite in both urine and feces was formed via N-demethylation and subsequent oxidation of the terminal methyl moiety of the alkyl side chain to a carboxylic acid. The intermediate demethylated and hydroxylated metabolites formed glucuronic acid conjugates that were mainly recovered in the bile. The most abundant metabolites in the bile were formed as a result of thienyl ring oxidation to 753-F-DO followed by conjugation with glutathione and subsequent catabolism of the glutathione. Four metabolites detected in the urine and feces, PAM, DM-PAM, PCA and DM-PCA, retained the pyrazole moiety following cleavage from the thienyl ring. The two acids, PCA and DM-PCA, are likely formed by amide hydrolysis from PAM and DM-PAM, respectively. The thienyl ring appears to be completely degraded and the radiocarbon incorporated into other molecules via normal metabolic processes. There was no evidence that these underlying metabolic reactions and the resulting metabolites differed with repeated dosing.

The acute toxicity of technical penthiopyrad was low via the oral, dermal and inhalation routes in rats. It was also minimally irritating to the eyes and non-irritating to the skin of rabbits and was not a skin sensitizer in guinea pigs. Except for Treoris Fungicide, which is considered slightly toxic via the inhalation route, the acute systemic toxicity of the end-use products discussed in this document was low via the oral, dermal and inhalation routes in rats. Treoris Fungicide was also minimally irritating to the eyes and mildly irritating to the skin of rabbits and was a skin sensitizer in guinea pigs. Similarly, Vertisan Fungicide was mildly irritating to the skin of rabbits and was a skin sensitizer in guinea pigs. However, it was severely irritating to the eyes of rabbits. Fontelis Fungicide was non-irritating to the skin and minimally irritating to the eyes of rabbits and was a skin sensitizer in guinea pigs. DPX-LEM17 50WG Fungicide was mildly irritating to the eyes and slightly irritating to the skin of rabbits and was not a skin sensitizer in guinea pigs.

The liver was the main target organ in mice, rats and dogs. Hepatotoxicity was manifest as increased liver weight, liver enlargement and centrilobular hepatocellular hypertrophy, as well as alterations in clinical chemistry (elevated plasma/serum levels of liver enzymes, cholesterol and/or phospholipids, triglycerides and protein). The rat was the most sensitive species following short-term oral dosing. In the rat, increased liver weight was associated with micro/macrovesicular fatty change, suggesting an effect on hepatic fat metabolism. At high doses, Kupffer cell proliferation and hepatocellular degeneration were also evident in the rat, but not in the mouse or the dog. In several studies, effects on the liver at lower doses were mild and considered to be non-adverse, reflecting an adaptive response of the liver rather than overt hepatotoxicity. The spectrum of liver effects and the doses higher than those causing liver effects, mild hematological changes (decreases in red blood cells, hemoglobin and hematocrit) were observed in the mouse, rat and dog. The thyroid was also a target in short-term studies in the mouse and dog but not in the rat, with effects observed only at the highest doses tested. In the

mouse, increased thyroid weight and thyroid follicular cell hypertrophy were observed in both sexes. In dogs, increased thyroid weights were observed only in the females of the 90-day study. Adrenal cortical hypertrophy occurred at the highest dose tested in dogs after 90 days and one year. Adrenal effects were not observed in the mouse, and were found in the rat only with longer term dosing (i.e. the reproductive toxicity study and long term rat study beginning at six months). Also evident in dogs in the 90-day and 1-year studies were gall bladder mucosal effects (foamy macrophage infiltration, loss of mucosal folds, epithelial hyperplasia).

Dermal dosing of rats for 28 days resulted in no adverse dermal or systemic toxicity at 1000 mg/kg bw/day, the highest dose tested. A repeat-dose inhalation toxicity study was not available in the toxicity database.

The liver and thyroid remained the primary target organs in the mouse and rat with chronic dosing. With long-term dosing in mice, thyroid effects that occurred over shorter dosing periods became evident at lower doses and also included altered colloid and increased brown pigment in the follicular cells. In rats, the kidney was also a target organ. In rats dosed orally for six or twelve months, plasma potassium levels were increased in both sexes and kidney weight was increased in males, implicating kidney function as a probable target of penthiopyrad. These apparent functional effects occurred at doses that were equal to or higher than those leading to hepatotoxicity in the shorter-term rat studies. After 24 months, the kidneys of male rats exhibited increased incidences of interstitial fibrosis and renal glomerulosclerosis at doses lower than those leading to hepatotoxicity. Although there was a response plateau for these kidney effects at the top two doses tested, there were no pharmacokinetic data for the highest dose tested in this study; consequently, it could not be ruled out that this dose-response pattern reflects uncharacterized pharmacokinetic effects, such as a saturation of dose absorption. At the highest two doses tested in the 12- and 24-month rat studies, there were additional findings in the kidneys (pyelitus, lipofuscin, tubular basophilia), adrenals (cortical lipid vacuolation, discolouration, focal fatty change) and ovaries (interstitial cell hypertrophy, senile atrophy) in males and/or females.

Penthiopyrad was tested for *in vitro* and *in vivo* genotoxicity in a range of assays. Based on the negative results obtained in a battery of genotoxicity studies, penthiopyrad is considered unlikely to be genotoxic.

Tumours were observed in the mouse and the rat in the oncogenicity studies. The dosing was considered adequate in these studies. In the mouse, there was equivocal evidence of oncogenicity in the liver. Compared to the concurrent control, there were slight increases in the incidences of hepatocellular adenomas and carcinomas in the males at the highest dose tested. Nevertheless, the tumour incidences were within, or very close to, the historical control range. Further, the adenoma incidences in the concurrent control were atypically low for the mouse strain used, falling below the lower limit of the historical control range. Thus, for liver tumours in male mice, a clear association to treatment with penthiopyrad could not be made. Similarly, there was weak evidence of oncogenicity in male rats. The incidence of thyroid follicular cell adenomas at the highest dose tested was increased slightly compared with the concurrent control group, and also slightly exceeded the historical control range. However, there was no increase in follicular cell

carcinomas and no evidence of comparable changes in females. The proposed mode of action for the thyroid adenomas was chronic perturbation of thyroid hormone homeostasis. Cancer MOA studies were conducted to examine liver and thyroid effects in the mouse and rat. These studies showed that penthiopyrad increased microsomal protein and cytochrome P450 activity in the liver of both mice and rats, and specifically increased UDPGT-T4 in the rat at doses lower than that which resulted in tumours. Increased thyroid stimulating hormone (TSH) and thyroid follicular cell proliferation were also observed in rats; however, these changes were either transiently or inconsistently evident. Further, increased follicular cell hypertrophy and an associated decrease in colloid were evident, but only at doses that were greater than the tumourigenic dose. Finally, there was no evidence of thyroid follicular cell hyperplasia, which is a fundamental outcome of chronically increased TSH and a key event in the proposed cancer MOA. Overall, when the results from all of the MOA studies in rats are considered, there was insufficient evidence that the oncogenic effect in the thyroid was a specific consequence of chronically perturbed thyroid hormone homeostasis. A linear low dose extrapolation (q_1^*) approach is frequently recommended for the cancer risk assessment in the absence of a sufficient weight of evidence to support a proposed threshold-based MOA. However, for penthiopyrad, this approach is considered overly conservative for the following reasons: i) adenomas occurred at a single high dose only, with no evident dose response at lower doses and no concordant evidence of genotoxicity, indicating that the tumour outcome is likely threshold-dependent, ii) the adenomas became evident near the end of the oncogenicity study, indicating that exposure to penthiopyrad over a majority of the lifespan of the animal is required for tumour formation, iii) there was no evidence of an increased incidence of carcinomas, or any effect on the lifespan of the animal, indicating that even with high doses over a majority of the lifespan of the animal the potential risk is limited to benign neoplasia, iv) treatment-related oncogenic effects occurred in only one sex and one rodent species, which reduces the concern for human relevance, and v) the acceptable daily intake (ADI) provides a margin of 2,780 to the thyroid tumours in male rats; consequently it is considered protective of this endpoint. For these reasons, a threshold approach for thyroid tumours was applied for the cancer risk assessment.

No effects on reproduction were noted in a multigeneration reproduction study in the rat. There was a decrease in offspring body weight during early lactation in both generations at the highest dose tested. Also at this dose, there were delays in preputial separation and vaginal opening. Furthermore, at this dose, there were decreases in thymus and spleen weights, with no histopathological correlates. Effects were observed in parental animals at the mid and high doses and included; decreased body weight and body weight gain, increased liver weight with centrilobular hepatocellular hypertrophy, and increased adrenal weight with adrenal cortical hypertrophy. At the high dose only, effects on the thyroid were also observed and comprised of increased thyroid weight and follicular cell hypertrophy. The no observed adverse effect level (NOAEL) for offspring toxicity was greater than that of the NOAEL for parental toxicity. There was no evidence of sensitivity of the young.

Developmental toxicity, in the form of increased early resorptions and post-implantation loss, decreased live young per litter and litter weight, and an increase in partially undescended thymus, was observed when pregnant rats were dosed at the highest dose tested over the period of major organogenesis. Reductions in body weight gain and food consumption were observed in maternal animals at this dose. In rabbits, gravid uterine weight, as well as litter and fetal weight, were reduced at the high dose in the definitive study. Also, one abortion occurred late in gestation at the high dose of 225 mg/kg bw/day following a period of marked reduction in food consumption and body weight in the doe. The occurrence of abortions in the preliminary rabbit developmental toxicity study revealed strong dose dependence for this endpoint, with none occurring at 250 mg/kg bw/day and high incidences at 500 to 1000 mg/kg bw/day. The outcomes for both of the rabbit developmental toxicity study in rabbits. Overall, penthiopyrad is not considered teratogenic and induced developmental toxicity only in the presence of maternal toxicity.

In the acute neurotoxicity study in rats, transient functional alterations were observed (decreased motor activity and body temperature, unsteady gait, hunched posture). There was no histological evidence of damage to the central or peripheral nervous system. These transient effects are considered broad systemic effects, potentially reflective of the mitochondrial inhibitor properties of penthiopyrad rather than evidence of neurotoxicity *per se*. There was no evidence of neurotoxicity in the 90-day neurotoxicity study in rats. A developmental neurotoxicity study in rats revealed no maternal effects up to the highest dose tested. In contrast, offspring exhibited decreased body weight at the mid to high dose levels. Increased motor activity and decreased peak amplitude of the auditory startle response were also observed in offspring at the highest dose tested. The apparent offspring sensitivity in this study is considered an outcome of the limited suite of maternal toxicity endpoints that were assessed within the study, and also a consequence of the shorter duration of maternal exposure, compared to that of the offspring. Offspring sensitivity is not evident when parental toxicity in rats in the broader database is considered. For instance, adverse liver effects occur after 28 days in rats at doses that are comparable to that which resulted in offspring effects in the developmental neurotoxicity study.

A 28-day oral immunotoxicity study in mice indicated immunosuppression at the highest dose tested. The resulting NOAEL for immunotoxicity was based on decreased plaque-forming cells in the spleen. In a comparable 28-day study in rats, there was no evidence of immunotoxicity.

The toxicity of five metabolites was also assessed. Each is a minor metabolite in the rat and is also found in livestock, plants and soil. The acute oral toxicity of the metabolites PCA, DM-PCA and 753-AOH was low in rats, and was not greater than that of the parent chemical. In contrast, the acute oral toxicity of the metabolite PAM was slight to high in rats, which is greater than that of penthiopyrad. Similarly, the metabolites PCA, DM-PCA, 753-AOH and 753-T-DO were negative, or equivocal, in a battery of *in vitro* genotoxicity assays, but the metabolite PAM was mutagenic without S9 in a mouse lymphoma assay and resulted in chromosome aberrations *in vitro* in the absence of S9. In contrast, PAM was negative in an Ames assay and in an *in vivo* micronucleus assay. In rats exposed to either PCA for 28 days by oral gavage or DM-PCA for 14 days via the diet, there were no observed effects up to the highest dose tested. Decreased

body weight and food consumption were observed in rats at the highest dose of DM-PCA tested in a 90-day feeding study. Although the toxicity of PAM appears to be greater than that of the parent chemical, the toxicological effects of short-term exposure to this metabolite were not investigated in repeated dose toxicity studies. Since PAM is a major phototransformation product in soil and a major metabolite in livestock (goats, poultry) and plants (grapes, cabbage), the absence of this toxicological information was considered to be of concern. As a result, a 28day repeat-dose toxicity study in rats using the metabolite PAM is requested.

Results of the toxicology studies conducted on laboratory animals with penthiopyrad, five related metabolites/degradates, and its associated end-use products, are summarized in Appendix I, Tables 2 and 3. The toxicology endpoints for use in the human health risk assessment are summarized in Appendix I, Table 4.

Incident Reports

Since April 26, 2007, registrants have been required by law to report incidents, including adverse effects to health and the environment, to the PMRA within a set time frame. Information on the reporting of incidents can be found on the PMRA website. Incidents from Canada and the United States were searched for penthiopyrad. As of September 21, 2011, there were no reports of adverse health effects in the PMRA Incident Reporting database.

3.1.1 PCPA Hazard Characterization

For assessing risks from potential residues in food, or from products used in or around homes or schools, the *Pest Control Products Act* (PCPA) requires the application of an additional 10-fold factor to threshold effects to take into account completeness of the data with respect to the exposure of, and toxicity to, infants and children, and potential prenatal and postnatal toxicity. A different factor may be determined to be appropriate on the basis of reliable scientific data.

With respect to the completeness of the toxicity database as it pertains to the toxicity to infants and children, extensive data were available for penthiopyrad. The database contains the full complement of required studies, including developmental toxicity studies in rats and rabbits and a reproductive toxicity study in rats. A developmental neurotoxicity study in rats was also conducted.

With respect to potential prenatal and postnatal toxicity, there was no indication of increased susceptibility of fetuses or offspring compared to parental animals in the reproductive toxicity, prenatal developmental toxicity and developmental neurotoxicity studies. As discussed previously, the apparent offspring sensitivity in the developmental neurotoxicity study is negated when the evidence of parental toxicity in rats in the broader toxicity database is considered. In the 2-generation rat reproductive toxicity study, sexual maturation was delayed in both sexes, there were adverse effects on body size and weight, and the thymus and spleen weights were decreased in the offspring at the highest dose tested; however, these effects occurred in the presence of maternal toxicity (liver, adrenal, thyroid and bodyweight effects). Penthiopyrad is not considered teratogenic. In rats, developmental toxicity was manifest via effects on offspring body weight, motor activity, auditory startle response, viability (for example, increased early

resorptions and post-implantation loss) and thymus development; however, these effects either occurred, or are considered to have occurred, in the presence of maternal toxicity. The level of concern for neurotoxicity effects was low. There was no histopathological evidence of a toxicological impact on nervous system tissues.

In the definitive rabbit developmental toxicity study, one abortion occurred late in gestation at the high dose of 225 mg/kg bw/day following a period of marked reduction in food consumption and body weight in the doe. Although abortions are considered a serious developmental endpoint, concern in this instance was tempered by the presence of maternal toxicity, the equivocal relationship to treatment at this dose, and the absence of abortions in the relevant rat toxicity studies. Given these considerations, the NOAEL of 75 mg/kg bw/day from the rabbit developmental study is viewed as conservative; this conservatism is considered sufficient to account for the prenatal concerns (i.e., the serious nature of the endpoint) that would, under different circumstances, result in the retention of a 3-fold PCPA factor. Therefore, the PCPA factor was reduced to 1-fold when using the rabbit developmental toxicity study to establish the point of departure for assessing risk to women of child-bearing age and their fetuses. For exposure scenarios for children, the risk was considered well-characterized and the PCPA factor was reduced to 1-fold when using endpoints from either the multi-generation reproductive toxicity study or the acute neurotoxicity study in rats.

3.2 Determination of Acute Reference Dose

General Population

To estimate acute dietary risk (one day), the acute neurotoxicity study with a NOAEL of 125 mg/kg bw was selected for risk assessment. At the lowest observed adverse effect level (LOAEL) of 500 mg/kg bw, transient functional alterations (for example, decreased reactivity to handling, increased hunched posture and abnormal gait), decreased body temperature and decreased motor activity were observed. These effects were the result of a single exposure and are therefore relevant to an acute risk assessment. Standard uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability have been applied. As discussed in the PCPA Hazard Characterization section, the PCPA factor was reduced to 1-fold.

The composite assessment factor (CAF) is 100-fold.

The acute reference dose (ARfD) is calculated according to the following formula:

ARfD (gen. pop) =
$$\frac{\text{NOAEL}}{\text{CAF}} = \frac{125 \text{ mg/kg bw}}{100} = 1.25 \text{ mg/kg bw of penthiopyrad}$$

The ARfD provides a margin of 400 to the dose at which there was an unequivocal increase in abortions in rabbits in the range-finding study and 800 to the dose where there were adverse effects on offspring viability and thymus development in rats; consequently the ARfD is considered protective of pregnant women and their fetuses.

3.3 Determination of Acceptable Daily Intake

To estimate dietary risk of repeat exposure, the 24-month oncogenicity study in rats with a NOAEL of 9 mg/kg bw/day was selected for risk assessment. At the LOAEL of 27 mg/kg bw/day, increased kidney interstitial fibrosis and renal glomerulosclerosis were observed in males. This study provides the lowest NOAEL in the database. Standard uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability have been applied. As discussed in the PCPA Hazard Characterization section, the PCPA factor was reduced to 1-fold. The CAF is 100-fold.

The acceptable daily intake (ADI) is calculated according to the following formula:

ADI = $\frac{\text{NOAEL}}{\text{CAF}}$ = $\frac{9 \text{ mg/kg bw/day}}{100}$ = 0.09 mg/kg bw/day of penthiopyrad

The ADI provides a margin of 2,780 to the thyroid tumours in male rats; consequently it is considered protective of this endpoint and all other endpoints in the toxicity database.

Cancer Assessment

Penthiopyrad had weak evidence of oncogenicity. Given this, and for the reasons outlined in the toxicology summary, the use of a linear low dose extrapolation approach for cancer risk assessment was considered overly conservative. A threshold approach was used to assess the risk for the thyroid tumours in male rats. The dietary reference dose (i.e. the ADI), as well as the selected NOAELs and the target margins of exposure (MOE) for occupational and bystander exposure, provide a sufficient margin to this tumour.

3.4 Occupational and Residential Risk Assessment

3.4.1 Toxicological Endpoints

Occupational and residential exposure to penthiopyrad is characterized as short- to intermediateterm and is predominantly by the dermal and inhalation routes. For residential scenarios, shortto intermediate-term exposure may occur in children via the same routes. In addition, short-term exposure in children may occur incidentally via the oral route.

Occupational exposure to penthiopyrad is characterized as short- to intermediate-term in duration with a possibility of long-term exposure for postapplication greenhouse use and is predominantly by the dermal and inhalation route. For residential scenarios, adult, youth and toddler exposure is characterized as short- to intermediate-term and to occur predominantly via the dermal route. For toddlers, incidental oral exposure was also assessed and is characterized as short-term in duration.

Short- and Intermediate-term Dermal Exposure (Adults)

For short- and intermediate-term dermal risk assessment for adults, the developmental toxicity study in rabbits was selected. The 28-day dermal toxicity study did not address the endpoint of concern, thus necessitating the use of an oral study for risk assessment. At doses of 225 mg/kg bw/day, litter and fetal weights were reduced in the presence of maternal toxicity, which consisted of an abortion and decreased gravid uterine weight. A NOAEL of 75 mg/kg bw/day was established.

For residential and occupational scenarios, the target MOE selected for this endpoint is 100. Ten-fold factors were applied each for interspecies extrapolation and intraspecies variability. As outlined in the PCPA Hazard Characterization section, the PCPA factor was reduced to 1-fold. This MOE is considered to be protective of all adults, including pregnant and lactating women and their unborn children, as well as nursing infants and children of exposed female workers.

Short- and Intermediate-term Dermal Exposure (Children)

For short- and intermediate-term residential dermal risk assessment for children, the multigeneration reproductive toxicity study in rats was selected. The 28-day dermal toxicity study did not address the endpoint of concern, thus necessitating the use of an oral study for risk assessment. Offspring toxicity in the reproductive toxicity study occurred in the presence of maternal toxicity and was observed in the form of decreased bodyweight, increased small body size, delayed sexual maturation in both sexes and decreased thymus and spleen weights at 311 mg/kg bw/day. A NOAEL of 76 mg/kg bw/day was established.

For residential scenarios, the target MOE selected for this endpoint is 100. Ten-fold factors were applied each for interspecies extrapolation and intraspecies variability. As outlined in the PCPA Hazard Characterization section, the PCPA factor was reduced to 1-fold. This MOE is considered to be protective of children.

Short- and Intermediate-term Inhalation Exposure (Adults and Children)

For short- and intermediate-term residential (adults and children) and occupational (adults) exposure via the inhalation route, the 90-day toxicity study in rats was selected for risk assessment. A NOAEL of 40 mg/kg bw/day was established based on increased liver weight, hepatocellular hypertrophy, histopathological alterations and perturbations in clinical chemistry and haematology at 99.9 mg/kg bw/day. This study provides the lowest short- to intermediate-term toxicity NOAEL in the database. A short-term inhalation study was not available.

The target MOE for these scenarios is 100, which includes uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability.

For residential exposure, the study NOAEL and target MOE provide a margin of greater than 550 to offspring effects in the multi-generation reproductive toxicity study and the developmental toxicity studies in rats and rabbits. Consequently, and for reasons outlined in the PCPA Hazard Characterization section, the PCPA factor was reduced to 1-fold. In addition, this study and target MOE are considered to be protective of all populations, including nursing infants and the unborn children of exposed female workers.

Long-term Dermal and Inhalation Exposure (Adults)

For long-term dermal and inhalation risk assessment for adults, the 12-month chronic toxicity study in rats with a NOAEL of 25 mg/kg bw/day was selected for risk assessment. At the LOAEL of 100 mg/kg bw/day, increased liver weight, adrenal weight, adrenal diffuse hypertrophy of zona glomerulosa, adrenal cortical lipid vacuolation, thyroid diffuse follicular cell hypertrophy were observed, as well as increased kidney weight in males and increased hemoglobin distribution width, potassium, cholesterol and phospholipid levels in females. Repeat-dose inhalation toxicity studies were not conducted and the duration of the 28-day dermal toxicity study was not appropriate for long-term exposure scenarios, thus necessitating the use of an oral study for risk assessment. Although the NOAEL of 9 mg/kg bw/day in the two year oncogenicity study in rats was the lowest NOAEL in the toxicology database for penthiopyrad, the key effects at the LOAEL of 27 mg/kg bw/day (kidney interstitial fibrosis and glomerulosclerosis) were not observed in male rats until terminal sacrifice. The similarity of this effect level to the NOAEL in the chronic toxicity study in rats suggests that the above renal histopathological effects occurred after two years of penthiopyrad treatment. The 2-generation reproductive toxicity study also had a lower NOAEL (12 mg/kg bw/day) and LOAEL (60/76 mg/kg bw/day males/females) than the 12-month chronic toxicity study study in rats. This study was not considered to be as relevant for this scenario, since the key treatment-related effects in males were decreased body weight and body weight gains from weeks 2-10 only, and the adrenal and liver effects in females were also seen after a longer duration of dosing in the 12 month rat chronic toxicity study. Also, the NOAEL of 25 mg/kg bw/day is the highest NOAEL between the 12-month rat chronic toxicity study and the rat 2-generation reproductive toxicity study. Based on the intermittent nature of the proposed long-term exposure scenarios, the 12 month chronic toxicity in rats was considered to be most appropriate for long-term exposure risk assessment.

The target MOE selected for this endpoint is 100. Ten-fold factors were applied each for interspecies extrapolation and intraspecies variability. This target MOE is considered to be protective of all adults including nursing infants and the unborn children of exposed female workers.

Non-Dietary Oral Ingestion (Children, Short-term)

For short-term residential exposure in children via non-dietary oral ingestion, the acute neurotoxicity study with a NOAEL of 125 mg/kg bw was selected for risk assessment. At the LOAEL of 500 mg/kg bw, transient functional alterations (for example, decreased reactivity to handling, increased hunched posture and abnormal gait), decreased body temperature and decreased motor activity were observed. These effects were the result of a single exposure and are, therefore, the most relevant endpoints for the assessment of risk related to short-term incidental oral ingestion.

The target MOE for these scenarios is 100, which includes uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability. For reasons outlined in the PCPA Hazard Characterization section, the PCPA factor was reduced to 1-fold.

3.4.1.1 Dermal Absorption

A rat *in vivo* dermal penetration study and three *in vitro* rat/human comparison studies (one for the Fontelis Fungicide formulation, one for the Vertisan Fungicide formulation and one for the Treoris Fungicide formulation) were submitted. Given the uncertainties identified in the *in vivo* study and the fact that only a high concentrated dose diluted in CMC and Tween 80 was assessed, it was not appropriate to derive a dermal absorption factor for penthiopyrad based on the results of this study. As the rat *in vivo* study was not a suitable estimator for dermal absorption, the rat/human *in vitro* studies cannot be used as a direct comparative tool for extrapolation of human absorption.

However, the physical and chemical properties of penthiopyrad are such that refinement of the dermal absorption value was possible. Based on the molecular mass (359.4 g/mol), water solubility (1.375 mg/L at pH 7 and 20 °C) and the octanol water partition coefficient (log K_{ow} of 4.62 at pH 7 and 20 °C), the dermal absorption of penthiopyrad is expected to be low to moderate. These properties in combination with the observations made during the *in vitro* dermal absorption studies, a dermal absorption value of 50% was used during the assessment of dermal exposure for penthiopyrad.

3.4.2 Occupational Exposure and Risk

Mixer/loader/applicator Exposure and Risk Assessment

Individuals have potential for exposure to penthiopyrad during mixing, loading and application of Fontelis Fungicide, Vertisan Fungicide, Treoris Fungicide and DPX-LEM17 50WG Fungicide. The use of Treoris Fungicide on potatoes and cucurbits fits within the registered use pattern for chlorothalonil, therefore chlorothalonil will not be further discussed in the occupational exposure and risk section. Exposure is expected to be short- to intermediate-term in duration and to occur through both the dermal and inhalation routes. Exposure estimates were derived for mixers/loaders/applicators applying penthiopyrad to alfalfa, low growing berries, bulb vegetables, brassica vegetables, cucurbit vegetables, fruiting vegetables, leafy vegetables, legume vegetables and foliage, pome fruits, root vegetables and leaves, stone fruit, tree nuts, peanuts, canola, dry legumes, cereal grains, corn, sorghum, millet, soybeans, sunflower, tuberous and corm vegetables, sugar beets, potatoes and turf grass using groundboom, aerial, airblast, backpack, low-pressure handwand or low-pressure nozzle sprayer equipment. The exposure estimates are based on mixers/loaders/applicators wearing a long-sleeved shirt, long pants, shoes, socks and chemical resistant gloves.

As chemical specific data for assessing human exposure were not submitted, dermal and inhalation exposure estimates for workers were estimated using the Pesticide Handlers Exposure Database, version 1.1. Risk assessments were performed for workers wearing a single layer and gloves during mixing/loading and application.

Dermal exposure was estimated by coupling the unit exposure values with the amount of product handled per day and the dermal absorption value. Inhalation exposure was estimated by coupling the unit exposure values with the amount of product handled per day with 100% inhalation absorption. Exposure was normalized to mg/kg bw/day by using 70 kg adult body weight. Exposure estimates were compared to the toxicological end points (NOAEL) to obtain the MOE; the target MOE is 100. The MOEs for mixers/loaders and applicators were above the target of 100 for dermal exposure and for inhalation exposure and, thus, occupational risk associated with mixing/loading and applying Fontelis Fungicide, Vertisan Fungicide, Treoris Fungicide and DPX-LEM17 50WG Fungicide is not of concern with the protective equipment specified on the label. The exposure and risk estimates are presented in Appendix I, Table 5.

3.4.2.1 Exposure and Risk Assessment for Workers Entering Treated Areas

There is potential for exposure to workers entering areas treated with penthiopyrad while performing activities such as scouting, hand harvesting, thinning or maintenance tasks. The duration of exposure is considered to be short-term (up to 30 days per year) to intermediate-term (up to six months per year) for all uses except for greenhouse, where long-term exposure potential exists (year-round). The primary route of exposure for workers re-entering treated areas would be through the dermal route. Inhalation exposure is not considered to be a significant route of exposure for people entering treated areas compared to the dermal route, since penthiopyrad is relatively non-volatile (6.43 x 10^{-9} kPa at 25°C) and meets the NAFTA criteria for a low volatility inhalation assessment waiver based on a vapour pressure less than 1.0 x 10^{-4} kPa for outdoor use and 1.0×10^{-5} kPa for indoor use.

Dermal exposure to workers entering treated areas is estimated by coupling dislodgeable foliar residue values or transferable turf residue values with activity-specific transfer coefficients. Activity transfer coefficients are based on Agricultural Re-entry Task Force data. Chemical-specific dislodgeable foliar residue (DFR) data were submitted for airblast application on apple trees and for ground spray application on squash. For greenhouse DFR, a default value of 20% of the application rate was used in the exposure assessment, and for transferable turf residues, a default value of 5% of the application rate was used.

Exposure estimates were compared to the toxicological end-point to obtain the MOE; the target MOE is 100. The MOEs for entering treated areas were above the target of 100, except for detasseling corn, which required a 3-day restricted entry interval (REI). Thus, with the inclusion of the 3-day REI for corn detasseling, there were no postapplication risks of concern. The exposure and risk estimates are presented in Appendix I, Table 6.

3.4.3 Residential Exposure and Risk Assessment

3.4.3.1 Handler Exposure and Risk

There are no domestic class products, therefore, a residential handler assessment was not required.

3.4.3.2 Postapplication Exposure and Risk

There is potential for postapplication exposure to the general population entering areas treated with penthiopyrad. An assessment was required for adults and children who harvest crops from pick-your-own (PYO) farms and are exposed to treated lawns around their home, school, parks or public areas. The duration of exposure is considered to be short-term for PYO and short- to intermediate-term for residential and municipal lawns and golf courses. The primary route of exposure for these individuals would be through the dermal route. Penthiopyrad is considered non-volatile and is not an inhalation concern for postapplication exposure.

Risk calculations for dermal exposure were performed using the predicted DFR on the preharvest interval from the apple DFR study, the cucurbit DFR study or default Day 0 transferable turf residue, along with the average bodyweights for age group and the time spent on the activity each per day. Applicable transfer coefficients were scaled to represent the average surface area of individuals within various subpopulations.

Exposure estimates were compared to the toxicological end-point to obtain the MOE; the target MOE is 100. The MOEs for the general public entering treated areas were above the target of 100 and, thus, risk associated with residential postapplication exposure is not of concern. The exposure and risk estimates are presented in Appendix I, Table 7.

In addition to dermal exposure to residential lawns, default hand-to-mouth, turf ingestion and soil ingestion equations from the EPA *Draft Standard Operating Procedures (SOPs) for Residential Exposure Assessment* including the revisions documented in the EPA HED Policy #12 were used to estimate incidental oral exposure for toddlers. The exposure and risk estimates are presented in Table 8, Appendix I and were not of concern.

3.4.3.3 Bystander Exposure and Risk

Risk to bystanders is considered negligible as exposure to spray drift is not expected to exceed the exposure for mixers/loaders and applicators.

3.5 Food Residues Exposure Assessment

3.5.1 Residues in Plant and Animal Foodstuffs

The residue definition for enforcement in plant products is penthiopyrad. The residue definition for risk assessment in plant products is penthiopyrad, and the metabolites PAM and PCA. The residue definition for risk assessment and enforcement in animal commodities is penthiopyrad and the metabolite PAM. The data gathering/enforcement analytical method is valid for the quantitation of penthiopyrad, PAM and PCA residues in crops and livestock matrices. The residues of penthiopyrad and the metabolites are stable in plant matrices when stored in a freezer at -20°C for 18 months. Raw agricultural commodities of sugar beet, potato, soybean, plum, field corn, canola, peanut, apple, wheat and tomato were processed. The processing data showed that residues of penthiopyrad concentrate in the following commodities: corn oil (4.0x), dried prune

(1.4x), canola oil (1.6x), peanut oil (1.5x), tomato paste (2.5x) and tomato puree (1.9x). The processing factor in wheat processed commodities cannot be determined due to the lack of quantifiable residues in wheat grain and wheat processed commodities. Supervised residue trials conducted throughout the United States and Canada using end-use products containing penthiopyrad at the label rates in, or on, all proposed crops are sufficient to support the proposed maximum residue limits (MRLs). Several proposed crops are animal feed items. Based on animal feeding studies and the estimated dietary burdens, MRLs in animal commodities are recommended to cover the secondary residues in livestock matrices.

3.5.2 Dietary Risk Assessment

Acute and chronic dietary risk assessments were conducted using the Dietary Exposure Evaluation Model (DEEM–FCIDTM, Version 2.16), which uses updated food consumption data from the United States Department of Agriculture's Continuing Surveys of Food Intakes by Individuals, 1994–1996 and 1998.

3.5.2.1 Chronic Dietary Exposure Results and Characterization

The following assumptions were made in a refined chronic analysis: median residues of crop field trial data, experimental processing factors, and anticipated residues in animal commodities. The refined chronic dietary exposure from all supported penthiopyrad food uses (alone) for the total population, including infants and children, and all representative population subgroups are 5.4% of the ADI. Aggregate exposure from food and water was not of concern. The PMRA estimates that chronic dietary exposure to penthiopyrad from food and water is 7.1% (0.006393 mg/kg bw/day) of the ADI for the total population. The highest exposure and risk estimate is for all infants (< 1 year) at 18.3% (0.016426 mg/kg bw/day) of the ADI.

3.5.2.2 Acute Dietary Exposure Results and Characterization

The following assumptions were made in a refined acute analysis: the highest average field trial (HAFT) residues values from crop field trial data, experimental processing factors, and anticipated residues in animal commodities. The refined acute dietary exposure (food alone) for all supported penthiopyrad registered commodities is estimated to be 2.1% (0.026093 mg/kg/day) of the ARfD (95th percentile, deterministic) for the total population. Aggregate exposure from food and water was not of concern: 3.1% (0.038877 mg/kg/day) of the ARfD for total population. The highest exposure and risk estimate is for infants <1 year old at 6.0% (0.075542 mg/kg bw/day) of the ARfD.

3.5.3 Aggregate Exposure and Risk

The aggregate risk for penthiopyrad consists of exposure from food and drinking water sources only. Aggregate risks were calculated based on acute and chronic endpoints.

3.5.4 Maximum Residue Limits

Table 3.5.1 Proposed Maximum Residue Limits

Commodity	Recommended MRL (ppm)
Leaves of root and tuber vegetables (Crop Group 2), leafy Brassica greens subgroup (Subgroup 5B)	50
Leafy vegetables (Crop Group 4)	30
Head and stem Brassica subgroup (Subgroup 5A)	5
Edible-podded legume vegetables subgroup (Subgroup 6A), stone fruits (Crop Group 12-09)	4
Tomato paste	3.5
Root vegetables (except sugar beet) subgroup (Subgroup 1B), bulb vegetables (Crop Group 3-07), fruiting vegetables (Crop Group 8-09), low growing berry subgroup (Subgroup 13-07G)	3
Oil seeds (Crop Group 20)	1.5
Barley bran	0.9
Sorghum, millet	0.8
Cucurbit vegetables (Crop Group 9)	0.6
Sugar beet, pome fruits (Crop Group 11-09)	0.5
Succulent shelled pea and bean subgroup (Subgroup 6B), dried shelled pea and bean (except soybean) subgroup (Subgroup 6C), soybean	0.4
Wheat bran & germ	0.3
Cereal grains (Crop Group 15, except corn, sorghum and millet)	0.15
Tuberous and corm vegetables subgroup (Subgroup 1C), tree nuts (Crop Group 14-11), peanut oil	0.06
Corn oil	0.05
Peanuts	0.04
Field corn, pop corn, sweet corn kernels plus cob with husks removed	0.01
Meat byproducts of cattle, goats, horses and sheep	0.09
Meat and fat of cattle, goats, horses and sheep.	0.03
Eggs; fat, meat & meat byproducts of hogs and poultry; milk	0.02

MRLs are proposed for each commodity included in the listed crop groupings in accordance with the Residue Chemistry Crop Groups webpage in the Pesticides and Pest Management section of Health Canada's website.

For additional information on MRLs in terms of the international situation and trade implications, refer to Appendix II.

The nature of the residues in animal and plant matrices, analytical methodology, field trial data, and the acute and chronic dietary risk estimates are summarized in Appendix I, Tables 1, 9 and 10.

4.0 Impact on the Environment

4.1 Fate and Behaviour in the Environment

The physical/chemical properties, fate and behaviour of penthiopyrad and its transformation products in the terrestrial environment are summarized in Appendix I, Tables 11 and 12. The fate and behaviour of penthiopyrad in the aquatic environment is summarized in Appendix I, Table 13.

Penthiopyrad has a water solubility of 2.54 (pH 4), 1.38 (pH 7) and 1.66 mg/L (pH 10) indicating it has low aqueous solubility. Penthiopyrad is expected to bioaccumulate based on its log K_{ow} of 4.36-4.62. The vapour pressure of penthiopyrad is 2.96×10^{-6} Pa (20°C) indicating it is relatively non-volatile under field conditions. Similarly, the calculated Henry's Law Constant of 1/H = 3.15×10^{6} , indicates penthiopyrad is not expected to volatilize from moist soil or water surfaces. The dissociation constant (pK_a) of 10.0 indicates penthiopyrad will not dissociate at environmentally relevant pH.

Hydrolysis was not a route of transformation as penthiopyrad was stable in water at pH 4, pH 7 and pH 9 after 15 days at 50°C. On soil, phototransformation was a route of transformation of penthiopyrad as the first-order half-life was 3.4 days for continous irradiation with artificial light and 6.8 days under conditions of 12 hours artificial light:12 hours dark. The major phototransformation products were PAM at a maximum of 26.7% of applied and PCA at a maximum of 22.7% of applied. In aerobic soil, penthiopyrad was moderately persistent to persistent (DT₅₀ = 60-406 days). DM-PCA was the major transformation product in aerobic soil reaching maximums of 17-28% of applied. DM-PCA exhibited DT₅₀s of 32.6-155 days, indicating it was slightly persistent to moderately persistent in aerobic soil. In anaerobic soil, penthiopyrad was persistent as biotransformation was not evident.

Penthiopyrad is expected to have low mobility in soil as its laboratory-determined K_{oc} values were 616-996 mL/g. By contrast, its major aerobic soil transformation products, DM-PCA and PCA, have potential for very high mobility in soil as the K_{oc} s were 4-11 and 0.0002-3.5 mL/g, respectively. Similarly, the major phototransformation product, PAM, has potential to be very highly mobile in soil as its K_{oc} was 5-11 mL/g.

Under terrestrial field conditions, penthiopyrad was non-persistent to slightly persistent in soil with reported DT_{50} values ranging from 6.1-29.5 days. Penthiopyrad was transformed in the upper 5-30 cm soil depth and did not leach to lower soil depths. The major transformation product, DM-PCA, leached to lower soil depths (up to 70 cm depth). The other major transformation product, PCA, was not detected beyond the upper 15 cm of soil.

Hydrolysis was not a route of transformation as penthiopyrad was stable in water at pH 4, pH 7 and pH 9 after 15 days at 50°C. Phototransformation in water was not a route of transformation as penthiopyrad was photolytically stable under continous irradiation with artificial light. In aerobic water/sediment biotransformation studies, penthiopyrad is persistent with reported DT₅₀ values of 223-384 days. Penthiopyrad steadily partitioned from the water phase to the sediment. In sediment, penthiopyrad increased from 5-6% of applied at day 0 to maximum levels of 63.3-68.1% applied radioactivity (AR) by day 56. Once in sediment, the dissipation of penthiopyrad was slow, declining slightly to 46.8-58.0% by day 185. PCA was the major transformation product in aerobic aquatic systems accounting for a maximum of 10.5% of applied by day 185 in the total system. In anaerobic water/sediment biotransformation studies, penthiopyrad was persistent as almost all of the applied radioactivity was present as unchanged parent after 100 days. Penthiopyrad partitioned from the anaerobic water phase to the sediment via adsorption (20:80 split in water: sediment after 100 days). The biotransformation of penthiopyrad in the total system was too slow for a meaningful determination of DT₅₀.

The bioconcentration of penthiopyrad in fish was low. For exposure to a low dose of penthiopyrad (0.98 μ g a.i./L), the mean bioconcentration factor (BCF) values in rainbow trout were 79 for edible tissues, 226 for non-edible tissues, and 158 for whole fish tissues for total residues. At the high dose (10.22 μ g a.i./L), the mean BCFs were 86 for edible tissues, 236 for non-edible tissues, and 155 for whole fish tissues for total residues. Depuration half-lives for whole fish were 0.86 days at the low dose and 0.65 days at the high dose.

4.2 Environmental Risk Characterization

The environmental risk assessment integrates the environmental exposure and ecotoxicology information to estimate the potential for adverse effects on non-target species. This integration is achieved by comparing exposure concentrations with concentrations at which adverse effects occur. Estimated environmental exposure concentrations (EECs) are concentrations of pesticide in various environmental media, such as food, water, soil and air. The EECs are estimated using standard models, which take into consideration the application rate(s), chemical properties and environmental fate properties, including the dissipation of the pesticide between applications. Ecotoxicology information includes acute and chronic toxicity data for various organisms or groups of organisms from both terrestrial and aquatic habitats, including invertebrates, vertebrates, and plants. Toxicity endpoints used in risk assessments may be adjusted to account for potential differences in species sensitivity, as well as varying protection goals (i.e. protection at the community, population, or individual level).
Initially, a screening level risk assessment is performed to identify pesticides and/or specific uses that do not pose a risk to non-target organisms, and to identify those groups of organisms for which there may be a potential risk. The screening level risk assessment uses simple methods, conservative exposure scenarios (for example, direct application at a maximum cumulative application rate) and sensitive toxicity endpoints. A risk quotient (RQ) is calculated by dividing the exposure estimate by an appropriate toxicity value (RQ = exposure/toxicity), and the risk quotient is then compared to the level of concern (LOC = 1). If the screening level risk quotient is below the level of concern, the risk is considered negligible and no further risk characterization is necessary. If the screening level risk quotient is equal to or greater than the level of concern, then a refined risk assessment is performed to further characterize the risk. A refined assessment takes into consideration more realistic exposure scenarios (such as drift to non-target habitats) and might consider different toxicity endpoints. Refinements may include further characterization of risk based on exposure modelling for spray drift and surface runoff, field or mesocosm studies, and probabilistic risk assessment methods. Refinements to the risk assessment may continue until the risk is adequately characterized or no further refinements are possible.

For characterizing acute risk, acute toxicity values (for example, LC_{50} , LD_{50} , and EC_{50}) are multiplied by an uncertainty factor. The uncertainty factor is used to account for differences in inter- and intra-species sensitivity as well as varying protection goals (for example, community, population, individual). Thus, the magnitude of the uncertainty factor depends on the group of organisms that are being evaluated (for example, 0.1 for fish, 0.5 for aquatic invertebrates). The difference in value of the uncertainty factors reflects, in part, the ability of certain organisms at a certain trophic level (i.e. feeding position in a food chain) to withstand, or recover from, a stressor at the level of the population. When assessing chronic risk, the NOEC or NOEL is used and an uncertainty factor is not applied. Table 14 (Appendix I) outlines the toxicity endpoints considered in the risk assessment.

As toxicity studies were conducted with the Vertisan Fungicide and Fontelis Fungicide formulations (containing penthiopyrad) and with the co-formulated Treoris Fungicide (containing penthiopyrad + chlorothalonil), the risk assessment was conducted on the basis of the most sensitive endpoint for each of these end-use products (Appendix I, Table 14).

4.2.1 Risks to Terrestrial Organisms

Table 15 (Appendix I) summarizes the screening level risk to terrestrial organisms other than birds and mammals. In the risk assessment of earthworms and terrestrial plants, the EEC is based on the cumulative in-field application of penthiopyrad. For bees, the EEC is based on the single maximum application rate. For beneficial arthropods, the risk assessment is based on both the potential in-field and off-field exposure to penthiopyrad. In-field exposure assumes 100% of the cumulative application rate of penthiopyrad deposited onto foliage. Off-field exposure assumes exposure via spray drift deposition (based on the proposed ASAE fine droplet spray quality) of 11% (field sprayer application), 74% (airblast application) or 26% (aerial application) of the cumulative rate of penthiopyrad deposited onto foliage. In earthworms and bees, penthiopyrad and the end-use formulations (Vertisan Fungicide, Fontelis Fungicide and Treoris Fungicide) pose a negligible risk (RQ <1) on an acute and chronic basis.

In terrestrial plants, the Fontelis Fungicide formulation poses a risk to plant emergence (RQ = 2.0) for uses in turf resulting from a direct in-field exposure. For exposure resulting from off-field spray drift, however, the risk to non-target plants is negligible (RQ < 1) for treatment of turf. For use in field crops and orchards, the risk to terrestrial plants was negligible (RQ < 1) for both seedling emergence and vegetative vigour.

Both the Vertisan Fungicide and Fontelis Fungicide formulations pose a potential acute in-field risk to beneficial arthropods in field crops (RQ < 6) and orchards (RQ < 5). The acute off-field risk for gound field applications of the Vertisan Fungicide and Fontelis Fungicide formulations are negligible, whereas the RQ's for orchards and aerial applications are less than four. The acute in-field risks for the Treoris Fungicide formulation are considered to be negligible in field crops (RQ < 1.2) based on the endpoint reported of >470 g a.i./ha.

On the basis of reproductive effects, the Fontelis Fungicide formulation poses an in-field risk in field crops (RQ = 78) and orchards (RQ = 67). The Fontelis Fungicide formulation also poses an off-field risk in field crops (RQ = 8.6) for ground application and RQ = 20.4 for aerial application) and orchards (RQ = 20.4). Treoris Fungicide poses an in-field reproductive risk in field crops (RQ = 65). Treoris Fungicide also poses an off-field reproductive risk in field crops (RQ = 7.1 for ground application and RQ = 16.9 for aerial application).

In the higher-tier field studies with the Fontelis Fungicide formulation, however, the population of predatory mites was reduced by only 19.4% and 11.8% from applications of 448 and 720 g a.i./ha, respectively. These results indicate there is a minimal concern for effects on the arthropod population as a 50% effect is considered to be acceptable, since between-season recovery is usually not impeded at this effect level, and is applicable to both in- and off-field habitats. As results of the laboratory studies indicate that the Treoris Fungicide and Fontelis Fungicide formulations exhibit similar effects on arthropod reproduction (ER₅₀s = 8.7 and 7.2 g a.i./ha, respectively), under field conditions, a similar effect with Treoris Fungicide is expected. Thus, as with the Fontelis Fungicide formulation, there is a minimal concern with the effects of the Treoris Fungicide on arthropod reproduction. In addition, the effects of chlorothalonil (the other fungicide active in Treoris Fungicide) on beneficial arthropods was not identified as a concern in the most recent re-evaluation of this fungicide (PRVD2011-14 - *Chlorothalonil*).

Tables 16, 17 and 18 (Appendix I) summarizes the screening level risk to birds and mammals resulting from the application of penthiopyrad to field crops, orchards and turf, respectively. The screening level risk assessment shows that penthiopyrad poses a negligible risk (RQ < 1) to all feeding guilds and body sizes in birds and mammals on an acute and reproductive basis.

4.2.2 Risks to Aquatic Organisms

Table 19 (Appendix I) summarizes the screening level risk to aquatic organisms. In the determination of the RQs for invertebrates, fish, algae and aquatic vascular plants, the EECs in water are based on the cumulative application of penthiopyrad to a 80-cm deep pond. For determination of the RQs for exposure of aquatic life-stages of amphibians, the EECs in water are based on the cumulative applications of penthiopyrad to a 15-cm deep pond.

For freshwater invertebrates, penthiopyrad poses a negligible acute and chronic risk (RQ <1). Similarly, the Vertisan Fungicide formulation poses a negligible acute risk (RQ <1). The Fontelis Fungicide formulation, however, poses a risk on an acute and chronic basis with RQs of 3.7-13.4 and 10.4-37.7, respectively. The Treoris Fungicide formulation also poses a risk on an acute basis with an RQ of 13.9.

For freshwater fish, the Treoris Fungicide formulation is the most toxic test substance by posing the highest acute risk (RQ = 92.1). The less toxic penthiopyrad, Fontelis Fungicide and Vertisan Fungicide formulations, pose similar acute risks with RQs of 3.8-13.8, 3.1-11.2 and 3.6-12.9, respectively.

For aquatic life-stages of amphibians, the acute toxicity endpoints for fish were considered as surrogate data given the lack of data for amphibian species. For assessing risks to amphibians, a shallower receiving water body is used to determine EEC values. Here, the Treoris Fungicide formulation poses the highest acute risk to amphibians with an RQ of 490. The less toxic penthiopyrad, Fontelis Fungicide and Vertisan Fungicide formulations, pose similar acute risks with RQs of 20.3-73.5, 16.5-59.9 and 19.0-69.0, respectively.

For freshwater plants (algae and duckweed), penthiopyrad, Fontelis Fungicide and Vertisan Fungicide formulations pose a negligible acute risk (RQ <1). By contrast, the Treoris Fungicide formulation poses an acute risk to freshwater plants with an RQ of 5.1.

For marine fish, penthiopyrad and the Fontelis Fungicide formulation pose an acute risk for uses on turf with RQs of 2.9 and 1.5, respectively. For uses in field crops and orchards, the acute risk was negligible (RQ \leq 1).

For marine algae, penthiopyrad poses a negligible acute risk (RQ <1).

Table 20 (Appendix I) summarizes the refined aquatic risk assessment for those species where the LOC was exceeded in the screening level risk assessment.

The refined assessment considered the off-target spray drift if penthiopyrad is applied by field sprayers, airblast sprayers or by aerial application. Here, the refined EECs are based on the spray drift from applications using the proposed fine spray quality. This off-field exposure assumes spray drift (based on the proposed ASAE fine droplet spray quality) of 11% (field sprayer application), 74% (airblast application) or 26% (aerial application) of the cumulative rate of penthiopyrad.

Refined assessments also considered exposure resulting from surface runoff of penthiopyrad to aquatic habitats. For aquatic invertebrates, fish, algae and amphibians, the peak EECs resulting from surface runoff are used to assess the acute risk, whereas for the chronic risk, 21-day EECs are considered.

In freshwater invertebrates, acute and chronic risks are identified for surface runoff and spray drift (RQ >1; LOC exceeded) for exposure to the Fontelis Fungicide and Treoris Fungicide formulations. The two exceptions are acute exposure to the Fontelis Fungicide formulation through spray drift in field crops and surface runoff in orchards (RQ <1; negligible risk). For runoff and spray drift resulting from the application of the Fontelis Fungicide formulation, the RQs are <1.0-9.0 and <1.0-7.6, respectively, indicating a negligible risk (RQ<1) or an exceedance of the LOC (RQ>1) depending on the exposure scenario. For runoff and spray drift resulting from the Treoris Fungicide formulation, the RQs are 10.9 and 1.5-3.7, respectively, indicating the LOC is exceeded in all exposure scenarios.

For freshwater fish, various levels of risk are attributed to exposure via runoff and spray drift with the highest risk being associated with the application of the Treoris Fungicide formulation. Thus, for runoff and spray drift resulting from the application of Treoris Fungicide, the RQs are 72.1 and 10.0-24.3, respectively, indicating the LOC is exceeded in all exposure scenarios. For runoff and spray drift resulting from the application of penthiopyrad, the RQs are <1.0-3.5 and <1.0-2.8, respectively, indicating a negligible risk (RQ<1) or an exceedance of the LOC (RQ>1) depending on the exposure scenario. Similarly, for runoff and spray drift resulting from the application, the RQs are <1.0-2.8, and <1.0-2.3, respectively, and for the application of the Vertisan Fungicide formulation, the RQs are <1.0-3.3 and <1.0-2.6, respectively.

For aquatic life-stages of amphibians, various levels of risk are attributed to runoff and spray drift with the highest risk being associated with the application of the Treoris Fungicide formulation. Thus, for runoff and spray drift resulting from the application of the Treoris Fungicide formulation, the RQs are 197.9 and 54.3-127.1, respectively, indicating the LOC is exceeded in all exposure scenarios. For runoff and spray drift resulting from the application of penthiopyrad, the RQs are 2.3-9.6 and 2.6-15.0, respectively, again indicating the LOC is exceeded in all exposure scenarios. Similarly, for runoff and spray drift resulting from the application of the Fontelis Fungicide formulation, the RQs are 1.8-7.8 and 2.1-12.2, respectively, and for the application of the Vertisan Fungicide formulation, the RQs are 2.1-9.0 and 2.5-14.1, respectively.

In freshwater algae, exposed to runoff and spray drift resulting from the application of the Treoris Fungicide formulation, the RQs are 4.0 and <1-1.3, respectively, indicating a negligible risk (RQ<1) or an exceedance of the LOC (RQ>1) depending on the exposure scenario.

In marine fish, there is negligible risk (RQ <1) attributed to runoff and spray drift resulting from the application of penthiopyrad or the Fontelis Fungicide formulation.

An additional spray drift risk assessment was conducted for the co-formulated Treoris Fungicide, which contains both penthiopyrad and chlorothalonil as active ingredients. As a medium spray quality is designated on the labels of chlorothalonil products, exposure resulting from this coarser spray quality is considered in refining the spray drift assessment for Treoris Fungicide. This off-field exposure assessment assumes spray drift (based on the ASAE Medium droplet spray quality) of 6% (field sprayer application) and 23% (aerial application) of the cumulative application rate of Treoris Fungicide. This spray drift risk assessment was also based on the same toxicity endpoints for Treoris Fungicide used in the preceding assessment.

Table 21 (Appendix I) summarizes the refined spray drift assessment for Treoris Fungicide. For freshwater invertebrates, there is a negligible acute risk (RQ <1) from ground application spray drift, however, the LOC is exceeded (RQ = 3.2) with spray drift resulting from aerial application of Treoris Fungicide. For freshwater fish, the LOC is exceeded for both ground and aerial application spray drift (RQs = 5.5 and 21.2, respectively). Similarly, for amphibians, the LOC is exceeded for both ground and aerial application spray drift (RQs = 29.4 and 112.7, respectively). For freshwater algae, there is a negligible acute risk (RQ <1) from ground application spray drift, however, the LOC is exceeded (RQ = 1.2) with spray drift resulting from aerial application.

5.0 Value

5.1 Effectiveness Against Pests

5.1.1 Acceptable Efficacy Claims

Efficacy evaluations were conducted on submitted data and scientific rationales. Where possible, extrapolations were accepted between crops and pests. For example, *Botrytis cinerea* is a pathogen that affects multiple crops in a similar way with respect to plant parts affected, symptoms expressed and disease cycle. Therefore, control of this pest was supported on all proposed crops based on the trial results and rationales. For diseases caused by host-specific pathogens (powdery mildew, rust), conclusions were based on trial data only for most crops. Extrapolations were supported if crops were affected by the same pathogen and the disease was manifested in the same way. Extrapolation of in-furrow use to suppress diseases caused by *Rhizoctonia solani* (excluding seed and seedling diseases) was supported on all proposed crops, but were amended to potatoes and sugar beets based on the health risk assessment. Claims were amended to suppression when the data demonstrated this level of control. Rates were adjusted based on tested rates that demonstrated efficacy. Crops were amended based on which crops are affected by the tested pathogen. Additional data is being requested for situations where the level of efficacy was not consistent or was unclear. Supported and unsupported uses are summarized by product in Appendix I, Tables 27 to 30.

Fontelis Fungicide

Uses on the following crops or crop groups were proposed: alfalfa, low growing berries, bulb vegetables, brassica leafy vegetables, cucurbits, fruiting vegetables, leafy vegetables, legumes, pome fruit, root vegetables, stone fruit, tree nuts and peanuts.

The following diseases or pathogens were included on the proposed label: powdery mildew, white mould/sclerotinia stem rot, grey mould/botrytis rots, alternaria diseases, soil-borne diseases caused by *Rhizoctonia solani*, rust diseases, brown rot/blossom blight, brown leaf spot, mummyberry, gummy stem blight, ascochyta blight, cercospora leaf spot, asian soybean rust, angular leaf spot, scab, cherry leaf spot, early leaf spot, late leaf spot, southern stem rot and web blotch.

A total of 120 trials were submitted to support the claims. Seven trials were not reviewed as they did not test the proposed use pattern (rate, number of applications, etc.) or the product was applied in a tank mix with another fungicide, such that the efficacy of penthiopyrad could not be determined. Forty-six trials were reviewed as supplementary data because the number of applications exceeded the proposed use pattern, disease pressure was low in the trial, or the trial was conducted in a greenhouse, which is not representative of field conditions. Rationales were provided to extrapolate some claims to other crops or crop groups. No data were submitted to demonstrate efficacy using aerial application.

Claims for control were supported based on the commercially acceptable level of disease reduction and comparable performance to a commercial standard. For example, trials submitted for apple scab assessed disease incidence and severity on leaves and disease incidence on fruit. Fontelis Fungicide applied at 1.0 L/ha (proposed rates 1.0 - 1.5 L/ha) provided an average of 77% control of disease incidence and an average of 87% control of disease severity on leaves under moderate to high disease pressure. An average of 87% control of disease incidence was also observed on fruit. The results were statistically comparable to the registered commercial standards. The claim of control of apple scab was supported as proposed based on the data. Trials on pear scab could not be reviewed as the product was not applied according to the proposed use pattern. Although pear is not affected by the same species of pathogen as apple, the disease is manifested in the same manner as apple scab. The results from the apple scab data were extrapolated to pear; the claim of control of pear scab was supported as proposed.

The level of control was deemed to be suppression if the average level of control of disease severity fell between 60 - 80%, or if the product was not consistently controlling the disease (>80% control). For example, assessments for early blight on tomato were made under moderate to high disease pressure; however, the number of applications made to tomato plants exceeded the proposed maximum. Application of Fontelis Fungicide at 1.2 L/ha (proposed rates 1.25 - 1.75 L/ha) provided levels of control of disease severity ranging from 45 - 95% (average level of control 79%). Application at 1.5 L/ha resulted in 56 - 94% control (average 73% control). At both rates, the level of control fluctuated between partial suppression and control and the average level of control fell below 80%. Due to inconsistent levels of efficacy and because the number of applications made exceeded the proposed maximum, the claim for early blight on tomato was supported as suppression.

A total of 35 claims were supported; some claims were amended to express a different level of control (suppression), to identify specific crops affected by the disease, to change the common name of the disease, or to alter the use pattern (rates). Eight claims were supported on the condition that additional data are submitted to confirm the level of efficacy. Eleven claims were not supported due to a lack of supporting evidence. Aerial application to alfalfa, lowbush blueberries and cucurbits is supported based on a rationale extrapolating data from Vertisan Fungicide to Fontelis Fungicide. Additional information for aerial application is required.

Please refer to Appendix I, Table 27, for a summary of supported uses.

Vertisan Fungicide

Uses on the following crops or crop groups were proposed: canola, dry legumes, cereals, corn, sorghum, soybeans, sunflower, tuberous and corm vegetables, and sugar beets.

The following diseases were included on the proposed label: white mould/sclerotinia head or stem rot, ascochyta blight, grey mould/botrytis rots, rusts, powdery mildew, soil-borne diseases caused by *Rhizoctonia solani*, asian soybean rust, net blotch, septoria leaf blotch, grey leaf spot, brown spot, frogeye leafspot, and early blight.

A total of 104 trials were submitted to support the claims. Fourteen trials were not reviewed as disease pressure was too low to determine efficacy with confidence. Fourteen trials were reviewed as supplementary data because the tested rates were lower than proposed, a different formulation was used in the trials or the trial was conducted in another country. Rationales were provided to extrapolate some claims to other crops or crop groups.

Assessment of disease data was conducted in the same manner as for Fontelis Fungicide. For example, assessments for leaf rust on wheat were conducted under moderate to high disease pressure. When applied at rates within the proposed rate range (1.2 - 1.75 L/ha), Vertisan Fungicide provided an average of 81 - 85% control of disease severity, which was statistically comparable to the registered commercial standard. The claim of control of leaf rust on wheat was supported as proposed. Assessments for early blight on potato were conducted under moderate disease pressure. When applied at rates within the proposed range (1.0 - 1.75 L/ha), Vertisan Fungicide provided average levels of control of disease severity that ranged between 64.4 - 96.7%, depending on the rate applied. Results for the commercial standard were statistically comparable, but the level of control expressed in the trials was more consistently at a control level. Since the product did not consistently control early blight symptoms on potatoes, the claim was supported as suppression.

A total of 19 claims were supported, including aerial application. Claims may have been amended for the reasons stated for Fontelis Fungicide. Two claims were supported on the condition that additional data are submitted to confirm the level of efficacy. Six claims were not supported due to a lack of supporting evidence.

Please refer to Appendix I, Table 28, for a summary of supported uses.

Treoris Fungicide

A total of nine trials were submitted to support claims on potato and cucurbit vegetables for the control of early blight and powdery mildew respectively. One trial was reviewed as supplementary data as the number of applications made exceeded the use pattern. The claims were supported as proposed. Aerial application to potatoes is supported based on a rationale extrapolating efficacy data from Vertisan Fungicide to Treoris Fungicide. Aerial application of chlorothalonil to potatoes is currently registered in Canada. Additional information is required; penthiopyrad must be tested alone (Fontelis Fungicide) and in combination with chlorothalonil. Efficacy of the application using nozzles that deliver fine and medium droplet sizes should be compared.

Please refer to Appendix I, Table 29, for a summary of supported uses.

DPX-LEM17 50WG Fungicide

A total of six trials were submitted to support the claims of control of dollar spot and brown patch on turf. Rationales were also submitted to extrapolate data to support the claims of control of large patch and powdery mildew. Trials submitted to assess dollar spot and brown patch demonstrated good control of both diseases (92 - 100% control) when golf course turf was treated as proposed with penthiopyrad. The claims were supported as proposed. The claim of control of powdery mildew on turf could not be extrapolated and was not supported. Large patch does not occur on cool-season turfgrasses, which are grown in Canada, so this claim was also not supported.

Please refer to Appendix I, Table 30, for a summary of supported uses.

5.2 Economics

For many crops, the economic benefit of controlling diseases is known to be significant. Plant diseases can decrease yield and quality. Damaged fruits and vegetables are unmarketable or significantly downgraded in value. For some minor crops, like tree nuts and peanuts, there are diseases that can severely affect the crop in the right environmental conditions and there are limited fungicides registered in Canada. Therefore, the economic benefit of controlling these diseases would be significant.

5.3 Sustainability

5.3.1 Survey of Alternatives

A number of fungicides are registered on the labelled crops to control or suppress plant diseases. Refer to Appendix I, Tables 23 - 26, for further information on alternative products.

5.3.2 Compatibility with Current Management Practices Including Integrated Pest Management

Products containing penthiopyrad provide options for a number of crops where fungicide applications are part of a disease management plan. The use of integrated pest management (IPM) plans for the labelled crops would typically include disease monitoring, crop staging, and weather forecasting with the objective of maximizing marketable yield, minimizing the use of fungicide applications and minimizing the risk of disease resistance. Penthiopyrad is compatible with current IPM strategies and it provides an alternative to currently registered fungicides. The associated end-use products were also shown to be compatible with other fungicides in tank mixes or as a pre-mix product. It is expected that growers will be able to integrate the use of penthiopyrad into existing fungicide application plans.

5.3.3 Information on the Occurrence or Possible Occurrence of the Development of Resistance

Penthiopyrad has the same general target site as other carboxamide fungicides like boscalid, carboxin and flutolanil. The Fungicide Resistance Action Committee has assigned penthiopyrad to resistance group 7 with a medium to high risk of resistance development. Product labels and directions for use will include appropriate disease resistance management statements and guidelines for rotation and alternation of different mode of action chemicals for disease control.

5.3.4 Contribution to Risk Reduction and Sustainability

As a new mode of action fungicide, integration of products containing penthiopyrad in an IPM program will help delay the development of pest resistance to these products, ensuring sustainable use of penthiopyrad and other registered fungicides.

6.0 Pest Control Product Policy Considerations

6.1 Toxic Substances Management Policy Considerations

The Toxic Substances Management Policy (TSMP) is a federal government policy developed to provide direction on the management of substances of concern that are released into the environment. The TSMP calls for the virtual elimination of Track 1 substances [those that meet all four criteria outlined in the policy, i.e., persistent (in air, soil, water and/or sediment), bio-accumulative, primarily a result of human activity and toxic as defined by the *Canadian Environmental Protection Act*].

During the review process, penthiopyrad and its transformation products were assessed in accordance with the PMRA Regulatory Directive DIR99-03⁵ and evaluated against the Track 1 criteria. The PMRA has reached the following conclusions:

- Penthiopyrad does not meet all the Track 1 criteria.
- Penthiopyrad does meet the Track 1 criterion for persistence because the half-life values in soil (272 days) and water (384 days) do exceed the Track 1 criterion for soil and water.
- Penthiopyrad does not meet the Track 1 criterion for bioaccumulation, as its octanolwater partition coefficient (log $K_{ow} = 4.4-4.6$) is just below the Track 1 criterion. In addition, the bioconcentration factor (BCF) in fish of 79-236 does not meet the Track 1 BCF criterion.

6.2 Formulants and Contaminants of Health or Environmental Concern

During the review process, contaminants in the technical and formulants and contaminants in the end-use products are compared against the *List of Pest control Product Formulants and Contaminants of Health or Environmental Concern* maintained in the *Canada Gazette*⁶. The list is used as described in the PMRA Notice of Intent NOI2005-01⁷ and is based on existing policies and regulations including: DIR99-03; and DIR2006-02⁸, and taking into consideration the Ozone-depleting Substance Regulations, 1998, of the *Canadian Environmental Protection Act* (substances designated under the Montreal Protocol). The PMRA has reached the following conclusions:

• Aromatic petroleum distillates are present as impurities in the technical grade active ingredient and end-use products (<0.1%). Since the levels are quite low, no environmental risk is expected and no hazard statements are required on the label;

- ⁷ NOI2005-01, List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern under the New Pest Control Products Act.
- ⁸ DIR2006-02, PMRA Formulants Policy.

⁵ DIR99-03, The Pest Management Regulatory Agency's Strategy for Implementing the Toxic Substances Management Policy

⁶ Canada Gazette, Part II, Volume 139, Number 24, SI/2005-114 (2005-11-30) pages 2641–2643: List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern and in the order amending this list in the Canada Gazette, Part II, Volume 142, Number 13, SI/2008-67 (2008-06-25) pages 1611-1613. Part 1 Formulants of Health or Environmental Concern, Part 2 Formulants of Health or Environmental Concern that are Allergens Known to Cause Anaphylactic-Type Reactions and Part 3 Contaminants of Health or Environmental Concern.

• All end-use products being proposed for registration contain the preservative 1,2-benzisothiazoline-3-one which contains low levels of dioxins and furans. These are being managed as outlined in the PMRA Regulatory Directive DIR99-03 for the implementation of TSMP.

The Agency's strategy to manage Track 1 contaminants in pest control products is outlined in DIR99-03.

7.0 Summary

7.1 Human Health and Safety

The toxicology database submitted for penthiopyrad is adequate to define the majority of toxic effects that may result from exposure. There was no evidence of increased susceptibility of the young in reproduction or developmental toxicity studies. Penthiopyrad is not neurotoxic but there was evidence of immunotoxicity in adults. In short-term and chronic studies on laboratory animals, the primary target was the liver. Effects also occurred in the thyroid and adrenal glands, as well as in the gall bladder of the dog. In the chronic rat study, the most sensitive target was the kidney. Although penthiopyrad is not evidently genotoxic, there was weak evidence of oncogenicity in rats after chronic dosing. The risk assessment protects against the toxic effects noted above by ensuring that the level of human exposure is well below the lowest dose at which these effects occurred in animal tests.

Penthiopyrad exposure to mixers, loaders and applicators handling Fontelis Fungicide, Vertisan Fungicide, Treoris Fungicide and DPX-LEM17 50WG Fungicide, and to workers entering treated areas, is not of concern when these products are used according to label directions. Additionally, no risks of concern were identified for the general public entering golf courses, treated lawns or pick-your-own farms.

The nature of the residue in plants and animals is adequately understood. The residue definition for enforcement of MRLs in plants is penthiopyrad. The residue definition for enforcement of MRLs in animals is penthiopyrad + PAM. The use of penthiopyrad on the proposed crops does not constitute an unacceptable chronic, cancer, or acute dietary risk (food and drinking water) to any segment of the population, including infants, children, adults and seniors. Sufficient crop residue data have been reviewed to recommend MRLs to protect human health. The PMRA recommends that the following MRLs be specified for residues of penthiopyrad.

Commodity	Recommended MRL (ppm)
Leaves of root and tuber vegetables (Crop Group 2), leafy Brassica greens subgroup (Subgroup 5B)	50
Leafy vegetables (Crop Group 4)	30
Head and stem Brassica subgroup (Subgroup 5A)	5
Edible-podded legume vegetables subgroup (Subgroup 6A), stone fruits (Crop Group 12-09)	4
Tomato paste	3.5
Root vegetables (except sugar beet) subgroup (Subgroup 1B), bulb vegetables (Crop Group 3-07), fruiting vegetables (Crop Group 8-09), low growing berry subgroup (Subgroup 13-07G)	3
Oil seeds (Crop Group 20)	1.5
Barley bran	0.9
Sorghum, millet	0.8
Cucurbit vegetables (Crop Group 9)	0.6
Sugar beet, pome fruits (Crop Group 11-09)	0.5
Succulent shelled pea and bean subgroup (Subgroup 6B), dried shelled pea and bean (except soybean) subgroup (Subgroup 6C), soybean	0.4
Wheat bran & germ	0.3
Cereal grains (Crop Group 15, except corn, sorghum and millet)	0.15
Tuberous and corm vegetables subgroup (Subgroup 1C), tree nuts (Crop Group 14-11), peanut oil	0.06
Corn oil	0.05
Peanuts	0.04
Field corn, pop corn, sweet corn kernels plus cob with husks removed	0.01
Meat byproducts of cattle, goats, horses and sheep	0.09
Meat and fat of cattle, goats, horses and sheep.	0.03
Eggs; fat, meat & meat byproducts of hogs and poultry; milk	0.02

7.2 Environmental Risk

Penthiopyrad is moderately persistent to persistent in aerobic soil ($DT_{50} = 60-406$ days) and persistent in aerobic aquatic systems ($DT_{50} = 223-384$ days). Under field conditions, however, penthiopyrad is expected to be non-persistent to slightly persistent in soil ($DT_{50} = 6.1-29.5$ days). Hydrolysis is not a route of transformation for penthiopyrad at environmentally relevant pH. On soil, phototransformation is a route of transformation of penthiopyrad (half-life = 6.8 days). Phototransformation in water is not a route of transformation as penthiopyrad was photolytically stable under continous irradiation. In aquatic systems, penthiopyrad will steadily dissipate from the water phase to the sediment and decline slowly thereafter. The log K_{ow} of 4.4-4.6 indicates that penthiopyrad has the potential to bioaccumulate. In rainbow trout, however, the BCF values are 79-226 and the depuration half-lives are 0.65-0.86 days, indicating low bioconcentration of penthiopyrad in fish. On the basis of the TSMP assessment, penthiopyrad does not meet all the criteria for a Track I substance.

Penthiopyrad is non-volatile (HLC = 7.64×10^{-9} atm m³/mole; $1/H = 3.15 \times 10^{6}$), has low mobility in soil (K_{oc} = 616-996 mL/g) under laboratory conditions and does not leach to lower soil depths under field conditions. Its major transformation products, DM-PCA and PCA have very high mobility in soil (K_{oc}s = 4-11 and 0.0002-3.5 mL/g, respectively). DM-PCA is expected to be mobile as it can leach to a soil depth of 70 cm. The other major transformation product, PCA, was not detected beyond the upper 15 cm soil depth.

For terrestrial organisms, penthiopyrad poses a negligible risk. In earthworms and bees, the RQs are <1 on an acute and chronic basis. For beneficial arthropods, the low risk demonstated in field studies (<50% mortality) was not a concern as predatory mite populations were reduced by only 19.4% and 11.8% from penthiopyrad applications of 448 and 720 g a.i./ha, respectively. In terrestrial plants, the risk resulting from off-target spray drift to non-target plants was negligible for both seedling emergence and vegetative vigour.

Of the aquatic organisms, the amphibians are the most susceptible species. By contrast, vascular aquatic plants, marine invertebrates, marine fish and marine algae were the least susceptible species with RQs <1 which indicate a negligible risk.

For freshwater invertebrates, fish, amphibians and freshwater algae, the highest risk is associated with the application of the Treoris Fungicide formulation. Thus, for exposure to runoff and spray drift resulting from the application of Treoris Fungicide, the respective RQs for freshwater invertebrates, freshwater fish, amphibians and freshwater algae are: 10.9 (runoff) and <1.0-3.2 (spray drift); 72.1 (runoff) and 5.5-21.2 (spray drift); 197.9 (runoff) and 29.4-112.7 (spray drift); and 4.0 (runoff) and <1.0-1.2 (spray drift).

The two other formulated products, Fontelis Fungicide and Vertisan Fungicide, exhibited similar risks to freshwater fish and amphibians. There is, however, a negligible risk to freshwater algae associated with the Fontelis Fungicide formulation, and for the Vertisan Fungicide formulation, there is a negligible risk to both aquatic invertebrates and freshwater algae.

For runoff and spray drift resulting from the application of the Fontelis Fungicide formulation, the respective RQs for aquatic invertebrates, freshwater fish and amphibians are: <1.0-9.0 (runoff) and <1.0-7.6 (spray drift); <1.0-2.8 (runoff) and <1.0-2.3 (spray drift); and 1.8-7.8 (runoff) and 2.1-12.2 (spray drift), thereby indicating a negligible risk (RQ<1) or an exceedance of the LOC (RQ>1) depending on the exposure scenario. Similarly, for runoff and spray drift resulting from the application of the Vertisan Fungicide formulation, the respective RQs for freshwater fish and amphibians are: <1.0-3.3 (runoff) and <1.0-2.6 (spray drift); and 2.1-9.0 (runoff) and 2.5-14.1 (spray drift), indicating a negligible risk (RQ<1) or an exceedance of the LOC (RQ>1) depending on the exposure scenario.

Overall, the highest risk to aquatic organisms is attributed to the Treoris Fungicide formulation (penthiopyrad + chlorothalonil) with amphibians being the most susceptible. The Fontelis Fungicide and Vertisan Fungicide formulations exhibited substantially lower risks compared to Treoris Fungicide, particularly in amphibians and fish. In terrestrial organisms, penthiopyrad or its end-use products poses either a negligible risk or a low risk that is not a cause for concern.

7.3 Value

The data submitted to register Fontelis Fungicide, Vertisan Fungicide, Treoris Fungicide and DPX-LEM17 50WG Fungicide are adequate to demonstrate efficacy for use on the labelled crops and diseases. The lowest effective rate for pests has been established and is supported by efficacy data. Confirmatory data are required to confirm the level of efficacy of penthiopyrad on several crops and aerial application for two products. Please refer to Appendix I, Tables 27 to 30, for a summary of supported and conditionally supported use claims.

The Canadian Grower Priority Database compiles and prioritizes grower-identified priorities for minor crop pest protection. Penthiopyrad was identified as a desired product to control, or suppress, five diseases on minor crops, including pome fruit, brassica vegetables, cucurbit vegetables and root vegetables. All identified priorities were fully supported or conditionally supported for registration. In addition to addressing grower-identified needs, the registration of penthiopyrad provides a new mode of action fungicide that can be integrated into IPM programs for the management of pest resistance in all labelled crops.

7.4 Unsupported Uses

Fontelis Fungicide

The following claims were not supported:

- control of gummy stem blight on cucurbits
- control of powdery mildew on fruiting vegetables
- control of powdery mildew on berries
- control of brown leaf spot on blueberries
- control of rust on peanuts
- control of powdery mildew on leafy vegetables
- control of powdery mildew on bulb vegetables
- control of powdery mildew on tree nuts

- control of powdery mildew on brassica leafy vegetables
- control of powdery mildew on legume vegetables
- control of cercospora leafspot on legume vegetables
- control of powdery mildew on alfalfa

Vertisan Fungicide

The following claims were not supported:

- control of net blotch on cereals
- control of powdery mildew on cereals
- control of stripe rust/yellow wheat rust on cereals
- control of powdery mildew on dry legume vegetables
- control of powdery mildew on tuberous and corm vegetables
- control of powdery mildew on sunflower

DPX-LEM17 50WG Fungicide

The following claims were not supported:

- control of large patch on turfgrass
- control of powdery mildew on turfgrass

8.0 Regulatory Decision

Health Canada's PMRA, under the authority of the *Pest Control Products Act* and Regulations, is proposing full registration for the sale and use of Penthiopyrad Technical Fungicide, Fontelis Fungicide, Vertisan Fungicide, Treoris Fungicide and DPX-LEM17 50WG Fungicide, containing the technical grade active ingredient penthiopyrad, to control or suppress various fungal diseases on a broad range of agricultural crops and turfgrass.

An evaluation of available scientific information found that, under the approved conditions of use, the product has value and does not present an unacceptable risk to human health or the environment.

List of Abbreviations

λ	wavelength
P	female
3	male
%	percent
°C	degree(s) Celsius
μg	micrograms
1/H	Henry's Law Constant
a.i.	active ingredient
AD	administered dose
ADI	acceptable daily intake
A/G ratio	albumin to globulin ratio
AP	alkaline phosphatase
appl	application
APTT	activated partial thromboplastin time
AR	applied radioactivity
ARfD	acute reference dose
ASAE	American Society of Agricultural Engineers
atm	atmosphere
BAF	Bioaccumulation Factor
BCF	Bioconcentration Factor
bw	body weight
bwg	body weight gain
CAF	composite assessment factor
CAS	Chemical Abstracts Service
CEPA	Canadian Environmental Protection Act
cm	centimetre(s)
cm ²	centimetre(s) squared
CO_2	carbon dioxide
CYP	cytochrome P ₄₅₀ enzyme (alphanumeric suffixes denote families and subfamilies)
DFOP	double first-order in parallel
DFR	dislodgeable foliar residue
DNA	deoxyribonucleic acid
DT ₅₀	dissipation time 50% (the dose required to observe a 50% decline in
	concentration)
DT_{90}	dissipation time 90% (the dose required to observe a 90% decline in
	concentration)
EC	emulsifiable concentrate
EC_{25}	effective concentration on 25% of the population
EC_{50}	effective concentration on 50% of the population
ECOD	ethoxyresorufin O-dealkylase
EDE	estimated daily exposure
EEC	estimated environmental exposure concentration
ELS	early life stage
EPA	Environmental Protection Agency
ER ₅₀	effective rate for 50% of the population

F_1	first filial generation
F_2	second filial generation
fc	food consumption
FDA	Food and Drug Act
g	gram
GGT	gamma-glutamyl transferase
GI	gastrointestinal
ha	hectare(s)
HAFT	highest average field trial
Hb	hemoglobin
Hct	hematocrit
HDPE	high density polyethylene
HDW	hemoblobin distribution width
HED	Health Effects Division
HLC	Henry's Law Constant
HPLC	high performance liquid chromatography
hr	hour(s)
IORE	indeterminate order rate equation
IPM	Integrated Pest Management
IUPAC	International Union of Pure and Applied Chemistry
kg	kilogram
K _d	soil-water partition coefficient
K _{oc}	organic-carbon partition coefficient
Kow	<i>n</i> -octanol-water partition coefficient
kPa	kilo Pascal(s)
L	litre(s)
LC	high performance liquid chromatography
LC ₅₀	lethal concentration 50%
LD_{50}	lethal dose 50%
LOAEL	lowest observed adverse effect level
LOC	level of concern
LOD	level of detection
LOQ	limit of quantitation
LP	low pressure
LPHW	low pressure handwand
LR_{50}	lethal rate 50%
m	metre(s)
m ²	metre(s) squared
m	metre(s) cubed
MAS	maximum average score
max	maximum
MCHC	mean corpuscular haemoglobin concentration
mg	milligram
min.	minimum
MIS	maximum irritation score (subscript in hours indicates time after dosing)
mL	millilitre(s)
M/L/A	mixer/loader/applicator

MOA	mode of action
MOE	margin of exposure
mol	mole
MRL	maximum residue limit
MS	mass spectrometry
m/z	mass-to-charge ratio
n	number of samples
na	not analysed
n.a.	not available
NA	not applicable
NAFTA	North American Free Trade Agreement
nm	nanometre(s)
NOAEL	no observed adverse effect level
NOEC	no observed effect concentration
NOEL	no observed effect level
NY	New York
Pa	Pascal
PBI	plantback interval
PCDD	Polychlorinated dibenzodioxins
PCDF	Polychlorinated dibenzofurans
PCPA	Pest Control Products Act
PES	post extraction solid
PHI	preharvest interval
p <i>K</i> a	dissociation constant
PMRA	Pest Management Regulatory Agency
ppm	parts per million
PROD	pentoxyresorufin O-dealkylase
PYO	pick-your-own
q_1^*	cancer potency factor
RBC	red blood cell
RD	residue definition
REI	restricted entry interval
RQ	risk quotient
SC	soluble concentrate
SFO	single first-order
Std. Dev.	standard deviation
STMdR	supervised trial median residues
STMR	supervised trial mean residues
$t_{1/2}$	half-life
T_4	thyroxine hormone
TC	transfer coefficient
TRR	total radioactive residue
Trt	treatment
TSH	thyroid stimulating hormone
TSMP	Toxic Substances Management Policy
TTR	turf transferable residues
UDPGT	uridine diphosphate glucuronosyl transferase enzyme

UDS	unscheduled DNA synthesis
UK	United Kingdom
US	United States
UV	ultraviolet
v/v	volume per volume dilutiont
wt	weight

Appendix I Tables and Figures

Table 1Residue Analysis

Matrix	Method ID	Analyte	Method Type	LOQ	Reference
Plant	CEMR- 3727 (CEM- 3399/001)	penthiopyrad, 753-A-OH, 753-F-DO, PCA, DM- PCA, PAM	LC-MS/MS	0.01 ppm/analyte in prunes, cucumber, melon (pulp, rind), almond (nutmeat, hull), pecan, apples (fruit, pomace, juice), peach, plum, cherry, pea (vine, seed), bean seed, lettuce, radish roots, canola, peanut (nutmeat, meal, oil), grapes	1839250, 1839249, 1840767, 1840769
				canola press cake, peanut hay	
Animal	LDA0082			0.01 ppm/analyte in poultry tissues and eggs	1839259
	LDA0083	penthiopyrad,	LC-MS/MS	0.01 ppm/analyte in bovine tissues and milk	1839257
	CEMR- 3574	РСА, РАМ, 753-А-ОН		0.01 ppm/analyte in bovine tissues	1839244
	CERM- 3657			0.01 ppm/analyte in milk	1839245
Soil	ABC		HPLC-MS/MS	5.0 μg/kg	1840773,
5011	63209	Penthiopyrad	$360.1 \rightarrow 276.0 \text{ m/z}$		1839260
		753-А-ОН	376.1 → 152.1 m/z		
		753-F-DO	$376.1 \rightarrow 182.1 \text{ m/z}$		
		753-T-DO	$392.1 \rightarrow 177.0 \text{ m/z}$		
		PAM	$194.1 \rightarrow 174.0 \text{ m/z}$		
		РСА	$193.1 \rightarrow 109.0 \text{ m/z}$		
		DM-PCA	$178.9 \rightarrow 159.0 \text{ m/z}$		
Sediment	Extended from soil.		-		
Water	CEMR-		HPLC-MS/MS	0.05 μg/L	1839262,
ground	3236	Penthiopyra d	358.10 → 149.00 m/z	-	1839261
drinking)		753-T-DO ¹	390.19 → 356.06 m/z	-	
		753-A-OH	$374.10 \rightarrow 149.04 \text{ m/z}$		
		PAM	$194.10 \rightarrow 174.10 \text{ m/z}$		
		PCA	$193.10 \rightarrow 109.00 \text{ m/z}$		
		DM-PCA	$179.00 \rightarrow 159.20 \text{ m/z}$		

¹ Method for 753-T-DO in drinking water not validated due to instability of the analyte.

Table 2Toxicity Profiles of Vertisan Fungicide, Fontelis Fungicide, TreorisFungicide and DPX-LEM17 50WG

(Effects are known or assumed to occur in both sexes unless otherwise noted; in such cases, sex-specific effects are separated by semi-colons)

Study Type/Animal/PMRA #	Study Results
Vertisan Fungicide	
Acute oral toxicity	$LD_{50} > 5000 \text{ mg/kg bw}$
Sprague-Dawley rats	Low Toxicity
PMRA# 1838866	
Acute dermal toxicity	LD ₅₀ > 5000 mg/kg bw
Sprague-Dawley rats	Low Toxicity
PMRA# 1838867	
Acute inhalation toxicity (nose-only)	$LC_{50} > 4.89 \text{ mg/L}_{air}$ Low Toxicity
Sprague-Dawley rats	
PMRA# 1838868	
Dermal irritation	MAS = 1.67/8
New Zealand White rabbits	Mildly Irritating
PMRA# 1838869	
Eye irritation	$MAS = 42.7/110, MIS_{1h} = 51/110$
New Zealand White rabbits	Severely irritating
PMRA# 1838870	
Dermal sensitization (Local lymph node assay)	Potential skin sensitizer
CBA/JHsd mice	
PMRA# 1838871	
Fontelis Fungicide	
Acute oral toxicity	$LD_{50} > 5000 \text{ mg/kg bw}$
Wistar rats	Low Toxicity
PMRA# 1838740	
Acute dermal toxicity	$LD_{50} > 5000 \text{ mg/kg bw}$
Wistar rats	Low Toxicity
PMRA# 1838741	

Study Type/Animal/PMRA #	Study Results
Acute inhalation toxicity (nose-only)	$LC_{50} > 3.5 \text{ mg/L}_{air}$ Low Toxicity
Sprague-Dawley rats	
PMR A # 1838742	
	MAC = 0/0
Dermai irritation	Non-irritating
New Zealand White rabbits	
PMRA# 1838743	
Eye irritation	$MAS = 0.45/110$, $MIS_{1h} = 6/110$ Minimally Irritating
New Zealand White rabbits	
PMRA# 1838744	
Dermal sensitization (Local lymph node assay)	Potential skin sensitizer
CBA/JHsd mice	
PMRA# 1838745	
Dermal sensitization (Maximization method)	Potential skin sensitizer
Hartley guinea pigs	
PMRA# 1838746	
Treoris Fungicide	•
Acute oral toxicity	$LD_{50} = 5000 \text{ mg/kg bw}$ Low Toxicity
Sprague-Dawley rats	
PMRA# 1838894	
Acute dermal toxicity	$LD_{50} > 5000 \text{ mg/kg bw}$
Sprague-Dawley rats	
PMRA# 1838895	
Acute inhalation toxicity (nose-only)	LC ₅₀ = 1.18 mg/L (combined) Slightly Toxic
Sprague-Dawley rats	
PMRA# 1838896	

Study Type/Animal/PMRA #	Study Results
Dermal irritation	MAS = 1.9/8
New Zealand White rabbits	Mildly irritating
PMRA# 1838897	
Eye irritation	MAS = 3.1/110 Minimally Irritating
New Zealand White rabbits	
PMRA# 1838898	
Dermal sensitization (Maximization method)	Potential Skin Sensitizer
Hartley guinea pigs	
PMRA# 1838899	
DPX-LEM17 50WG Fungicide	
Acute oral toxicity	LD ₅₀ > 5000 mg/kg bw
Sprague-Dawley rats	
PMRA# 1838940	
Acute dermal toxicity	LD ₅₀ > 5000 mg/kg bw
Sprague-Dawley rats	Low Toxicity
PMRA# 1838941	
Acute inhalation toxicity (nose-only)	LC ₅₀ > 4.7 mg/L Low Toxicity
Sprague-Dawley rats	
PMRA# 1838942	
Dermal irritation	MAS = 1.11/8 Slightly Irritating
New Zealand White rabbits	
PMRA# 1838943	
Eye irritation	$MAS = 3.33/110$, $MIS_{1h} = 15/110$ Mildly irritating
New Zealand White rabbits	White y mitating
PMRA# 1838944	
Dermal sensitization (Local lymph node assay)	Non-sensitizer
CBA/JHsd mice	
PMRA# 1838946	

Study Type/Animal/PMRA #	Study Results
Dermal sensitization (Magnusson-Kligman maximization method)	Non-sensitizer
Hartley guinea pigs	
PMRA# 1838945	

Table 3Toxicity Profile of Technical Penthiopyrad

(Effects are known or assumed to occur in both sexes unless otherwise noted; in such cases, sex-specific effects are separated by semi-colons. Organ weight effects reflect both absolute organ weights and relative organ to body weights unless otherwise noted)

Study Type/Animal/PMRA #	Study Results
Acute oral toxicity	LD ₅₀ > 2000 mg/kg bw Low Toxicity
Wistar rats	
PMRA # 1839313	
Acute dermal toxicity	LD ₅₀ > 2000 mg/kg bw Low Toxicity
Wistar rats	
PMRA # 1839314	
Acute inhalation toxicity (nose- only)	LC ₅₀ > 5.59 mg/L _{air} Low Toxicity
Wistar rats	
PMRA # 1839315	
Eye irritation	MAS = 0.9/110 Minimally irritating
New Zealand White rabbits	
PMRA # 1839318	
Dermal irritation	MAS = 0/8 Non-irritating
New Zealand White rabbits	
PMRA # 1839316	
Skin sensitization (Maximization method)	Non-sensitizer
Hartley guinea pigs	
PMRA # 1839319	

Study Type/Animal/PMRA #	Study Results
Metabolism/toxicokinetics (single and repeated dose, oral, gavage)	Absorption: Absorption was rapid, extensive and linearly related to the dose. The internal dose was higher with repeated dosing and slightly higher in females compared to males, regardless of the dose. Clearance from the blood was rapid
Wistar rats	and followed first order kinetics.
PMRA# 1839266 PMRA# 1839263 PMRA# 1839265 PMRA# 1839300	Distribution: Concentrations in the liver, fat, lymph nodes, adrenals, ovaries, pancreas and kidneys were greater than in the plasma. With repeated dosing, small increases in concentration occurred at these sites and in the blood, lungs, and thyroid. The overall tissue distribution was similar in both sexes following either single or repeated doses.
	Metabolism: Metabolism was extensive, particularly in the liver and in RBCs. The major transformations include: i) N-demethylation of the pyrazole ring, ii) hydroxylation of the alkyl side-chain, with subsequent dehydration or oxidation to carboxylic acids, iii) oxidation of the thienyl ring moiety to form the metabolites 753-F-DO and 753-T-DO with subsequent cleavage of the two-ring structure into PAM, containing the pyrazole moiety, and a thienyl ring, iv) hydrolysis of the amide group of the metabolite PAM, and v) opening and subsequent breakdown of the thienyl ring via intermediary metabolism. Hydroxylated derivatives were subject to glucuronidation or glutathione conjugation. Glutathione conjugates of 753-F-DO and 753-T-DO formed various amino acid conjugates prior N-acetylation and/or dehydration. Following two- ring cleavage, the pyrazole ring moiety was retained in the metabolites PAM, DM-PAM, PCA and DM-PCA. Although metabolite profiles were comparable following single and multiple doses, there were some quantitative differences in the levels of metabolites, but only trace amounts of parent chemical were detected in the bile. At least 22 metabolites and unchanged parent were identified in the feces. PAM, DM-PAM, PCA and DM-PCA occurred in urine, but no urine metabolites were present at > 5% AD.
	Excretion: Excretion was rapid. More than 75% AD was eliminated within 24 hours and tissue concentrations were generally very low at 72 hours after dosing. Elimination half-lives in tissues were as short as three hours and generally no greater than one to two days. Excretion occurred primarily via the feces (\sim 70 – 80% AD) and to a lesser extent via the urine (\sim 10 – 20% AD). Very little was eliminated via expired air. Females were slightly more reliant on the urinary elimination route compared to males. Apart from this minor difference, excretion characteristics were not generally dependent on the sex, dose level or repeated dosing.
28-Day oral (diet) toxicity	NOAEL $(3/2) = 100/330$ mg/kg bw/day
CD-1 mice	ratio and \uparrow liver weight
PMRA# 1839322	ratio and \uparrow liver weight
90-Day oral (diet) toxicity	NOAEL $(3/2) = 100/306$ mg/kg bw/day LOAEL $(3) = 299$ mg/kg bw/day: based on 1 bw
CD-1 mice	LOAEL (\bigcirc) = 1027 mg/kg bw/day; based on \downarrow RBC and Hb, \uparrow liver wt and diffuse hepatocellular hypertrophy and \uparrow thyroid wt and thyroid follicular cell
PMKA # 1839331	nypertrophy

Study Type/Animal/PMRA #	Study Results
28-Day oral (diet) toxicity Wistar rats	NOAEL $(\mathcal{O}/\mathcal{Q}) = 148/142 \text{ mg/kg bw/day}$ LOAEL $(\mathcal{O}/\mathcal{Q}) = 380/369 \text{ mg/kg bw/day};$ based on \uparrow cholesterol, \uparrow phospholipid, \uparrow GGT, \uparrow liver weight; \downarrow bw, \uparrow APTT (\mathcal{O})
PMRA # 1839327	
90-Day oral (diet) toxicity	NOAEL $(3/2) = 39.8/39.7 \text{ mg/kg bw/day}$
Wistar rats	hepatocelluar hypertrophhy; \uparrow APTT, \uparrow hepatocellular degeneration, \uparrow Kupffer cell proliferation (\eth); \uparrow peripherolobular macrovesicular fatty change (\heartsuit)
PMRA# 1839336 PMRA# 1839335	
28-Day oral (diet, range-finding) toxicity	Supplementary
Beagle dogs	\geq 316 mg/kg bw/day (\bigcirc): \uparrow cholesterol, \uparrow liver weight, \uparrow diffuse hepatocellular hypertrophy
PMRA # 1839320	920 mg/kg bw/day (\circlearrowleft): \downarrow bwg, \downarrow hematological parameters (Hct, Hb & RBC), \uparrow cholesterol and AP, \uparrow liver wt and diffuse hepatocellular hypertrophy, \uparrow vacuolation in proximal tubules and \uparrow gall bladder hypoplasia
90-Day oral (diet) toxicity	NOAEL (\mathcal{O}/\mathcal{P}) = 76.7/80.9 mg/kg bw/day
Beagle dogs PMRA# 1839340	LOAEL = 811/864 mg/kg bw/day; based on \downarrow bw, \uparrow AP, \uparrow GGT, \downarrow albumin, \downarrow A/G, \uparrow cholesterol, \uparrow triglyceride, \uparrow liver weight and diffuse hepatocellular hypertrophy, \uparrow gall bladder foamy macrophage infiltration and/or loss of mucosal folds; \uparrow adrenal gland cortical cell hypertrophy (\circlearrowleft); \uparrow thyroid weight (\bigcirc)
Chronic oral (diet) toxicity	NOAEL $(\Im/\Im) = 54.4/56.6 \text{ mg/kg bw/day}$
Beagle dogs	LOAEL = $461/445$ mg/kg bw/day; based on \uparrow bw loss, \downarrow bw, \downarrow fc, \downarrow APTT, \uparrow
PMRA# 1839343	platelets, \uparrow AP, \uparrow GG1, \downarrow albumin, \uparrow globulin, \downarrow A/G ratio, \uparrow trigiyceride, \uparrow cholesterol, \uparrow liver weight, \uparrow adrenal weight, \uparrow diffuse hepatocellular hypertrophy, \uparrow gall bladder mucosal epithelial hyperplasia (some instances accompanied by cholecystitis), \uparrow adrenal cortical cell hypertrophy; \downarrow RBC, \downarrow Hb, \downarrow MCHC, \uparrow basophils, \uparrow ascites (\Im)
28-Day dermal toxicity	Dermal NOAEL = $1000 \text{ mg/kg bw/day}$
Sprague Dawley rats	LOAELs were not established
PMRA# 1839346	
18-Month oncogenicity, oral (diet)	Non-neoplastic lesions: NOAEL $(\mathcal{J}/\mathcal{Q}) = 59.8/60.3 \text{ mg/kg bw/day}$ LOAEL = 200/201 mg/kg bw/day; based on \uparrow thyroid weight and thyroid
CD-1 mice	follicular cell hypertrophy; \uparrow liver weight, \uparrow altered colloid (\circlearrowleft)
PMRA# 1839317	Neoplastic lesions: 604 mg/kg bw/day: liver hepatocellular adenomas and carcinomas occurred but incidences were comparable to historical control values (♂) Equivocal evidence of oncogenicity

Study Type/Animal/PMRA #	Study Results
12-Month chronic, oral (diet) Wistar rats	NOAEL = 25 mg/kg bw/day LOAEL = 100 mg/kg bw/day; based on ↑ liver weight, ↑ adrenal weight, ↑ adrenal diffuse hypertrophy of zona glomerulosa, ↑ adrenal cortical lipid vacuolation, ↑ thyroid diffuse follicular cell hypertrophy; ↑ kidney weight (♂); ↑
PMRA# 1839299	HDW, \uparrow potassium, \uparrow cholesterol, \uparrow phospholipids (\updownarrow)
24-Month oncogenicity, oral (diet) Wistar rats	<i>Non-neoplastic lesions:</i> NOAEL $(\Im/\Im) = 9/27$ mg/kg bw/day LOAEL $(\Im/\Im) = 27/83$ mg/kg bw/day; based on \uparrow kidney interstitial fibrosis, \uparrow renal glomerulosclerosis (\Im) ; \downarrow bw, \uparrow discoloration of adrenals, \uparrow adrenal diffuse
PMRA# 1839302	hypertrophy, adrenal local latty change, lung locus/loci (\downarrow)
	Neoplastic lesions: 250 mg/kg bw/day: ↑ thyroid follicular cell adenomas incidences exceed concurrent and historical control values (♂) Weak evidence of oncogenicity
Two-generation reproductive, oral (diet) preliminary study	Supplementary
Wistar rats	<i>Parental Toxicity:</i> ≥ 187/358 mg/kg bw/day: ↑ liver weight; ↑ thyroid weight (♂); ↓ fc (♀)
PMRA # 1839337	477/829 mg/kg bw/day: \downarrow bwg; \downarrow bw, \downarrow fc; \uparrow enlarged thyroid (\circlearrowleft); \uparrow dark liver, \downarrow spleen weight (\bigcirc)
	<i>Reproductive Toxicity:</i> No signs of reproductive toxicity
	<i>Offspring toxicity:</i> 477/829 mg/kg bw/day: ↓ bw, ↓ thymus weight, ↓ spleen wt
Two-generation reproductive oral (diet) Wistar rats	Parental Toxicity NOAEL = 12.3/15.3 mg/kg bw/day LOAEL = 60.5/75.9 mg/kg bw/day; based on ↓ bw & bwg (♂); ↑ liver weight and centrilobular hepatocyte hypertrophy, ↑ adrenal weight and adrenal cortical hypertrophy (\bigcirc)
PMRA # 1839332	<i>Reproductive Toxicity</i> NOAEL > 311/372 mg/kg bw/day, the highest dose tested LOAEL not established
	Offspring Toxicity NOAEL = 60.5/75.9 mg/kg bw/day LOAEL = 311/372 mg/kg bw/day; based on ↑ small body size, ↓ bw during lactation (F ₁ & F ₂), ↓ spleen weight (F ₁), ↓ thymus weight (F ₂); ↓ thymus weight (F ₁), ↓ spleen weight (F ₂), ↑ age at preputial separation (F ₁ , 1.9 day delay) (♂); ↑ age at vaginal patency (F ₁ , 1.3 day delay) (♀) No evidence of sensitivity of the young
Prenatal development, oral	Supplementary
(gavage); preliminary study	No adverse maternal or developmental effects
Supplemental	1
Wistar rats	
PMRA # 1839341	

Study Type/Animal/PMRA #	Study Results
Prenatal development, oral (gavage); definitive study Wistar rats	<i>Maternal Toxicity:</i> NOAEL = 250 mg/kg bw/day LOAEL = 1000 mg/kg bw/day; based on ↓ bwg, ↓ fc, ↓ gravid uterine weight, ↑ early resorptions per animal, ↑ post-implantation loss, ↓ total live young per litter, ↓ litter weight
PMKA # 1839339	Developmental Toxicity: NOAEL = 250 mg/kg bw/day LOAEL = 1000 mg/kg bw/day; based on ↑ early resorptions per animal, ↑ post- implantation loss, ↓ total live young per litter, ↓ litter weight ↑ partially undescended thymus No evidence of sensitivity of the young
Prenatal development (gavage); preliminary study	Supplementary
Supplemental	\geq 250 mg/kg bw/day: \downarrow bwg and fc, \uparrow bw loss, \downarrow litter weight, \downarrow gravid uterine weight
New Zealand White rabbits	\geq 500 mg/kg bw/day: \uparrow premature deaths with associated late abortions (associated with maternal clinical deterioration and clinical effects)
PMRA # 1839344	1000 mg/kg bw/day: ↓ fetal weight
Prenatal development (gavage); definitive study	<i>Maternal Toxicity:</i> NOAEL = 75 mg/kg bw/day LOAEL = 225 mg/kg bw/day: based on gravid uterine weight and one abortion
New Zealand White rabbits	Developmental Toxicity
PMRA # 1839342	NOAEL = 75 mg/kg bw/day LOAEL = 225 mg/kg bw/day; based on ↓ fetal bw, ↓ litter weight and one abortion No evidence of sensitivity of the young
Gene mutations in bacteria (Ames test)	Negative
PMRA# 1839351	
DNA repair assay (rec-assay)	Negative
PMRA# 1839349	
Chromosome aberrations test <i>in vitro</i>	Chromosomal aberrations at cytotoxic doses only Negative
PMRA# 1839353	
Gene mutation in lymphoma cell <i>in vitro</i>	Negative
PMRA# 1839354	

Study Type/Animal/PMRA #	Study Results
Micronucleus assay <i>in</i> <i>vivo</i> (intraperitoneal injection)	Cytotoxic to the bone marrow 2000 mg/kg bw Negative
BDF ₁ mice	
PMRA# 1839357	
Unscheduled DNA synthesis (UDS) in vivo/in vitro	Negative
Sprague-Dawley rats	
PMRA# 1839359	
Acute neurotoxicity, oral (gavage)	NOAEL = 125 mg/kg bw LOAEL = 500 mg/kg bw; based on \uparrow hunched posture, \downarrow body temperature, \uparrow landing footsplay \downarrow rearing motor and ambulatory motor activity. \downarrow reactivity to
Sprague-Dawley rats	handling, \downarrow body tone, \uparrow abnormal gait, \uparrow slight occasional whole-body tremor (\mathcal{Q})
PMRA# 1839347 PMRA# 1839345	No evidence of neurotoxicity
90-Day neurotoxicity, oral (diet)	NOAEL $(3/2) = 177/170 \text{ mg/kg bw/day}$
Sprague-Dawley rats	$LOAEL = /12/686 \text{ mg/kg bw/day; based on } bwg; \downarrow bw (\bigcirc)$
PMRA# 1839350	
Developmental neurotoxicity, oral (gavage)	Maternal Toxicity NOAEL = 500 mg/kg bw/day LOAEL not established
Sprague-Dawley rats	
PMRA# 1839363 PMRA# 1839358	NOAEL = 100 mg/kg bw/day LOAEL = 250 mg/kg bw/day; based on ↓ bw and bwg during lactation No evidence of neurotoxicity No evidence of sensitivity of the young, when the broader effects occurring in
14 Day and (dist) investigative	adult rats in the toxicity database are considered
study of liver function (cancer MOA)	\geq 25.1 mg/kg bw/day: \uparrow PROD, \uparrow CYP1A, \uparrow CYP2B
CD-1 mice	\geq 61.6 mg/kg bw/day: \uparrow liver weight, \uparrow microsomal protein, \uparrow microsomal P ₄₅₀ , \uparrow
PMRA# 1839321	\geq 197 mg/kg bw/day: \uparrow centrilobular hepatocyte hypertrophy
	561 mg/kg bw/day:
28-Day oral (diet) Immunotoxicity	NOAEL = 301 mg/kg bw/day LOAEL = 1136 mg/kg bw/day; based on ↓ plaque-forming cells Evidence of immunotoxicity at limit dose only
CD-1 mice	A Jerne plaque forming cell assay was conducted A natural killer (NK) cell analysis, for non-specific effects, was not conducted
PMRA # 1839309	

Study Type/Animal/PMRA #	Study Results
14-Day oral (diet) investigative study of liver function (cancer	Supplementary > 66.7 mg/kg bw/day: \uparrow enlarged liver \uparrow UDPGT-T. \uparrow CYP2B1_CYP3A2
Wistar rats	CYP4A1
PMRA# 1839328	632 mg/kg bw/day: ↑ liver weight, ↑ dark liver, ↑ centrilobular hepatocyte hypertrophy ↑ microsomal protein, ↑ PROD, ↑ hepatocyte proliferation
14-Day oral (diet) investigative study of thyroid function (cancer MOA)	Supplementary $> 37.8 \text{ mg/kg hw/day} \uparrow \text{liver microsomal protein (transient)} \uparrow \text{UDPGTs}$
Wistar rats	(reversible); ↑ TSH (variable, reversibility not evident); ↑ Prop-1 gene expression in pituitary (minimal, reversible); ↑ thyroid follicular cell
PMRA# 1839324	\geq 371 mg/kg bw/day: \uparrow liver weight (reversible), \uparrow cytochrome P ₄₅₀ (reversible);
	↑ follicular cell hypertrophy with associated instances of \downarrow colloid
	1453 mg/kg bw/day: \downarrow bw, \downarrow fc, \uparrow diffuse hepatocyte hypertrophy, \downarrow T ₄ (reversible)
28-Day oral (diet) Immunotoxicity	Immunotoxicity NOAEL = 710 mg/kg bw/day LOAEL not established
Sprague-Dawley rats	A Jerne plaque forming cell assay was conducted A natural killer (NK) cell analysis, for non-specific effects, was not conducted
PMRA # 1839310	Systemic changes
	710 mg/kg bw/day: \uparrow bw loss, \downarrow bw, \downarrow bwg, \downarrow fc, \uparrow water consumption, \uparrow liver enlargement, \uparrow liver weight, \downarrow spleen weight
Metabolite Studies – DM-PCA	
Acute oral	LD ₅₀ > 2000 mg/kg bw Low Toxicity
Sprague-Dawley rats	
PMRA # 1839400	
study	Supplementary $> 718/742 \text{ mg/kg hw/day: } \text{ hwg (}^{\bigcirc}\text{)}$
Wistar rats	\geq /16//42 mg/kg 0w/ddy. \downarrow 0wg (\mp)
Supplementary	
PMRA # 1839399	
90-Day oral (diet)	NOAEL $(\mathcal{O}/\mathcal{Q}) = 258/1200 \text{ mg/kg bw/day}$ LOAEL $(\mathcal{O}) = 1038 \text{ mg/kg bw/day};$ based on \downarrow bw, \downarrow bwg, \downarrow food intake
Wistar rats	LOAEL (\mathcal{P}) was not established
PIVIKA # 1839396	

Study Type/Animal/PMRA #	Study Results
Gene mutations in bacteria (Ames test)	Negative
PMRA # 1839394	
Chromosome aberrations in vitro	Negative
PMRA # 1839393	
Gene mutation in lymphoma cell <i>in vitro</i>	Negative
PMRA# 1839392	
Metabolite Studies – PCA	
Acute oral (gavage)	$LD_{50} \ge 2000 \text{ mg/kg bw}$
Sprague-Dawley rats	
PMRA# 1839391	
28-Day oral (gavage)	NOAEL = 1000 mg/kg bw/day
Wistar rats	
PMRA# 1839388	
Gene mutations in bacteria (Ames test) <i>in vitro</i>	Negative
PMRA# 1839387	
Chromosome aberrations test <i>in vitro</i>	Negative
PMRA# 1839386	
Gene mutation in lymphoma cell <i>in vitro</i>	Increased mutation frequencies occurred, but the dose-response was not clear. Equivocal
PMRA# 1839385	
Micronucleus assay <i>in vivo</i> (intraperitoneal injection)	Negative
BDF ₁ mice	
PMRA# 1839384	
Metabolite Studies – PAM	
Acute oral	$300 \text{ mg/kg bw} < \text{LD}_{50} < 2000 \text{ mg/kg bw}$
Sprague-Dawley rats	Sight to fright foxicity
PMRA # 1839383	

Study Type/Animal/PMRA #	Study Results
Acute oral	300 mg/kg bw < LD ₅₀ < 2000 mg/kg bw Slight to High Toxicity
Sprague-Dawley rats	
PMRA # 1839381	
Gene mutations in bacteria (Ames test)	Negative
PMRA # 1839380	
Chromosome aberrations <i>in vitro</i>	Continuous non-activated exposure for 24 hours induced chromosome aberrations Positive
F WIKA # 1037377	rositive
Gene mutation in lymphoma cell <i>in vitro</i>	Continuous non-activated exposure for 24 hours induced concentration- dependent gene mutations at \geq 483 µg/mL
PMRA# 1839377	1 OSITIVE
Micronucleus assay in vivo	Negative
B6D2F mice	
PMRA # 1839376	
Metabolite Studies – 753-T-DO	
Gene mutations in bacteria (Ames test)	Negative
PMRA # 1839369	
Chromosome aberrations in vitro	Negative
PMRA # 1839368	
Gene mutation in lymphoma cell <i>in vitro</i>	Evidence of extreme cytotoxicity in dose range finding study. Negative
PMRA# 1839367	
Metabolite Studies – 753-A-OH	
Acute oral toxicity	Female $LD_{50} \ge 2000 \text{ mg/kg bw}$
Sprague-Dawley rats	Low Toxicity
PMRA# 1839375	
Gene mutations in bacteria (Ames test)	Negative
PMRA# 1839374	
Chromosome aberrations test <i>in vitro</i>	Negative
PMRA# 1839371	

Study Type/Animal/PMRA #	Study Results
Gene mutation in lymphoma cell <i>in vitro</i>	Negative
PMRA# 1839370	

Table 4 Toxicology Endpoints for Use in Health Risk Assessment for Penthiopyrad

Exposure Scenario	Study	Point of Departure and Endpoint	CAF ¹ or Target MOE	
Acute dietary general population	Acute neurotoxicity study in rats	NOAEL = 125 mg/kg bw, based on transient functional alterations, decreased body temperature and decreased motor activity on the day of administration at the LOAEL of 500 mg/kg bw	100	
	ARfD = 1.25 mg/kg bw			
Repeated dietary	Oncogenicity study in rats	NOAEL = 9 mg/kg bw/day, based increased kidney interstitial fibrosis and glomerulosclerosis in males at the LOAEL of 27 mg/kg bw/day	100	
	ADI = 0.09 mg/kg bw/day			
Adults: short- to inte	ermediate-term exposure			
dermal ² Prenatal developmental toxicity study in rabbits		NOAEL = 75 mg/kg bw/day, based on an abortion and decreased gravid uterine weight at the LOAEL of 225 mg/kg bw/day	100	
inhalation ³	90-day toxicity study in rats	NOAEL = 40 mg/kg bw/day, based on increased liver weight and hepatocellular hypertrophy with concordant histopathological alterations and perturbations in clinical chemistry and haematology at the LOAEL of 99.9 mg/kg bw/day	100	
Adults: long-term ex	posure			
dermal ² and inhalation ³ 12 month toxicity study in rats		NOAEL = 25 mg/kg bw/day, based on increased liver weight, adrenal weight, adrenal diffuse hypertrophy of zona glomerulosa, adrenal cortical lipid vacuolation and thyroid diffuse follicular cell hypertrophy as well as increased kidney weight in males, and increased haemoglobin distribution width, potassium, cholesterol and phospholipid levels in females at the LOAEL of 100 mg/kg bw/day	100	
Children: short- to ir	ntermediate-term exposure			
dermal ²	Multi-generation reproduction toxicity study in rats	NOAEL = 76 mg/kg bw/day, based on offspring effects, which included an increased incidence of small body size, decreased body weight, delayed sexual development, decreased thymus gland weight and spleen weight at the LOAEL of 372 mg/kg bw/day	100	

Exposure Scenario	Study	Study Point of Departure and Endpoint					
inhalation ³	90-day toxicity study in rats	NOAEL = 40 mg/kg bw/day, based on increased liver weight and hepatocellular hypertrophy with concordant histopathological alterations and perturbations in clinical chemistry and haematology at the LOAEL of 100 mg/kg bw/day	100				
Non-dietary oral ingestion (short- term)	Acute neurotoxicity study in rats	NOAEL = 125 mg/kg bw, based on transient functional alterations, decreased body temperature and decreased motor activity on the day of administration at the LOAEL of 500 mg/kg bw	100				
Cancer	Oncogenicity study in rats	A threshold based approach was used for thyroid tumours (adenomas) in male rats.	N/A				

CAF (composite assessment factor) refers to a total of uncertainty and PCPA factors for dietary assessments; MOE refers to a target MOE for occupational and residential assessments. ²Since an oral NOAEL was selected, a dermal absorption factor of 50% was used in a route-to-route extrapolation. ³Since an oral NOAEL was selected, an inhalation absorption factor of 100% (default value) was used in route-to-route extrapolation.

Table 5Mixer/Loader/Applicator Dermal Exposure Estimates and Margin of
Exposure (MOE)

Crop	Area treated Max use rate (g		Unit exposure (µg/kg a.i.)		Daily Dose ^a (µg/kg bw/day)		MOE ^b		
Scenario	per day (max)	a.i./ha)	Dermal	Inhalation	Dermal	Inhalation	Dermal	Inhalation	
Alfalfa, cerea	Alfalfa, cereal grains, corn, sunflower, tuberous and corm vegetables, potato								
Groundboom	360 ha	350	84.12	2.56	75.7	4.61	991	8 620	
Aerial M/L	400 ha	350	51.14	1.60	51.1	3.20	1 470	12 500	
Aerial applicator	400 ha	350	9.66	0.07	9.66	0.140	7 760	284 000	
Canola, dry l	Canola, dry legumes, sugar beet								
Groundboom	360 ha	300	84.12	2.56	64.9	3.95	1 160	10 100	
Aerial M/L	400 ha	300	51.14	1.60	43.8	2.74	1 710	14 500	
Aerial applicator	400 ha	300	9.66	0.07	8.28	0.120	9 060	331 000	
Legume vege	tables, soy	beans							
Groundboom	360 ha	450	84.12	2.56	97.3	5.92	771	6 700	
Aerial M/L	400 ha	450	51.14	1.60	65.8	4.11	1 140	9 650	
Aerial applicator	400 ha	450	9.66	0.07	12.4	0.180	6 040	221 000	
Berries, low g	growing								
Groundboom	26 ha	350	84.12	2.56	5.47	0.333	13 700	119 000	
Aerial M/L	26 ha	350	51.14	1.60	3.32	0.208	22 600	191 000	
Aerial applicator	26 ha	350	9.66	0.07	0.628	0.00910	119 000	4 360 000	
Backpack	2 ha	350	5445.85	62.1	27.2	0.621	2 750	63 900	
LPHW	2 ha	350	943.37	45.2	4.72	0.452	15 900	87 800	

Сгор	Area treated per day (max) Max u rate (a.i./ha	Max use	Unit exposure (µg/kg a.i.)		Daily Dose ^a (µg/kg bw/day)		MOE ^b	
Scenario		a.i./ha)	Dermal	Inhalation	Dermal	Inhalation	Dermal	Inhalation
Bulb vegetab	les, cucur	bit vegeta	bles, fruit	ing vegetable	es, leafy ve	getables, pea	nuts	
Groundboom	26 ha	350	84.12	2.56	5.47	0.333	13 700	119 000
Backpack	2 ha	350	5445.85	62.1	27.2	0.621	2 750	63 900
LPHW	2 ha	350	943.37	45.2	4.72	0.452	15 900	87 800
Brassica vege	tables, ro	ot vegetab	oles					
Groundboom	26 ha	450	84.12	2.56	7.03	0.428	10 700	92 800
Backpack	2 ha	450	5445.85	62.1	35.0	0.798	2 140	49 700
LPHW	2 ha	450	943.37	45.2	6.06	0.581	12 400	68 300
Pome fruits,	tree nuts							
Airblast	20 ha	300	612.86	7.40	26.3	0.634	2 860	62 600
Stone fruits								
Airblast	20 ha	350	612.86	7.40	30.6	0.740	2 450	53 600
Turf								
Groundboom	30 ha	750	196.75	1.98	31.6	0.339	2 370	117 000
Backpack	2 ha	750	5609.62	63.12	60.1	1.35	1 250	29 600
LPHW	2 ha	750	1107.14	46.22	11.9	0.990	6 320	40 400
LP nozzle gun	2.8 ha	750	1290	47.8	19.6	1.43	3 880	27 900

^a Daily dose = (Area treated per day x use rate x unit exposure x absorption) / 70 kg. Dermal absorption = 50%. Inhalation absorption = 100%.

^b Based on a NOAEL of 75 mg/kg bw/day for dermal exposure and a NOAEL of 40 mg/kg bw/day for inhalation exposure with a target MOE of 100 for both routes.

M/L = mixing/loading, LPHW= low pressure handwand, LP = low pressure

Table 6Postapplication Margin of Exposures

Crop Scenario	Task	Transfer Coefficient (cm ² /hr)	Application Rate (g a.i./ha)	REI (days)	DFR ^a (µg/cm ²)	Dermal Exposure ^b (µg/kg bw/day)	MOE °
Alfalfa, Peanut, cereals	Scouting	1500	350	0	1.29	111	678
Sugar beet, Canola		1500	300	0	1.1	94.3	795
Soybean		1500	450	0	1.65	141	530
Sunflower		1000	350	0	1.29	73.7	1 020
Corn	Detasseling	17000	350	0	1.29	1250	60
Corn		17000	350	3	0.759	737	102
Bulbs, Cucurbits, Leafy veg, Tuberous and corm	Hand harvesting	2500	350	0	1.29	184	407
Brassica		5000	450	0	1.65	471	159
Dry legume		2500	300	0	1.1	157	477
		2500	450		1.65	236	318
Legume veg,		2300	-50	0	1.05	230	510
Crop Scenario	Task	Transfer Coefficient (cm ² /hr)	Application Rate (g a.i./ha)	REI (days)	DFR ^a (µg/cm ²)	Dermal Exposure ^b (µg/kg bw/day)	MOE ^c
------------------	-----------------------	--	------------------------------------	---------------	---	--	------------------
root veg							
Fruiting veg		1000	350	0	1.29	73.7	1 020
Low berry		1500	350	0	1.29	111	678
Pome fruit	Thinning	3000	300	0	0.988	169	443
Stone fruit	Thinning	3000	350	0	1.15	197	380
Greenhouse	Hand harvesting	1800	350	0	1.4	144	174
Turf	Mowing, irrigation	3500	750	0	0.461	92.2	813
	Transplanting	6800	750			179	419

^a Outdoor ground spray crops DFR = peak predicted value from cucurbit study adjusted form maximum rate. Outdoor airblast crops DFR = peak predicted value from apple study adjusted form maximum rate. Greenhouse DFR value = 20% of application rate with 0% dissipation per day. TTR value = 5% of application rate with 10% dissipation per day.

^b Adjusted for dermal absorption value of 50%.

^c NOAEL = 75 mg/kg bw/day with exception of greenhouse use where NOAEL = 25 mg/kg bw/day; target MOE of 100.

Scenario	Group		DFR/TTR (µg/cm ²)	TC ^a (cm ² /hr)	Dermal exposure ^b (µg/kg bw/day)	MOE °
Turf - Golf	Adult		0.461	500	6.59	11 400
courses	Youth (10	- 18)	0.461	344	8.13	9 350
Residential	Adult		0.461	14 500	95.5	785
Lawn	Toddler (0-9)		0.461	5 200	160	476
Diale your	Adults		0.214	3000	9.17	8 180
Pick-your-	Children	10-18	0.214	2070	11.4	6 690
own - appies		0-9	0.214	961	13.7	5 540
Pick-your-	Adults		1.15	3000	49.3	1 520
own -	Children	10-18	1.15	2070	61.0	1 250
peaches		0-9	1.15	961	73.7	1 030
Pick-your-	Adults		1.29	1500	27.6	2 710
own -	Children	10-18	1.29	1030	34.1	2 230
strawberries		0-9	1.29	481	41.4	1 840

 Table 7
 Residential Dermal Exposure and Margins of Exposure (MOEs)

^a Transfer coefficients are scaled to represent the surface area of the age group. Adult (70 kg) surface area = 18440 cm²; youth (39 kg) surface area = 12700 cm²; child/toddler (15 kg) surface area = 5910 cm².

^b Four hours per day were assumed for golfers and two hours per day were assumed for lawn and pick-your-own activities.

^c Based on a NOAEL of 75 mg/kg bw/day for dermal exposure to adults; a NOAEL of 76 mg/kg bw/day for dermal exposure to children; and a target MOE of 100.

Table 8Incidental Oral Exposure and Margins of Exposure (MOEs) for Toddlers

Group	Incidental Oral Exposure (mg/kg bw/day)			Combined exposure ^a	MOE ^b
Group	Hand to mouth	Turf mouthing	Ingestion of soil	(µg/kg bw/day)	
Toddlers 0-9	0.0123	0.000384	0.0000335	0.0127	9 830

^a Combined exposure is the sum of hand to mouth, turf mouthing and ingestion of soil.

^b Based on a NOAEL of 125 mg/kg bw/day for incidental oral exposure and a target MOE of 100.

Table 9Integrated Food Residue Chemistry Summary

NATURE O	F THE RESID	UE IN Grape	PMRA # 1839422		
Radiolabel Position	1:1 mixture penthiopyrad	1:1 mixture of [¹⁴ C-pyrazole]-penthiopyrad (P-label) and [¹⁴ C-thienyl]- penthiopyrad (T-label)			
Test Site	Test vines we	re grown outdoors at a field si	ite located in Poplar, California		
Treatment	Single foliar to	reatment			
Rate	400 g a.i./ha				
End-use product	15 SC formula	ation			
Preharvest interval	30 days, 60 da	nys			
Matrix	PHI (days)	[¹⁴ C-pyrazole]-penthiop	yrad and [¹⁴ C-thienyl]-penthiopyrad		
	1 111 (uays)		TRRs (ppm)		
Grape berries	30	0.204 (Group I), 0.241 (Group II: 0.133 in juice + 0.108 in pomace)			
Grupe bernes	60	0.083 (Group I), 0.210 (Group II: 0.119 in juice + 0.091 in pomace)			
Grane leaves	30	5.107			
Grape leaves	60	3.349			
Metabolites Identified	Major Metab	oolites (> 10% TRR)	Minor Metabolites (< 10% TRR)		
Radiolabel Position	[¹⁴ C	C-pyrazole]-penthiopyrad ar	nd [¹⁴ C-thienyl]-penthiopyrad		
Grapes (30 days, Group I)	penthiopyrad,	PAM	PCA, 753-A-OH, 753-F-DO, DM-753		
Grapes (60 days, Group I)	РАМ		penthiopyrad, PCA, 753-A-OH, 753-F- DO		
Leaves (30 days)	PAM		penthiopyrad, PCA, 753-A-OH, 753-F- DO, DM-753, 753-T-DO		
Leaves (60 days)	PAM, PCA		penthiopyrad, 753-A-OH, 753-F-DO, 753-T-DO		
In 30-day grapes, 23.5% of the TRRs was rinsed with methanol/water (7/3, v/v) and 65.7% of the TRRs was extracted from rinsed grapes with methanol. Post extraction solid (PES) contained 6.4% of the TRRs. In 60-day grapes, 12.0% of the TRRs was rinsed with methanol/water (7/3, v/v) and 77.1% of the TRRs was extracted from rinsed grapes with methanol. The PES contained 10.8% of the TRRs. The methanol/water rinsing					

removed approximately 80% of the TRRs in leaves.

NATURE OF THE RESI	DUE IN Tomate	9	PMRA # 1839421		
Radiolabel Position	1:1 mixture of penthiopyrad	1:1 mixture of [¹⁴ C-pyrazole]-penthiopyrad (P-label) and [¹⁴ C-thienyl]- penthiopyrad (T-label)			
Test Site	The test crop v	The test crop was grown outdoors at a field site located in Madera, California.			
Treatment	Single foliar tr	reatment			
Rate	300 g a.i./ha (1x), 1500 g a.i./ha (5x)			
End-use product	SC formulatio	n			
Preharvest interval	14 days (matu	re fruit), 21 days (mature frui	t, roots, stems and leaves)		
Matrix	PHI (days)	[¹⁴ C-pyrazole]-penthiop	oyrad and [¹⁴ C-thienyl]-penthiopyrad		
	riii (uays)		TRRs (ppm)		
Tomato fruit (1 v rate)	14	0.014 (Group I; 0.005 in rin 0.024 (Group II; 0.009 in rin	0.014 (Group I; 0.005 in rinse + 0.009 in rinsed tomato) 0.024 (Group II; 0.009 in rinse + 0.008 in juice + 0.007 in pomace)		
	21	0.022 (Group I; 0.011 in rinse + 0.011 in rinsed tomato) 0.017 (Group II; 0.004 in rinse + 0.006 in juice + 0.007 in pomace)			
Tomato fruit (5v rate)	14	0.456 (Group I; 0.346 in rinse + 0.110 in rinsed tomato) 0.294 (Group II; 0.096 in rinse + 0.049 in juice + 0.149 in pomace)			
Tomato nun (3x rate)	21	0.281 (Group I; 0.190 in rinse + 0.091 in rinsed tomato) 0.098 (Group II; 0.030 in rinse + 0.027 in juice + 0.041 in pomace)			
Leaves (1x rate)	21	0.648			
Leaves (5x rate)	21	4.837			
Metabolites Identified	Major Metab	olites (> 10% TRR)	Minor Metabolites (< 10% TRR)		
Radiolabel Position	[¹⁴ C-pyrazole]-penthiopyrad and [¹⁴ C-thienyl]-penthiopyrad				
Tomato fruits (5x rate, 14 day, Group I)		penthiopyrad	PAM, PCA, 753-F-DO		
Tomato fruits (5x rate, 21day, Group I)	penthiopyrad PAM, PCA, 753-A-Ol		PAM, PCA, 753-A-OH, 753-F-DO		
Tomato leaves (5x, 21-day)	penthiopyrad PAM, PCA, 753-A-OH, 753 753-T-DO				
In 14-day tomato fruits, 35.	7-75.9% of the	TRRs was rinsed with methan	nol/water $(7/3, v/v)$, and 22.1% of the		

TRRs was extracted from rinsed tomato with methanol. Approximately 2.0-6.1% of the TRRs remained in PES. In 21-day tomato fruits, 50-67.6% of the TRRs was rinsed with methanol/water (7/3,v/v), and 27.8-36.3% of the TRRs was extracted from rinsed tomato with methanol. Approximately 4.1-9.1% of the TRRs remained in PES. In 21-day leaves, 59.1-77.3% of the TRRs was rinsed with methanol/water (7/3,v/v), and 28.1-14.9% of the TRRs was extracted from the rinsed leaves with methanol/water.

NATURE OF THE RESI	DUE IN cabbage		PMRA # 1839419	
Radiolabel Position	1:1 mixture of [¹⁴ C-pyrazole]-penthiopyrad (P-label) and [¹⁴ C-thienyl]- penthiopyrad (T-label)			
Test Site	The test crop was	s grown outdoors at a field	site located in Madera, California.	
Treatment	Single foliar treat	ment		
Rate	200 g a.i./ha (1x)	, 1000 g a.i./ha (5x)		
End-use product	SC formulation			
Preharvest interval	21 days			
Matrix	PHI (davs)	¹⁴ C-pyrazole]-penthio	pyrad and [¹⁴ C-thienyl]-penthiopyrad	
	1 III (uays)		TRRs (ppm)	
Outer leaves	21	1.4	.06 (1x) , 7.928 (5x)	
Heads	21	0.0	45 (1x), 0.155 (5x)	
Roots	21	0.0	19 (1x), 0.120 (5x)	
Metabolites Identified	Major Metaboli	tes (> 10% TRR)	Minor Metabolites (< 10% TRR)	
whole cabbage (1x)	penthiopyrad, PCA, PAM		DM-753, 753-F-DO, 753-A-OH, DM- PAM	
whole cabbage (5x)	penthiopyrad, PAM		DM-753, 753-F-DO, 753-A-OH, PCA, DM-PAM	
Most of the radioactivity w was broadly similar.	as located in the ou	ter leaves. The pattern of 1	metabolites in the $1X$ and $5X$ cabbage	
NATURE OF THE RESI	DUE IN wheat		PMRA # 1839417	
Radiolabel Position	1:1 mixture of [¹ penthiopyrad (T-	⁴ C-pyrazole]-penthiopyr ·label)	ad (P-label) and [¹⁴ C-thienyl]-	
Test Site	The test crop was	grown outdoors at a field	site located in Madera, California.	
Treatment	foliar treatment			
Rate	Two applications at 250 g a.i./ha/application (1x) for a total of 500g a.i./ha or 750 g a.i./ha/application (3x) for a total of 1500 g a.i./ha.			
End-use product	SC formulation			
Preharvest interval	7 days after application (forage), 8 days after application 2 (hay), 32 days after application 2 (grain, straw)			
Matrix	PHI (davs)	¹⁴ C-pyrazole]-penthio	pyrazole]-penthiopyrad and [¹⁴ C-thienyl]-penthiopyrad	
Wittin	TRRs (ppm)		TRRs (ppm)	
forage (one application)	7	6.517 (1x), 22.131 (3x)		
hay	8	4.290 (1x), 17.827 (3x)		
straw	32	32 9.232 (1x), 43.686 (3x)		
grain	32 0.296 (1x), 0.753 (3x)			

Metabolites Identified	Major Metabolit	es (> 10% TRR)	Minor Metabolites (< 10% TRR)	
forage (1x)	penthiopyrad		PAM, PCA, 753-A-OH, 753-F-DO	
hay (1x)	penthiopyrad		PAM, PCA, 753-A-OH, 753-F-DO, 735-T-DO	
straw (1x)	penthiopyrad, PC	A	РАМ, 753-А-ОН, 753-F-DO, 735-T- DO	
grain (1x)	none		penthiopyrad, PAM, PCA, 753-A-OH	
In wheat forage, hay and straw, penthiopyrad constitutes the major individual component of the residue. No major free metabolites were identified in wheat grain.				
NATURE OF THE RESIDUE IN canola			PMRA # 1839412	
Radiolabel Position	1:1 mixture of [penthiopyrad (T	¹⁴ C-pyrazole]-penthiopy `-label)	rad (P-label) and [¹⁴ C-thienyl]-	
Test Site	The test crop was grown outdoors at a field site located in Madera, California.			
Treatment	foliar treatment			
Rate	Two applications	at 400 g a.i./ha/applicatio	on for a total of 800 g a.i./ha	
End-use product	SC formulation			
Preharvest interval	14 days after 1 st a	application (forage); 34 da	ys after 2 nd application (seed)	
Matrix	PHI (davs)	¹⁴ C-pyrazole]-penthio	pyrad and [¹⁴ C-thienyl]-penthiopyrad	
IVIALITA	1 III (uays)	TRRs (ppm)		
forage (one application)	14		12.184	
seeds	34		0.139	
Metabolites Identified	Major Metaboli	tes (> 10% TRR)	Minor Metabolites (< 10% TRR)	
seed	none		penthiopyrad, PAM, PCA, 753-A-OH, DM-PAM	
forage	753-A-OH malor	nyl glucoside	penthiopyrad, PAM, PCA, DM-A-OH malonyl glucoside	

Total radioactive residues in canola seed were very low (0.14 ppm) and a proportion (40 %) was not available for extraction with neutral solvents as observed for wheat grain.

Overview of plant metabolism:

The metabolism of penthiopyrad in five diverse crops (grape, tomato, cabbage, wheat and canola) is similar. The metabolism of penthiopyrad in plants is characterised by the following metabolic processes: Hydroxylation of the alkyl side chain leads to 753-A-OH and its isomers hydroxylated on different positions of the six-carbon alkyl chain. Conjugates of these metabolites were observed in all crops at higher amounts than the free metabolites. Conjugation was mainly with glucose and malonyl glucose. Canola forage and cabbage had the

free metabolites. Conjugation was mainly with glucose and malonyl glucose. Canola forage and cabbage had the highest proportions of these conjugated metabolites. In canola forage over 50 % of the TRRs was recovered as conjugated metabolites.

Oxidation of the thienyl ring to 753-T-DO, which is further oxidised leading to replacement of the sulphur atom with oxygen to give the lactone 753-F-DO. Neither 753-T-DO nor 753-F-DO persists in plant matrices. Oxidative degradation of 753-F-DO leading to the cleavage of the two-ring structure and the formation of PAM which contains the pyrazole label which is then hydrolysed to form PCA.

N-demethylation on the pyrazole moiety of penthiopyrad can also occur but this pathway is thought to be less important than the other oxidative pathways: N-demethylated forms of the conjugates were identified in canola forage.

CONFINED ACCU spinach/lettuce, radis	MULAT	TON IN ROTATIONAL CROPS –	PMRA # 2027547		
Radiolabel Position		1:1 mixture of [¹⁴ C-pyrazole]-penthiopyrad (P-label) and [¹⁴ C-thienyl]- penthiopyrad (T-label)			
Test site		The crops were grown outdoors in containers under natural climatic conditions.			
Formulation used fo	or trial	SC formulation			
Application rate and timing	1	Soil was treated at 800 g a.i./ha, and aged for 30, 120 and 360 days.			
Metabolites Identifie	ed				
Matrix	PBI (days)	Major Metabolites (> 10% TRR)	Minor Metabolites (< 10% TRR)		
Spinach/Lettuce	30	PCA, DM-PAM	penthiopyrad, DM-PCA, 753-A-OH		
Radish tops	30	none	penthiopyrad, DM-PCA, PCA, 753-A-OH		
Radish roots	30	DM-PCA	penthiopyrad, 753-A-OH, DM-PAM		
Wheat forage	30	none	penthiopyrad, DM-PCA, PCA, 753-A- OH, DM-PAM		
Wheat straw	30	none	penthiopyrad, DM-PCA, PCA, 753-A- OH, DM-PAM		
Wheat chaff	30	none	penthiopyrad, DM-PCA, PCA, 753-A- OH, DM-PAM		
Wheat grain	30	DM-PCA	penthiopyrad, PCA, 753-A-OH		
Spinach	120	none	penthiopyrad, DM-PCA, 753-A-OH, DM-PAM		
Wheat forage	120	none	DM-PCA, DM-PAM		
Wheat straw	120	none	penthiopyrad, DM-PCA, 753-A-OH, DM-PAM		
Wheat chaff	120	none	penthiopyrad, DM-PCA, 753-A-OH, DM-PAM		
Wheat grain	120	none	none		
Spinach	360	DM-PAM	penthiopyrad, DM-PCA, 753-A-OH,		
Wheat forage	360	none	penthiopyrad, DM-PAM		
Wheat straw	360	none	none		
Wheat chaff	360	none	none		
Wheat grain	360	none	none		

Numerous metabolites (at least twelve) were detected in the plant extracts. Four fractions were identified as penthiopyrad, DM-PCA, PCA and 753-A-OH. DM-PAM was also tentatively identified. None of the unidentified fractions exceeded 0.01 ppm in human food or 0.02 ppm in animal feed. Analysis of the soil extract showed the same major components as detected in the plant extracts.

NATURE OF THE RESIDUE IN LAYING HEN

PMRA # 1839423, 1839424

Two metabolism studies in hens were conducted. The first study was performed with [pyrazole-14C]penthiopyrad (P-label) and [thienyl-14C]-penthiopyrad (T-label), which were given orally as capsules to two separate groups of hens twice per day for 14 consecutive days at a target dose level of 10 mg/kg diet per day. Eggs and excreta were collected throughout the study and hens were sacrificed 6 - 8 hr after the last dose.

A second study was undertaken to further elucidate the metabolic pathway and the nature of the residues in eggs and liver. This study was also performed with [pyrazole-14C]-penthiopyrad (P-label) and [thienyl-14C]-penthiopyrad (T-label), which were given orally as capsules to two separate groups of hens once per day for 7 consecutive days at a target dose level of 10 mg/kg diet per day. Eggs and excreta were collected throughout the study and hens were sacrificed 21-23 hr after the last dose.

Matrices	% of Administered Dose			
	P-label		T-label	
Excreta	87.3		84.3	
Muscle	0.16 (0.052 ppm)		0.11 (0.038 ppm)	
Fat	0.02 (0.021 ppm)		0.04 (0.049 ppm)	
Skin	0.01 (0.053 ppm)		0.01(0.059 ppm)	
Liver	0.12 (0.632 ppm)		0.14 (0.682 ppm)	
Eggs	0.25 (0.095-0.124	ppm)	0.29 (0.105-0.132 ppm	l)
Metabolites identified	Major Metabolites (> 10% TRR)		Minor Metabolites (< 1	10% TRR)
Radiolabel Position	P-label	T-label	P-label	T-label
Muscle	PAM, DM-PAM	na	PCA	na
Fat	na	penthiopyrad	na	none
Skin	penthiopyrad, PAM	penthiopyrad	none	none
Liver	PAM, cys-T-DO isomer	dihydroxy-cys- T-DO	DM-PAM, dihydroxy-cys-F-DO isomers, hydroxyl- cys-F-DO, cys-F-DO isomers, dihydroxy- cys-T-DO, hydroxyl- MTF-753	dihydroxy-cys-F- DO isomers, hydroxyl-cys-F- DO, cys-F-DO isomers, dehydro- cys-F-DO, cys-T- DO isomers, hydroxyl-MTF- 753
Eggs	РАМ	none	DM-PAM, cys-F-DO isomers, cys-T-DO isomer, dihydroxy- MTF-753	penthiopyrad, 753-F-DO, dihydroxy-MTF- 753, hydroxy- MTF-753

NATURE OF THE RESIDUE IN LACTATING GOAT PMRA # 1839426, 1839428

Two metabolism studies in goat were conducted. The first study was performed with [pyrazole-14C]-penthiopyrad (P-label) and [thienyl-14C]-penthiopyrad (T-label), which were given orally as capsules to two separate goats twice per day for 7 consecutive days at a target dose level of 20 mg/kg diet per day. Milk and excreta were collected throughout the study and goats were sacrificed 6 hr after the last dose.

A second study was undertaken to further elucidate the metabolic pathway and the nature of the residues in liver and kidney. This study was also performed with [pyrazole-14C]-penthiopyrad (P-label) and [thienyl-14C]-penthiopyrad (T-label), which were given orally as capsules to two goats once per day for 5 consecutive days at a target dose level of 10 mg/kg diet per day. Goats were sacrificed 24 hours after the last dose.

Matrices	% of Administered Dose				
	P-label		T-label		
Urine and feces	80.01		84.63		
Muscle	0.21 (0.038 ppm)		0.13 (0.011 ppm)		
Fat	0.05 (0.028 ppm)		0.05 (0.015 ppm)		
Kidney	0.01 (0.330 ppm)		0.01 (0.113 ppm)		
Liver	0.36 (1.878 ppm)		0.33 (0.988 ppm)		
Milk	0.08 (0.010-0.078]	ppm)	0.11 (0.008-0.043 p	pm)	
Metabolites identified	Major Metabolites	(>10% TRR)	Minor Metabolites (< 10% TRR)	
Radiolabel Position	P-label	T-label	P-label	T-label	
Muscle	PAM, DM-PAM	none	none	none	
Fat	penthiopyrad, PAM	none	DM-PAM	none	
Kidney	PAM, dihydroxy- cys-F-DO isomer	none	penthiopyrad, DM-PAM, ydroxy-cys-F-DO, cys-F-DO isomer, dihydroxyl-cys-T- DO, cys-T-DO isomer, dihydroxy- MTF-753, hydroxy-MTF- 753, dehydro-cys- F-DO/753-A-OH	Penthiopyrad, dihydroxy-cys-F- DO isomer, dihydroxy-cys-F- DO isomer, hydroxyl-cys-F- DO, cys-F-DO isomers, dihydroxy-cys- T-DO, cys-T-DO isomers, dihydroxy-MTF- 753, hydroxyl- MTF-753	
Liver	РАМ, РСА	hydroxyl-MTF- 753	Penthiopyrad, DM-PAM, dihydroxy-cys-F- DO isomers, dehydro-cys-F- DO, hydroxy-cys- F-DO, cys-F-DO isomers, cys-T-DO isomers, dihydroxy & hydroxyl-MTF- 753, 753-A-OH	Penthiopyrad, dihydroxy-cys-F- DO isomers, hydroxy-cys-F- DO, cys-F-DO isomers, dehydroxy-cys- F-DO, dihydroxy-cys- T-DO, cys-T-DO isomers, 753-A- OH	

Appendix I

Milk	PAM, cys-T-DO isomer	none	DM-PAM, dihydroxy-cys-F- DO isomers, dehydro-cys-F- DO, hydroxy-cys- F-DO, cys-F-DO isomer, dihydroxy- cys-T-DO, cys-T- DO isomer, dihydroxy & hydroxyl-MTF- 753.	dihydroxy-cys-F- DO isomer, dehydro-cys-F- DO, hydroxy- cys-F-DO, cys- F-DO isomers, dihydroxy-cys- T-DO, cys-T-DO isomers, dihydroxy & hydroxyl-MTF- 753, 753-A-OH
------	-------------------------	------	--	--

Proposed Metabolic Scheme in Livestock

Several metabolites were observed in poultry and goat indicating extensive degradation via several metabolic pathways.

Metabolism of penthiopyrad proceeds mainly by sequential oxidation of the thienyl ring to 753-T-DO and 753-F-DO followed by conjugation of both metabolites with glutathione and subsequent catabolism of the glutathione conjugates to yield cysteine conjugates (cys-T-DO and cys-F-DO). Hydroxylation of one or more positions on the alkyl side chain to form 753-A-OH analogues and dihydroxy metabolites may occur before or after oxidation of the thienyl ring and conjugation. Metabolism of 753-F-DO is thought to proceed via ring opening and subsequent cleavage of the two ring structure to give mainly PAM from the pyrazole moiety.

STORAGE	STABILITY
STORAGE	STADILITI

PMRA # 1840774

Samples of high water crops (lettuce), high oil (oilseed rape, rapeseed oil), high protein (dried beans), high starch (potatoes, wheat grain), high acid (apples, grapes, grape juice, grape dried pomace, and raisins) and dry crops (wheat straw & forage) were spiked with 0.2 ppm each of penthiopyrad, PAM, 753-A-OH, 753-F-DO, PCA, and DM-PCA. Spiked samples were stored frozen at approximately -20°C. Samples were analyzed at 0, 1, 3, 6, 12, and 18 months. The results showed penthiopyrad, PAM, 753-A-OH, 753-F-DO, PCA, and DM-PCA were stable in the tested samples for 18 months.

CROP FIELD TRIALS - carrot, radish, sugar beet, turnip PMRA # 1928240	CROP FIELD TRIALS - carrot, radish, sugar beet, turnip	PMRA # 1928240
---	--	----------------

Ten trials were conducted on carrot in NAFTA Growing Regions 1, 3, 5, 6, 10 and 11 at a total rate of 860-937 g a.i./ha/season.

Six trials were conducted on radish in NAFTA Growing Regions 1, 3, 5, and 10 at a total rate of 877-945 g a.i./ ha /season.

Twelve trials were conducted on sugar beet in NAFTA Growing Regions 5, 7, 7A, 8, 10, and 11 at a total rate of 895-938 g a.i./ha/season. Each trial site had 2 treatment plots; Trt1: two foliar broadcast applications; Trt2: one in-furrow application + one foliar broadcast application.

Six trials were conducted on turnip in NAFTA Growing Regions 2, 4, 5, 6, and 10 at a total rate of 899-946 g a.i./ha/season.

Commodity	Total Applic.	PHI	Penthiopyrad Residue Levels (ppm)								
	Rate (g a.i./ha)	(days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.		
Carrot roots	860-937	0	18	0.02	0.43	0.395	0.07	0.11	0.11		
Radish roots	877-945	0-1	12	< 0.01	1.20	1.15	0.28	0.46	0.44		
Sugar beet,	(Trt 1) 895-938	7	24	0.10	4.40	4.20	0.85	1.55	1.47		
leaves	(Trt 2) 896-937	7	24	0.09	3.70	3.15	0.69	1.05	1.01		
Sugar beet,	(Trt 1) 895-938	7	24	0.013	0.350	0.270	0.090	0.105	0.089		
roots	(Trt 2) 896-937	7	24	< 0.01	0.180	0.175	0.047	0.066	0.055		
Turnip leaves	899-946	0	12	3.50	27.00	23.00	10.15	11.73	7.94		

CROP FIELD TRIALS - potato	PMRA # 1840814
----------------------------	----------------

Twenty two trials were conducted on potato in NAFTA Growing Regions 1, 2, 3, 5, 7A, 10, 11, 12 and 14 at a total rate of 1031-1110 g a.i./ha/season. All the trial sites had 2 treatment plots (Trt 1 & 2), and in 5 trials sites Trt 3 was also conducted.

Treatment 1 (Trt 1): three late-season foliar broadcast spray applications of penthiopyrad

Treatment 2 (Trt 2): one in-furrow application + two late-season foliar broadcast spray applications of penthiopyrad.

Treatment 3 (Trt 3): two early-season foliar broadcast spray applications + one late-season foliar broadcast spray application of penthiopyrad

The decline residue trials showed that residues of penthiopyrad in treatment 1 were all below LOQ (<0.01 ppm) at all PHIs. In treatment 2, residue levels for penthiopyrad decreased with increasing PHIs in one trial and were close to or below LOQ in the second trial.

Commodit	Total Applic. Rate	PHI	Penthiopyrad Residue Levels (ppm)							
У	(g a.i./ha)	(days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.	
Dist	1038-1110 (Trt 1)	6-8	44	< 0.01	0.037	0.033	0.010	0.011	0.005	
Potato tuber	1031-1110 (Trt 2)	6-8	42	< 0.01	0.058	0.052	0.010	0.016	0.010	
	1044-1088 (Trt 3)	6-7	10	< 0.01	0.028	0.025	0.010	0.013	0.006	
CROP FIEI	D TRIALS - dry bu	lb onion	, gre	en onion	· L		PMRA #	1840808		

CROP FIELD TRIALS - dry bulb onion, green onion

Eleven trials were conducted on dry bulb onion in NAFTA Growing Regions 1, 5, 6, 8, 10 and 11 at a total rate of 1044-1128 g a.i./ha/season.

Six trials were conducted on green onion in NAFTA Growing Regions 5, 6, and 10 at a total rate of 1044-1128 g a.i./ ha /season.

The decline residue trial on green onions showed that residues of penthiopyrad generally decreased with increasing PHIs.

Commodity	Total Applic.	PHI	Pen	Penthiopyrad Residue Levels (ppm)								
Rate (g a.i./ha)	(days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.				
Dry bulb onion	1044-1128	2-3	20	< 0.01	0.450	0.445	0.064	0.132	0.145			
Green onion	1044-1128	3	12	0.210	1.800	1.750	0.545	0.752	0.553			
				_				10.10000				

CROP FIELD TRIALS - celery, lettuce, spinach PMRA # 1840800

Eleven trials were conducted on celery in NAFTA Growing Regions 3, 5, and 10 at a total rate of 054-1099 g a.i./ha/season.

Twelve trials were conducted on lettuce (head & leaf) in NAFTA Growing Regions 1, 3, 5, 10, and 12 at a total rate of 1028-1098 g a.i./ ha /season.

Ten trials were conducted on spinach in NAFTA Growing Regions 1, 2, 5, 6, 10 and 12 at a total rate of 1044-1085 g a.i./ha/season.

The decline residue trial showed that residues of penthiopyrad in/on head lettuce generally decreased with increasing PHIs. Residues of penthiopyrad in/on leaf lettuce generally increased between PHIs of 0 and 3 days, then decreased between PHIs of 3 to 10 days.

Commodity Total Applic.		PHI	Penth	Penthiopyrad Residue Levels (ppm)								
	Rate (g a.i./ha)	(days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.			
Celery	1054-1099	2-3	22	1.60	9.10	8.65	2.80	3.82	2.13			
Head lettuce	1039-1084	3	24	0.01	3.90	3.40	0.58	1.22	1.16			
Leaf lettuce	1028-1098	3	24	1.10	11.00	11.00	2.15	3.71	3.00			

Spinach	1044-1185	3	20	0.76	17.00	15.00	2.70	4.79	4.90	
CROP FIELD	FRIALS - broc	coli, cau	liflowe	r, cabba	ge, mustar	d greens	PMRA # 1	928238, 1	928239	
Ten trials were conducted on broccoli/cauliflower in NAFTA Growing Regions 1, 5, 10 and 12 at a total rate of 1047-1082 g a.i./ha/season. Ten trials were conducted on cabbage in NAFTA Growing Regions 1, 2,3, 5, 6 and 10 at a total rate of 1069-1085 g a.i./ ha /season. Nine trials were conducted on mustard greens in NAFTA Growing Regions 1, 2, 3, 4, 5, 6, 10 and 12 at a total rate of 1017-1083 g a.i./ha/season. The decline residue trial in broccoli and mustard greens showed that residues of penthiopyrad decreased with increasing PHIs.										
Commodity	Total Applic.	PHI	Penth	iopyrad	Residue Le	vels (ppm)			
	Rate (g a.i./ha)	(days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.	
Broccoli	1047-1082	0	14	0.55	2.50	2.35	1.55	1.48	0.61	
Cauliflower	1069-1082	0	6	0.099	0.590	0.505	0.425	0.370	0.213	
Cabbage	1044-1085	0	20	0.022	2.300	2.250	0.335	0.723	0.721	
Mustard greens	1017-1083	0	18	5.70	32.00	29.50	10.45	14.31	7.64	
CROP FIELD	FRIALS - Edi b	le-podde	ed and	succule	nt shelled b	eans & p	eas	PMRA #	1928240	
Eight trials were of 1053-1095 g a Four trials were 1077 g a.i./ ha /s Seven trials were of 1050-1093 g a Seven trials were of 1021-1081g a	conducted on e a.i./ha/season. conducted on ec eason. e conducted on s a.i./ha/season. e conducted on s i.i./ha/season.	dible-pod lible-pod succulent succulent	dded be ded pea t shellea t shellea	ean in NA a in NAF d bean ir d pea in 1	AFTA Growin TA Growin NAFTA G NAFTA Gr	ving Region ng Region rowing R owing Re	ons 1, 2, 3, 5 s 5 and 11 at egions 2, 5, 1 gions 1, 5, 11	and 11 at a a total rate 10 and 11 a 1 and 12 at	a total rate e of 1051- at a total rate a total rate	
Commodity	Total Applic.	PHI	Penth	iopyrad	Residue Lev	vels (ppm)			
	Rate (g a.i./ha)	(days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.	
Podded bean	1053-1095	0	16	0.12	1.70	1.50	0.66	0.66	0.47	
Podded pea	1051-1077	0	8	0.85	1.50	1.50	1.20	1.16	0.27	
Shelled bean	1050-1093	0	14	0.01	0.29	0.25	0.04	0.08	0.08	
Shelled pea	1021-1081	0	14	0.04	0.15	0.14	0.07	0.07	0.03	

CROP FIELD TRIALS - dried bean & pea	PMRA # 1840804
CROI I ILLD IRITLD und bean a pea	

Eleven trials were conducted on dried pea in NAFTA Growing Regions 5, 11 and 14 at a total rate of 594-621g a.i./ha/season.

Eleven trials were conducted on dried bean in NAFTA Growing Regions 5, 7, 7A, 8, 9, 10 and 11 at a total rate of 594-622 g a.i./ ha /season.

The decline residue trial showed that residues of penthiopyrad in/on pea hay increased over PHIs of 0 to 21 days, then are stable over PHIs of 21 to 28 days. Residues of penthiopyrad in/on pea vines increased over PHIs of 0 to 7 days, then decreased over PHIs of 7 to 28 days.

CROP FIELD	FRIALS - sovb	ean					PMRA # 1	928241, 192	28242		
Dried bean 594-622 21	21	22	< 0.01	0.21	0.20	0.01	0.03	0.054			
Dried pea	594-621	20-24	22	< 0.01	0.12	0.09	0.01	0.02	0.025		
	Rate (g a.i./ha)	(days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.		
Commodity	Total Applic.	PHI	Penthiopyrad Residue Levels (ppm)								

CROP FIELD TRIALS - soybean

Twenty one trials were conducted on soybean in NAFTA Growing Regions 2, 4 and 5 at a total rate of 871-935 g a.i./ha/season.

The decline residue trials indicated that residues of penthiopyrad in/on soybean forage and hay decreased with increasing PHIs.

Commodity Total Applic. Rate (g a.i./ha)	PHI (days)	Penth	Penthiopyrad Residue Levels (ppm)								
		n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.			
Soybeans	871-935	13-15	38	< 0.01	0.25	0.21	0.01	0.03	0.05		

CROP FIELD TRIALS - tomato, bell pepper, non-bell pepper PMRA # 1840783

Twenty trials were conducted on tomato in NAFTA Growing Regions 1, 2, 3, 5 and 10 at a total rate of 1039-1099 g a.i./ha/season.

Twenty trials were conducted on pepper (bell & non-bell) in NAFTA Growing Regions 2, 3, 5, 6, 8 and 10 at a total rate of 1051-1103 g a.i./ ha /season.

The decline residue trials indicated that residues of penthiopyrad in/on tomato fruits increased slightly or were stable over PHIs of 0 to 3 days and then decreased over PHIs of 3 to 10 days. Penthiopyrad residue levels in/on bell pepper fruit increased from PHIs of 0 to 1 day then decreased with increasing PHIs.

Commodity Total		PHI	Penthiopyrad Residue Levels (ppm)								
	Applic. Rate (g a.i./ha)	(days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.		
Tomato	1039-1099	0	40	0.06	1.50	1.30	0.27	0.37	0.31		
Bell pepper	1051-1103	0	22	0.07	0.91	0.77	0.20	0.27	0.23		
Non-bell pepper	1051-1098	0	18	0.16	1.70	1.55	0.44	0.57	0.43		

PMRA # 1941994, 1840781 **CROP FIELD TRIALS - greenhouse pepper, greenhouse tomato**

A residue study with penthiopyrad on greenhouse peppers was conducted in Europe. Nine trials were conducted in France (3 trials), Italy (2 trials), Greece (2 trials) and Spain (2 trials) At each test location, greenhouse pepper was treated with penthiopyrad for a total seasonal rate of 786-823 g a.i./ha.

A residue study with penthiopyrad on greenhouse tomato was conducted in Europe. Eleven trials were conducted in France (2 trials), Italy (2 trials), Greece (2 trials), Spain (3 trials) and Belgium (2 trials). At each test location, greenhouse tomato was treated with penthiopyrad for a total seasonal rate of 783-821 g a.i./ha.

The decline residue trials indicated that residues of penthiopyrad in/on greenhouse pepper fruits generally increased slightly over PHIs of 0 to 3 days, then decreased or stayed stable over PHIs of 3 to 14 days. In five out of seven decline tests on tomato, the 0-day time-point specimen had the highest residue for the respective decline.

Commodity Total A Rate (g a.i.	Total Applic.	PHI	Penthiopyrad Residue Levels (ppm)								
	Rate (g a.i./ha)	(days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.		
Greenhouse pepper	786-823	1	9	0.16	0.65		0.530	0.472	0.186		
Greenhouse tomato	783-821	1	11	0.086	0.84		0.17	0.32	0.26		
CROP FIELD TRIALS - cantaloupe, cucumber, squash PMRA # 1840787											

Eight trials were conducted on cantaloupe in NAFTA Growing Regions 2, 5, 6 and 10 at a total rate of 988-1022 g a.i./ha/season.

Ten trials were conducted on cucumber in NAFTA Growing Regions 2, 3, 5, 6 and 12 at a total rate of 972-1020 g a.i./ ha /season.

Nine trials were conducted on summer squash in NAFTA Growing Regions 1, 2, 3, 5, 10 and 12 at a total rate of 972-1039 g a.i./ ha /season.

The decline residue trial showed that residues of penthiopyrad in/on cucumbers decreased with increasing PHIs.

Commodity	Total	PHI	Penth	iopyrad Re	sidue Leve	ls (ppm)			
	Applic. Rate (g a.i./ha)	(days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.
Cantaloupe	988-1022	1	16	0.086	0.350	0.265	0.180	0.200	0.076
Cucumber	972-1020	1	20	< 0.01	0.130	0.125	0.054	0.063	0.042
Summer squash	972-1039	0-1	18	< 0.01	0.250	0.205	0.130	0.131	0.069
CROP FIELD T	RIALS - gree	nhouse c	ucumb	er			PMRA # 1	840791	

CROP FIELD TRIALS - greenhouse cucumber

A total of nine residue trials were conducted on greenhouse cucumber in Europe: France (1 trial), Italy (2 trials), Greece (2 trials), Spain (3 trials), and Belgium (1 trial). At each test location, greenhouse cucumber was treated

with penthiopyrad for a total seasonal rate of 777-803 g a.i./ha.

Commodity	Total	PHI	Penth	iopyrad Re	sidue Leve	ls (ppm)			
	Applic. Rate (g a.i./ha)	(days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.
Greenhouse cucumber	777-803	1	9	0.096	0.320		0.150	0.174	0.085

CDOD FIELD		0 0000					DMDA #	1940702	
CROP FIELD	I KIALS - appi	e, pear				1 2 5	PMRA #	1840/95	4
Fourteen trials w 964 g a.i./ha/seas	vere conducted (son .	on apple	IN NA	FIA Grov	ving Region	10 and 1	9, 10 and 11	at a total ra	te of 906-
/season.	conducted on pe	ai iii NA	FIA	Glowing K	egions 1, 5	, 10 and	i i a total la	10 01 904-9	29 g a.1/11a
The decline resid	due trial showed	l that resi	dues	of penthiop	oyrad in/on	apple fru	its decreased	with increa	sing PHIs.
Commodity	Total Applic.	PHI	Pen	thiopyrad F	Residue Lev	els (ppm)		
	Rate (g a.i./ha)	(days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.
Apple	906-964	27-29	28	< 0.01	0.26	0.23	0.14	0.14	0.06
Pear	904-929	27-29	20	< 0.01	0.26	0.25	0.14	0.13	0.08
CROP FIELD	CROP FIELD TRIALS - peach, plum, cherry PMRA # 1840811								1840811
Thirteen trials were conducted on peach in NAFTA Growing Regions 1, 2, 5, 6, 10 and 11 at a total rate of 858-									
937 g a.i./ha/seas Ten trials were c a.i./ ha /season. Nine trials were total rate of 865 The decline resid	son. conducted on plu conducted on cl -930 g a.i./ ha /s due trial showed	um in NA herry (4 s season. I that resi	AFTA sweet dues	Growing I & 5 tart) in of penthiop	Regions 1, 5 n NAFTA (pyrad in/on	5, 10, 11 Growing D	and 12 at a tot Regions 1, 5, 9 decreased with	cal rate of 8 9, 10, 11 ar h increasing	65-936 g nd 12 at a g PHIs.
Commodity	Total Applic.	PHI	Pen	thiopyrad F	Residue Lev	els (ppm)		
	Rate (g a.i./ha)	(days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.
Peach	858-937	0	26	0.130	1.500	1.400	0.565	0.541	0.317
Plum	865-936	0	20	0.043	0.800	0.770	0.092	0.178	0.214
Cherry	865-930	0	20	0.36	1.80	1.70	0.995	1.041	0.449
CROP FIELD	FRIALS - stray	wberry					PMRA #	1840817	
Nine trials were 1150 g a.i./ha/se The decline resid	conducted on st ason . due trial showed	rawberry l that resi	' in N dues	AFTA Gro	wing Regio	ons 1, 3, 5	5, 10 and 12 a	t a total rate	e of 1028- asing PHIs
Commodity	Total Applic.	PHI	Pen	thiopyrad F	Residue Lev	els (ppm)		U
	Rate (g a.i./ha)	(days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.
Strawberry	1028-1150	0	18	0.340	2.200	2.000	0.765	0.922	0.514
CROP FIELD	FRIALS - almo	ond, peca	ın				PMRA #	1840824	
Six trials were co Six trials were co season.	onducted on aln onducted on pec	nond in N an in NA	IAFT AFTA	A Growing Growing I	g Region 10 Regions 2, 4	at a tota 4, 6 and 8	at a total rate	29 g a.i./ha c of 909-93	a/season. 0 g a.i./ha/
Commodity	Total Applic.	PHI	Pen	thiopyrad F	Residue Lev	els (ppm)		
	Rate (g a.i./ha)	(days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.
Almond	904-929	14	12	< 0.01	0.045	0.037	0.010	0.014	0.011
Pecan	909-930	13-14	12	< 0.01	< 0.01	< 0.01	0.010	0.010	0.00

CROP FIELD	TRIALS - Whe	eat, barle	ey, sorg	ghum			PMRA # 1 1928236, 1	1928233, 19 1943561	928234,
Twenty six tria rate of 677-725	ls were conducte g a.i./ha/season.	d on whe	at in N	AFTA Gro	owing Regio	ons 2, 4, 5	, 6, 7, 7A, 8	, 11 and 14	at a total
a.i. /ha/season.	vere conducted of	on barley	IN NAI	TA Growin	ing Regions	55, /, and	14 at a total	tal rate of 6/	(-/29 g
a.i./ha/ season. The decline res PHIs.	idue trial showed	l that resi	dues of	f penthiopy	vrad in/on w	vheat fora	ge decreased	l with incre	asing
Commodity	Total Applic.	PHI	Penth	iopyrad Re	sidue Leve	els (ppm)			
	Rate (g a.i./ha)	(days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.
Wheat	677-725	35-69	52	< 0.01	0.03	0.03	0.01	0.01	0.00
Barley	677-729	47-69	26	< 0.01	0.12	0.11	0.01	0.02	0.03
Sorghum	676-731	28-33	18	0.06	0.43	0.43	0.18	0.22	0.13
CROP FIELD	TRIALS - field	corn, sv	veet co	rn			PMRA # 1	1928244, 1	928243
The decline res Commodity	idue trial showed Total Applic.	l that resi PHI	dues of Penth	f penthiopy iopyrad Re	vrad in/on c esidue Leve	orn forage els (ppm)	e decreased v	with increas	sing PHIs.
Commodity	Total Applic. Rate	PHI (days)	Penth n	iopyrad Re Min.	sidue Leve Max.	els (ppm) HAFT	Median	Mean	Std.
D ' 11	(8)	-	20	-0.01	-0.01	-0.01	(STMdR)	(STMR)	Dev.
Field corn	688-727	7	28	< 0.01	<0.01	<0.01	0.010	0.010	0.0
Sweet corn	699-735	7	22	<0.01	<0.01	<0.01	0.010	0.010	0.0
CROP FIELD	TRIALS - cano	ola, sunfl	ower, o	cotton seed	l		PMRA # 1 1928246	1840795, 1	928237,
Eighteen trials 620 g a.i./ha/se Nine trials were	were conducted of ason.	on canola	in NA	FTA Grow FTA Grow	ving Region	is 2, 5, 7, 1	11 and 14 at $14 = 10$	a total rate	of 587- 04-937 g
a.i./ha/season. Thirteen trials v	were conducted c	on cotton	in NAI	FTA growi	ng Regions	2, 4, 6, 8,	, 10 at a tota	l rate of 10.	38-1110 g
The decline res	idue trial showed	l that resi	dues of	f penthiopy	rad in/on c	anola deci	reased with i	increasing I	PHIs.
Commodity	Total Applic.	PHI	Penth	iopyrad Re	sidue Leve	els (ppm)			
	Rate (g a.i./ha)	(days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.
Canola	587-620	20-22	36	< 0.01	0.470	0.415	0.037	0.065	0.094
Sunflower	904-937	13-15	18	< 0.01	0.920	0.805	0.106	0.245	0.252
Cotton seed	1038-1110	19-22	26	< 0.01	0.28	0.25	0.10	0.10	0.08

CROP FIELD	FRIALS - pear	ut					PMRA # 1840827			
Thirteen trials w a.i./ha/season.	ere conducted o	n peanut	in NA	FTA Grow	ring Region	ns 2, 3, 6 ai	nd 8 at a tota	al rate of 10	54-1084g	
Commodity	Total Applic.	PHI	Penth	niopyrad Re	esidue Lev	els (ppm)				
	Rate (g a.i./ha)	(days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.	
Peanut nutmeat	1054-1184	13-15	26	< 0.01	0.047	0.034	0.010	0.012	0.007	
Peanut hay	1054-1184	13-15	26	1.20	17.00	16.50	5.4	5.71	4.15	
CROP FIELD	FRIALS - alfal	fa					PMRA # 1	928248		
Fifteen trials we 685-737g a.i./ha The decline resid increasing PHIs.	re conducted on /season. due trial indicate	alfalfa in ed that re	n NAF sidues	TA Growir of penthioj	ng Regions oyrad in/on	1, 2, 5, 7, alfalfa for	9, 10, 11 and rage and hay	d 14 at a to decreased	tal rate of with	
Commodity	Total Applic.	PHI	Penth	niopyrad Re	esidue Lev	els (ppm)				
	(g a.i./ha)	(days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.	
Alfalfa forage	685-737	13-15	30	0.03	4.00	3.95	0.48	0.86	0.99	
Alfalfa hay	685-737	13-15	30	0.08	14.00	13.50	1.70	2.73	3.27	
Summary of Re	sidue Data in l	Rotation	al Croj	ps Followi	ng Primar	y Treatm	ent with Per	nthiopyrad	l	
Commodity	Total Applic.	PBI	Penth	niopyrad Re	esidue Lev	els (ppm)				
	Rate (g a.i./ha)	(days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.	
Lettuce, 50% maturity	970-981	5-30	4	< 0.01	< 0.01	< 0.01	0.01	0.01	0	
Lettuce, 100%maturity	570 501	5 50	4	< 0.01	< 0.01	< 0.01	0.01	0.01	0	
Radish, tops	970-1057	5-30	10	< 0.01	< 0.01	< 0.01	0.01	0.01	0	
Radish roots	570 1057	5 50	10	< 0.01	0.024	0.019	0.01	0.01	0	
Wheat forage			4	< 0.01	< 0.01	< 0.01	0.01	0.01	0	
Wheat hay	994-1015	30-31	4	< 0.05	< 0.05	< 0.05	0.05	0.05	0	
Wheat grain	<i>yy</i> + 1010	50 51	4	< 0.01	< 0.01	< 0.01	0.01	0.01	0	
Wheat straw			4	< 0.05	< 0.05	< 0.05	0.05	0.05	0	
Lettuce, 50% maturity	970-981	60-67	4	< 0.01	< 0.01	< 0.01	0.01	0.01	0	
Lettuce, 100%maturity	770-701	00-07	4	<0.01	< 0.01	< 0.01	0.01	0.01	0	
Radish, tops	070 1057	60.67	6	< 0.01	< 0.01	< 0.01	0.01	0.01	0	
Radish roots	710-1037	00-07	6	< 0.01	< 0.01	< 0.01	0.01	0.01	0	
Wheat forage			4	< 0.01	< 0.01	< 0.01	0.01	0.01	0	
Wheat hay	994_1015	60-62	4	< 0.05	< 0.05	< 0.05	0.05	0.05	0	
Wheat grain	JJ T -101J	00-02	4	< 0.01	< 0.01	< 0.01	0.01	0.01	0	
Wheat straw			4	< 0.05	< 0.05	< 0.05	0.05	0.05	0	

Lettuce, 50% maturity	070.081	300-	4	< 0.01	< 0.01	< 0.01	0.01	0.01	0		
Lettuce, 100%maturity	970-981	336	4	< 0.01	< 0.01	< 0.01	0.01	0.01	0		
Radish, tops	070 1057	300-	4	< 0.01	< 0.01	< 0.01	0.01	0.01	0		
Radish roots	9/0-105/	336	4	< 0.01	< 0.01	< 0.01	0.01	0.01	0		
Wheat forage			4	< 0.01	< 0.01	< 0.01	0.01	0.01	0		
Wheat hay	00/ 1015	380-	4	< 0.05	< 0.05	< 0.05	0.05	0.05	0		
Wheat grain	994-1015	381	4	< 0.01	< 0.01	< 0.01	0.01	0.01	0		
Wheat straw			4	< 0.05	< 0.05	< 0.05	0.05	0.05	0		
PROCESSED	FOOD AND FI	EED - su	gar be	et			PMRA #	1928275			
Test Site				trials in the	US						
Treatment			One	in-furrow a	pplication	& one foli	ar broadcast	spray			
Rate			2250	g a.i./ha/ap	plication	for a total r	ate of 4500 g	g a.i./ha/sea	ison		
End-use product	t		EC f	EC formulation							
Preharvest inter-	val		6-7 d	ays							
Processed Com	nodity		Proce	essing Facto	or						
Refined sugar			0.162	K							
Molasses			0.172	K							
Dried pulp			5.652	K							
PROCESSED	FOOD AND FI	E ED - p o	tato PMRA # 1840839								
Test Site			Two	trials in the	US						
Treatment			Folia	r broadcast	spray						
Rate			Thre a.i./h	e applicatio a/season	ns at 1750	g a.i./ha/a	pplication fo	or a total of	5250 g		
End-use product	t		EC f	ormulation							
Preharvest inter-	val		7 (±1) days							
Processed Com	nodity		Proce	essing Facto	or						
Potato flakes			0.275	K							
Potato chips			0.275	X							
French fries (un	peeled)		0.592	K							
French fries (pe	eled)		0.275	K							
Washed tubers	Washed tubers 0.93x										
Cull tubers			0.875	<u> </u>							

PROCESSED FOOD AND FEED - so	ybean	PMRA # 1928268		
Test Site	Two trials in the US			
Treatment	Foliar broadcast spray			
Rate	Two applications at 2250 g a.i./ha/apj a.i./ha/season	plication for a total of 4500 g		
End-use product	EC formulation			
Preharvest interval	14 days			
Processed Commodity	Processing Factor			
Soybean meal	0.50x			
Refined oil	0.99x			
PROCESSED FOOD AND FEED - pl	lum	PMRA # 1840841		
Test Site	Two trials in the US			
Treatment	Foliar broadcast spray			
Rate	Three applications at 300 g a.i./ha/app a.i./ha/season	plication for a total of 900 g		
End-use product	SC formulation			
Preharvest interval	0 day			
Processed Commodity	Processing Factor			
Pitted dry prune	1.41x			
PROCESSED FOOD AND FEED - fi	eld corn	PMRA # 1928271		
Test Site	Two trials in the US			
Treatment	Foliar broadcast spray			
Rate	Three applications at 1750 g a.i./ha/ap a.i./ha/season	pplication for a total of 3500 g		
End-use product	EC formulation			
Preharvest interval	7-8 days			
Processed Commodity	Processing Factor			
Corn starch	0.79x			
Corn flour	1.32x			
Corn meal	1.03x			
Refined oil	4.01x			

PROCESSED FOOD AND FEED - ca	nola	PMRA # 1840834			
Test Site	Two trials in the US and one trial in C	anada			
Treatment	Foliar broadcast spray				
Rate	Two applications at 1500 g a.i./ha/app a.i./ha/season	lication for a total of 3000 g			
End-use product	SC formulation				
Preharvest interval	21 days				
Processed Commodity	Processing Factor				
Presscake	1.03x				
Refined oil	1.56x				
Meal	0.75x				
PROCESSED FOOD AND FEED - pe	anut	PMRA # 1840827			
Test Site	Two trials in the US				
Treatment	Foliar broadcast spray				
Rate	Three applications at 1750 g a.i./ha/ap a.i./ha/season	plication for a total of 5250 g			
End-use product	SC formulation				
Preharvest interval	14 days				
Processed Commodity	Processing Factor				
Peanut meal	0.43x				
Refined oil	1.54x				
PROCESSED FOOD AND FEED - ap	ple	PMRA # 1840830			
Test Site	Three trials in the US				
Treatment	Foliar broadcast spray				
Rate	Three applications at 300 g a.i./ha/app a.i./ha/season	lication for a total of 900 g			
End-use product	SC formulation				
Preharvest interval	28 days				
Processed Commodity	Processing Factor				
Apple wet pomace	5.4x				
Apple juice	<0.06x				
Apple sauce	<0.06x				

PROCESSED FOOD AND FEED - to	mato	PMRA # 1840836			
Test Site	Three trials in Europe				
Treatment	Foliar broadcast spray				
Rate	Two applications at 200 g a.i./ha and a.i./ha/season	600 g a.i./ha for a total of 800 g			
End-use product	SC formulation				
Preharvest interval	1 day				
Processed Commodity	Processing Factor				
Tomato juice	0.31x				
Tomato puree	1.93x				
Tomato catsup	1.32x				
Tomato paste	2.49x				
PROCESSED FOOD AND FEED - wh	neat	PMRA # 1840838			
Test Site	Three trials in Europe				
Treatment	Foliar broadcast spray				
Rate	Two applications at 400 g a.i./ha/appl a.i./ha/season	ication for a total of 800 g			
End-use product	SC formulation				
Preharvest interval	44-63 days				
Processed Commodity	Processing Factor				
Wheat flour	Residues in the grain samples before presidues in wheat processed commodi	processing were <loq and<br="">ties after processing were non-</loq>			
Wheat bran	detectable, processing factors could no	ot be calculated.			
Wheat germ					
LIVESTOCK FEEDING – Dairy c	attle	PMRA # 1839432			

Eleven lactating cows were dosed with penthiopyrad for 28/29 days. The treated animal were divided into groups and were dosed twice daily at 8.4 ppm, 24.1 ppm and 74.6 ppm feeding levels.

Combined residues of penthiopyrad + PAM are reported as parent equivalent (penthiopyrad + PAMx1.86). For calculation, 0.01 ppm (LOQ) was used for value <LOQ.

Matrix	Feeding Level	n	LOD	Min.	Max.	Median	Mean	Standard Deviation
Liver		3	0.005	< 0.02	< 0.02	0.02	0.02	
Kidney		3	0.005	< 0.02	< 0.02	0.02	0.02	
Muscle	8.4 ppm	3	0.005	< 0.02	< 0.02	0.02	0.02	
Fat		3	0.005	< 0.02	< 0.02	0.02	0.02	
Milk		30	0.005	< 0.02	< 0.02	0.02	0.02	
Liver		3	0.005	< 0.0286	< 0.0482	0.0472	0.041	0.011
Kidney		3	0.005	< 0.02	< 0.0286	0.02	0.023	0.005
Muscle	24.1 ppm	3	0.005	< 0.02	< 0.02	0.02	0.02	
Fat		3	0.005	< 0.0286	< 0.0286	0.0286	0.0286	
Milk		30	0.005	< 0.02	< 0.02	0.02	0.02	

Liver		3	0.005	0.0858	0.1316	0.0944	0.1039	0.024
Kidney		3	0.005	< 0.0472	< 0.0658	0.0658	0.0596	0.011
Muscle	74.6 ppm	3	0.005	< 0.0286	< 0.0472	0.0286	0.0348	0.011
Fat		3	0.005	< 0.02	< 0.0472	0.02	0.0291	0.015
Milk	50	50	0.005	< 0.02	0.0472	0.02	0.024	0.005
LIVESTOC	VESTOCK FEEDING – Laying hens PMRA # 1839431							
Sixty laying he twice daily at a Combined resi calculation, 0.0	ens were used 5.9 ppm, 17.5 idues of pentl 01 ppm (LOC	d in the fo ppm, ar hiopyrad Q) was us	eeding study. ' ad 58.5 ppm fe + PAM are re sed for value <	The treated a eeding levels. ported as par LOQ.	nimal were ent equivale	divided into g	groups and yrad + PAM	were dosed Ix1.86). For
Matrix	Feeding Level	n	LOD	Min.	Max.	Median	Mean	Standard Deviation
Muscle		6	0.005	< 0.02	< 0.02	0.02	0.02	
Liver	5.8 ppm	6	0.005	< 0.02	< 0.02	0.02	0.02	
Skin & fat	&	6	0.005	< 0.02	< 0.02	0.02	0.02	
Fat	17.5 ppm	6	0.005	< 0.02	< 0.02	0.02	0.02	
Eggs		72	0.005	< 0.02	< 0.02	0.02	0.02	
Muscle		3	0.005	0.02	0.029	0.02	0.023	0.005
Liver		3	0.005	0.045	0.053	0.050	0.049	0.004
Skin & fat	58.5 ppm	3	0.005	0.02	0.028	0.026	0.025	0.004
Fat		3	0.005	0.026	0.046	0.033	0.035	0.010
Eggs		36	0.005	0.02	0.047	0.038	0.037	0.006

Table 10Food Residue Chemistry Overview of Metabolism Studies and Risk
Assessment

PLANT STUD	DIES
RESIDUE DEFINITION FOR ENFORCEMENT Primary crops (corn) Rotational crops	Penthiopyrad
RESIDUE DEFINITION FOR RISK ASSESSMENT Primary crops Rotational crops	Penthiopyrad, PAM and PCA
METABOLIC PROFILE IN DIVERSE CROPS	Similar
ANIMAL STU	DIES
ANIMALS	Ruminant & Poultry
ANIMALS RESIDUE DEFINITION FOR ENFORCEMENT	Ruminant & Poultry Penthiopyrad and PAM
ANIMALS RESIDUE DEFINITION FOR ENFORCEMENT RESIDUE DEFINITION FOR RISK ASSESSMENT	Ruminant & Poultry Penthiopyrad and PAM Penthiopyrad and PAM
ANIMALS RESIDUE DEFINITION FOR ENFORCEMENT RESIDUE DEFINITION FOR RISK ASSESSMENT METABOLIC PROFILE IN ANIMALS (goat, hen, rat)	Ruminant & Poultry Penthiopyrad and PAM Penthiopyrad and PAM Similar

DIETARY RISK FROM FOOD AND WATER							
	POPULATION	ESTIMATED RISK % of ACCEPTABLE DAILY INTAKE (ADI)					
		Food Alone	Food and Water				
Refined chronic non-cancer	All infants < 1 year	3.0	18.3				
dietary risk	Children 1–2 years	5.4	12.3				
ADI = 0.09 mg/kg bw/day	Children 3 to 5 years	4.6	11.1				
Estimated chronic drinking	Children 6–12 years	2.9	7.4				
water concentration = 199	Youth 13–19 years	2.0	5.4				
<i>µb</i> , <i>D</i>	Adults 20–49 years	2.0	6.4				
	Adults 50+ years	2.4	7.0				
	Total population	2.4	7.1				
Refined acute dietary exposure analysis, 95 th percentile	POPULATION	ESTIMAT % of ACUTE REFER	ED RISK ENCE DOSE (ARfD)				
Refined acute dietary exposure analysis, 95 th percentile Estimated acute drinking water concentration = 323 μ g/L	POPULATION	ESTIMAT % of ACUTE REFER Food Alone	ED RISK ENCE DOSE (ARfD) Food and Water				
Refined acute dietary exposure analysis, 95th percentileEstimated acute drinking water concentration = $323 \ \mu g/L$ ARfD = 1.25 mg/kg bw	POPULATION All infants < 1 year	ESTIMAT % of ACUTE REFER Food Alone 2.37	ED RISK ENCE DOSE (ARfD) Food and Water 6.04				
Refined acute dietary exposure analysis, 95 th percentile Estimated acute drinking water concentration = $323 \mu g/L$ ARfD = 1.25 mg/kg bw	POPULATION All infants < 1 year Children 1–2 years	ESTIMAT % of ACUTE REFER Food Alone 2.37 3.76	ED RISK ENCE DOSE (ARfD) Food and Water 6.04 5.25				
Refined acute dietary exposure analysis, 95 th percentile Estimated acute drinking water concentration = $323 \mu g/L$ ARfD = 1.25 mg/kg bw	POPULATION All infants < 1 year Children 1–2 years Children 3 to 5 years	ESTIMAT % of ACUTE REFER Food Alone 2.37 3.76 3.29	ED RISK ENCE DOSE (ARfD) Food and Water 6.04 5.25 4.54				
Refined acute dietary exposure analysis, 95 th percentile Estimated acute drinking water concentration = $323 \mu g/L$ ARfD = 1.25 mg/kg bw	POPULATION All infants < 1 year Children 1–2 years Children 3 to 5 years Children 6–12 years	ESTIMAT % of ACUTE REFER Food Alone 2.37 3.76 3.29 2.37	ED RISK ENCE DOSE (ARfD) Food and Water 6.04 5.25 4.54 3.29				
Refined acute dietary exposure analysis, 95 th percentile Estimated acute drinking water concentration = 323 μ g/L ARfD = 1.25 mg/kg bw	POPULATION All infants < 1 year Children 1–2 years Children 3 to 5 years Children 6–12 years Youth 13–19 years	ESTIMAT % of ACUTE REFER Food Alone 2.37 3.76 3.29 2.37 1.64	ED RISK ENCE DOSE (ARfD) Food and Water 6.04 5.25 4.54 3.29 2.38				
Refined acute dietary exposure analysis, 95 th percentile Estimated acute drinking water concentration = $323 \ \mu g/L$ ARfD = 1.25 mg/kg bw	POPULATION All infants < 1 year Children 1–2 years Children 3 to 5 years Children 6–12 years Youth 13–19 years Adults 20–49 years	ESTIMAT % of ACUTE REFER 500d Alone 2.37 3.76 3.29 2.37 1.64 1.65	ED RISK ENCE DOSE (ARfD) Food and Water 6.04 5.25 4.54 3.29 2.38 2.54				
Refined acute dietary exposure analysis, 95 th percentile Estimated acute drinking water concentration = $323 \ \mu g/L$ ARfD = 1.25 mg/kg bw	POPULATION All infants < 1 year Children 1–2 years Children 3 to 5 years Children 6–12 years Youth 13–19 years Adults 20–49 years Adults 50+ years	ESTIMAT % of ACUTE REFER 2.37 3.76 3.29 2.37 1.64 1.65 1.92	ED RISK ENCE DOSE (ARfD) Food and Water 6.04 5.25 4.54 3.29 2.38 2.54 2.66				

Г

Table 11Physical/Chemical Properties, Fate and Behaviour of Penthiopyrad in the
Terrestrial Environment

Study	Results	Comments	Reference			
Physical / Chemical Properties						
Vapour pressure (20°C)	2.96 × 10 ⁻⁶ Pa	Non-volatile	1839216			
Henry's law constant (20°C)	7.74 x 10 ⁻⁴ Pa m ³ /mol* 7.64 x 10 ⁻⁹ atm m ³ /mol* $1/H = 3.15 x 10^{6*}$	Not expected to be volatile from moist soil and water.	NA			

Study	Results	Comments	Reference
Ultraviolet (UV) / visible spectrum	At 20°C: acidic solution (pH 0.8): $\lambda_{max} = 226 \text{ nm}, \epsilon = 14460 \text{ L.mol}^{-1} \text{ cm}^{-1}$ neutral solution (pH 7.4): $\lambda_{max} = 226 \text{ nm}, \epsilon = 14492 \text{ L.mol}^{-1} \text{ cm}^{-1}$ basic solution (pH 13.1): apparent $\lambda_{max} = 227 \text{ nm}$ but artefact caused by the absorption of solvent, ϵ : n.a.	Not expected to phototransform under environmental conditions.	1839225
Solubility in water (20°C)	pH 4: 2.54 mg/L pH 7: 1.38 mg/L pH 10: 1.66 mg/L	Low solubility in water; solubility not pH dependent.	1839228
n-Octanol/water partition coefficient (log K _{ow})	pH 4: $\log K_{ow} = 4.36$ pH 7: $\log K_{ow} = 4.62$ pH 10: $\log K_{ow} = 4.54$	Potential for bioaccumulation under acid, neutral and alkaline pH conditions.	1839234
Dissociation constant (pK _a) (20°C)	10.0	Does not dissociate at environmentally relevant pH.	1839239
	Abiotic Transform	nation	
Hydrolysis	Stable at pH 4, pH 7, pH 9 at 50°C	Hydrolysis is not a route of transformation.	1839236; 1839235
Phototransformation on soil	Half-life = 6.8 days* Major transformation products: PAM at maximum of 26.7% (day 10); PCA at maximum of 22.7% (day 7)	Phototransformation on soil is a route of transformation.	1839456
	Soil Biotransform	ation	
Aerobic soil (20°C) sandy clay loam – NY, USA (Oakville)	$DT_{50} = 164 \text{ days}; DT_{90} = 546 \text{ days}$ (SFO)*	Moderately persistent	1839449; 1839450
Aerobic soil (20°C) silt loam – France (Senozan)	DT ₅₀ = 80.6 days; DT ₉₀ = 268 days (SFO)* Major transformation product: DM-PCA at maximum of 17% (day 120)	Moderately persistent	
Aerobic soil (20°C) loam – Switzerland (Gartenacker) Aerobic soil (20°C) sandy clay loam – UK	$DT_{50} = 60.4 \text{ days; } DT_{90} = 201 \text{ days}$ (SFO)* Major transformation product: DM-PCA at maximum of 28% (day 161). $DT_{50} = 406 \text{ days; } DT_{90} = 1350 \text{ days}$ (SFO)*	Moderately persistent Persistent	
(2,000,000,00)			

Study	Results	Comments	Reference
Aerobic soil (20°C)	$DT_{50} = 239 \text{ days}; DT_{90} = 795 \text{ days}$	Moderately persistent	1839448
sandy loam – Georgia, US (Waddesdon 2)	(IORE $DT_{90} \ge 0.301$)		
Anaerobic soil (20°C)	$DT_{50} = 8660 \text{ days (SFO)}*$	Persistent	1839454
sandy loam – Georgia, US (Waddesdon 2)			
	Field Dissipati	on	
Terrestrial Field Dissipation Ontario – bareground,	$DT_{50} = 6.5$ days; $DT_{90} = 24.3$ days (DFOP)*	Non-persistent in soil under field conditions.	1840864
loam soil		transformed in the upper 15 cm of soil.	
		The major transformation product, DM-PCA, has the potential to leach to lower soil depths.	
Terrestrial Field Dissipation Saskatchewan –	$DT_{50} = 12.2 \text{ days}; DT_{90} = 233 \text{ days}$ (DFOP)*	Slightly persistent in soil under field conditions.	1840865
bareground, clay loam/silty clay loam/silty clay soil		Penthiopyrad was readily transformed in the upper 15 cm of soil.	
		DM-PCA, a major transformation product, has the potential to leach to lower soil depths.	
Terrestrial Field Dissipation Washington, US –	$DT_{50} = 6.1 \text{ days}; DT_{90} = 91.5 \text{ days}$ (DFOP)*	Non-persistent in soil under field conditions.	1840860
Washington, US – bareground, sandy loam/loamy sand/sand soil		Penthiopyrad was readily transformed in the upper 5 cm of soil and was not detected at lower soil depths. The major transformation product, DM- PCA, was not detected at lower soil depths.	
Terrestrial Field Dissipation	$DT_{50} = 29.5 \text{ days}; DT_{90} = 173 \text{ days}$ (DFOP)*	Slightly persistent in soil under field conditions.	1840868
loamy sand / sandy loam soil		Penthiopyrad transformed in the thatch and soil layers and was not detected at lower soil depths. The major transformation product, DM-PCA, has the potential to leach to lower soil depths.	

Study	Results			Comments	Reference
			Soil Mobi	lity	
Adsorption/Desorptio n	Soil texture	K _d *	K _{oc} * (mL/g)		1839460
	sandy clay loam (NY, US - Oakville)	11.71	908	Low mobility	
	silt loam (France - Senozan)	10.16	996	Low mobility	
	loam (Switzerland - Gartenacker)	16.30	965	Low mobility	
	sandy clay loam (UK - Bruisyard)	16.15	841	Low mobility	
	silty clay (France - Hesingue)	16.83	616	Low mobility	

*PMRA-calculated values.

Table 12Fate and Behaviour of the Transformation Products of Penthiopyrad in the
Terrestrial Environment

Study / Property	Result			Comment	Reference			
Soil Biotransformation								
	DN							
Aerobic soil (20°C) silt loam – France	$DT_{50} = 102 \text{ days}; 1000 \text{ (SFO)}$	$DT_{90} = 332$	8 days	Moderately persistent	1839458			
Aerobic soil (20°C) sand – Germany	$DT_{50} = 91.2 \text{ days}; DT_{90} = 303 \text{ days}$ (SFO)*			Moderately persistent				
Aerobic soil (20°C) silt loam – France	DT ₅₀ = 32.6 days; (SFO)*	$DT_{50} = 32.6$ days; $DT_{90} = 108$ days (SFO)*						
Aerobic soil (20°C) Sandy loam – Switzerland	$DT_{50} = 155 \text{ days};$ (SFO)*	$DT_{90} = 513$	5 days	Moderately persistent				
		Soil Mobi	ility					
		DM-PC	A					
Adsorption/Desorption	Soil texture	K _d *	K _{oc} * (mL/g)					
	silt loam (France - Attenschwiller)	0.046	4	Very high mobility	1839458			
	Sand (Germany - Stolpe)	0.066	11	Very high mobility				
	silt loam (<i>France - Fislis</i>)	0.139	5	Very high mobility				

Study / Property		Re	sult		Comment	Reference
	sandy loam (Switzerland - Gartenacker)		0.058	4	Very high mobility	
			PCA			
Estimation using HPLC	$K_{oc} (mL/g) = 0$ 2.0)	$K_{oc} (mL/g) = 0.0002 (pH 6.8); 3.5 (pH 2.0)$			Very high mobility	1839468
			PAM	[
Adsorption/Desorption	Soil texture	K _d *	* K (1	C _{oc} * mL∕g)		1839463
	sandy clay loam	0.3	3 6	.0	Very high mobility	
	sandy clay	0.3	9 8	.0	Very high mobility	
	sandy loam	0.0	5 5	.0	Very high mobility	
	clay loam	0.3	3 1	1.0	Very high mobility	

*PMRA-calculated values

Table 13Fate and Behaviour of Penthiopyrad in the Aquatic Environment

Study	Results				Comments	Reference
			Abiotic	Transfor	mation	
Hydrolysis	Stable at pH	4, pH 7, j	pH 9 at 5	0°C	Hydrolysis is not a route of transformation	1839236; 1839235
Phototransformation in water	Stable				Phototransformation in water is not a route of transformation	1839237
		A	Aquatic F	Biotransfo	ormation	
Aerobic water/sediment	System (total)	Fit	DT ₅₀ (day)	DT ₉₀ (day)	Persistent Penthiopyrad partitions into	1839470
	River (20°C)	SFO	223*	742*	sediment and once in sediment, its dissipation is slow.	
	Pond (20°C)	DFOP	384*	1230*	PCA is a major transformation	
					product in aerobic aquatic systems.	
Anaerobic water/sediment	After 100 day radioactivity parent. $DT_{50} = 35$ da penthiopyrad	ys, almos was pres ys for dis from wa	et all of th ent as un ssipation tter to sed	e applied changed of ¹⁴ C- liment.	Persistent Penthiopyrad partitions into sediment and remains largely unchanged in the total system.	1839471
Bioconcentration	BCFs = 79-80 (non-edible ti (whole fish ti	6 (edible issues); a ssues)	tissues); and 155- 1	226-236 158	Low bioconcentration	1839578

Organism	Test substance	Exposure	Endpoint	Value	Uncertainty factor applied
Earthworm	Penthiopyrad	Acute	14-day LC ₅₀	>1000 mg a.i./kg soil	0.5
(Eisenia fetida)	Penthiopyrad	Reproduction	NOEC	48 mg a.i./kg soil	1.0
	Fontelis	Acute	14-day LC ₅₀	>200 mg a.i./kg soil	0.5
	Fontelis	Chronic	56-day NOEC	50 mg a.i./kg soil	1.0
	Treoris	Acute	14-day LC ₅₀	>91.7 mg a.i./kg soil	0.5
	Treoris	Chronic	28-day NOEC	18.3 mg a.i./kg soil	1.0
Bee (Apis mellifera)	Penthiopyrad	Acute oral	48-hr LC ₅₀	>500 μg a.i./bee (560 kg a.i./ha)	1.0
	Penthiopyrad	Acute contact	48-hr LD ₅₀	>500 μg a.i./bee (560 kg a.i./ha)	1.0
	Fontelis	Acute oral	48-hr LC ₅₀	>107.2 µg a.i./bee (>120.1 kg a.i./ha)	1.0
	Fontelis	Acute contact	48-hr LD ₅₀	>100.0 µg a.i./bee (>112 kg a.i./ha)	1.0
	Vertisan	Acute oral	48-hr LC ₅₀	50.7 μg a.i./bee (56.8 kg a.i./ha)	1.0
	Vertisan	Acute contact	48-hr LD ₅₀	23.5 μg a.i./bee (26.7 kg a.i./ha)	1.0
	Treoris	Acute oral	48-hr LC ₅₀	>10.9 µg a.i./bee (>12.2 kg a.i./ha)	1.0
	Treoris	Acute contact	48-hr LD ₅₀	>8.9 μg a.i./bee (>9.9 kg a.i./ha)	1.0
Predatory mite (<i>Typhlodromus pyri</i>)	Vertisan	Extended (bean leaves)	14-day LR ₅₀	102.6 g a.i./ha	1.0
	Fontelis	Glass plates	7-day LR ₅₀	124 g a.i./ha	1.0
	Fontelis	Glass plates	14-day ER ₅₀ (reprod)	7.2 g a.i./ha	1.0
	Treoris	Extended	7-day LR ₅₀	>470 g a.i./ha	1.0
		(bean leaves)	14-day ER ₅₀	8.7 g a.i./ha	1.0
Predatory mite (<i>Typhlodromus pyri</i>)	Fontelis	Field study	mortality	19.4%	1.0
Predatory mite (Kampimodromus aberrans)	Fontelis	Field study	mortality	11.8%	1.0
Bobwhite quail	Penthiopyrad	Acute	LD ₅₀	>2250 mg a.i./kg bw	0.10
	Penthiopyrad	Subacute	LD ₅₀	>1913 mg a.i./kg bw/day	0.10
	Fontelis	Acute	LD ₅₀	>2066 mg a.i./kg bw	0.10
Mallard duck	Penthiopyrad	Reproduction	20-week NOEL	718.7 mg a.i./kg bw/day	1.0
Mammals (rat)	Penthiopyrad	Acute	LD ₅₀	>2000 mg a.i./kg bw	0.10
	Penthiopyrad	Reproduction	NOEL	250 mg a.i./kg bw/day	1.0

Table 14	Endpoints Considered in the Risk Assessment
----------	--

Organism	Test substance	Exposure	Endpoint	Value	Uncertainty factor applied
Terrestrial vascular plants	Fontelis	Seedling emergence	21-day EC ₂₅	>1.56 kg a.i./ha	1.0
(all 10 crop species)		Vegetative vigour	21-day EC ₂₅	>1.56 kg a.i./ha	1.0
Freshwater	Penthiopyrad	Acute	48-hr EC ₅₀	2531 μg a.i./L	0.5
invertebrates	Penthiopyrad	Chronic	21-day NOEC	471 μg a.i./L	1.0
(Daphnia magna)	Fontelis	Acute	48-hr EC ₅₀	59.6 μg a.i./L	0.5
	Fontelis	Chronic	21-day NOEC	10.6 μg a.i./L	1
	Vertisan	Acute	48-hr EC ₅₀	1215 μg a.i./L	0.5
	Treoris	Acute	48-hr EC ₅₀	18.5 μg a.i./L	0.5
Freshwater fish	Penthiopyrad	Acute	96-hr LC ₅₀	290 μg a.i./L	0.10
	Penthiopyrad	ELS	33-day NOEC	100 μg a.i./L	1.0
	Fontelis	Acute	96-hr LC ₅₀	356 μg a.i./L	0.10
	Vertisan	Acute	96-hr LC ₅₀	309 μg a.i./L	0.10
	Treoris	Acute	96-hr LC ₅₀	14.0 μg a.i./L	0.10
Amphibians	Penthiopyrad	Acute	96-hr LC ₅₀	290 μg a.i./L	0.10
(surrogate fish acute)	Fontelis	Acute	96-hr LC ₅₀	356 μg a.i./L	0.10
	Vertisan	Acute	96-hr LC ₅₀	309 μg a.i./L	0.10
	Treoris	Acute	96-hr LC ₅₀	14.0 μg a.i./L	0.10
Aquatic vascular plants	Penthiopyrad	Acute	7-day EC ₅₀	>1205 µg a.i./L	0.5
Algae	Penthiopyrad	Acute	96-hr EC ₅₀	1533 μg a.i./L	0.5
	Fontelis	Acute	72-hr EC ₅₀	1400 μg a.i./L	0.5
	Treoris	Acute	72-hr EC ₅₀	51 μg a.i./L	0.5
Marine invertebrates	Penthiopyrad	Acute	96-hr EC ₅₀	1200 μg a.i./L	0.5
Marine fish	Penthiopyrad	Acute	96-hr LC ₅₀	1381 µg a.i./L	0.10
	Fontelis	Acute	96-hr LC ₅₀	2634 μg a.i./L	0.10
Marine algae	Penthiopyrad	Acute	96-hr EC ₅₀	1200 μg a.i./L	0.5

Table 15Risk to Terrestrial Organisms Other Than Birds and Mammals

Organism	Test substance	Exposure	Endpoint value	EEC	RQ	Risk
Earthworm	Penthiopyrad	Acute	>500 mg a.i./kg soil	1.4 mg a.i./kg soil	<1	Negligible
	Penthiopyrad	Reproduction	48 mg a.i./kg soil	1.4 mg a.i./kg soil	<1	Negligible
	Fontelis	Acute	>100 mg a.i./kg soil	1.4 mg a.i./kg soil	<1	Negligible
	Fontelis	Chronic	50 mg a.i./kg soil	1.4 mg a.i./kg soil	<1	Negligible
	Treoris	Acute	46 mg a.i./kg soil	1.4 mg a.i./kg soil	<1	Negligible
	Treoris	Chronic	18.3 mg a.i./kg soil	1.4 mg a.i./kg soil	<1	Negligible

Organism	Test substance	Exposure	Endpoint value	EEC	RQ	Risk
Bee	Penthiopyrad	Acute oral	>560 kg a.i./ha	450 g a.i./ha	<1	Negligible
	Penthiopyrad	Acute contact	>560 kg a.i./ha	450 g a.i./ha	<1	Negligible
	Fontelis	Acute oral	>120.1 kg a.i./ha	450 g a.i./ha	<1	Negligible
	Fontelis	Acute contact	>112 kg a.i./ha	450 g a.i./ha	<1	Negligible
	Vertisan	Acute oral	56.8 kg a.i./ha	450 g a.i./ha	<1	Negligible
	Vertisan	Acute contact	26.7 kg a.i./ha	450 g a.i./ha	<1	Negligible
	Treoris	Acute oral	>12.2 kg a.i./ha	450 g a.i./ha	<1	Negligible
	Treoris	Acute contact	>9.9 kg a.i./ha	450 g a.i./ha	<1	Negligible
Predatory arthropod	Vertisan	Acute	102.6 g a.i./ha (mortality)	In field: 565 g a.i./ha (field crops)	5.5	LOC exceeded
				485 g a.i./ha (orchards)	4.7	LOC exceeded
				Off-field (ground appl): 62 g a.i./ha (field crops)	<1	Negligible
				359 g a.i./ha (orchards)	3.5	
				147 g a.i./ha (field crops)	1.4	LOC exceeded
	Fontelis	Acute	124 g a.i./ha	In field:		
			(mortality)	565 g a.i./ha (field crops)	4.6	LOC exceeded
				485 g a.i./ha (orchards)	3.9	LOC exceeded
				Off-field (ground appl):	<1	Negligible
				o2 g a.i./na (field crops) 359 g a.i./ha (orchards)	2.9	LOC exceeded
				Off-field (aerial appl): 147 g a.i./ha (field crops)	1.2	LOC exceeded

Organism	Test substance	Exposure	Endpoint value	EEC	RQ	Risk
	Fontelis	Chronic	7.2 g a.i./ha	In field:		
			(reprod)	565 g a.i./ha (field crops)	78	LOC exceeded
				485 g a.i./ha (orchards)	67	LOC exceeded
				Off-field (ground appl):	8.6	LOC exceeded
				62 g a.i./ha (field crops)	50.0	LOC exceeded
				(orchards)		
				Off-field (aerial appl):	20.4	LOC exceeded
				(field crops)		
	Fontelis	Field study	19.4% reduction in population	448 g a.i./ha (3 applications at 225 g a.i./ha with 7 day application interval)		Risk not a concern as <50% effect at 448 g a.i./ha
	Fontelis	Field study	11.8% reduction in population	720 g a.i./ha		Risk not a concern as <50% effect at 720 g a.i./ha
	Treoris	Contact	>470 g a.i./ha (mortality)	In field:		
			(morunity)	565 g a.i./ha (field crops)	<1.2	LOC exceeded
				Off-field (ground appl):	<1	Negligible
				62 g a.i./ha (field crops)		
				Off-field (aerial appl):	<1	Negligible
				(field crops)		
			8.7 g a.i./ha (reprod)	In field: 565 g a.i./ha	65	LOC exceeded
				(field crops)		

Appendix I

Organism	Test substance	Exposure	Endpoint value	EEC	RQ	Risk
				Off-field (ground appl): 62 g a.i./ha (field crops)	7.1	LOC exceeded
				Off-field (aerial appl): 147 g a.i./ha (field crops)	16.9	LOC exceeded
Vascular plants	Fontelis	Seedling emergence	>1.56 kg a.i./ha	In field: 3.1 kg a.i./ha (turf)	2.0	LOC exceeded
				1.0 kg a.i./ha (field crops)	<1	Negligible
				0.87 kg a.i./ha (orchards)	<1	Negligible
				Off-field:		
				344 g a.i./ha (turf)	<1	Negligible
		Vegetative vigour	>1.56 kg a.i./ha	1.1 kg a.i./ha (turf)	<1	Negligible
				0.57 kg a.i./ha (field crops)	<1	Negligible
				0.49 kg a.i./ha (orchards)	<1	Negligible

Table 16Screening Level Risk to Birds and Mammals: Field Crops

	Toxicity (mg a.i./kg bw/day)	Feeding Guild (food item)	EDE (mg a.i./kg bw)	RQ			
Small Bird (0.02 kg)							
Acute	206.60	Insectivore (small insects)	28.47	0.14			
Reproduction	718.70	Insectivore (small insects)	28.47	0.04			
Medium Sized Bird (0.1 kg)							
Acute	206.60	Insectivore (small insects)	22.22	0.11			
Reproduction	718.70	Insectivore (small insects)	22.22	0.03			

	Toxicity (mg a.i./kg bw/day)	Feeding Guild (food item)	EDE (mg a.i./kg bw)	RQ
Large Sized Bird (1 k	kg)			
Acute	206.60	Herbivore (short grass)	23.18	0.11
Reproduction	718.70	Herbivore (short grass)	23.18	0.03
Small Mammal (0.01	5 kg)	•	-	
Acute	200.00	Insectivore (small insects)	16.37	0.08
Reproduction	250.00	Insectivore (small insects)w	16.37	0.07
Medium Sized Mamr	nal (0.035 kg)	•	<u>.</u>	•
Acute	200.00	Herbivore (short grass)	51.30	0.26
	200.00	Herbivore (leafy foliage)	96.69	0.48
Reproduction	250.00	Herbivore (short grass)	51.30	0.21
	250.00	Herbivore (leafy foliage)	96.69	0.39
Large Sized Mamma	l (1 kg)	•	<u>.</u>	•
Acute	200.00	Herbivore (short grass)	27.41	0.14
	200.00	Herbivore (leafy foliage)	51.66	0.26
Reproduction	250.00	Herbivore (short grass)	27.41	0.11
	250.00	Herbivore (leafy foliage)	51.66	0.21

Table 17Screening Level Risk to Birds and Mammals: Orchards.

	Toxicity (mg a.i./kg bw/d)	Feeding Guild (food item)	EDE (mg a.i./kg bw)	RQ
Small Bird (0.02	_	-	-	-
kg)				
Acute	206.60	Insectivore (small insects)	24.44	0.12
Reproduction	718.70	Insectivore (small insects)	24.44	0.03
Medium Sized Bird	(0.1 kg)		-	-
Acute	206.60	Insectivore (small insects)	19.07	0.09
Reproduction	718.70	Insectivore (small insects)	19.07	0.03
Large Sized Bird (1	kg)		-	-
Acute	206.60	Herbivore (short grass)	19.90	0.10
Reproduction	718.70	Herbivore (short grass)	19.90	0.03
Small Mammal (0.02	15 kg)			
Acute	200.00	Insectivore (small insects)	14.06	0.07
Reproduction	250.00	Insectivore (small insects)	14.06	0.06

	Toxicity (mg a.i./kg bw/d)	Feeding Guild (food item)	EDE (mg a.i./kg bw)	RQ
Medium Sized Mam	mal (0.035 kg)	-	-	-
Acute	200.00	Herbivore (short grass)	44.04	0.22
	200.00	Herbivore (leafy foliage)	83.00	0.41
Reproduction	250.00	Herbivore (short grass)	44.04	0.18
	250.00	Herbivore (leafy foliage)	83.00	0.33
Large Sized Mamma	al (1 kg)			
Acute	200.00	Herbivore (short grass)	23.53	0.12
	200.00	Herbivore (leafy foliage)	44.35	0.22
Reproduction	250.00	Herbivore (short grass)	23.53	0.09
	250.00	Herbivore (leafy foliage)	44.35	0.18

Table 18Screening Level Risk to Birds and Mammals: Turf

	Toxicity (mg a.i./kg bw/d)	Foxicity ng a.i./kg Feeding Guild (food item) bw/d)		RQ
Small Bird (0.02 kg)		-	_	_
Acute	206.60	Insectivore (small insects)	57.54	0.28
Reproduction	718.70	Insectivore (small insects)	57.54	0.08
Medium Sized Bird	(0.1 kg)	L	•	L
Acute	206.60	Insectivore (small insects)	44.91	0.22
Reproduction	718.70	Insectivore (small insects)	44.91	0.06
Large Sized Bird (1	kg)		•	<u>.</u>
Acute	206.60	Herbivore (short grass)	46.86	0.23
Reproduction	718.70	Herbivore (short grass)	46.86	0.07
Small Mammal (0.0	15 kg)	• •		-
Acute	200.00	Insectivore (small insects)	33.10	0.17
Reproduction	250.00	Insectivore (small insects)	33.10	0.13
Medium Sized Mam	mal (0.035 kg)		•	
Acute	200.00	Herbivore (short grass)	103.69	0.52
	200.00	Herbivore (leafy foliage)	195.43	0.98
Reproduction	250.00	Herbivore (short grass)	103.69	0.41
	250.00	Herbivore (leafy foliage)	195.43	0.78
Large Sized Mamma	al (1 kg)	-	-	-
Acute	200.00	Herbivore (short grass)	55.41	0.28
	200.00	Herbivore (leafy foliage)	104.42	0.52
Reproduction	250.00	Herbivore (short grass)	55.41	0.22
	250.00	Herbivore (leafy foliage)	104.42	0.42

Organism	Test	Exposure	Endpoint value $(ug a i/I)$	EEC in water	RQ	Risk
	substance	<u> </u>	rochwatar spacios	(µg a.i./L)		
Invortabrata	Penthionyrad	L cute	1265 5	400 (turf)	<1	Negligible
s	rentinopyrad	Acute	1205.5	129 (field	<1	Negligible
				crops)		
				110 (orchards)	<1	Negligible
	Penthiopyrad	Chronic	471	400 (turf)	<1	Negligible
				129 (field	<1	Negligible
				crops)		
				110 (orchards)	<1	Negligible
	Fontelis	Acute	29.8	400 (turf)	13.4	LOC exceeded
				129 (field	4.3	LOC
				crops)		exceeded
				110 (orchards)	3.7	LOC
				· · · · ·		exceeded
	Fontelis	Chronic	10.6	400 (turf)	37.7	LOC
				× ,		exceeded
				129 (field	12.2	LOC
				crops)		exceeded
				110 (orchards)	10.4	LOC
				· · · · ·		exceeded
	Vertisan	Acute	607.5	400 (turf)	<1	Negligible
				129 (field	<1	Negligible
				crops)		
				110 (orchards)	<1	Negligible
	Treoris	Acute	9.3	129	13.9	LOC
				(field crops)		exceeded
Fish	Penthiopyrad	Acute	29.0	400 (turf)	13.8	LOC exceeded
				129 (field	44	
				crops)		exceeded
				110 (orchards)	38	LOC
						exceeded
	Penthiopyrad	ELS	100	400 (turf)	4.0	LOC
	15			× ,		exceeded
				129 (field	1.3	LOC
				crops)		exceeded
				110 (orchards)	1.1	LOC
						exceeded
	Fontelis	Acute	35.6	400 (turf)	11.2	LOC
						exceeded
				129 (field	3.6	LOC
				crops)		exceeded
				110 (orchards)	3.1	LOC
						exceeded
	Vertisan	Acute	30.9	400 (turf)	12.9	LOC
				100 (7 15		exceeded
				129 (field	4.2	LOC
				crops)	2.6	exceeded
				110 (orchards)	3.6	
						exceeded

Table 19 Screening Level Kisk to Aquatic Organishis	Table 19	Screening Level Risk to Aquatic Organisms
---	----------	---

Organism	Test	Exposure	Endpoint value	EEC in water	RQ	Risk
	Substance	A	$(\mu g a.i./L)$	$(\mu g a.i./L)$	02.1	LOC
	Treoris	Acute	1.4	crops)	92.1	exceeded
Amphibians	Penthiopyrad	Acute	29.0	2131 (turf)	73.5	LOC exceeded
				686 (field	23.7	LOC
				crops)		exceeded
				588 (orchards)	20.3	LOC
						exceeded
	Fontelis	Acute	35.6	2131 (turf)	59.9	LOC
						exceeded
				686 (field	19.3	LOC
				crops)		exceeded
				588 (orchards)	16.5	LOC
					60.0	exceeded
	Vertisan	Acute	30.9	2131 (turf)	69.0	LOC
				(0) (6-14	22.2	exceeded
				oso (field	22.2	LUC
				588 (orchards)	10.0	LOC
				500 (orenards)	19.0	exceeded
	Treoris	Acute	14	686 (field	490.0	LOC
	1100115	Tieute	1.1	crops)	190.0	exceeded
Freshwater alga	Penthiopyrad	Acute	766.5	400 (turf)	<1	Negligible risk
0				129 (field	<1	Negligible
				crops)		risk
				110 (orchards)	<1	Negligible risk
	Fontelis	Acute	700	400 (turf)	<1	Negligible risk
				129 (field	<1	Negligible
				crops)		risk
				110 (orchards)	<1	Negligible risk
	Treoris	Acute	25.5	129 (field	5.1	LOC
				crops)		exceeded
Vascular plants	Penthiopyrad	Acute	603	400 (turf)	<1	Negligible risk
				129 (field	<1	Negligible
				crops)		risk
				110 (orchards)	<]	Negligible risk
	1	I	Marine species	1	I	
Invertebrate s	Penthiopyrad	Acute	600	400 (turf)	<1	Negligible risk
				129 (field	<1	Negligible
				crops)		risk
				110 (orchards)	<1	Negligible risk

Organism	Test substance	Exposure	Endpoint value (µg a.i./L)	EEC in water (µg a.i./L)	RQ	Risk
Fish	Penthiopyrad	Acute	138.1	400 (turf)	2.9	LOC exceeded
				129 (field crops)	<1	Negligible risk
				110 (orchards)	<1	Negligible risk
	Fontelis	Acute	263.4	400 (turf)	1.5	LOC exceeded
				129 (field crops)	<1	Negligible risk
				110 (orchards)	<1	Negligible risk
Marine alga	Penthiopyrad	Acute	600	400 (turf)	<1	Negligible risk
				129 (field crops)	<1	Negligible risk
				110 (orchards)	<1	Negligible risk

Table 20Refined Risk to Aquatic Organisms

Organism	Test substance	Exposure	Endpoint value	EEC in water (μg a.i./L)		RQ		Risk
			(µg a.i./L)	Runoff	Drift	Runoff	Drift	
Freshwater species								
Invertebrates	Fontelis	Acute	29.8	45 (turf)	44 (turf)	1.5	1.5	Runoff - LOC exceeded Drift – LOC exceeded
				101 (field crops)	14 (field crops - ground)	3.4	<1	Runoff - LOC exceeded Drift – Negligible
					34 (field crops –aerial)		1.1	Drift – LOC exceeded
				21 (orchards)	81 (orchards)	<1	2.7	Runoff - Negligible Drift – LOC exceeded
	Fontelis	Chronic	10.6	41 (turf)	44 (turf)	3.9	4.2	Runoff - LOC exceeded Drift – LOC exceeded
				95 (field crops)	14 (field crops - ground)	9.0	1.3 3.2	Runoff - LOC exceeded Drift – LOC exceeded
					crops –aerial)			exceeded
				20 (orchards)	81 (orchards)	1.9	7.6	Runoff - LOC exceeded Drift –
Organism	Test substance	Exposure	Endpoint value	EEC (µg	in water a.i./L)	RÇ	2	Risk
----------	-------------------	----------	-------------------	-------------------------	--	--------	------------	--
			(µg a.i./L)	Runoff	Drift	Runoff	Drift	
	Treoris	Acute	9.3	101 (field crops)	14 (field crops - ground) 34 (field crops –aerial)	10.9	1.5 3.7	LOC exceeded Runoff - LOC exceeded Drift - LOC exceeded Drift - LOC exceeded
Fish	Penthiopy rad	Acute	29.0	45 (turf)	44 (turf)	1.6	1.5	Runoff - LOC exceeded Drift – LOC exceeded
				101 (field crops)	14 (field crops - ground) 34 (field crops –aerial)	3.5	<1 1.2	Runoff - LOC exceeded Drift – Negligible Drift – LOC exceeded
				21 (orchards)	81 (orchards)	<1	2.8	Runoff - Negligible Drift – LOC exceeded
	Penthiopy rad	ELS	100	41 (turf)	44 (turf)	<1	<1	Runoff - Negligible Drift – Negligible
				95 (field crops)	14 (field crops - ground) 34 (field crops –aerial)	<1	<1 <1	Runoff - Negligible Drift – Negligible Drift – Negligible
				20 (orchards)	81 (orchards)	<1	<1	Runoff - Negligible Drift – Negligible
	Fontelis	Acute	35.6	45 (turf)	44 (turf)	1.3	1.2	Runoff - LOC exceeded Drift – LOC exceeded
				101 (field crops)	14 (field crops - ground)	2.8	<1	Runoff – LOC exceeded Drift – Negligible
					34 (field crops –aerial)			Drift – Negligible
				21 (orchards)	81 (orchards)	<1	2.3	Runoff – Negligible Drift – LOC exceeded
	Vertisan	Acute	30.9	45 (turf)	44 (turf)	1.5	1.4	Runoff - LOC exceeded Drift – LOC exceeded

Organism	Test substance	Exposure	Endpoint value	EEC (µg	in water (a.i./L)	R	2	Risk
			(µg a.i./L)	Runoff	Drift	Runoff	Drift	
				101 (field crops)	14 (field crops - ground) 34 (field crops –aerial)	3.3	<1 1.1	Runoff - LOC exceeded Drift – Negligible Drift – LOC exceeded
				21 (orchards)	81 (orchards)	<1	2.6	Runoff - Negligible Drift – LOC exceeded
	Treoris	Acute	1.4	101 (field crops)	14 (field crops - ground) 34 (field crops –aerial)	72.1	10.0 24.3	Runoff - LOC exceeded Drift – LOC exceeded Drift – LOC exceeded
Amphibians	Penthiopy rad	Acute	29.0	134 (turf)	234 (turf)	4.6	8.1	Runoff - LOC exceeded Drift – LOC exceeded
				277 (field crops)	76 (field crops - ground) 178 (field crops –aerial)	9.6	2.6 6.1	Runoff - LOC exceeded Drift – LOC exceeded Drift – LOC exceeded
				66 (orchards)	435 (orchards)	2.3	15.0	Runoff - LOC exceeded Drift – LOC exceeded
	Fontelis	Acute	35.6	134 (turf)	234 (turf)	3.8	6.6	Drift – LOC exceeded Runoff - LOC exceeded
				277 (field crops)	76 (field crops - ground) 178 (field crops –aerial)	7.8	2.1 5.0	Runoff - LOC exceeded Drift – LOC exceeded Drift – LOC exceeded
				66 (orchards)	435 (orchards)	1.8	12.2	Runoff - LOC exceeded Drift – LOC exceeded

Organism	Test substance	Exposure	Endpoint value	EEC (µg	in water (a.i./L)	R	2	Risk
			(µg a.i./L)	Runoff	Drift	Runoff	Drift	
	Vertisan	Acute	30.9	134 (turf)	234 (turf)	4.3	7.6	Runoff - LOC exceeded Drift – LOC exceeded
				277 (field crops)	76 (field crops - ground) 178 (field crops –aerial)	9.0	2.5 5.8	Runoff - LOC exceeded Drift – LOC exceeded Drift – LOC exceeded
				66 (orchards)	435 (orchards)	2.1	14.1	Runoff - LOC exceeded Drift – LOC exceeded
	Treoris	Acute	1.4	277 (field crops)	76 (field crops - ground) 178 (field crops –aerial)	197.9	54.3 127. 1	Runoff - LOC exceeded Drift – LOC exceeded Drift – LOC exceeded
Freshwater algae	Treoris	Acute	25.5	101 (field crops)	14 (field crops - ground) 34 (field crops –aerial)	4.0	<1	Drift – Negligible Runoff - LOC exceeded Drift – LOC exceeded
Marine fish	Penthiopy rad	Acute	138.1	45 (turf)	44 (turf)	<1	<1	Runoff - Negligible Drift – Negligible
	Fontelis	Acute	263.4	45 (turf)	44 (turf)	<1	<1	Runoff - Negligible Drift – Negligible

Table 21 Refined Spray Drift Assessment for Treoris Fungicide

Organism	Exposure	Endpoint value (µg a.i./L)	EEC _{Drift} in water (µg a.i./L)	RQ	Risk
Freshwater invertebrates	Acute	9.3	7.7 (field crops – ground)	<1	Negligible
			29.7 (field crops – aerial)	3.2	LOC exceeded
Freshwater fish	Acute	1.4	7.7 (field crops – ground)	5.5	LOC exceeded
			29.7 (field crops – aerial)	21.2	LOC exceeded

Organism	Exposure	Endpoint value (µg a.i./L)	EEC _{Drift} in water (µg a.i./L)	RQ	Risk
Amphibians	Acute	1.4	41.2 (field crops – ground) 157.8 (field crops – aerial)	29.4 112.7	LOC exceeded
Freshwater algae	Acute	25.5	7.7 (field crops – ground)29.7 (field crops – aerial)	<1 1.2	Negligible LOC exceeded

Table 22Toxic Substances Management Policy Considerations-Comparison to TSMP
Track 1 Criteria

TSMP Track 1 Criteria	TSMP Track 1 Criterion value		Active Ingredient Endpoints	Transformation Products Endpoints
CEPA toxic or CEPA toxic equivalent ¹	Yes		Yes	
Predominantly anthropogenic ²	Yes		Yes	
Persistence ³ :	Soil	Half-life ≥ 182 days	Half-life = 272 days (80 th percentile)	
	Water	Half-life ≥ 182 days	Half-life = 384 days	
	Sediment	Half-life \geq 365 days	Not available	
	Air	Half-life ≥ 2 days or evidence of long range transport	Not required	
Bioaccumulation ⁴	$\text{Log } K_{ow} \ge 5$	·	4.4-4.6	
	$BCF \geq 5000$		79-236	
	$BAF \ge 5000$		Not available	
Is the chemical a TSMP Track 1 substance (all four criteria must be met)?			No, does not meet TSMP Track 1 criteria.	

All pesticides will be considered CEPA-toxic or CEPA-toxic equivalent for the purpose of initially assessing a pesticide against the TSMP criteria. Assessment of the CEPA toxicity criteria may be refined if required (i.e., all other TSMP criteria are met).

² The policy considers a substance "predominantly anthropogenic" if, based on expert judgement, its concentration in the environment medium is largely due to human activity, rather than to natural sources or releases.

³ If the pesticide and/or the transformation product(s) meet one persistence criterion identified for one media (soil, water, sediment or air) than the criterion for persistence is considered to be met.

⁴ Field data (for example, BAFs) are preferred over laboratory data (for example, BCFs) which, in turn, are preferred over chemical properties (for example, log K_{ow}).

Table 23Registered Alternative Products for the Crops and Pests Proposed for
Registration on the Fontelis Fungicide Label

Crop (group)	Pest(s)	Alternative Products	Alternative Chemical Classes
Pome Fruit	Powdery mildew, scab	Dikar, Dithane, Flint, Manzate Prostick, Nova 40W, Nustar, Polyram DF, Scala SC, Sovran	Dithiocarbamate (Group M3), strobilurin (Group 11), triazole/DMI (Group 3), anilinopyrimidine (Group 9)
Stone Fruit	Blossom blight, brown rot, powdery mildew	Bravo 500, Elevate 50 WDG, Indar 75 WSP, Lance WDG, Nova 40W, Pristine WG, Supra Captan 80 WDG	Chloronitrile (Group M5), hydroxyanilide (Group 17), triazole (Group 3), anilide (carboxamide) (Group 7), QoI (Group 11), phthalimide (Group M4)
Leafy vegetables	Botrytis grey mould, Sclerotinia white mould	Ferbam 76 WDG, Lance WDG, Botran 75W, Serenade Max,	Dithiocarbamate (Group M3), carboxamide (Group 7), chlorophenyl (Group 14), biological (Group 44)
Bulb vegetables	Botrytis grey mould, purple blotch	Bravo 500, Cabrio EG, Dithane, Lance WDG, Pristine WG, Rovral, Switch 62.5 WG, Zineb 80 W	Chloronitrile (Group M5), QoI (Group 11), dithiocarbamate (Group M3), carboxamide (Group 7), phenyl pyrroles (Group 12)
Cucurbit vegetables	Anthracnose, alternaria, gummy stem blight, powdery mildew, scab	Bravo 500, Cabrio EG, Dithane, Lance WDG, Supra Captan 80 WDG	Chloronitrile (Group M5), QoI (Group 11), dithiocarbamate (Group M3), carboxamide (Group 7), phthalimide (Group M4)
Small fruit & berries	Botrytis grey mould, anthracnose, septoria leaf spot, rusts	Elevate 50 WDG, Lance WDG, Pristine WG, Scala SC, Switch 62.5 WG	Hydroxyanilide (Group 17), anilide carboxamide (Group 7), QoI (Group 11), anilinopryimidine (Group 9), phenyl pyrroles (Group 12)
Fruiting vegetables	Early blight, Septoria leaf spot, anthracnose, botrytis grey mould	Bravo 500, Cabrio EG, Dithane, Manzate Prostick, Polyram DF, Lance WDG, Tanos 50 DF, Quadris	Chloronitrile (Group M5), QoI (Group 11), carboxamide (Group 7), anilide carboxamide (Group 7)
Tree nuts	Powdery Mildew, Monilinia spp., Botrytis, Alternaria spp.	No products registered for these diseases on tree nuts.	n/a
Peanuts	Late leaf spot, rust, stem rot, web blotch	Serenade Max (leaf spot only)	Bacteria (Group 44)

*Some alternatives may not be registered on all pests and all members of the crop group.

Table 24Registered Alternative Products for the Crops and Pests Proposed for
Registration on the Vertisan Fungicide Label

Crop (group)	Pest(s)	Alternative active ingredients
Canola	Sclerotinia stem rot	Boscalid (Group 7), Prothioconazole (Group 3), Azoxystrobin (Group 11), Vinclozin , Iprodione
Dry legumes crop group*	Ascochyta Blight	Prothioconazole, Pyraclostrobin, Chlorothalonil, Mancozeb, Boscalid, Azoxystrobin
	Botrytis	Vinclozolin (Group 2), Iprodione (Group 3)
	Powdery mildew	Pyraclostrobin (Group 11), Sulphur (Group M2)
	<i>Rhizoctonia</i> <i>solani</i> in- furrow	None
Tuberous and corm vegetables crop group*	Alternaria	Chlorothalonil (Group M5), Copper (Group M1), Copper hydroxide (Group M1),Mancozeb, Maneb (Group M3), Mancozeb+Zoxamide (Group M3+22), Pyraclostrobin (Group 11), Boscalid (Group 7), Boscalid+ pyraclostrobin (Group 7+11), Metiram (Group M3), Azoxystrobin (Group 11), Chlorothalonil + metalaxyl (Group M5+4), Metalaxyl+ Mancozeb (Group 4+M3)
	Botrytis	Chlorothalonil (Group M5), Metalaxyl+mancozeb (Group 4+M3)
	Rhizoctonia solani in- furrow	Azoxystrobin (Group 11)
	Powdery mildew	none

*Some alternatives may not be registered on all pests and all members of the crop group.

Table 25Registered Alternative Products for the Crops and Pests Proposed for
Registration on the Treoris Fungicide Label

Crop (group)	Pest(s)	Alternative Products	Active Ingredients
Potatoes	Early blight	Bravo 500, Copper spray, Kocide 2000, Dithane, Gavel 75 DF, Headline EC, Rainshield NT, Lance WDG, Pristine WG, Rovral, Tanos 50DF, Manzate Pro Stick, Quadris, Ridomil Gold, Polyram DF, Parasol	Chlorothalonil (Group M5), Copper (Group M1), Copper hydroxide (Group M1), Mancozeb (Group M3), Maneb (Group M3), Mancozeb + Zoxamide (Group M3+22), Pyraclostrobin (Group 11), Boscalid (Group 7), Boscalid+ pyraclostrobin (Group 11+7), Metiram (Group M3), Azoxystrobin (Group 11), Chlorothalonil + metalaxyl (Group M5+4), Metalaxyl+ Mancozeb (Group 4+M3),
Cucurbit vegetables	Powdery mildew	Bravo 500, Cabrio EG, Dithane, Lance WDG, Supra Captan 80 WDG	Chlorothalonil (Group M5), Mancozeb (Group M3), Boscalid (Group 7), Captan (Group M4)

Table 26Registered Alternative Products for the Crops and Pests Proposed for
Registration on the DPX-LEM17 50WG Fungicide Label

Crop (group)	Pest(s)	Alternative Products	Alternative Chemical Classes
Turf	Brown Patch, (<i>Rhizoctonia</i> solani)	Senator 70WP, Daconil Ultrex, Heritage MAXX, Banner Maxx, Compass 50WG, Proturf Granular fungicide, Premis 200F	Triazole (Group 3), Aromatic hydrocarbon (Group 14), strobilurin (Group 11), benzimidazole (Group 1)
Turf	Dollar Spot, (Sclerotinia homeocarpa)	Senator 70WP, Daconil Ultrex, Banner MAXX, Cadence 70 WDG, Proturf Granular Fungicide	Triazole (Group 3), Aromatic hydrocarbon (Group 14), Benzimidizole (Group 1), Dicarboximide (Group 2)

Table 27Use (label) Claims Proposed by Applicant for Fontelis Fungicide and
Whether Acceptable or Unsupported

Proposed use claim	Supported / Unsupported
Control of apple scab (<i>Venturia inaequalis</i>) on pome fruit at a rate of $1.0 - 1.5$ L/ha ($200 - 300$ g a.i./ha).	Supported as proposed.
Control of pear scab (<i>Venturia pirina</i>) on pome fruit at a rate of $1.0 - 1.5$ L/ha (200 - 300 g a.i./ha).	Supported as proposed.
Control of powdery mildew (<i>Podosphaera leucotricha</i>) on pome fruit at a rate of $1.0 - 1.5$ L/ha ($200 - 300$ g a.i./ha).	Supported as proposed.
Control of cedar apple rusts (<i>Gymnosporangium</i> spp.) on pome fruit at a rate of $1.0 - 1.5$ L/ha ($200 - 300$ g a.i./ha).	The claim of control is conditionally supported for cedar- apple rust (<i>Gymnosporangium juniperi-virginianae</i>) on pome fruit.
Control of brown rot, blossom blight and fruit rot (<i>Monilinia</i> spp.) on stone fruit at a rate of $1.0 - 1.75$ L/ha (200 - 350 g a.i./ha).	Supported as proposed.
Control of botrytis rots (<i>Botrytis cinerea</i>) on stone fruit at a rate of $1.25 - 1.75$ L/ha ($250 - 350$ g a.i./ha).	Supported as proposed.
Control of scab (<i>Cladosporium carpophilum</i> , <i>Venturia carpophila</i>) on stone fruit at a rate of $1.0 - 1.75$ L/ha (200 - 350 g a.i./ha).	Supported as control of scab at 1.0 – 1.5 L/ha (200 – 300 g a.i./ha) .
Control of powdery mildew (<i>Podosphaera clandestina</i> , Sphaerotheca pannosa) on stone fruit at a rate of $1.0 - 1.75$ L/ha (200 - 350 g a.i./ha).	The claim of control of powdery mildew (<i>Podosphaera clandestina</i>) is conditionally supported on stone fruit.
Suppression of cherry leafspot (<i>Blumeriella jaapii</i>) on stone fruit at a rate of $1.5 - 1.75$ L/ha ($300 - 350$ g a.i./ha).	The claim of suppression of cherry leafspot is conditionally supported on cherry at 1.5 L/ha .

Proposed use claim	Supported / Unsupported
Control of grey mould (<i>Botrytis cinerea</i>) on cucurbits, including greenhouse cucumbers, at a rate of $1.0 - 1.5$ L/ha (200 - 300 g a.i./ha).	Supported as proposed.
Control of control of powdery mildew (<i>Sphaerotheca fuliginea, Erysiphe cichoracearum</i>) on cucurbits, including greenhouse cucumbers, at a rate of $1.0 - 1.5$ L/ha (200 - 300 g a.i./ha).	Supported as control of powdery mildew (both pathogens) on cucurbits, including greenhouse cucumbers, at 1.25 L/ha (250 g a.i./ha).
Control of gummy stem blight (<i>Didymella bryoniae</i>) on cucurbits at a rate of $1.25 - 1.75$ L/ha ($250 - 350$ g a.i./ha).	Not supported.
Control of early blight (<i>Alternaria solani</i>) on fruiting vegetables at a rate of $1.25 - 1.75$ L/ha ($250 - 350$ g a.i./ha).	Supported as suppression at the proposed rates.
Control of grey mould (<i>Botrytis cinerea</i>) on fruiting vegetables at a rate of $1.25 - 1.75$ L/ha ($250 - 350$ g a.i./ha).	Supported as proposed.
Control of powdery mildew (<i>Leveillula taurica</i>) on fruiting vegetables at a rate of 1.25 – 1.75 L/ha (250 – 350 g a.i./ha).	Not supported.
Control of lettuce drop (<i>Sclerotinia minor</i>) on leafy vegetables at a rate of $1.25 - 1.75$ L/ha ($250 - 350$ g a.i./ha).	Supported as suppression at the proposed rates.
Control of grey mould (<i>Botrytis cinerea</i>) on leafy vegetables at a rate of $1.25 - 1.75$ L/ha ($250 - 350$ g a.i./ha).	Supported as proposed.
Control of soil-borne diseases caused by <i>Rhizoctonia</i> solani on leafy vegetables at a rate of $15.5 - 31$ ml per 100 m row. Apply in-furrow at planting.	This use was not supported by food residue data.
Control of powdery mildew (<i>Erysiphe cichoracearum</i>) on leafy vegetables at a rate of 1.25 – 1.75 L/ha (250 – 350 g a.i./ha).	Not supported.
Control of grey mould (<i>Botrytis cinerea</i>) on low growing berries at a rate of $1.0 - 1.75$ L/ha ($200 - 350$ g a.i./ha).	Supported as proposed.
Suppression of mummyberry (<i>Monilinia</i> vacciniicorymbosi) on lowbush blueberries at a rate of $1.5 - 1.75$ L/ha (300 - 350 g a.i./ha).	Supported as suppression at 1.75 L/ha (350 g a.i./ha).
Control of powdery mildew (<i>Sphaerotheca</i> spp.) on low growing berries at a rate of $1.0 - 1.75$ L/ha ($200 - 350$ g a.i./ha).	Not supported.
Control of brown leaf spot (<i>Septoria</i> sp.) on lowbush blueberry at a rate of $1.25 - 1.75$ L/ha ($250 - 350$ g a.i./ha).	Not supported.
Control of botrytis blight, neck rot ($Botrytis$) on bulb vegetables at a rate of 1.25 – 1.75 L/ha (250 – 350 g a.i./ha).	Supported as suppression of neck rot and botrytis fleck at the proposed rates.
Control of purple blotch (<i>Alternaria porri</i>) on bulb vegetables at a rate of $1.25 - 1.75$ L/ha ($250 - 350$ g a.i./ha).	The claim of suppression of purple blotch is conditionally supported as proposed on bulb vegetables.

Proposed use claim	Supported / Unsupported
Control of powdery mildew (<i>Leveillula taurica</i> , <i>Oidiopsis</i> spp.) on bulb vegetables at a rate of 1.25 – 1.75 L/ha (250 – 350 g a.i./ha).	Not supported.
Control of botrytis rots, blights (<i>Botrytis cinerea</i>) tree nuts at a rate of $1.0 - 1.5$ L/ha ($200 - 300$ g a.i./ha).	Supported as control of botrytis blight at proposed rates.
Control of alternaria leafspot, blight (<i>Alternaria</i> spp.) on tree nuts at a rate of $1.0 - 1.5$ L/ha ($200 - 300$ g a.i./ha).	Supported as suppression of alternaria leafspot, blight (<i>Alternaria alternata</i>) at the proposed rates.
Control of brown rot, blossom blight and fruit rot (<i>Monilinia</i> spp.) on tree nuts at a rate of $1.0 - 1.5$ L/ha (200 - 300 g a.i./ha).	The claim of control of brown rot, blossom blight, and fruit rot is conditionally supported as proposed on tree nuts.
Control of powdery mildew (<i>Podosphaera tridactyla</i> var. <i>tridactyla, Sphaerotheca pannosa, Phyllactinia angulata,</i> <i>Phyllactinia guttata</i> f. sp. <i>coryli, Microsphaera</i> spp., <i>Oidium</i> spp.) on tree nuts at a rate of 1.0 – 1.5 L/ha (200 – 300 g a.i./ha).	Not supported.
Control of web blotch (<i>Mycosphaerella arachidis</i>) on peanuts at a rate of $1.25 - 1.75$ L/ha ($250 - 350$ g a.i./ha).	Supported as suppression at the proposed rates.
Control of late leaf spot (<i>Cercosporidium personatum</i>) on peanuts at a rate of $1.25 - 1.75$ L/ha ($250 - 350$ g a.i./ha).	Supported as proposed.
Control of early leaf spot (<i>Cercospora arachidicola</i>) on peanuts at a rate of $1.25 - 1.75$ L/ha ($250 - 350$ g a.i./ha).	Supported as proposed.
Control of soil-borne diseases caused by <i>Rhizoctonia</i> solani on peanuts at a rate of 15.5 – 31 ml per 100 m row. Apply in-furrow at planting.	This use was not supported by food residue data.
Control of sclerotinia blight (<i>Sclerotinia</i> spp.) on peanuts at a rate of 1.25 – 1.75 L/ha (250 – 350 g a.i./ha).	Supported as suppression of sclerotinia blight (<i>Sclerotinia sclerotiorum</i>) at the proposed rates.
Control of southern stem rot (<i>Sclerotium rolfsii</i>) on peanuts at a rate of $1250 - 1.75$ L/ha ($250 - 350$ g a.i./ha).	The claim of control of southern stem rot was conditionally supported as proposed on peanuts.
Control of rust (<i>Puccinia arachidis</i>) on peanuts at a rate of 1.25 – 1.75 L/ha (250 – 350 g a.i./ha).	Not supported.
Control of sclerotinia stem rot (<i>Sclerotinia</i> spp.) on brassica leafy vegetables at a rate of $1.25 - 2.25$ L/ha (250 - 450 g a.i./ha).	Supported as suppression of sclerotinia stem rot (<i>Sclerotinia sclerotiorum</i>) at a rate of 1.25 – 1.75 L/ha (250 – 350 g a.i./ha).
Control of grey mould (<i>Botrytis cinerea</i>) on brassica leafy vegetables at a rate of $1.25 - 2.25$ L/ha ($250 - 450$ g a.i./ha).	Supported as proposed.
Control of soil-borne diseases caused by <i>Rhizoctonia</i> solani on brassica leafy vegetables at a rate of 15.5 – 31 ml per 100 m row. Apply in-furrow at planting.	This use was not supported by food residue data.
Control of powdery mildew (<i>Erysiphe polygoni, E. cruciferarum</i>) on brassica leafy vegetables at a rate of 1.25 – 2.25 L/ha (250 – 450 g a.i./ha).	Not supported.
Control of alternaria blight, leafspot (<i>Alternaria</i> spp.) on legume vegetables at a rate of $1.0 - 2.25$ L/ha ($200 - 450$ g a.i./ha).	Supported as control of alternaria blight, leafspot (<i>Alternaria alternata</i>) on the legume crop group at proposed rates.

Proposed use claim	Supported / Unsupported
Control of angular leafspot (<i>Phaseoisariopsis griseola</i>) on legume vegetables at a rate of $1.0 - 2.25$ L/ha (200 - 450 g a.i./ha).	Supported as proposed on beans only (<i>Phaseolis, Vigna</i>).
Control of anthracnose (<i>Colletotrichum lindemuthianum</i>) on legume vegetables at a rate of $1.0 - 2.25$ L/ha (200 - 450 g a.i./ha).	Supported as suppression at the proposed rates on beans (<i>Phaseolis, Vigna</i>) and soybean.
Control of grey mould (<i>Botrytis cinerea</i>) on legume vegetables at a rate of $1.0 - 2.25$ L/ha ($200 - 450$ g a.i./ha).	Supported as proposed on the legume crop group.
Control of soil-borne diseases caused by <i>Rhizoctonia</i> solani on legume vegetables at a rate of $15.5 - 31$ ml per 100 m row. Apply in-furrow at planting.	This use was not supported by food residue data.
Control of Asian soybean rust (<i>Phakopsora pachyrhizi</i>) on legume vegetables at a rate of $1.0 - 2.25$ L/ha (200 - 450 g a.i./ha).	Supported as suppression at 1.0 – 1.75 L/ha (200 – 350 g a.i./ha).
Control of rust (<i>Uromyces</i> spp.) on legume vegetables at a rate of $1.0 - 2.25$ L/ha ($200 - 450$ g a.i./ha).	The claim of control of rust (<i>Uromyces appendiculatus</i>) is conditionally supported as proposed on beans only (<i>Phaseolis, Vigna</i>).
Control of ascochyta blight, leafspot (<i>Ascochyta</i> spp.) on legume vegetables at a rate of $1.0 - 2.25$ L/ha ($200 - 450$ g a.i./ha).	The claim of control of ascochyta blight (<i>Ascochyta</i> spp.) is conditionally supported on the legume crop group at $1.0 - 1.5$ L/ha.
Control of powdery mildew (<i>Erysiphe</i> spp.) on legume vegetables at a rate of $1.0 - 2.25$ L/ha ($200 - 450$ g a.i./ha).	Not supported.
Control of cercospora leafspot (<i>Cercospora</i> spp.) on legume vegetables at a rate of $1.0 - 2.25$ L/ha ($200 - 450$ g a.i./ha).	Not supported.
Control of alternaria leaf spot, blight, brown spot, early blight (<i>Alternaria dauci</i>) on root vegetables at a rate of 1.25 – 2.25 L/ha (250 - 450 g a.i./ha).	Supported control of alternaria leafspot (<i>Alternaria dauci</i>) on carrot only at proposed rates.
Control of grey mould (<i>Botrytis cinerea</i>) on root vegetables at a rate of $1.25 - 2.25$ L/ha ($250 - 450$ g a.i./ha).	Supported as control at 1.0 – 1.75 L/ha (200 – 350 g a.i./ha).
Control of powdery mildew (<i>Erysiphe</i> spp.) on root vegetables at a rate of 1.25 – 2.25 L/ha (250 - 450 g a.i./ha).	Conditionally supported as suppression or powdery mildew (<i>Erysiphe heraclei</i>) on carrot at the proposed rates.
Control of rust (<i>Uromyces</i> spp.) on root vegetables at a rate of 1.25 – 2.25 L/ha (250 - 450 g a.i./ha).	The claim was withdrawn by the applicant.
Control of sclerotinia stem rot (Sclerotinia sclerotiorum) on alfalfa at a rate of $1.25 - 1.5$ L/ha ($250 - 300$ g a.i./ha).	Supported as proposed.
Control of powdery mildew (<i>Erysiphe pisi, Leveillula taurica</i>) on alfalfa at a rate of 1.25 – 1.75 L/ha (250 – 350 g a.i./ha).	Not supported.
Fontelis Fungicide may be applied by air to alfalfa, lowbush blueberries and cucurbits. The minimum aerial application volume is 40 L/ha.	Conditionally supported as proposed.

Table 28Use (label) Claims Proposed by Applicant for Vertisan Fungicide and
Whether Acceptable or Unsupported

Proposed use claim	Supported / Unsupported
Control of ascochyta blight (<i>Ascochyta</i> spp.) on dry legume vegetables at a rate of $1.0 - 1.5$ L/ha ($200 - 300$ g a.i./ha).	Supported on chickpea and lentil as proposed. Extrapolation to the crop group is conditionally supported.
Control of grey mould (<i>Botrytis cinerea</i>) on dry legume vegetables at a rate of $1.0 - 1.5$ L/ha ($200 - 300$ g a.i./ha).	Supported as proposed.
Control of Asian soybean rust (<i>Phakopsora pachyrhizi</i>) on dry legume vegetables at a rate of $1.0 - 2.25$ L/ha $(200 - 450$ g a.i./ha).	Suppression of ASR on legume vegetables at a rate of 1.0 – 1.75 L/ha (200 – 350 g a.i./ha) is supported.
Control of soil-borne diseases caused by <i>Rhizoctonia</i> solani on dry legume vegetables at a rate of 15.5 – 31 ml per 100 m row. Apply in-furrow at planting.	This use was not supported by food residue data.
Control of powdery mildew (<i>Erysiphe</i> spp.) on dry legume vegetables at a rate of $1.0 - 1.5$ L/ha ($200 - 300$ g a.i./ha).	Not supported.
Control of rust (<i>Uromyces</i> spp.) on dry legume vegetables at a rate of $1.25 - 1.5$ L/ha ($250 - 300$ g a.i./ha).	The claim was withdrawn by the applicant.
Control of early blight (<i>Alternaria solani</i>) on tuberous and corm vegetables at a rate of $1.0 - 1.75$ L/ha (200 - 350 g a.i./ha).	Suppression of early blight on potatoes, sweet potatoes and yams only, with the proposed use pattern is supported.
Control of grey mould (<i>Botrytis cinerea</i>) on tuberous and corm vegetables at a rate of $1.25 - 1.5$ L/ha ($250 - 300$ g a.i./ha).	Supported as proposed.
Control of soil-borne diseases caused by <i>Rhizoctonia</i> solani on tuberous and corm vegetables at a rate of 15.5 – 31 ml per 100 m row. Apply in-furrow at planting.	Suppression of stem canker on potato and sweet potato, and transplant rot on sweet potato, caused by <i>Rhizoctonia solani</i> with the proposed use pattern is supported.
Control of powdery mildew (<i>Erysiphe</i> spp.) on tuberous and corm vegetables at a rate of $1.0 - 1.75$ L/ha (200 - 350 g a.i./ha).	Not supported.
Control of stem rot/white mould (<i>Sclerotinia sclerotiorum</i>) on canola at a rate of 1.25 – 1.5 L/ha (250 – 300 g a.i./ha).	Suppression of stem rot/white mould on canola as proposed.
Control of septoria leaf spot (<i>Septoria</i> spp.) on cereals at a rate of $1.2 - 1.75$ L/ha (240 - 350 g a.i./ha).	Suppression of septoria leaf spot (<i>Septoria tritici</i>) on wheat, barley and triticale with the proposed use pattern is supported.
Control of brown leaf rust/orange leaf rust (<i>Puccinia recondita</i> f. sp. <i>tritici</i>) on cereals at a rate of $1.2 - 1.75$ L/ha (240 - 350 g a.i./ha).	Supported as proposed on wheat, rye and triticale.
Control of black stem rust (<i>Puccinia graminis</i> f. sp. <i>tritici</i>) on cereals at a rate of $1.2 - 1.75$ L/ha (240 - 350 g a.i./ha.	Supported as proposed on wheat, barley, oats and triticale.
Control of net blotch (<i>Pyrenophora teres</i>) on cereals at a rate of $1.2 - 1.75$ L/ha (240 - 350 g a.i./ha).	Not supported.

Proposed use claim	Supported / Unsupported
Control of powdery mildew (<i>Erysiphe graminis f. sp. tritici</i>) on cereals at a rate of $1.2 - 1.75$ L/ha ($240 - 350$ g a.i./ha).	Not supported.
Control of stripe rust/yellow wheat rust (<i>Puccinia striiformis</i>) on cereals at a rate of 1.2 – 1.75 L/ha (240 – 350 g a.i./ha).	Not supported.
Control of grey leaf spot (<i>Cercospora zeae-maydis</i>) on corn (field, sweet, seed, popcorn), sorghum (milo, sudangrass and hybrids), millet (pearl, proso) at a rate of $1.0 - 1.75$ L/ha (200 - 350 g a.i./ha).	Suppression of grey leaf spot on corn (field, sweet, seed, popcorn), sorghum (milo, sudangrass and hybrids) with the proposed use pattern is supported.
Control of common rust (<i>Puccinia sorghi</i>) on corn at a rate of $1.0 - 1.75$ L/ha (200 - 350 g a.i./ha).	Conditionally supported as proposed on corn (field, sweet, seed, popcorn).
Control of sclerotinia stem rot (<i>Sclerotinia</i> spp.) on sunflower at 1.75 L/ha (350 g a.i./ha).	Suppression of sclerotinia head rot (<i>Sclerotinia sclerotiorum</i>) on sunflower with the proposed use pattern is supported.
Control of rust (<i>Puccinia helianthi</i>) on sunflower at 1.75 L/ha (350 g a.i./ha).	Suppression of rust on sunflower with the proposed use pattern is supported.
Control of soil-borne diseases on sunflower caused by <i>Rhizoctonia solani</i> at a rate of 15.5 – 31 ml per 100 m row. Apply in-furrow at planting.	This use was not supported by food residue data.
Control of powdery mildew (<i>Erysiphe cichoracearum</i>) on sunflower at a rate of 1.75 L/ha (350 g a.i./ha).	Not supported.
Control of soil-borne diseases on sugarbeet caused by <i>Rhizoctonia solani</i> at a rate of $15.5 - 31$ ml per 100 m row. Apply in-furrow at planting.	Control of crown and root rot caused by <i>Rhizoctonia solani</i> with the proposed use pattern is supported.
Control of powdery mildew (<i>Erysiphe betae</i>) on sugarbeet at a rate of $1.0 - 1.5$ L/ha ($200 - 300$ g a.i./ha).	Conditionally supported as suppression .
Control of brown spot (<i>Septoria glycines</i>) on soybean at a rate of $1.0 - 2.25$ L/ha ($200 - 450$ g a.i./ha).	Suppression of brown spot on soybeans at 1.0 – 1.75 L/ha (200 – 350 g a.i./ha) is supported.
Control of frogeye leafspot (<i>Cercospora sojina</i>) on soybean at a rate of $1.0 - 2.25$ L/ha ($200 - 450$ g a.i./ha).	Suppression of frogeye leafspot on soybeans at 1.0 – 1.75 L/ha (200 – 350 g a.i./ha) is supported.
Control of Asian soybean rust (<i>Phakopsora pachyrhizi</i>) on soybean at a rate of $1.0 - 2.25$ L/ha ($200 - 450$ g a.i./ha).	Suppression of ASR on soybeans at 1.0 – 1.75 L/ha (200 – 350 g a.i./ha) is supported.
Control of soil-borne diseases on soybean caused by <i>Rhizoctonia solani</i> at a rate of 15.5 – 31 ml per 100 m row. Apply in-furrow at planting.	This use was not supported by food residue data.
Vertisan Fungicide may be applied by air to canola, dry legumes, cereals, corn, soybeans, sunflower, sugarbeet and tuberous and corm vegetables. The minimum aerial application volume is 40 L/ha.	Supported as proposed.

Table 29Use (label) Claims Proposed by Applicant for Treoris Fungicide and
Whether Acceptable or Unsupported

Proposed label claim	Supported / Unsupported
To control early blight (<i>Alternaria solani</i>) on potatoes, apply Treoris at a rate of $1.5 - 2.5$ L/ha. Begin applications prior to disease development and continue on a 7- to 14-day interval. Use higher rate and shorter interval when disease pressure is high.	Supported as proposed.
To control powdery mildew (<i>Erysiphe cichoracearum</i>) on cucurbits, apply Treoris at a rate of $1.5 - 2.5$ L/ha. Begin applications prior to disease development and continue on a 7- to 14-day interval. Use higher rate and shorter interval when disease pressure is high.	Supported as proposed.
Treoris Fungicide may be applied by air to potatoes.	Conditionally supported as proposed.

Table 30Use (label) Claims Proposed by Applicant for DPX-LEM17 50WG Fungicide
and Whether Acceptable or Unsupported

Proposed label claim	Supported / Unsupported
To control dollar spot (<i>Sclerotinia homeocarpa</i>) on turfgrass, apply DPX-LEM17 50 WDG at a rate of $9 - 15 \text{ g/100m}^2 (0.9 - 1.5 \text{ kg/ha})$.	Supported as proposed.
To control brown patch (<i>Rhizoctonia solani</i>) on turfgrass, apply DPX-LEM17 50 WDG at a rate of $9 - 15 \text{ g}/100\text{m}^2$ (0.9 - 1.5 kg/ha).	Supported as proposed.
To control large patch (<i>Rhizoctonia solani</i>) on turfgrass, apply DPX-LEM17 50 WDG at a rate of $9 - 15 \text{ g}/100\text{m}^2$ (0.9 - 1.5 kg/ha).	Not supported.
To control powdery mildew (Erysiphe graminis), apply DPX- LEM17 50 WDG at a rate of 9 – 15 g/100m2 (0.9 – 1.5 kg/ha).	Not supported.

Appendix II Supplemental Maximum Residue Limit Information— International Situation and Trade Implications

Penthiopyrad is a new active ingredient which is concurrently being registered in the US. The US EPA is in agreement with the specified Canadian maximum residue limits (MRLs) and will be promulgating the same tolerances (40 CFR Part 180) except no US tolerances are recommended for poultry and hog commodities.

Currently, there are no Codex MRLs established for penthiopyrad.

Table 1Differences Between Canadian MRLs and in Other Jurisdictions

Commodity	Canada (ppm)	U.S. (ppm)	Codex* (ppm)
Eggs; fat, meat & meat byproducts of hogs and poultry	0.02	None	Not reviewed by Codex

* Codex is an international organization under the auspices of the United Nations that develops international food standards, including MRLs.

MRLs may vary from one country to another for a number of reasons, including differences in pesticide use patterns and the locations of the field crop trials used to generate residue chemistry data. For animal commodities, differences in MRLs can be due to different livestock feed items and practices.

Under the North American Free Trade Agreement (NAFTA), Canada, the US and Mexico are committed to resolving MRL discrepancies to the broadest extent possible. Harmonization will standardize the protection of human health across North America and promote the free trade of safe food products. Until harmonization is achieved, the Canadian MRLs specified in this document are necessary. The differences in MRLs outlined above are not expected to impact businesses negatively or adversely affect international competitiveness of Canadian firms or to negatively affect any regions of Canada.

References

A. List of Studies/Information Submitted by Registrant

1.0 Chemistry

For Penthiopyrad:

PMRA Document	
Number	Reference
1839197	2009, Content Analysis of MTF-753 Technical Product, DACO: 2.13.3, Document K,IIA 1.11.1 CBI
1839198	2005, MTF-753: Assay of Test Substance (Batch 2000111), DACO: 2.13.3,Document K,IIA 1.11.2
1839199	2009, Product Identity and Disclosure of Ingredients, Including Manufacturing Process and Discussion of Formation of Impurities, DACO: 2.11.1,2.11.2,2.11.3,2.11.4,Document K,IIA 1.8.1,IIA 1.8.2 CBI
1839200	1999, Determination of the Melting Point/Melting Range of MTF-753, DACO: 2.14.4,Document K,IIA 2.1.1
1839201	1999, Determination of the Boiling Point/Boiling Range of MTF-753, DACO: 2.14.13,2.14.5,Document K,IIA 2.1.2,IIA 2.1.3
1839203	2007, Determination of the Flammability of MTF-753, DACO: 2.16,Document K,IIA 2.11.1
1839204	2007, Determination of the Relative Self-Ignition Temperature of MTF-753, DACO: 2.16,Document K,IIA 2.11.2
1839206	2006, Expert Statement on the Explosive Properties of MTF-753, DACO: 2.16,Document K,IIA 2.13
1839207	2006, Determination of the Surface Tension of an Aqueous Solution of MTF-753, DACO: 2.16,Document K,IIA 2.14
1839208	2007, Determination of Oxidation/Reduction and Chemical Incompatibility of MTF-753, DACO: 2.16, Document K,IIA 2.15
1839209	2006, Expert Statement on the Oxidizing Properties of MTF-753, DACO: 2.16,Document K,IIA 2.15
1839210	2007, pH - Determination of MTF-753, DACO: 2.16, Document K, IIA 2.16

1839211	2008, Storage Stability and Corrosion Characteristics of MTF-753, DACO: 2.14.14,Document K,IIA 2.17.1
1839212	2006, Screening of the Thermal Stability in Air of MTF-753, DACO: 2.14.13,Document K,IIA 2.17.2
1839213	2007, Determination of the Relative Density and the Bulk Density of MTF-753, DACO: 2.14.6,Document K,IIA 2.2
1839214	2008, PCA Determination of the Vapour Pressure, DACO: 2.14.9,Document K,IIA 2.3.1
1839215	2006, Measurement of vapour pressure for DM-PCA (gas staturation method), DACO: 2.14.9,Document K,IIA 2.3.1
1839216	1999, Determination of the Vapour Pressure of MTF-753, DACO: 2.14.9,Document K,IIA 2.3.1
1839218	2008, Color of Pentiopyrad Technical (MTF-753), DACO: 2.14.1,2.14.2,Document K,IIA 2.4.1
1839219	2008, Color of Purified Active Substance, Penthiopyrad (MTF-753), DACO: 2.14.1,2.14.2,Document K,IIA 2.4.1
1839221	2008, Physical State of Penthiopyrad Technical (MTF-753), DACO: 2.14.1,2.14.2,Document K,IIA 2.4.1
1839222	2008, Physical State of Purified Active Substance, Penthiopyrad (MTF-753), DACO: 2.14.1,2.14.2,Document K,IIA 2.4.1
1839223	2008, Odour of Penthiopyrad Technical (MTF-753), DACO: 2.14.3, Document K,IIA 2.4.2
1839224	2008, Odour of Purified Active Substance, Pentiopyrad (MTF-753), DACO: 2.14.3,Document K,IIA 2.4.2
1839225	2007, Determination of the NMR-, IR-, UV/VIS Absorption and Mass Spectra of MTF-753, DACO: 2.13.2,2.14.12,Document K,IIA 2.5.1.1,IIA 2.5.1.2,IIA 2.5.1.3,IIA 2.5.1.4
1839226	2008, PCA Determination of the Water Solubility at pH 2, pH 7 and pH 9, DACO: 2.14.7,Document K,IIA 2.6
1839227	2006, Measurement of water solubility for DM-PCA by flask method, DACO: 2.14.7,Document K,IIA 2.6
1839228	2008, Determination of the Water Solubility of MTF-753 Including Effect of pH and Temperature, DACO: 2.14.7, Document K, IIA 2.6

1839229	1999, Determination of the Solubility of MTF-753 in Water and in Organic Solvents, DACO: 2.14.7,2.14.8,Document K,IIA 2.6,IIA 2.7
1839230	2006, 1-Octanol/water partition coefficient for 753-A-OH (HPLC method), DACO: 2.14.11,Document K,IIA 2.8.1
1839231	2006, 1-Octanol/water partition coefficient for PAM (HPLC method), DACO: 2.14.11,Document K,IIA 2.8.1
1839232	2006, Measurement of partition coefficient for PCA (HPLC method), DACO: 2.14.11,Document K,IIA 2.8.1
1839233	2006, 1-Octanol/water partition coefficient for DM-PCA, DACO: 2.14.11,Document K,IIA 2.8.1
1839234	2008, Deternination of the Partition Coeffcient (N-Octanol/Water) of MTF-753 Including Effect of pH and Temperature, DACO: 2.14.11,Document K,IIA 2.8.1
1839238	2006, Dissociation Constant of MTF-753, DACO: 2.14.10,8.2.3.2,Document K,IIA 2.9.5
1839239	1999, Determination of the Dissociation Constant of MTF-753 in Water, DACO: 2.14.10,8.2.3.2,Document K,IIA 2.9.5
1839243	2009, Validation of Analytical Method (Analytical Method for Determination of Active Ingredient and Impurities in Penthiopyrad Technical Product), DACO: 2.13.1,2.13.3,2.13.4,Document K,IIA 1.11.1,IIA 1.11.2,IIA 4.2.1,IIA 4.2.3 CBI
1927497	2010, Analysis and Certification of Rand S Isomers of Penthiopyrad in Six Batches of Technical Penthiopyrad, DACO: 2.13.1,2.13.3,Document K,IIA 1.11.1,IIA 4.2.1
1927500	2010, Analysis and Certification of Rand S Isomers of Penthiopyrad in Six Batches of Technical Penthiopyrad, DACO: 2.13.1,2.13.3,Document K,IIA 1.11.1,IIA 4.2.1 CBI
2058161	2006, Content analysis of MTF-753 technical product, DACO: 2.13.1,Document K,IIA 4.2.1 CBI
1839260	2009, Determination of Residues of Penthiopyrad and Metabolites in Soil Using LC-MS/MS - Independent Laboratory Validation of the Analytical Method ABC 63209, DACO: 8.2.2.1,Document K,IIA 4.4
1839261	2009, Penthiopyrad (MTF-753) and its Metabolites 753-A-OH, 753-T-DO, PCA, DM-PCA and PAM - Independent Laboratory Validation of Methodology for the Determination of Residues of Penthiopyrad (MTF-753) and its Metabolites 753-A-OH, 753-T-DO, PCA, DM-PCA and

- 18392622009, Method Validation for the Determination of MTF-753 and its Metabolites
in Drinking, Ground and Surface Water, DACO: 8.2.2.3, Document K, IIA 4.5
- 1840773 2008, Analytical Method for the Determination of Penthiopyrad and Metabolites in Soil Using LC/MS/MS, DACO: 8.2.2.1,Document K,IIA 4.4

For Vertisan Fungicide:

PMRA Document Number	Reference
1838852	2009, Product Identity and Composition of End-Use Product Penthiopyrad (DPX-LEM17) 200 g/L EC, DACO: 3.2.1,3.2.2,3.2.3,3.3.2,Document K,IIIA 1.4.1 CBI
1838862	2009, Penthiopyrad 200 g/L EC (DPX-LEM17) Emulsifiable Concentrate: Laboratory Study of Physical and Chemical Properties, DACO: 3.5.1, 3.5.10, 3.5.11, 3.5.12, 3.5.2, 3.5.3, 3.5.6, 3.5.7, 3.5.8, 3.5.9, 3.7, 8.2.3.6,Document K,IIIA 2.1,IIIA 2.2.1,IIIA 2.2.2,IIIA 2.3.
1838863	2009, Penthiopyrad 200 g/Liter EC Emulsifiable Concentrate Formulation (DPX-LEM17): Summary Report of Laboratory Study of Physical and Chemical Characteristics, DACO: 3.5.1, 3.5.11, 3.5.12, 3.5.2, 3.5.3, 3.5.6, 3.5.7, 3.5.8, 3.5.9,Document K,IIIA 2.1,IIIA 2.2.1,
1838865	2009, Determination of Penthiopyrad (DPX-LEM17), Chlorothalonil (DPX-V2757), and Cyproconazole (DPX-YG177) in End-Use Prodcuts, DACO: 3.4.1,Document K,IIIA 5.2.1
1927462	2010, Ratio of enantiomers of penthiopyrad in penthiopyrad 200 g/L EC (DPX-LEM17) emulsifiable-concentrate formulation, DACO: 3.3.2,Document K,IIIA 1.4.1
1927463	2010, Penthiopyrad 20 EC (200 g/L ai content) Emulsifiable Concentrate Formulation (DPX-LEM17): Laboratory Study of Shelf-Life Stability and Corrosion Characteristics, DACO: 3.5.10, Document K,IIIA 2.7.5
1927520	2010, Determination of enantiomer ratios of penthiopyrad (DPX-LEM17) in technical grade penthiopyrad and end-use products, DACO: 3.4.1,Document K,IIIA 5.2.1
1927521	2010, Validation of the determination of enantiomer ratios of penthiopyrad (DPX-LEM17) in technical grade penthiopyrad and end-use products, DACO: 3.4.1,Document K,IIIA 5.2.1
1943587	2010, DuPont-26202 PENT20ECDocJ3 2009 OECD01 RV1 (MRID 47615301), DACO: 3.1.2, 3.1.4, 3.2.1, 3.2.2, 3.3.1, 3.5.4 CBI

2014059	2010, Penthiopyrad 200 G/L EC (DPX-LEM17) Emulsifiable Concentrate
	Laboratory Study of Shelf Life Stability in Polyethylene/Ethyl Vinyl Alcohol
	(PE/EVOH) Packaging, DACO: 3.5.10, Document K,IIIA 2.7.5

2014061 2010, Penthiopyrad 20 EC (200 g/L AI Content) Emulsifiable Concentrate Formulation (DPX-LEM17) Laboratory Study of Shelf-Life Stability and Corrosion Characteristics, DACO: 3.5.10, Document K,IIIA 2.7.5

For Fontelis Fungicide:

PMRA Document Number	Reference
1838737	2008, Penthiopyrad 200 g/L SC (DPX-LEM17) Suspension Concentrate Formulation: Laboratory Study of Physical and Chemical Properties, DACO: 3.5.1, 3.5.10, 3.5.11, 3.5.12, 3.5.2, 3.5.3, 3.5.6, 3.5.7, 3.5.8, 3.5.9, 3.7, 8.2.3.6, Document K,IIIA 2.1,IIIA 2.2.1,IIIA 2.2.2
1838738	2009, Penthiopyrad 200 g/Liter SC Suspension Concentrate Formulation (DPX-LEM17): Summary Report of Laboratory Study of Physical and Chemical Characteristics, DACO: 3.5.1, 3.5.11, 3.5.12, 3.5.2, 3.5.3, 3.5.6, 3.5.7, 3.5.9, Document K,IIIA 2.1,IIIA 2.2.1,IIIA 2.3
1838819	2009, Product Identity and Composition of End-Use Product Penthiopyrad (DPX- LEM17) 200 g/L SC, DACO: 3.3.2, Document K,IIIA 1.4.1 CBI
1927518	2010, Ratio of enantiomers of penthiopyrad in penthiopyrad 200 g/L SC (DPC-LEM17) suspension concentrate formulation, DACO: 3.3.2, Document K,IIIA 1.4.1
1927519	2010, Penthiopyrad 20 SC (DPX-LEM17) Suspension Concentrate Formulation (200 g/L ai content): Laboratory Study of Shelf-Life Stability and Corrosion Characteristics, DACO: 3.5.10, Document K,IIIA 2.7.5
1927520	2010, Determination of enantiomer ratios of penthiopyrad (DPX-LEM17) in technical grade penthiopyrad and end-use products, DACO: 3.4.1, Document K,IIIA 5.2.1
1927521	2010, Validation of the determination of enantiomer ratios of penthiopyrad (DPX-LEM17) in technical grade penthiopyrad and end-use products, DACO: 3.4.1, Document K,IIIA 5.2.1
2014077	2010, Penthiopyrad 200 g/L SC (DPX-LEM17) Suspension Concentrate Formulation Laboratory Study of Shelf Life Stability in High Density Polyethylene (HDPE) Packaging, DACO: 3.5.10, Document K,IIIA 2.7.5

2014078	2010, Penthiopyrad 20 SC (DPX-LEM17) Suspension Concentrate Formulation
	(200 g/L AI Content): Laboratory Study of Shelflife Stability and Corrosion
	Characteristics, DACO: 3.5.10, Document K, IIIA 2.7.5

For Treoris Fungicide:

PMRA Document Number	Reference
1838891	2009, Chlorothalonil/Penthiopyrad 350 g/Liter SC (250/100 g/Liter ai content) suspension concentrate formulation (DPX-QFA61): Summary report of laboratory study of physical and chemical characteristics, DACO: 3.5.1,3.5.11,3.5.12,3.5.2,3.5.3,3.5.6,3.5.7,3.
1838892	2009, Chlorothalonil/Penthiopyrad 350 g/L SC (250/100 g/L ai content) (DPX-QFA61) suspension concentrate formulation: Laboratory study of physical and chemical properties, DACO: 3.5.1,3.5.10,3.5.11,3.5.12,3.5.2,3.5.3,3.5.6,3.5.7,3.5.8,3.5.9,3.7,8.2.3.6,II
1838893	2009, Determination of penthiopyrad (DPX-LEM17), chlorothalonil (DPX-V2757), and cyproconazole (DPX-YG177) in end-use products, DACO: 3.4.1,IIIA 5.2.1
1838923	2009, Product identity and composition of end-use product chlorothalonil/penthiopyrad (DPX-QFA61) SC (250 g/L: 100 g/L), DACO: 3.2.1,3.2.2,3.2.3,3.3.1,3.3.2,IIIA 1.4.4,IIIA 1.4.5.1
1927479	2010, Ratio of Enantiomers of Penthiopyrad in Chlorothalonil/Penthiopyrad 350 g/L SC (250/100 g/L a.i. Content) (DPX-QFA61) Suspension Concentrate Formulation, DACO: 3.3.2,Document K,IIIA 1.4.1
1927480	2010, Chlorothalonil/Penthiopyrad 350 SC (250/100 g/Liter ai content) Suspension Concentrate Formulation (DPX-LEM61): Laboratory Study of Shelf- Life Stability and Corrosion Characteristics, DACO: 3.5.10,Document K,IIIA 2.7.5
1943529	2010, DuPont-28828 US QFA6135SCDocJ3 2009 OECD01 US e-sub RV1 (MRID 47737301), DACO: 3.1.2,3.1.4,3.2.1,3.2.2,3.3.1,3.5.1 CBI

For DPX-LEM17 50WG Fungicide:

PMRA Document Number	Reference
1838938	2008, Penthiopyrad 50WG (DPX-LEM17) water-dispersible granule formulation: Laboratory study of physical and chemical properties, DACO: 3.5.1,3.5.10,3.5.11, 3.5.12, 3.5.13, 3.5.14, 3.5.15, 3.5.2,3.5.3,3.5.6,3.5.7,3.5.8,3.5.9,IIIA 2.1,IIIA 2.2.1, IIIA 2.4.2,IIIA
1838939	2009, Determination of penthiopyrad (DPX-LEM17), chlorothalonil (DPX-V2757), and cyproconazole (DPX-YG177) in end-use products, DACO: 3.4.1,IIIA 5.2.1
1838959	2009, Product identity and composition of end-use product penthiopyrad (DPX-LEM17) 50WG, DACO: 3.2.1,3.2.2,3.2.3,3.3.1,3.3.2,IIIA 1.4.4,IIIA 1.4.5.1 CBI
1927449	2010, Penthiopyrad 50 WG Water-Dispersible Granule Formulation (DPX- LEM17): Laboratory Study of Shelf-Life Stability and Corrosion Characteristics, DACO: 3.5.10,Document K,IIIA 2.7.5

2.0 Human and Animal Health

PMRA

Document Number	Reference
1838740	2007, Penthiopyrad (DPX-LEM17) 200 g/L SC: Acute Oral Toxicity Study in Rats (Up and Down Procedure), DACO: 4.6.1,Document K,IIIA 7.1.1
1838741	2007, Penthiopyrad (DPX-LEM17) 200 g/L SC: Acute Dermal Toxicity in Rats, DACO: 4.6.2, Document K,IIIA 7.1.2
1838742	2008, Acute Inhalation Toxicity Study of Penthiopyrad (DPX-LEM17) 200 g/L SC in Albino Rats, DACO: 4.6.3,Document K,IIIA 7.1.3
1838743	2007, Amended Final Report: Penthiopyrad (DPX-LEM17) 200 g/L SC: Acute Dermal Irritation Study in Rabbits, DACO: 4.6.5,Document K,IIIA 7.1.4
1838744	2007, Amended Final Report: Penthiopyrad (DPX-LEM17) 200 g/L SC: Acute Eye Irritation Study in Rabbits, DACO: 4.6.4,Document K,IIIA 7.1.5
1838745	2007, Penthiopyrad (DPX-LEM17) 200 g/L SC: Local Lymph Node Assay (LLNA) in Mice, DACO: 4.6.6,Document K,IIIA 7.1.6

1838746	2009, Penthiopyrad (DPX-LEM17) 200 g/L SC: Dermal Sensitization - Magnusson-Kligman Maximization Method, DACO: 4.6.6,Document K,IIIA 7.1.6
1979059	2010, alpha-HexyJcinnamaldehyde, Technical Dermal Sensitization Study in Guinea Pigs (Magnusson-Kligman Maximization Method), DACO: 4.6.6,IIIA 7.1.6
1838866	2008, Penthiopyrad (DPX-LEM17) 200 g/L EC: Acute Oral Toxicity - Up-and- Down Procedure in Rats, DACO: 4.6.1,Document K,IIIA 7.1.1
1838867	2008, Penthiopyrad (DPX-LEM17) 200 g/L EC: Acute Dermal Toxicity in Rats, DACO: 4.6.2, Document K,IIIA 7.1.2
1838868	2009, Penthiopyrad (DPX-LEM17) 200 g/L EC: Acute Inhalation Toxicity Study in Rats, DACO: 4.6.3, Document K,IIIA 7.1.3
1838869	2008, Penthiopyrad (DPX-LEM17) 200 g/L EC: Primary Skin Irritation in Rabbits, DACO: 4.6.5, Document K,IIIA 7.1.4
1838870	2008, Penthiopyrad (DPX-LEM17) 200 g/L EC: Acute Eye Irritation Study in Rabbits, DACO: 4.6.4, Document K,IIIA 7.1.5
1838871	2008, Penthiopyrad (DPX-LEM17) 200 g/L EC: Local Lymph Node Assay (LLNA) in Mice, DACO: 4.6.6, Document K,IIIA 7.1.6
1838894	2008, Chlorothalonil/Penthiopyrad (DPX-QFA61) SC (250 g/L:100 g/L): Acute oral toxicity study in rats - up-and-down procedure, DACO: 4.6.1,IIIA 7.1.1
1838895	2008, Chlorothalonil/Penthiopyrad (DPX-QFA61) SC (250 g/L:100 g/L): Acute dermal toxicity study in rats, DACO: 4.6.2,IIIA 7.1.2
1838896	2009, Chlorothalonil/Penthiopyrad (DPX-QFA61) SC (250 g/L:100 g/L): Acute inhalation toxicity study in rats, DACO: 4.6.3,IIIA 7.1.3
1838897	2008, Chlorothalonil/Penthiopyrad (DPX-QFA61) SC (250 g/L:100 g/L): Acute dermal irritation study in rabbits, DACO: 4.6.5,IIIA 7.1.4
1838898	2008, Chlorothalonil/Penthiopyrad (DPX-QFA61) SC (250 g/L:100 g/L): Primary eye irritation in rabbits, DACO: 4.6.4,IIIA 7.1.5
1838899	2008, Chlorothalonil/Penthiopyrad (DPX-QFA61) SC (250 g/L:100 g/L): Dermal sensitization - Magnusson- Kligman maximization method, DACO: 4.6.6,IIIA 7.1.6
1838940	2008, Penthiopyrad (DPX-LEM17) 50WG: Acute oral toxicity - up-and-down procedure in rats, DACO: 4.6.1,IIIA 7.1.1

1838941	2008, Penthiopyrad (DPX-LEM17) 50WG: Acute dermal toxicity in rats, DACO: 4.6.2,IIIA 7.1.2
1838942	2009, Penthiopyrad (DPX-LEM17) 50WG: Acute inhalation toxicity study in rats, DACO: 4.6.3,IIIA 7.1.3
1838943	2008, Penthiopyrad (DPX-LEM17) 50WG: Primary skin irritation in rabbits, DACO: 4.6.5,IIIA 7.1.4
1838944	2009, Penthiopyrad (DPX-LEM17) 50WG: Primary eye irritation in rabbits, DACO: 4.6.4,IIIA 7.1.5
1838945	2009, Penthiopyrad (DPX-LEM17) 50WG: Dermal sensitization - Magnusson- Kligman maximization method, DACO: 4.6.6,IIIA 7.1.6
1838946	2008, Penthiopyrad (DPX-LEM17) 50WG: Local lymph node assay (LLNA) in mice, DACO: 4.6.6,IIIA 7.1.6
1839263	2009, Amended Report - Metabolism of [14C] MTF-753 in Rats, DACO: 4.5.9,Document K,IIA 5.1.1
1839265	2009, Identification of Metabolites of [14C-Thienyl] Penthiopyrad (MTF-753) in the Male Rat, DACO: 4.5.9,Document K,IIA 5.1.1
1839266	2005, Pilot Study of the Routes of Elimination and Pharmacokinetis of [14C] MTF-753 in Rats (Non-GLP Study), DACO: 4.5.9,Document K,IIA 5.1.1
1839299	2006, 52-Week Oral Toxicity (Feeding) Study in the Rat, DACO: 4.4.1,4.4.4,Document K,IIA 5.5.1
1839300	2009, Multiple Dose Excretion and Tissue Distribution Study of [14C]MTF-753 in Rats, DACO: 4.5.9,Document K,IIA 5.1.3
1839301	2005, Validation of an Analytical Method for the Determination of MTF-753 in Diet, DACO: 4.4.1, 4.4.4, Document K,IIA 5.5.1
1839302	2006, MTF-753: 104-Week Oncogenicity (Feeding) Study in the Rat, DACO: 4.4.2, 4.4.4, Document K,IIA 5.5.2
1839309	2009, MTF-753: 4-Week Dietary Immunotoxicity Study in the Mouse, DACO: 4.2.9, 4.3.8, 4.4.5, 4.5.8, 4.8, Document K,IIA 5.10
1839310	2009, MTF-753: 4-Week Dietary Immunotoxicity Study in the Rat, DACO: 4.2.9, 4.3.8, 4.4.5, 4.5.8, 4.8, Document K,IIA 5.10
1839313	2000, MTF-753: Acute Oral Toxicity Study in Rats, DACO: 4.2.1,Document K,IIA 5.2.1
1839314	2001, MTF-753: Acute Dermal Toxicity Study in Rats, DACO: 4.2.2, Document K,IIA 5.2.2

1839315	2001, MTF-753: 4-Hour Acute Inhalation Toxicity Study in Rats, DACO: 4.2.3,Document K,IIA 5.2.3
1839316	2001, MTF-753: Dermal Irritation Study in Rabbits, DACO: 4.2.5,Document K,IIA 5.2.4
1839317	2006, MTF-753: Carcinogenicity study in Mice, DACO: 4.4.3,Document K,IIA 5.5.3
1839318	2001, MTF-753: Eye Irritation Study in Rabbits, DACO: 4.2.4, Document K, IIA 5.2.5
1839319	2001, MTF-753: Skin Sensitization Study in Guinea Pigs - Maximization Test -, DACO: 4.2.6, Document K,IIA 5.2.6
1839320	2001, MTF-753: 28-Day Dose Range-Finding Study in Dogs, DACO: 4.3.3,Document K,IIA 5.3.1
1839321	2009, MTF-753: 2-Week Hepatic Drug-Metabolizing Enzyme Induction and Cell Proliferation Study in Mice, DACO: 4.8, Document K,IIA 5.5.4
1839322	2001, MTF-753: 28-Day Dose Range-Findng Study in Mice, DACO: 4.3.3,Document K,IIA 5.3.1
1839324	2008, MTF-753: Effect on Thyroid Function and its Reverseability in Rats, DACO: 4.8, Document K, IIA 5.5.4
1839325	2001, Statistical Analyses of Data from Project 762658, DACO: 4.3.3,Document K,IIA 5.3.1
1839327	2001, MTF-753: Subacute 28-Day Dose-Range Finding (Feeding) Study in the Rat, DACO: 4.3.3, Document K,IIA 5.3.1
1839328	2002, MTF-753: 2-Week Hepatic Drug-Metabolizing Enzyme Induction and Cell Proliferation Study in Rats, DACO: 4.8, Document K,IIA 5.5.4
1839331	2002, MTF-753: 90-Day Oral (Dietary) Toxicity Study in Mice for Dose Range Finding, DACO: 4.3.1, Document K,IIA 5.3.2
1839332	2005, A Reproduction Toxicity Study in Rats with MTF-753, DACO: 4.5.1,Document K,IIA 5.6.1
1839335	2001, Statistical Analyses of Data from RCC Study No. 781503, MTF-753: Subchronic 90-Day Toxicity Study (Feeding) in the Rat, DACO: 4.3.1,Document K,IIA 5.3.2
1839336	2005, MTF-753: Subchronic 90-Day Toxicity Study (Feeding) in the Rat, DACO: 4.3.1, Document K, IIA 5.3.2

1839337	2004, A Reproduction Toxicity Study in Rats with MTF-753 Preliminary Study, DACO: 4.5.1, Document K, IIA 5.6.1
1839338	2006, MTF-753: Validation of an Analytical Method to Verify the Homogeneity and Stability of a Liquid Formulation Preparation, DACO: 4.5.2,Document K,IIA 5.6.10
1839339	2006, MTF-753: Embryo-Fetal Toxicity Study by Gavage Administration to Han Wistar Rats, DACO: 4.5.2,Document K,IIA 5.6.10
1839340	2001, MTF-753: 90-Day Oral (Dietary) Toxicity Study in Dogs, DACO: 4.3.2, Document K,IIA 5.3.3
1839341	2005, Preliminary Embryo-Fetal Toxicity Study by Gavage (Once Daily) Administration to Han Wistar Rats, DACO: 4.5.2,Document K,IIA 5.6.10
1839342	2006, MTF-753: Embryo-Fetal Toxicity Study in the Rabbit by Gavage Administration, DACO: 4.5.3,Document K,IIA 5.6.11
1839343	2006, MTF-753: Chronic Oral (Dietary) Toxicity Study in Dogs, DACO: 4.3.2, Document K,IIA 5.3.4
1839344	2006, MTF-753: Preliminary Embryo-Fetal Toxicity Study in the Rabbit by Gavage Administration, DACO: 4.5.3,Document K,IIA 5.6.11
1839345	2008, MTF-753: Acute Neurotoxicity Study by a Single Oral Administration to the Rat, DACO: 4.5.12,Document K,IIA 5.7.1
1839346	2008, MTF-753: 4-Week Dermal Toxicity Study in the Rat, DACO: 4.3.5,Document K,IIA 5.3.7
1839347	2008, MTF-753: Dose Range and Time to Peak Effect in Rats by Acute Oral Administration, DACO: 4.5.12, Document K, IIA 5.7.1
1839349	2000, DNA Repair Assay (REC-ASSAY) with MTF-753 in Bacillus Subtilis Spores, DACO: 4.5.4, Document K,IIA 5.4.1
1839350	2008, MTF-753: 13-Week Dietary Neurotoxicity Study in Rats, DACO: 4.5.13,Document K,IIA 5.7.4
1839351	2000, Bacterial Reversion Assay with MTF-753, DACO: 4.5.4,Document K,IIA 5.4.1
1839353	2000, Cytogenetic Assay with MTF-753 in Chinese Hamster Lung (CHL/IU) Cells, DACO: 4.5.6, Document K,IIA 5.4.2
1839354	2000, Gene Mutation Assay with MTF-753 in Mouse Lymphoma Cells (MLA), DACO: 4.5.5, Document K,IIA 5.4.3

1839357	2000, Micronucleus Study with MTF-753 in Mice, DACO: 4.5.7, Document K,IIA 5.4.4
1839358	2009, MTF-753: Developmental Neurotoxicity Study in the CD Rat by Oral (Gavage) Administration, DACO: 4.5.14, Document K,IIA 5.7.5
1839359	2000, <i>In Vivo/In Vitro</i> Unscheduled DNA Synthesis (UDS) Assay with MTF-753 in Rat Hepatocytes, DACO: 4.5.8, Document K,IIA 5.4.5
1839363	2009, MTF-753: Preliminary Developmental Neurotoxicity study by Oral Gavage Administration to CD Rats, DACO: 4.5.14, Document K,IIA 5.7.5
1839367	2009, Gene mutation test with 753-T-DO using mouse lymphoma L5178Y cells (MLA), DACO: 4.8, Document K,IIA 5.8
1839368	2009, Chromosome aberration test with 753-T-DO in cultured Chinese hamster Lung (CHL) cells, DACO: 4.8, Document K,IIA 5.8
1839369	2009, Reverse mutation test of 753-T-DO in bacteria, DACO: 4.8,Document K,IIA 5.8
1839370	2009, Gene mutation test with 753-A-OH using mouse lymphoma L5178Y cells (MLA), DACO: 4.8, Document K,IIA 5.8
1839371	2009, Chromosome Aberration Test with 753-A-OH in cultured Chinese Hamster Lung (CHL) cells, DACO: 4.8, Document K,IIA 5.8
1839374	2006, A Reverse Mutation Assay of 753-A-OH in Bacteria, DACO: 4.8, Document K,IIA 5.8
1839375	2005, Acute Oral Toxicity Study of 753-A-OH in Rats, DACO: 4.8, Document K,IIA 5.8
1839376	2009, Micronucleus Test of PAM in Mice, DACO: 4.8, Document K, IIA 5.8
1839377	2009, Mouse Lymphoma TK Assay (MLA) of PAM, DACO: 4.8, Document K,IIA 5.8
1839379	2009, Chromosome Aberration Test with PAM in Mammalian Cultured Cells, DACO: 4.8, Document K,IIA 5.8
1839380	2005, A Reverse Mutation Assay of PAM in Bacteria, DACO: 4.8, Document K,IIA 5.8
1839381	2009, Acute Oral Toxicity Study of PAM in Rats, DACO: 4.8, Document K,IIA 5.8
1839383	2005, Acute Oral Toxicity Study of PAM in Rats, DACO: 4.8, Document K,IIA 5.8

1839384	2009, Micronucleus Test of PCA in Mice, DACO: 4.8, Document K, IIA 5.8
1839385	2009, Mouse Lymphoma TK Assay (MLA) of PCA, DACO: 4.8, Document K,IIA 5.8
1839386	2008, <i>In Vitro</i> Chromosome Aberration Test in Chinese Hamster V79 Cells with PCA, DACO: 4.8, Document K,IIA 5.8
1839387	2005, A Reverse Mutation Assay of PCA in Bacteria, DACO: 4.8,Document K,IIA 5.8
1839388	2008, 28-Day Oral Toxicity (Gavage) Study in the Wistar Rat, DACO: 4.8, Document K,IIA 5.8
1839391	2005, Acute Oral Toxicity Study of PCA in Rats, DACO: 4.8, Document K,IIA 5.8
1839392	2007, Mouse Lymphoma TK Assay (MLA) of DM-PCA, DACO: 4.8, Document K,IIA 5.8
1839393	2007, Chromosome Aberration Test with DM-PCA in Mammalian Cultured Cells, DACO: 4.8, Document K,IIA 5.8
1839394	2005, A Reverse Mutation Assay of DM-PCA in Bacteria, DACO: 4.8, Document K,IIA 5.8
1839396	2009, DM-PCA: 13 Weeks Dietary Toxicity Study in the Rat, DACO: 4.8, Document K,IIA 5.8
1839399	2008, DM-PCA: Preliminary Study by Dietary Administration to Han Wistar Rats for 2 Weeks, DACO: 4.8, Document K,IIA 5.8
1839400	2005, Acute Oral Toxicity Study of DM-PCA in Rats, DACO: 4.8, Document K,IIA 5.8
1927493	2010, Penthiopyrad: IPCS framework analysis for the relevance of a cancer mode of action for humans; Excess thyroid follicular epithelial adenoma formation in Wistar strain male rats, DACO: 4.8, Document K,IIA 5.5.4
1927494	2010, Historical Control Data Rat Carcinogenicity Harlan Laboratories, Ltd., DACO: 4.8, Document K,IIA 5.5.4
1927495	2010, Penthiopyrad: IPCS Framework Analysis for the Relevance of a Cancer Mode of Action for Humans; Excess Hepatocellular Adenoma Formationin ICR(Crj:CD-1) strain Male Mice, DACO: 4.8, Document K,IIA 5.5.4
1927496	2010, Historical Control Data Mouse Carcinogenicity (The Institute of Environmental Toxicology), DACO: 4.8, Document K,IIA 5.5.4

1909547	2010, Penthiopyrad Completeness Check/Screening 30-Day Response to Regulators, DACO: 0.8 (OECD)
1838747	2008, Penthiopyrad (DPX-LEM17) 200 g/L SC: <i>In Vitro</i> Kinetics in Rat and Human Skin, DACO: 5.8, Document K,IIIA 7.6.2
1838872	2009, Penthiopyrad (DPX-LEM17) 200 g/L EC: The <i>In Vitro</i> Percutaneous Absorption Through Rat and Human Skin, DACO: 5.8, Document K,IIIA 7.6.2
1874874	2010, Chlorothalonil/Penthiopyrad (DPX-QFA61) SC (250 g/L:100 g/L): <i>In Vitro</i> Kinetics of Penthiopyrad in Human Skin, DACO: 5.8, IIIA 7.6.2
1839401	2007, Dermal Absorption of 14C-MTF-753 (Technical) in the Rat (<i>in vivo</i>), DACO: 5.8, Document K,IIA 5.9.9
1840775	2009, Dissipation of Dislodgeable Foliar Residues of Penthiopyrad Following Applications of DPX-LEM17 20SC to Apple Trees - US, 2007, DACO: 5.9,6.4,7.8, Document K,IIA 6.10
1840778	2008, Dissipation of Dislodgeable Foliar Residues of Penthiopyrad Following Applications of DPX-LEM17 20SC to Cucurbits - US, 2007, DACO: 5.9,6.4,7.8, Document K,IIA 6.10
1839412	2009, A Metabolism Study with [14C-pyrazole] and [14C-thienyl] MTF-753 on Canola, DACO: 6.3, Document K,IIA 6.2.1
1839417	2009, A Metabolism Study with [14C-pyrazole] and [14C-thienyl] MTF-753 on Wheat, DACO: 6.3, Document K,IIA 6.2.1
1839419	2006, A Metabolism Study with [14C-pyrazole] and [14C-thienyl] MTF-753 on Cabbage, DACO: 6.3, Document K,IIA 6.2.1
1839421	2006, A Metabolism Study with [14C-pyrazole] and [14C-thienyl] MTF-753 on Tomatoes, DACO: 6.3, Document K,IIA 6.2.1
1839422	2006, A Metabolism Study with [14C-Pyrazole] and [14C-thienyl] MTF-753 on Grapes, DACO: 6.3, Document K,IIA 6.2.1
1839423	2009, [14C]MTF-753: Absorption, Distribution, Metabolism and Excretion after Repeated Oral Administration to Laying Hens, DACO: 6.2, Document K,IIA 6.2.2
1839424	2009, A Metabolism Study of [14C-pyrazole] and [14C-thienyl] MTF-753 in the Laying Hens, DACO: 6.2, 7.2.1, 7.2.4, Document K,IIA 4.3,IIA 6.2.2
1839426	2009, [14C]MTF-753: Absorption, Distribution, Metabolism and Excretion after Repeated Oral Administration to Lactating Goats, DACO: 6.2, Document K,IIA 6.2.3

1839428	2009, A metabolism study of [14C-pyrazole] and [14C-thienyl] MTF-753 in the lactating goat, DACO: 6.2, 7.2.1, 7.2.4, Document K,IIA 4.3,IIA 6.2.3
1839244	2008, Method Validation for the Determination of MTF-753 and its Metabolites in Tissues of Ruminants, DACO: 7.2.1, 7.2.4, Document K,IIA 4.3
1839245	2008, Method Validation for the Determination of MTF-753 and its Metabolites in Milk, DACO: 7.2.1, 7.2.4, Document K,IIA 4.3
1839246	2009, Independent Laboratory Validation of HLS Methods LDA0082 and LDA0083 for the Determination of Penthiopyrad and its Metabolites 753-A-OH and PAM in Foodstuffs of Animal Origin, using LC/MS/MS, DACO: 7.2.1, 7.2.4, Document K,IIA 4.3
1839247	2009, Validation of the DFG Method S19 for the Determination of Penthiopyrad and its Metabolites 753-A-OH and PAM in Foodstuffs of Animal Origin, using LC/MS/MS, DACO: 7.2.1, 7.2.4, Document K,IIA 4.3
1839248	2009, Extraction Efficiency of Proposed Residue Methods for MTF-753 and Metabolites in Wheat Straw and Cabbage Obtained from Metabolism Studies Treated with [14C-pyrazole] and [14C-thienyl] MTF-753, DACO: 7.2.1, 7.2.4, Document K,IIA 4.3
1839249	2009, Penthiopyrad (MTF-753) and its Metabolites 753-A-OH, PCA, PAM and DM-PCA Independent Laboratory Validation of Methodology for the Determination of Residues of Penthiopyrad (MTF-753) and its Metabolites 753-A-OH, PCA, PAM and DM-PCA in 3 Crop Types:
1839250	2008, Method Validation for the Determination of Penthiopyrad (MTF-753) and its Metabolites in Watery, Acidic, Dry and Oily Matrices Using LC-MS/MS, DACO: 7.2.1, 7.2.4, Document K,IIA 4.3
1839251	2009, United States Food and Drug Administration (FDA) Multiresidue Method (MRM) Testing for Penthiopyrad and 4 Metabolites, DACO: 7.2.1, 7.2.4, Document K,IIA 4.3
1839253	2009, Independent Laboratory Validation of the Analytical DFG Method S19 for the Determination of Residues of Penthiopyrad and its Metabolites 753-A-OH and PAM in Plant and Animal Matrices Using LC-MS/MS, DACO: 7.2.1, 7.2.4, Document K,IIA 4.3
1839254	2008, Validation according to DFG Method S 19 for the determination of penthiopyrad (MTF-753) and its metabolites in plant matrices (wheat (straw), oil seed rape (seeds), oranges (whole fruit) and grapes fruit)), DACO: 7.2.1, 7.2.4, Document K,IIA 4.3
1839255	2008, Assessment of the applicability of DFG Method S 19 for the determination of penthiopyrad (MTF-753) and its metabolites PCA, 753-A-OH and PAM, DACO: 7.2.1, 7.2.4, Document K,IIA 4.3

1839256	2009, First Amendment to the Report: Valdiation according to DFG Method S 19 for the determination of penthiopyrad and its metabolites in plant matrices (wheat (straw), oil seed rape (seeds), oranges (whole fruit) and grapes fruit)), DACO: 7.2.1, 7.2.4
1839257	2008, MTF-753, PCA, PAM and 753-A-OH Validation of Methdology for the Determination of Residues in Bovine Tissues (Liver, Muscle, Kidney and Fat) and Milk, DACO: 7.2.1, 7.2.4, 7.8, Document K, IIA 4.3, IIA 6.1.2
1839259	2008, MTF-753, PCA, PAM, and 753-A-OH Validation of Methodology for the Determination of Residues in Chicken (Liver, Muscle, Skin/Fat, Abdominal Fat and Eggs), DACO: 7.2.1, 7.2.4, 7.8, Document K,IIA 4.3,IIA 6.1.2
1839431	2009, MTF-753 (Penthiopyrad): Residues of MTF-753 and its Metabolites in Eggs and Tissues of Laying Hens, DACO: 7.3, 7.5, 7.6, Document K,IIA 6.1.1,IIA 6.4.1
1839432	2008, Residues of MTF-753 in Milk and Edible Tissues Following Oral Administration to Lactating Dairy Cattle, DACO: 7.3, 7.5, 7.6, Document K,IIA 6.1.1,IIA 6.4.2
1839436	2006, 14C-MTF-753: Simulated Processing, DACO: 7.4.5, Document K,IIA 6.5.1
1839437	2009, 14C-Penthiopyrad (14C-MTF-753) - Confined Accumulation of 14C-MTF- 753 in Rotational Crops, DACO: 7.4.4, Document K,IIA 6.6.2
1840767	2009, Validation and Description of an Analytical Method for the Analysis of Penthiopyrad and its Metabolites in Various Crop Commodities Used to Support European Union Magnitude of Residue Field Trials, DACO: 7.2.1, 7.2.4, Document K,IIA 4.3
1840769	2009, Validation and Description of an Analytical Method for the Analysis of Penthiopyrad and its Metabolites in Various Crop Commodities Used to Support North America Magnitude of Residue Field Trials, DACO: 7.2.1, 7.2.4, Document K,IIA 4.3
1840774	2009, Storage Stability of Penthiopyrad (MTF-753), PAM (IN-PGH45), 753-A-OH (IN-PGH53), 753-F-DO (IN-PGH59), PCA (IN-MR507) and DM-PCA (IN-DRJ75) in Representative Crop Commodities, DACO: 7.3, Document K,IIA 6.1.1
1840779	2009, Combined Decline and Magnitude of Residues of Penthiopyrad and its Metabolites in Field Tomatoes (Solanaceae - Fruiting Vegetables) Following Applications of DPX-LEM17 20 SC under Maximum Label Rate - Europe, 2007- 2008, DACO: 7.4.1, 7.4.2, 7.4.6

1840781	2009, Combined Decline and Magnitude of Residues of Penthiopyrad and its Metabolites in Protected Tomatoes (Solanaceae - Fruiting Vegetables) Following Applications of DPX-LEM17 20SC under Maximum Label Rate - Europe, 2007- 2008, DACO: 7.4.1, 7.4.2, 7.4.6
1840783	2009, Combined Decline and Magnitude of Residues of Penthiopyrad and its Metabolites in Tomatoes and Peppers (Fruiting Vegetables) Following Applications of DPX-LEM17 20SC under Maximum Label Rate - USA and Canada, 2008, DACO: 7.4.1, 7.4.2, 7.4.6, Document K
1840787	2008, Combined Decline and Magnitude of Residues of Penthiopyrad and its Metabolites in Cucumbers, Summer Squash, and Melons (Cucurbits) following Applications of DPX-LEM17 20SC under Maximum Label Rate - USA and Canada, 2007, DACO: 7.4.1, 7.4.2, 7.4.6
1840789	2009, Combined Decline and Magnitude of Residues of Penthiopyrad and its Metabolites in Field Cucumbers and Courgettes (Edible Peel Cucurbits) Following Applications of DPX-LEM17 20SC under Maximum Label Rate - Europe, 2007-2008, DACO: 7.4.1, 7.4.2, 7.4.6
1840791	2009, Combined Decline and Magnitude of Residues of Penthiopyrad and its Metabolites in Proctected Cucumbers and Courgettes (Edible Peel Cucurbits) following Applications of DPX-LEM17 20SC under Maximum Label Rate - Europe, 2007 - 2008, DACO: 7.4.1, 7.4.2
1840792	2009, Combined Decline and Magnitude of Residues of Penthiopyrad and its Metabolites in Apples and Pears (Pome Fruit) Following Applications of DPX- LEM17 20SC under Maximum Label Rate - Europe, 2007-2008, DACO: 7.4.1, 7.4.2, 7.4.6, Document K,IIA 6.3.3
1840793	2008, Combined Decline and Magnitude of Residues of Penthiopyrad and its Metabolites in Apples and Pears (Pome Fruit) Following Applications of DPX- LEM17 20SC Under Maximum Label Rate - USA and Canada, 2007, DACO: 7.4.1, 7.4.2, 7.4.6, Document K,IIA 6.3.3
1840827	2009, Magnitude of Residues of Penthiopyrad and its Metabolites in Peanuts and Their Processed Fractions Following Applications of DPX-LEM17 20SC Under Maximum Label Rate - USA, 2007, DACO: 7.4.5, Document K,IIA 6.3.4,IIA 6.5.4
1840828	2009, Calculation of Livestock Dietary Burdens Resulting from Penthiopyrad Residues in/on Feed Commodities, DACO: 7.5, 7.6, Document K,IIA 6.4.1
1840830	2008, Magnitude of Residues of Penthiopyrad and its Metabolites in Processed Fractions of Apples (Pome Fruit) Following Applications of DPX-LEM17 20SC under Maximum Label Rate - USA, 2007, DACO: 7.4.5, Document K,IIA 6.5.3

1840832	2009, Magnitude of Residues of Penthiopyrad and its Metabolites in Processed Fractions of Barley (Cereals) Following Applications of DPX-LEM17 20SC under Maximum Label Rate - Northern Europe, 2007, DACO: 7.4.5, Document K,IIA 6.5.3
1840834	2009, Magnitude of Residues of Penthiopyrad and its Metabolites in Processed Fractions of Canola (Oilseed) following Applications of DPX-LEM17 20SC under Maximum Label Rate - USA and Canada, 2007, DACO: 7.4.5, Document K,IIA 6.5.3
1840836	2009, Magnitude of Residues of Penthiopyrad and its Metabolites in Processed Fractions of Field Tomatoes (Solanaceae - Fruiting Vegetables) Following Applications of DPX-LEM17 20SC under Maximum Label Rate - Europe, 2007, DACO: 7.4.5, Document K,IIA 6.5.3
1840838	2009, Magnitude of Residues of Penthiopyrad and its Metabolites in Processed Fractions of Wheat (Cereals) Following Applications of DPX-LEM17 20SC under Maximum Label Rate - Northern Europe, 2007, DACO: 7.4.5, Document K,IIA 6.5.3
1840839	2009, Magnitude of Residues of Penthiopyrad and its Metabolites in Potatoes and Potato Processed Fractions following Applications of DPX-LEM17 20SC and 20EC at an Exaggerated Rate - USA and Canada, 2008, DACO: 7.4.5, Document K,IIA 6.5.4
1840841	2008, Magnitude of Residues of Penthiopyrad and its Metabolites in Processed Fractions of Plums (Stone Fruit) Following Application of DPX-LEM17 20SC under Maximum Label Rate - USA, 2007, DACO: 7.4.5, Document K,IIA 6.5.4
1840842	2009, Field Crop Rotation Study with DPX-LEM17 20SC - USA and Canada, 2007/8 (Interim Report), DACO: 7.4.4, Document K,IIA 6.6.3
1840844	2009, Interim Report - Field Rotation Study with DPX-LEM17 20SC - Europe 2007/8, DACO: 7.4.4, Document K,IIA 6.6.3
1840846	2009, Dietary Risk Assessments in Support of Annex I Inclusion and Maximum Residue Levels or Import Tolerances for Penthiopyrad in Europe - Food Commodities, DACO: 7.8, Document K,IIA 6.9.1
1840848	2009, Dietary Risk Assessments in Support of Penthiopyrad Registration in the United States, DACO: 7.8, Document K,IIA 6.9.1
1928231	2010, Validation and Description of an Analytical Method for the Analysis of Penthiopyrad and its Metabolites in Various Crop Commodities Used to Support North America Maganitude of Residue Field Trials, DACO: 7.2.1, 7.2.4, Document K,IIA 4.3

1928232	2010, Storage Stability of Penthiopyrad (MTF-753), PAM (IN-PGH45), 753-A-OH (IN-PGH53), 753-F-DO (IN-PGH59), PCA (IN-MR507) and DM-PCA (IN-DRJ75) in Representative Crop Commodities, DACO: 7.3,Document K,IIA 6.1.1
1928264	2010, Calculation of Livestock Dietary Burdens Resulting from Penthiopyrad Residues in/on Feed Commodities, DACO: 7.5,7.6, Document K,IIA 6.4.1
1928266	2010, Magnitude of Residues of Penthiopyrad and its Metabolites in Processed Commodities of Wheat following Applications of Penthiopyrad (DPX-LEM17) 200 g/L EC at an Exaggerated Rate USA and Canada, 2009, DACO: 7.4.5, Document K,IIA 6.5.3
1928268	2010, Magnitude of Residue of Penthiopyrad and its Metabolites in Processed Commodities of Soybeans following Application of Penthiopyrad (DPX-LEM17) 200 g/L at an Exaggerated Rate USA and Canada, 2009, DACO: 7.4.5, Document K,IIA 6.5.3
1928271	2010, Magnitude of Residues of Penthiopyrad and its Metabolites in Processed Commodities of Field Corn following Applications of Penthiopyrad (DPX- LEM17) 200 g/L EC at an Exaggerated Rate USA and Canada, 2009, DACO: 7.4.5, Document K,IIA 6.5.3
1928275	2010, Magnitude of Residues of Penthiopyrad and its Metabolites in Processed Commodities of Sugar Beets following Applications of Penthiopyrad (DPX- LEM17) 200 g/L EC at an Exaggerated Rate USA and Canada, 2009, DACO: 7.4.5, Document K,IIA 6.5.3
1928278	2009, Field Crop Rotation Study with DPX-LEM17 20SC USA and Canada, 2007-2009 Volume 1 of 2, DACO: 7.4.4,Document K,IIA 6.6.3
1928280	2009, Field Crop Rotation Study with DPX-LEM17 20SC USA and Canada, 2007-2009 Volume 2 of 2, DACO: 7.4.4, Document K,IIA 6.6.3
1928281	2009, Field Crop Rotation Study with DPX-LEM17 20SC Europe 2007-2009 Report No.: DuPont 22835, DACO: 7.4.4, Document K,IIA 6.6.3
1928282	2010, Dietary Risk Assessments in Support of Penthiopyrad Registration in the United States, DACO: 7.8, Document K,IIA 6.9.1
1928283	2010, Dietray Risk Assessments in Support of Annex I Inclusion and Maximum Residue Levels or Import Tolerances for Penthiopyrad in Europe Food Commodities, DACO: 7.8, Document K,IIA 6.9.1
1941994	2010, Combined Decline and Magnitude of Residues of Penthiopyrad and its Metabolites in Protected Peppers (Solanaceae - Fruiting Vegetables) Following Applications of Penthiopyrad (DPX-LEM17) 200 GL SC Under Maximum Label Rate - Europe, 2009, DACO: 7.4.1,

1976659	2010, Combined Decline and Magnitude of Residues of Penthiopyrad and its Metabolites in Protected Peppers (Solanaceae - Fruiting Vegetables) Following Applications of Penthiopyrad (DPX-LEM17) 200 G/L SC Under Maximum Label Rate Europe, 2009, DACO: 7.4.1
2027547	2009, Amended 14C-Penthiopyrad (14C-MTF-753): Confined Accumulation of 14C-MTF-753 in Rotational Crops, DACO: 7.4.4,Document K,IIA 6.6.2
2027548	2010, FIRST AMENDMENT TO REPORT: 14C-Penthiopyrad (14C-MTF-753): Confined Accumulation of 14C-MTF-753 in Rotational Crops, DACO: 7.4.4,Document K,IIA 6.6.2
2027549	2011, SECOND AMENDMENT TO REPORT: 14C-Penthiopyrad (14C-MTF- 753): Confined Accumulation of 14C-MTF-753 in Rotational Crops, DACO: 7.4.4,Document K,IIA 6.6.2
2108882	2009, Confined Accumulation of 14C-MTF-753 in Rotational Crops, DACO: 7.4.4,Document K,IIA 6.6.2

3.0 Environment

PMRA

Document

Number	Reference
1839216	1999, Determination of the Vapour Pressure of MTF-753, DACO: 2.14.9,Document K,IIA 2.3.1
1839225	2007, Determination of the NMR-, IR-, UV/VIS Absorption and Mass Spectra of MTF-753, DACO: 2.13.2,2.14.12,Document K,IIA 2.5.1.1,IIA 2.5.1.2,IIA 2.5.1.3,IIA 2.5.1.4
1839228	2008, Determination of the Water Solubility of MTF-753 Including Effect of pH and Temperature, DACO: 2.14.7,Document K,IIA 2.6
1839234	2008, Deternination of the Partition Coeffcient (N-Octanol/Water) of MTF-753 Including Effect of pH and Temperature, DACO: 2.14.11,Document K,IIA 2.8.1
1839239	1999, Determination of the Dissociation Constant of MTF-753 in Water, DACO: 2.14.10,8.2.3.2,Document K,IIA 2.9.5
1839235	2006, Hydrolysis Behaviour of MTF-753, DACO: 8.2.3.2, Document K, IIA 2.9.1
1839236	1999, Hydrolysis Determination of MTF-753 at Different pH Values, DACO: 8.2.3.2,Document K,IIA 2.9.1
1839237	1999, Aqueous Photolysis of MTF-753 under Laboratory Conditions, DACO: 8.2.3.3.2,Document K,IIA 2.9.2
1839448	2008, 14C-MTF-754: Degradation and Metabolism in One North American Soil Incubated Under Aerobic Conditions, DACO: 8.2.3.4.2,Document K,IIA 7.1.1,IIA 7.2.1,IIA 7.2.2
---------	---
1839449	2009, First Amendment to Report: 14C-MTF-753: Degradation and Metabolism in Four Soils Incubated Under Aerobic Conditions, DACO: 8.2.3.4.2,Document K,IIA 7.1.1,IIA 7.2.1,IIA 7.2.2
1839450	2008, 14C-MTF-753: Degradation and Metabolism in Four Soils Incubated Under Aerobic Conditions, DACO: 8.2.3.4.2,Document K,IIA 7.1.1,IIA 7.2.1,IIA 7.2.2
1839454	2007, 14C-MTF-753: Degradation and Metabolism in One Soil Incubated Under Anaerobic Conditions, DACO: 8.2.3.4.4,Document K,IIA 7.1.2,IIA 7.2.4
1839456	2008, 14C-MTF-753: Phototransformation on Soil Surfaces under Laboratory Conditions, DACO: 8.2.3.3.1,Document K,IIA 7.1.3
1839458	2009, 14C-DM-PCA Rate and Route of Degradation and Time-Dependent Sorption in Four Soils, DACO: 8.2.3.4.2,8.2.4.2,Document K,IIA 7.2.3,IIA 7.4.2
1839460	2007, 14C-MTF-753: Absorption/Desorption on Soils, DACO: 8.2.4.2, Document K,IIA 7.4.1
1839463	2009, Determination of the Adsorption Coefficient (Koc) for PAM using a Batch Equilibrium Method, DACO: 8.2.4.2, Document K, IIA 7.4.2
1839468	2008, PCA Estimation of the Adsorption Coefficient on Soil using High Performance Liquid Chromatography (HPLC), DACO: 8.2.4.2,Document K,IIA 7.4.2
1839470	2008, 14C-MTF-753: Route and Rate of Degradation in Aerobic Aquatic Sediment Systems, DACO: 8.2.3.5.2,8.2.3.5.4,Document K,IIA 7.8.1
1839471	2007, 14C-MTF-753: Route and Rate of Degradation in an Anaerobic Aquatic Sediment System, DACO: 8.2.3.5.5,8.2.3.5.6,Document K,IIA 7.8.2
1840860	2008, Terrestrial Field Dissipation of Penthiopyrad (MTF-753) in Washington, US, DACO 8.3.3.2, Document K, IIA 7.3.1
1840865	2008, Terrestrial field dissipation of penthiopyrad (MTF-753) on bare soil in Saskatchewan, Canada, DACO 8.3.2.1, Document K, IIA 7.3.1
1840864	2008, Terrestrial field dissipation of penthiopyrad (MTF-753) on bare soil in Ontario, Canada, DACO 8.3.2.1, Document K, IIA 7.3.1
1840868	2009, Terrestrial field dissipation of penthiopyrad (MTF-753) fungicide on turf in New York, 2007, USA, DACO 8.3.3.2, Document K, IIA 7.3.1

1839492	2009, MTF-753: An Acute Oral Toxicity Study with the Zebra Finch (Poephila guttata), DACO: 9.6.2.1,9.6.2.2,9.6.2.3,Document K,IIA 8.1.1
1839493	2005, MTF-753: An Acute Oral Toxicity Study with the Northern Bobwhite, DACO: 9.6.2.1,9.6.2.2,9.6.2.3,Document K,IIA 8.1.1
1839496	2008, MTF-753: A Dietary LC50 Study with the Northern Bobwhite, DACO: 9.6.2.4,9.6.2.5,Document K,IIA 8.1.2
1839498	2008, MTF-753: A Dietary LC50 Study with the Mallard, DACO: 9.6.2.6,Document K,IIA 8.1.3
1839502	2008, MTF-753: A Reproduction Study with the Mallard, DACO: 9.6.3.1,9.6.3.2,9.6.3.3,Document K,IIA 8.1.4
1839506	2008, MTF-753: A Reproduction Study with the Northern Bobwhite, DACO: 9.6.3.1,9.6.3.2,9.6.3.3,Document K,IIA 8.1.4
1839522	2008, MTF-753: A 96-Hour Shell Deposition Test with the Eastern Oyster (Crassostrea virginica), DACO: 9.4.2,9.4.3,9.4.4,Document K,IIA 8.11.1
1839523	2007, MTF-753: A 96-Hour Static-Renewal Acute Toxicity Test with the Saltwater Mysid (Americamysis bahia), DACO: 9.4.2,9.4.3,9.4.4,Document K,IIA 8.11.1
1839526	2007, MTF-753: A 96-Hour Static-Renewal Acute Toxicity Test with the Sheepshead Minnow (Cyprinodon variegatus), DACO: 9.5.2.4.1,Document K,IIA 8.11.2
1839534	2008, MTF-753 20SC: A Toxicity Test to Determine the Effects of the Test Substance on Vegetative Vigor of Ten Species of Plants, DACO: 9.9,Document K,IIA 8.14.1
1839536	2008, MTF-753 20SC: A Toxicity Test to Determine the Effects of the Test Substance on Seedling Emergence of Ten Species of Plants, DACO: 9.9,Document K,IIA 8.14.1
1839553	2007, MTF-753: A 96-Hour Static Acute Toxicity Test with the Rainbow Trout (Oncorhynchus mykiss), DACO: 9.5.2.1,9.5.2.3,Document K,IIA 8.2.1.1
1839555	2009, Penthiopyrad: A 96-Hour Static-Renewal Acute Toxicity Test with the Fathead Minnow (Pimephales promelas), DACO: 9.5.2.2,9.5.2.3,Document K,IIA 8.2.1.2
1839557	2007, MTF-753: A 96-Hour Static Acute Toxicity Test with the Bluegill (Lepomis macrochirus), DACO: 9.5.2.2,9.5.2.3,Document K,IIA 8.2.1.2
1839558	2005, A 96-Hour Acute Toxicity Test of MTF-753 with Common Carp, DACO: 9.5.2.2,9.5.2.3,Document K,IIA 8.2.1.2

1839566	2009, 753-T-DO: A 96-Hour Static Acute Toxicity Test with the Rainbow Trout (Oncorhynchus mykiss), DACO: 9.5.2.3,9.5.2.4,Document K,IIA 8.2.1.3
1839568	2009, 753-A-OH: A 96-Hour Static Acute Toxicity Test with the Rainbow Trout (Oncorhynchus mykiss), DACO: 9.5.2.3,9.5.2.4,Document K,IIA 8.2.1.3
1839570	2008, Acute Toxicity Study of PAM in Rainbow Trout, DACO: 9.5.2.3,9.5.2.4,Document K,IIA 8.2.1.3
1839573	2008, PCA: Acute Toxicity to Zebra Fish (Brachydanio rerio) in a 96-Hour Static Test, DACO: 9.5.2.3,9.5.2.4,Document K,IIA 8.2.1.3
1839574	2008, Assessment of Toxic Effects of DM-PCA in Rainbow Trout (Oncorhynchus mykiss) using the 96 Hour Static, Acute Limit Test, DACO: 9.5.2.3,9.5.2.4,Document K,IIA 8.2.1.3
1839575	2008, MTF-753: An Early Life-Stage Toxicity Test with the Fathead Minnow (Pimephales promelas), DACO: 9.5.3.1,Document K,IIA 8.2.4
1839578	2008, Bioconcentration: Flow-Through Fish Test with [14C]MTF-753 in Rainbow Trout (Oncorhynchus mykiss), DACO: 9.5.6,Document K,IIA 8.2.6.1
1839583	2009, 753-T-DO: A 48-hour Static Acute Toxicity Test with the Cladoceran (Daphnia magna), DACO: 9.3.2,Document K,IIA 8.3.1.1
1839586	2009, 753-A-OH: A 48-Hour Static Acute Toxicity Test with the Cladoceran (Daphnia magna), DACO: 9.3.2,Document K,IIA 8.3.1.1
1839588	2008, Acute Immobilization Study of PAM in Daphnia magna, DACO: 9.3.2,Document K,IIA 8.3.1.1
1839589	2008, PCA: Acute Toxicity to Daphnia magna in a 48-Hour Immobilization Test, DACO: 9.3.2,Document K,IIA 8.3.1.1
1839590	2008, Assessment of Toxic Effects of DM-PCA on Daphnia magna using the 48- Hour Static, Acute Limit Test, DACO: 9.3.2,Document K,IIA 8.3.1.1
1839592	2005, A 48-Hour Acute Immobilization Test of MTF-753 with Daphnia magna, DACO: 9.3.2,Document K,IIA 8.3.1.1
1839594	2007, MTF-753: A Flow-Through Life-Cycle Toxicity Test with the Cladoceran (Daphnia magna), DACO: 9.3.3,Document K,IIA 8.3.2.1
1839599	2009, 753-T-DO: A 96-Hour Toxicity Test with the Freshwater Alga (Pseudokirchneriella subcapitata), DACO: 9.8.2,9.8.3,Document K,IIA 8.4
1839600	2009, 753-A-OH: A 96-Hour Toxicity Test with the Freshwater Alga (Pseudokirchneriella subcapitata), DACO: 9.8.2,9.8.3,Document K,IIA 8.4

1839602	2008, Growth Inhibition Study of PAM in a Green Alga, DACO: 9.8.2,9.8.3,Document K,IIA 8.4
1839603	2008, PCA: Toxicity to Pseudokirchneriella subcapitata (Formerly Selenastrum capricornutum) in a 96-Hour Algal Growth Inhibition Test, DACO: 9.8.2,9.8.3,Document K,IIA 8.4
1839604	2008, Assessment of Effects of DM-PCA on the growth of the Single Cell Green Alga Desmodesmus subspicatus using the 96 Hour Static, Limit Test, DACO: 9.8.2,9.8.3,Document K,IIA 8.4
1839606	2009, Penthiopyrad: A 96-Hour Toxicity Test with the Freshwater Diatom (Navicula pelliculosa), DACO: 9.8.2,9.8.3,Document K,IIA 8.4
1839607	2009, Penthiopyrad: A 96-Hour Toxicity Test with the Freshwater Alga (Anabaena flos-aquae), DACO: 9.8.2,9.8.3,Document K,IIA 8.4
1839612	2009, Penthiopyrad: A 96-Hour Toxicity Test with the Marine Diatom (Skeletonema costatum), DACO: 9.8.2,9.8.3,Document K,IIA 8.4
1839615	2009, Penthiopyrad: A 96-Hour Toxicity Test with the Freshwataer Alga (Pseudokirchneriella subcapitata, DACO: 9.8.2,9.8.3,Document K,IIA 8.4
1839618	2008, MTF-753: A Prolonged Sediment Toxicity Test with Chironomus riparius Using Spiked Sediment, DACO: 9.9, Document K, IIA 8.5.2
1839624	2008, MTF-753: A 7-Day Toxicity Test with Duckweed (Lemna gibba G3), DACO: 9.8.5,Document K,IIA 8.6
1839627	2005, MTF-753: A Single-Dose Oral Laboratory Test to Evaluate the Effect on Survival of the Honeybee Apis mellifera L., DACO: 9.2.4.2,Document K,IIA 8.7.1
1839629	2005, MTF-753: A single-dose laboratory test to evaluate the effect of topical application on survival of the honeybee Apis mellifera L., DACO: 9.2.4.1,Document K,IIA 8.7.2
1839630	2007, A Tier I Laboratory Study to Determine the Median Lethal Rate of MTF- 753 20 SC to the Parasitic Wasp Aphidius Rhopalosiphi (Hymenoptera: Braconidae), DACO: 9.2.6,Document K,IIA 8.8.1.1
1839636	2007, A Tier I Laboratory Study to Estimate the Median Lethal Rate of MTF-753 20 SC to the Predatory Mite Typhlodromus Pyri (Acari: Phytoseiidae), DACO: 9.2.5,Document K,IIA 8.8.1.2
1839641	2008, Acute Toxicity of PAM on Earthworms, Eisenia fetida Using an Artifical Soil Test, DACO: 9.2.3.1,Document K,IIA 8.9.1

1839644	2008, Acute Toxicity of PCA on Earthworms, Eisenia fetida Using an Artificial Soil Test, DACO: 9.2.3.1,Document K,IIA 8.9.1
1839645	2008, Acute Toxicity of DM-PCA on Earthworms, Eisenia fetida Using an Artificial Soil Test - Limit Test -, DACO: 9.2.3.1,Document K,IIA 8.9.1
1839646	2006, Acute Toxicity of MTF-753 Technical on Earthworms, Eisenia fetida Using an Artificial Soil Test, DACO: 9.2.3.1,Document K,IIA 8.9.1
1839648	2009, Sublethal Toxicity of PAM to the Earthworm Eisenia fetida in Artificial Soil, DACO: 9.2.3.1,Document K,IIA 8.9.2
1839649	2009, Sublethal Toxicity of PCA to the Earthworm Eisenia fetida in Artificial Soil, DACO: 9.2.3.1,Document K,IIA 8.9.2
1839655	2008, Sublethal Toxicity of DM-PCA to the Earthworm Eisenia fetida in Artificial Soil, DACO: 9.2.3.1,Document K,IIA 8.9.2
1839657	2007, Effects of MTF-753 on Reproduction and Growth of Earthworms Eisenia fetida in Artifical Soil with 5% Peat, DACO: 9.2.3.1,Document K,IIA 8.9.2
1838754	2008, Penthiopyrad (DPX-LEM17) 200 g/L SC: A 96-Hour Static Acute Toxicity Test with the Rainbow Trout (Oncorhynchus mykiss), DACO: 9.5.4,Document K,IIIA 10.2.2.1
1838755	2007, Penthiopyrad (DPX-LEM17) 200 g/L SC: A 48-Hour Static Acute Toxicity Test with the Cladoceran (Daphnia magna), DACO: 9.3.2,Document K,IIIA 10.2.2.2
1838756	2009, Penthiopyrad (DPX-LEM17) 200 g/L SC: A 48-Hour Static Acute Toxicity Test with the Cladoceran (Daphnia magna), DACO: 9.3.2,Document K,IIIA 10.2.2.2
1838759	2008, Penthiopyrad (DPX-LEM17) 200 g/L SC: A 72-Hour Toxicity Test with the Freshwater Alga (Pseudokirchneriella subcapitata), DACO: 9.8.2,9.8.3,Document K,IIIA 10.2.2.3
1838760	2009, Penthiopyrad (DPX-LEM17) 200 g/L SC: A 96-Hour Static Acute Toxicity Test with the Saltwater Mysid (Americamysis bahia), DACO: 9.4.6,9.5.4,Document K,IIIA 10.2.2.4
1838761	2009, Penthiopyrad (DPX-LEM17) 200 g/L SC: A 96-Hour Static Acute Toxicity Test with the Sheepshead Minnow (Cyprinodon variegatus), DACO: 9.4.6,9.5.4,Document K,IIIA 10.2.2.4
1838762	2009, Penthiopyrad (DPX-LEM17) 200 g/L SC: A 96-Hour Shell Deposition Test with the Eastern Oyster (Crassostrea virginica), DACO: 9.4.7,Document K,IIIA 10.2.2.5

1838763	2009, Penthiopyrad (DPX-LEM17) 200 g/L SC: A 48-Hour Static Acute Toxicity Test with the Mayfly (Centroptilum triangulifer), DACO: 9.4.7,Document K,IIIA 10.2.2.5
1838764	2009, Penthiopyrad (DPX-LEM17) 200 g/L SC: A 48-Hour Static Acute Toxicity Test with Caddisflies (Chimarra atternima), DACO: 9.4.7,Document K,IIIA 10.2.2.5
1838765	2009, Penthiopyrad (DPX-LEM17) 200 g/L SC: A Semi-Static Life-Cycle Toxicity Test with the Cladoceran (Daphnia magna), DACO: 9.3.5,Document K,IIIA 10.2.6.1
1838766	2007, Penthiopyrad (DPX-LEM17) 200 g/L SC: Acute Oral and Contact Toxicity to the Honey Bee, Apis mellifera L., DACO: 9.2.8,Document K,IIIA 10.4.2.1
1838767	2008, Penthiopyrad (DPX-LEM17) 200 g/L SC: A Laboratory Test to Evaluate the Effects on the Predatory Mite Typhlodromus pyri (Acari, Phytoseiidae), DACO: 9.2.8,Document K,IIIA 10.5.1
1838768	2008, Penthiopyrad 200 g/L SC (DPX-LEM17-063): A Laboratory Test to Study the Effects on the Parasitoid Aphidius rhopalosiphi (Hymenoptera, Braconidae), DACO: 9.2.8,Document K,IIIA 10.5.1
1838769	2008, Penthiopyrad (DPX-LEM17) 200 g/L SC: An Extended Laboratory Rate Response Test to Study the Effects on the Predatory Mite, Typhlodromus pyri (Acari, Phytoseiidae), DACO: 9.2.8,Document K,IIIA 10.5.2
1838770	2008, Penthiopyrad (DPX-LEM17) 220 g/L SC: An Extended Laboratory Rate Response Test to Study the Effects on the Predatory Bug Orius laevigatus Fieber (Heteroptera, Anthocoridae), DACO: 9.2.8,Document K,IIIA 10.5.2
1838771	2008, Penthiopyrad (DPX-LEM17) 200 g/L SC: An Extended Laboratory Rate Response Test to Study the Effects on the Green Lacewing, Chrysoperla carnea Steph. (Chrysopidae, Neuroptera), DACO: 9.2.8,Document K,IIIA 10.5.2
1838772	2009, DPX-LEM17 20SC: A Field Study to Evaluate Effects on Predatory Mites (Acari-Phytoseiidae) in Apple Orchards in Germany and in Grape Vineyards in Italy, 2008, DACO: 9.2.9,Document K,IIIA 10.5.4
1838773	2007, Amended Final Report - Penthiopyrad (DPX-LEM17) 200 g/L SC: Acute Toxicity to the Earthworm, Eisenia fetida in Artificial Soil, DACO: 9.2.8,Document K,IIIA 10.6.2
1838774	2008, Penthiopyrad (DPX-LEM17) 200 g/L SC: Effects on Reproduction and Growth of the Earthworm, Eisenia fetida, in Artificial Soil, DACO: 9.2.8,Document K,IIIA 10.6.3
1838775	2007, Penthiopyrad (DPX-LEM17) 200 g/L SC: Assessment of the Effects on Soil Microflora, DACO: 9.2.8,Document K,IIIA 10.7.1

1838820	2009, Penthiopyrad (LEM17) 200 g/L SC: An Acute Oral Toxicity Study with the Northern Bobwhite (Colinus virginianus), DACO: 9.6.4,Document K,IIIA 10.1.6
1838853	2009, Penthiopyrad (DPX-LEM17) 200 g/L EC: A 96-hour Static Acute Toxicity Test with the Fathead Minnow (Pimephales promelas), DACO: 9.5.4,Document K,IIIA 10.2.2.1
1838854	2009, Penthiopyrad (DPX-LEM17) 200 g/L EC: A 48-Hour Static Acute Toxicity Test with the Cladoceran (Daphnia magna), DACO: 9.3.2,Document K,IIIA 10.2.2.2
1838855	2009, Penthiopyrad (DPX-LEM17) 200 g/L EC: Acute Oral and Contact Toxicity to the Honey Bee, Apis mellifera L., DACO: 9.2.8,Document K,IIIA 10.4.2.1
1838856	2008, Penthiopyrad (DPX-LEM17) 200 g/L EC: A Laboratory Test to Study the Effects on the Parasitoid Aphidius rhopalosiphi (Hymenoptera, Braconidae), DACO: 9.2.8,Document K,IIIA 10.5.1
1838857	2008, Penthiopyrad (DPX-LEM17) 200 g/L EC: A Laboratory Test to Evaluate the Effects on the Predatory Mite, Typhlodromus pyri (Acari, Phytoseiidae), DACO: 9.2.8,Document K,IIIA 10.5.1
1838858	2009, Penthiopyrad (DPX-LEM17) 200 g/L EC: An Extended Laboratory Rate Response Test to Study the Effects on the Predatory Mite, Typhlodromus pyri (Acari, Phytoseiidae), DACO: 9.2.8,Document K,IIIA 10.5.2
1838859	2009, Penthiopyrad (DPX-LEM17) 200 g/L EC: An Extended Laboratory Rate Response Test to Study the Effects on the Predatory Bug Orius laevigatus Fieber (Heteroptera, Anthocoridae), DACO: 9.2.8,Document K,IIIA 10.5.2
1838860	2009, Penthiopyrad (DPX-LEM17) 200 g/L EC: An Extended Laboratory Rate Response Test to Study the Effects on the Green Lacewing, Chrysoperla carnea Steph. (Chrysopidae, Neuroptera), DACO: 9.2.8,Document K,IIIA 10.5.2
1838901	2009, Chlorothalonil/Penthiopyrad (DPX-QFA61) SC (250 g/L:100 g/L): A 96- hour static acute toxicity test with the rainbow trout (Oncorhynchus mykiss), DACO: 9.5.4,IIIA 10.2.2.1
1838902	2009, Chlorothalonil/Penthiopyrad (DPX-QFA61) SC (250 g/L:100 g/L): A 48- hour static acute toxicity test with the cladoceran (Daphnia magna), DACO: 9.3.2,IIIA 10.2.2.2
1838903	2009, Chlorothalonil/Penthiopyrad (DPX-QFA61) SC (250 g/L:100 g/L): A 72- hour toxicity test with the freshwater alga (Pseudokirchneriella subcapitata), DACO: 9.8.2,9.8.3,IIIA 10.2.2.3

1838904	2009, Chlorothalonil/Penthiopyrad (DPX-QFA61) SC (250 g/L:100 g/L): Acute oral and contact toxicity to the honey bee, Apis mellifera L., DACO: 9.2.8,IIIA 10.4.2.1,IIIA 10.4.2.2
1838905	2008, Chlorothalonil/Penthiopyrad (DPX-QFA61) SC (250 g/L:100 g/L): A laboratory test to study the effects on the parasitoid Aphidius rhopalosiphi (Hymenoptera, Braconidae), DACO: 9.2.8,IIIA 10.5.1
1838906	2008, Chlorothalonil/Penthiopyrad (DPX-QFA61) SC (250 g/L:100 g/L): A laboratory test to evaluate the effects on the predatory mite, Typhlodromus pyri (Aacari, Phytoseiidae), DACO: 9.2.8,IIIA 10.5.1
1838907	2009, Chlorothalonil/Penthiopyrad (DPX-QFA61) SC (250 g/L:100 g/L): An extended laboratory test to evaluate the effects on the predatory mite, Typhlodromus pyri (Acari, Phytoseiidae), DACO: 9.2.8,IIIA 10.5.2
1838908	2009, Chlorothalonil/Penthiopyrad (DPX-QFA61) SC (250 g/L:100 g/L): An extended laboratory test to evaluate the effects on the lacewing, Chrysoperla carnea (Neuroptera: Chrysopidae), DACO: 9.2.8,IIIA 10.5.2
1838909	2009, Chlorothalonil/Penthiopyrad (DPX-QFA61) SC (250 g/L:100 g/L): An extended laboratory test to evaluate the effects on the predatory bug, Orius laevigatus (Heteroptera, Anthocoridae), DACO: 9.2.8,IIIA 10.5.2
1838910	2008, Chlorothalonil/penthiopyrad (DPX-QFA61) SC (250 g/L: 100 g/L): Acute toxicity to the earthworm, Eisenia fetida in artificial soil with 5% peat, DACO: 9.2.8,IIIA 10.6.2
1838911	2008, Chlorothalonil/Penthiopyrad (DPX-QFA61) SC (250 g/L : 100 g/L): Effects on reproduction and growth of the earthworm, Eisenia fetida, in artificial soil with 5% peat, DACO: 9.2.8,IIIA 10.6.3
1839313	2000, MTF-753: Acute Oral Toxicity Study in Rats, DACO: 4.2.1,Document K,IIA 5.2.1
1839339	2006, MTF-753: Embryo-Fetal Toxicity Study by Gavage Administration to Han Wistar Rats, DACO: 4.5.2,Document K,IIA 5.6.10
1839375	2005, Acute Oral Toxicity Study of 753-A-OH in Rats, DACO: 4.8,Document K,IIA 5.8
1839383	2005, Acute Oral Toxicity Study of PAM in Rats, DACO: 4.8,Document K,IIA 5.8
1839391	2005, Acute Oral Toxicity Study of PCA in Rats, DACO: 4.8,Document K,IIA 5.8
1839399	2008, DM-PCA: Preliminary Study by Dietary Administration to Han Wistar Rats for 2 Weeks, DACO: 4.8,Document K,IIA 5.8

1839400	2005, Acute Oral Toxicity Study of DM-PCA in Rats, DACO: 4.8, Document K,IIA 5.8
2.0	Value
PMRA Document Number	Reference
1838776	2009, Biological Assessment Dossier for DPC-LEM17 20SC - Canada, 2009, DACO: 10.1, 10.2.1, 10.2.2, 10.2.3.1, 10.2.3.2, 10.2.3.3, 10.3.1, 10.3.2, 10.3.3, 10.4, 10.5.1, 10.5.2, 10.5.3
1928619	2010, Biological Assessment Dossier for DPX-LEM17 SC20 - Canada, DACO: 10.1
1838847	2009, Biological Assessment Dossier for DPX-LEM17 20EC - Canada, DACO: 10.1, 10.2.1, 10.2.2, 10.2.3.1, 10.2.3.3, 10.3.1, 10.3.2, 10.3.3, 10.5.1, 10.5.2, 10.5.3
1928598	2010, Biological Assessment Dossier for DPX-LEM17 SC20 - Canada, DACO: 10.1
1838929	2009, Biological assessment dossier for DPX-QFA61 35SC (100 g/L penthiopyrad + 250 g/L chlorothalonil) - Canada, DACO: 12.7
1838965	2009, Biological assessment dossier for DPX-LEM17 50WG Canada, 2009, DACO: 12.7