

ERC2007-11

Evaluation Report

Pyrasulfotole

(publié aussi en français)

20 December 2007

This document is published by the Health Canada Pest Management Regulatory Agency. For further information, please contact:

Publications Pest Management Regulatory Agency Health Canada 2720 Riverside Drive A.L. 6605C Ottawa, Ontario K1A 0K9 Internet: pmra_publications@hc-sc.gc.ca www.pmra-arla.gc.ca Facsimile: 613-736-3758 Information Service: 1-800-267-6315 or 613-736-3799 pmra_infoserv@hc-sc.gc.ca

ISBN: 978-0-662-47456-2 (978-0-662-47457-9) Catalogue number: H113-26/2007-11E (H113-26/2007-11E-PDF)

© Her Majesty the Queen in Right of Canada, represented by the Minister of Health Canada, 2007

All rights reserved. No part of this information (publication or product) may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, or stored in a retrieval system, without prior written permission of the Minister of Public Works and Government Services Canada, Ottawa, Ontario K1A 0S5.

Table of Contents

OVER	VIEW	
	Regist	ration Decision for Pyrasulfotole1
	What I	Does Health Canada Consider When Making a Registration Decision?1
	What I	s Pyrasulfotole?
	Health	Considerations
	Enviro	nmental Considerations
	Value	Considerations
	Measu	res to Minimize Risk
	What A	Additional Scientific Information Is Required?
	Other]	Information
SCIEN	ICE EV	ALUATION
1.0	ThaTa	schnigel Crede Active Ingredient its Properties and Uses 10
1.0	1.1	cchnical Grade Active Ingredient, its Properties and Uses
	1.1	
	1.2	Physical and Chemical Properties of the Active Ingredients and
	1.3	End-Use Products10Directions for Use13
	1.3	1.3.1 AE 0317309 02 SE 06 Herbicide 13
	1 /	1.3.2 Infinity Herbicide
	1.4	Mode of Action of Pyrasulfotole
2.0	Metho	ds of Analysis
	2.1	Methods for Analysis of the Active Ingredient
	2.2	Method for Formulation Analysis
	2.3	Methods for Residue Analysis
		2.3.1 Multi-residue methods for residue analysis
		2.3.2 Methods for Residue Analysis of Plant and Plant Products
		2.3.3 Methods for Residue Analysis of Food of Animal Origin - Ruminant 15
3.0	-	on Human and Animal Health 15
	3.1	Toxicology Summary 15
	3.2	Determination of Acceptable Daily Intake
	3.3	Determination of Acute Reference Dose
	3.4	Occupational and Residential Risk Assessment
		3.4.1 Toxicological Endpoints
		3.4.2 Occupational Exposure and Risk 18
		3.4.3 Residential Exposure and Risk Assessment
	3.5	Food Residues Exposure Assessment
		3.5.1 Residues in Plant and Animal Foodstuffs
		3.5.2 Dietary Risk Assessment
		3.5.3 Aggregate Exposure and Risk
		3.5.4 Proposed Maximum Residue Limits

4.0	Impac	t on the	Environment	24
	4.1	Fate an	nd Behaviour in the Environment	24
	4.2	Effects	s on Non-Target Species	25
		4.2.1	Effects on Terrestrial Organisms	25
		4.2.2	Effects on Aquatic Organisms	27
5.0	Value			28
5.0	value		AE 0317309 02 SE 06 Herbicide	
		5.1.2	Acceptable Efficacy Claims for AE 0317309 02 SE 06 Herbicide	
		0.1.2	Applied as a Stand-Alone Herbicide Treatment	28
		5.1.3	Herbicide Tank Mix Combinations	
		5.1.4	Infinity Herbicide	
		5.1.5	Acceptable Efficacy Claims for Infinity Herbicide as a Stand-Alone	
		5.1.5	Herbicide Treatment	29
		5.1.6	Rainfastness	
		5.1.7	Water Volumes Including Aerial Application	
	5.2		oxicity to Host Plants	
	5.2	5.2.1	AE 0317309 02 SE 06 Herbicide	
		5.2.1	Acceptable Claims for Host Plants for AE 0317309 02 SE 06	
		5.2.2	Herbicide	30
		5.2.3	Infinity Herbicide	
		5.2.3	Acceptable Claims for Host Plants for Infinity Herbicide	
	5.3		t on Succeeding Crops	
	5.5	5.3.1	Acceptable Claims for Rotational Crops for pyrasulfotole	
	5.4		mics	
	5.4 5.5		nability	
	5.5	5.5.1	Survey of Alternatives	
		5.5.1	Compatibility with Current Management Practices Including	
		5.5.2	Integrated Pest Management	22
		5.5.3	Information on the Occurrence or Possible Occurrence of the	
		5.5.5		22
			Development of Resistance	33
6.0	Toxic	Substan	aces Management Policy Considerations	33
7.0	Summ	ary		34
	7.1		n Health and Safety	
	7.2		nmental Risk	
	7.3	Value		36
		7.3.1	AE 0317309 02 SE 06 Herbicide	36
		7.3.2	Infinity Herbicide	
8.0	Regula	atory De	ecision	37
List	f Abbro	viations		20
	ADDIE	viations		30

Appendix I Tab	les and Figures)
Table 1	Residue Analysis)
Table 2	Acute Toxicity of Pyrasulfotole and Its Associated End-use Products	
	(AE 0317309 02 SE 06 Herbicide and AE 0317309 03 EC23	
	Herbicide))
Table 3	Toxicity Profile of Technical Pyrasulfotole	
Table 4	Toxicology Endpoints for Use in Health Risk Assessment for	
	Pyrasulfotole	1
Table 5	Integrated Food Residue Chemistry Summary	;
Table 6	Food Residue Chemistry Overview of Metabolism Studies and Risk	
	Assessment	ŀ
Table 7	Fate and Behaviour in the Environment	;
Table 8	Toxicity to Non-Target Species)
Table 9	Screening Level Risk Assessment on Non-target Species	;
Table 10	Screening Level Risk Assessment for List 2 Petroleum Distillate	
	Formulant on Non-target Aquatic Species)
Table 11	Refined Risk Assessment on Non-Target Terrestrial Plant Species76)
References		;;

OVERVIEW

Registration Decision for Pyrasulfotole

Health Canada's Pest Management Regulatory Agency (PMRA), under the authority of the <u>Pest</u> <u>Control Products Act</u> and in accordance with the Pest Control Products Regulations, has granted conditional registration for Pyrasulfotole Technical Herbicide, Infinity Herbicide and AE 0317309 02 SE06 Herbicide containing the technical grade active ingredient pyrasulfotole to control a range of broadleaf weeds in wheat (spring, durum and winter), barley, oats, triticale, and timothy (grown for seed production).

Current scientific data from the applicant and information from other regulatory agencies were evaluated to determine if, under the proposed conditions of use, these products have value and do not present an unacceptable risk to human health or the environment.

This report summarizes the information evaluated and provides the results of the evaluation as well as the reasons for the conditional registration decision, with an outline of the additional scientific information required from the applicant. It also describes the conditions of registration that the applicant must meet to ensure that the health and environmental risks as well as the value of these pest control products are acceptable for their intended use.

This Overview describes the key points of the evaluation, while the Science Evaluation section provides detailed technical information on the human health, environmental and value assessments of Pyrasulfotole Technical Herbicide, Infinity Herbicide and AE 0317309 02 SE06 Herbicide.

What Does Health Canada Consider When Making a Registration Decision?

The key objective of the *Pest Control Products Act* is to prevent unacceptable risks¹ to people and the environment from the use of pest control products. Health or environmental risk is considered acceptable if there is reasonable certainty that no harm to human health, future generations or the environment will result from use or exposure to the product under its conditions or proposed conditions of registration. The Act also requires that products have value² when used according to the label directions. Conditions of registration may include special precautionary measures on the product label to further reduce risk.

¹ "Acceptable risks" as defined by subsection 2(2) of the *Pest Control Products Act*.

² "Value" as defined by subsection 2(1) of the *Pest Control Products Act* "...the product's actual or potential contribution to pest management, taking into account its conditions or proposed conditions of registration, and includes the product's (a) efficacy; (b) effect on host organisms in connection with which it is intended to be used; and (c) health, safety and environmental benefits and social and economic impact".

To reach its decisions, the PMRA applies modern, rigorous risk-assessment methods and policies. These methods consider the unique characteristics of sensitive subpopulations in humans (e.g. children) as well as organisms in the environment (e.g. those most sensitive to environmental contaminants). These methods and policies also consider the nature of the effects observed and the uncertainties present when predicting the impact of pesticides. For more information on how the PMRA regulates pesticides, the assessment process and risk-reduction programs, please visit the PMRA's website at <u>www.pmra-arla.gc.ca</u>.

What Is Pyrasulfotole?

Pyrasulfotole is a postemergence herbicide, i.e. a herbicide applied after the crop has emerged above the ground. It belongs to the chemical class of pyrazolones and is a pigment inhibitor or bleacher. Pyrasulfotole inhibits an enzyme in susceptible plants, which in turn disrupts the synthesis of essential pigments found in the leaves of all plants.

AE 0317309 02 SE 06 Herbicide contains the active ingredient pyrasulfatole only, while Infinity Herbicide (AE 0317309 03 EC23 Herbicide) is a coformulation of the active ingredients pyrasulfatole and bromoxynil.

Health Considerations

Can Approved Uses of Pyrasulfotole Affect Human Health?

Pyrasulfotole is unlikely to affect your health when used according to the label directions.

People could be exposed to pyrasulfotole through diet (food and water) or when handling and applying the product. When assessing health risks, the PMRA considers two key factors: the levels at which no health effects occur and the levels to which people may be exposed. The dose levels used to assess risks are established to protect the most sensitive human population (e.g. children and nursing mothers). Only uses for which the exposure is well below levels that cause no effects in animal testing are considered acceptable for registration.

Toxicology studies in laboratory animals describe potential health effects from varying levels of exposure to a chemical and identify the dose where no effects are observed. The health effects noted in animals occur at doses more than 100-times higher (and often much higher) than levels to which humans are normally exposed when using pyrasulfotole products according to the label directions.

Pyrasulfotole end-use products AE 0317309 02 SE 06 Herbicide and Infinity Herbicide caused eye and skin irritation in rabbits. Infinity Herbicide was moderately acutely toxic when tested in rats.

When tested in laboratory animals, technical pyrasulfotole was not genotoxic³, but, at very high dose levels, induced urinary bladder tumours in male and female mice and a very low incidence of eye tumours in male rats. A risk assessment was conducted to ensure that the level of human exposure is well below the lowest dose at which these effects occurred in animal tests.

At high dose levels, pyrasulfotole retarded the development of rat and rabbit fetuses. However, it did not affect reproductive performance in the rat. The rabbit teratology data demonstrated higher sensitivity of offspring when compared to the maternal animals. Studies did not provide evidence of teratogenicity in rats and rabbits or neurotoxicity in rats. There was no indication that pyrasulfotole affects the immune and endocrine systems.

Residues in Water and Food

Dietary risks from food and water are not of concern.

Aggregate dietary intake estimates (food plus water) revealed that the general population and children, the subpopulation which would ingest the most pyrasulfotole relative to body weight, are expected to be exposed to less than 59.7% of the acceptable daily intake. Based on these estimates, the chronic dietary risk from pyrasulfotole is not of concern for all population subgroups.

A single dose of pyrasulfotole is not likely to cause acute health effects in the general population (including infants and children). An aggregate (food and water) dietary intake estimate for females 13–49 used less than 3.8% of the acute reference dose, which is not a health concern.

The *Food and Drugs Act* prohibits the sale of food containing a pesticide residue that exceeds the established maximum residue limit (MRL). Pesticide MRLs are established for *Food and Drugs Act* purposes through the evaluation of scientific data under the *Pest Control Products Act*. Each MRL value defines the maximum concentration in parts per million (ppm) of a pesticide allowed in/on certain foods. Food containing a pesticide residue that does not exceed the established MRL does not pose an unacceptable health risk.

Residue trials conducted throughout Canada and the United States using products containing pyrasulfotole on wheat, barley, oat, triticale and timothy (grown for seed production only) were acceptable. The MRLs for this active ingredient can be found in the Science Evaluation section of this report.

³ Genotoxic chemicals are those capable of causing damage to DNA. Such damage can potentially lead to the formation of a malignant tumor, but DNA damage does not lead inevitably to the creation of cancerous cells.

Occupational Risks From Handling Pyrasulfotole

Occupational risks are not of concern when AE 0317309 02 SE 06 Herbicide or Infinity Herbicide are used according to the label directions, which include protective measures.

Farmers and pesticide applicators mixing, loading or applying AE 0317309 02 SE06 Herbicide or Infinity Herbicide as well as field workers re-entering freshly treated fields can come in direct contact with AE 0317309 02 SE06 Herbicide or Infinity Herbicide on the skin or through inhalation of spray mists. Therefore, the labels specify that a longsleeved shirt, long pants, shoes and socks must be worn during application as well as chemical-resistant gloves and goggles or face shield must be worn during mixing/loading, clean-up and repair activities for both end-use products. The label also requires that workers do not enter treated fields for up to 12 hours after application. Taking into consideration these label statements and that occupational exposure is expected to be brief, as this herbicide is applied only once per year, risk to farmers, custom applicators or workers is not a concern.

For bystanders, exposure is expected to be much less than that of field workers and is considered negligible. Therefore, health risks to bystanders are not of concern.

Environmental Considerations

What Happens When Pyrasulfotole Is Introduced Into the Environment?

Pyrasulfotole enters the environment when used as a herbicide on cereal crops. Pyrasulfotole is moderately persistent and mobile in soil and persistent in water. The major breakdown product AE B197555 (pyrasulfotole-benzoic acid) is moderately persistent in soil, and was only found in minor amounts in water. Pyrasulfotole and AE B197555 are expected to leach through the soil profile beyond 30 cm; therefore, they may be expected to enter groundwater. In surface waters, pyrasulfotole will partition to sediments and may be expected to accumulate in aquatic systems. Canadian field studies demonstrated that up to approximately 19% of applied pyrasulfotole is expected to carry over to the following growing season. Based on its low volatility, pyrasulfotole residues are not expected in the air.

Pyrasulfotole and its major breakdown product present a low risk to wild mammals, birds, earthworms, bees and other arthropods, aquatic invertebrates, fish, algae and aquatic plants. However, given that pyrasulfotole is a herbicide, it is expected to adversely affect terrestrial plants in adjacent areas. Therefore, buffer zones of 2 to 375 metres (depending on end-use product formulation and application equipment) are required to protect nearby plants from the effects of spray drift. The end-use product Infinity Herbicide also requires a 10-m aquatic buffer zone due to toxicity from bromoxynil in the formulation.

Value Considerations

What Is the Value of Pyrasulfotole?

Pyrasulfotole is a postemergence herbicide, i.e. a herbicide applied after the crop has emerged above the ground, to control lamb's quarters, redroot pigweed, wild buckwheat and volunteer canola (including herbicide tolerant varieties) in wheat (spring, durum and winter), barley, tame oats, triticale and timothy (grown for seed production).

A single application of pyrasulfotole provides effective control of lamb's quarters, redroot pigweed, wild buckwheat as well as volunteer canola in wheat (spring, durum and winter), barley, oats, triticale and timothy (grown for seed production). Pyrasulfotole is compatible with integrated weed management practices, conservation tillage, and conventional crop production systems. Pyrasulfotole is applied after weed emergence; therefore, growers are able to assess whether the herbicide is suitable for the particular weed species present. Pyrasulfotole also provides control of both conventional and herbicide tolerant canola types including glyphosate, glufosinate-ammonium and aceto-lactate synthase (ALS) tolerant canola types.

Measures to Minimize Risk

Labels or registered pesticide products include specific instructions for use. Directions include risk-reduction measures to protect human and environmental health. These directions must be followed by law. The PMRA is requiring key risk-reduction measures on the labels of AE 0317309 02 SE06 Herbicide and Infinity Herbicide.

Human Health

Because there is a concern with users coming into direct contact with AE 0317309 02 SE06 Herbicide or Infinity Herbicide via the skin or through inhalation of spray mists, a long-sleeved shirt, long pants, shoes and socks must be worn during application. In addition, chemical-resistant gloves and goggles or face shield must be worn during mixing/loading, clean-up and repair activities.

Environment

• Environmental Label Statements for Pyrasulfatole Technical Herbicide Label

Add to ENVIRONMENTAL HAZARDS:

TOXIC to aquatic organisms.

Add to **DIRECTIONS FOR USE**:

.

DO NOT discharge effluent containing this product into sewer systems, lakes, streams, ponds, estuaries, oceans or other waters.

Environmental Label Statements for AE 0317309 02 SE 06 Herbicide and Infinity Herbicide Labels:

Add to **ENVIRONMENTAL HAZARDS**:

TOXIC to aquatic organisms and non-target terrestrial plants. Observe buffer zones specified under DIRECTIONS FOR USE.

This product contains aromatic petroleum distillates that are toxic to aquatic organisms.

The use of this chemical may result in contamination of groundwater particularly in areas where soils are permeable (e.g. sandy soil) and/or the depth to the water table is shallow.

To reduce runoff from treated areas into aquatic habitats avoid application to areas with a moderate to steep slope, compacted soil or clay.

Avoid application when heavy rain is forecast.

Contamination of aquatic areas as a result of runoff may be reduced by including a vegetative strip between the treated area and the edge of the water body.

Add to **DIRECTIONS FOR USE:**

DO NOT apply this product directly to freshwater habitats (such as lakes, rivers, sloughs, ponds, prairie potholes, creeks, marshes, streams, reservoirs and wetlands), or estuarine/ marine habitats.

DO NOT contaminate irrigation or drinking water supplies or aquatic habitats by cleaning of equipment or disposal of wastes.

<u>Field sprayer application</u>: **DO NOT** apply during periods of dead calm. Avoid application of this product when winds are gusty. **DO NOT** apply with spray droplets smaller than the American Society of Agricultural and Biological Engineers (ASABE) medium classification. Boom height must be 60 cm or less above the crop or ground. <u>Aerial application</u>: **DO NOT** apply during periods of dead calm. Avoid application of this product when winds are gusty. **DO NOT** apply when wind speed is greater than 16 km/h at flying height at the site of application. **DO NOT** apply with spray droplets smaller than the American Society of Agricultural and Biological Engineers (ASABE) medium classification. To reduce drift caused by turbulent wingtip vortices, the nozzle distribution along the spray boom length **MUST NOT** exceed 65% of the wing- or rotorspan.

Buffer zones:

For AE 0317309 02 SE06 Herbicide:

Use of the following spray methods or equipment **DO NOT** require a buffer zone: handheld or backpack sprayer, inter-row hooded sprayer, spot treatment, soil drench and soil incorporation.

The buffer zones specified in the table below are required between the point of direct application and the closest downwind edge of sensitive terrestrial habitats (such as grasslands, forested areas, shelter belts, woodlots, hedgerows, riparian areas and shrublands).

Method of Application Crop		Buffer Zones (metres) Required for the Protection of Terrestrial Habitat:	
Field sprayer*	Wheat (spring, durum, winter), b timothy (seed production only)	2	
Aerial	Wheat (spring, durum, winter),	Fixed wing	85
	barley, oats, triticale, timothy (seed production only)	Rotary wing	70

For field sprayer application, buffer zones can be reduced with the use of drift reducing spray shields. When using a spray boom fitted with a full shield (shroud, curtain) that extends to the canopy or ground, the labelled buffer zone can be reduced by 70%. When using a spray boom where individual nozzles are fitted with cone-shaped shields that are no more than 30 cm above the canopy or ground, the labelled buffer zone can be reduced by 30%.

For Infinity Herbicide:

Use of the following spray methods or equipment **DO NOT** require a buffer zone: handheld or backpack sprayer, inter-row hooded sprayer, spot treatment, soil drench and soil incorporation.

The buffer zones specified in the table below are required between the point of direct application and the closest downwind edge of sensitive terrestrial habitats (such as grasslands, forested areas, shelter belts, woodlots, hedgerows, riparian areas and shrublands) and sensitive freshwater habitats (such as lakes, rivers, sloughs, ponds, prairie potholes, creeks, marshes, streams, reservoirs and wetlands).

	Сгор		Buffer Zones (n	netres) Required for t	he Protection of:
Method of			Freshwater Habitat of Depths:		Terrestrial
Application			Less than 1 m	Greater than 1 m	Habitat
Field sprayer*	Wheat (spring, durum, winter), barley, triticale, timothy (seed production only)		1	1	5
Aerial	Wheat (spring, durum, winter),	Fixed wing	10	1	375
barley, triticale, timothy (seed production only)		Rotary wing	10	1	225

For field sprayer application, buffer zones can be reduced with the use of drift reducing spray shields. When using a spray boom fitted with a full shield (shroud, curtain) that extends to the canopy or ground, the labelled buffer zone can be reduced by 70%. When using a spray boom where individual nozzles are fitted with cone-shaped shields that are no more than 30 cm above the canopy or ground, the labelled buffer zone can be reduced by 30%.

When a tank mixture is used, consult the labels of the tank-mix partners and observe the largest (most restrictive) buffer zone of the products involved in the tank mixture.

What Additional Scientific Information Is Required?

Although the risks and value have been found acceptable when all risk-reduction measures are followed, the applicant must submit additional scientific information as a condition of registration. More details are presented in the Science Evaluation section of this report or in the Section 12 Notice associated with these conditional registrations. The applicant must submit the following information within the time frames indicated.

Human Health

• An enforcement method that quantifies the parent pyrasulfotole and the metabolite pyrasulfotole-desmethyl in animal matrices. The applicant must submit this information no later than 1 September 2009.

Environment

- Provide the $\log K_{ow}$ for AE B197555 to demonstrate that this transformation product is not bioaccumulative according to Toxic Substances Management Policy Track1 criteria.
- Due to the pyrasulfotole's persistence in water and ability to partition to sediments, a chronic toxicity study with a benthic invertebrate species, such as chironomids (DACO 9.3.4—Laboratory Studies with Other Species) is required. The study must conform to standard international guidelines (e.g. United States Environmenal Protection Agency, Organisation for Economic Co-operation and Development, ASTM International, Environment Canada) and be conducted under good laboratory practice. The applicant must submit this information no later than 1 September 2009.

Other Information

As these conditional registrations relate to a decision on which the public must be consulted⁴, the PMRA will publish a consultation document when there is a proposed decision on the applications to convert the conditional registrations to full registrations or on the applications to renew the conditional registrations, whichever occurs first.

The test data cited in this Evaluation Report (i.e. the test data relevant in supporting the registration decision) will be made available for public inspection when the decision is made to convert the conditional registrations to full registrations or to renew the conditional registrations (following public consultation). If more information is required, please contact the PMRA's Pest Management Information Service by phone (1-800-267-6315) or by e-mail (pmra_infoserv@hc-sc.gc.ca).

As per subsection 28(1) of the *Pest Control Products Act*.

SCIENCE EVALUATION

Pyrasulfotole

1.0 The Technical Grade Active Ingredient, its Properties and Uses

1.1 Identity of the Technical Grade Active Ingredient

Active substance	Pyrasulfotole
Function	Herbicide
Chemical name	
1. International Union of Pure and Applied Chemistry (IUPAC)	(5-Hydroxy-1,3-dimethylpyrazol-4-yl)(α , α , α -trifluoro-2-mesyl- <i>p</i> -tolyl)methanone
2. Chemical Abstracts Service (CAS)	(5-Hydroxy-1,3-dimethyl-1 <i>H</i> -pyrazol-4-yl)[2- (methylsulfonyl)-4-(trifluoromethyl)phenyl]methanone
CAS number	365400-11-9
Molecular formula	$C_{14}H_{13}F_3N_2O_4S$
Molecular weight	362.32 g/mol
Structural formula	H_3CO_2S O OH F_3C H_3C N $-CH_3$

Purity of the technical grade	98.6% nominal (limits: 96.0-100%)
active ingredient	

1.2 Physical and Chemical Properties of the Active Ingredients and End-Use Products

Technical Product—Pyrasulfotole Technical Herbicide

Property	Result
Colour and physical state	Light beige powder
Odour	No characteristic odour
Melting point	201°C

Property	Result		
Boiling point or range	Not applicable		
Specific gravity	1.5 at 20°C		
Vapour pressure	2.7 × 10 ⁻⁷ Pa at 20°C 6.8 × 10 ⁻⁷ Pa at 25°C		
Henry's law constant at 20°C	4 2. 7 1. 9 2.	$\frac{\text{Value (Pa \cdot m^3 mol^{-1})}}{.33 \times 10^{-8}}$.42 × 10 ⁻⁹ .00 × 10 ⁻⁹ .25 × 10 ⁻⁸	
Ultraviolet (UV)—visible spectrum	$\lambda_{\rm max} = 306 \ {\rm nm}$		
Solubility in water at 20°C	4 7	<u>olubility g/L</u> 4.2 69.1 49.0 2.3	
Solubility in organic solvents at 20°C	Solvent ethanol n-hexane toluene dichloromethane acetone ethyl acetate dimethylsulfoxide	<u>Solubility (g/L)</u> 21.6 0.038 6.86 120 - 150 89.2 37.2 > 600	
<i>n</i> -Octanol–water partition coefficient (K_{ow})	4 (0 7 -1	o <u>g K_{ow}</u> 0.276 1.362 1.580	
Dissociation constant (pK_a)	4.2 ± 0.15		
Stability (temperature, metal)	No signifiant degradation over temperatures and over 2 weeks and ferric ions do not increase t	at 54°C. Iron, aluminum ions	

End-Use Products: AE 0317309 02 SE06 Herbicide and Infinity Herbicide (AE 0317309 03 EC23 Herbicide)

Property	AE 0317309 02 SE06 Herbicide	Infinity Herbicide	
Colour	Opaque light brown	Dark amber	
Odour	Aromatic solvent odour	Aromatic solvent odour.	
Physical state	Viscous liquid	Liquid	
Formulation type	Suspension	Emulsifiable concentrate	
Guarantee	Pyrasulfotole: 50 g/L nominal (limits: 47.5 g/L - 52.5 g/L)	Pyrasulfotole: 37.5 g/L (limits: 35.8 g/L - 39.5 g/L) Bromoxynil: 210 g/L (limits: 204 g/L - 216 g/L)	
Container material and description	Fluorinated (barrier) high density polyethylene (HDPE) or HDPE/nylon coextruded bottles/jars, 1 L	Plastic 1 L - Bulk	
Density	1.1441 g/cm ³ at 20°C	1.1447 g/cm ³ at 20°C	
pH of 10% dispersion in water	4	3.9	
Oxidizing or reducing action	The product does not contain any oxidizing or reducing agents.	The product does not contain any oxidizing or reducing agents.	
Storage stability	The product was shown to be stable for one year when stored under warehouse conditions in the commercial packaging.	The product was shown to be stable for one year when stored under warehouse conditions in the commercial packaging.	
Explodability	The product is not explosive.	The product is not explosive.	

1.3 Directions for Use

1.3.1 AE 0317309 02 SE 06 Herbicide

AE 0317309 02 SE 06 Herbicide is a selective herbicide for use as a post-emergence treatment on wheat (spring, durum and winter), barley, tame oats, triticale, and timothy (grown for seed production), for the control of lamb's quarters, redroot pigweed, wild buckwheat and volunteer canola (including herbicide tolerant varieties). The product is applied once per growing season at a rate of 50 g a.i./ha (Table 1.3.1.1) as a broadcast treatment with either ground or aerial application equipment.

Table 1.3.1.1 Weed Control Claims for AE 0317309 02 SE 06 Herbicide

Herbicide Rate	Weeds Controlled
50 g a.i./ha or 1 L product/ha	lamb's quarters, redroot pigweed, wild buckwheat, volunteer canola (conventional and herbicide tolerant)

1.3.2 Infinity Herbicide

Infinity Herbicide is a selective herbicide for use as a post-emergence treatment on wheat (spring, durum and winter), barley, triticale, and timothy (grown for seed production), for the control of a wide range of broadleaved weeds. The product is to be applied once per growing season at a rate of 205.5 g a.i./ha (31.125 g a.i./ha pyrasulfatole and 174.3 g a.i./ha bromoxynil) (Table 1.3.2.1) as a broadcast treatment with either ground or aerial application equipment.

Table 1.3.2.1 Weed Control Claims for Infinity Herbicide

Herbicide Rate	Weeds Controlled	Weeds Suppressed
205.5 g a.i./ha or 0.83 L product/ha (174.3 g/ha bromoxynil + 31.125 g/ha pyrasulfotole)	annual sow-thistle, chickweed, cleavers, flixweed, hemp-nettle, kochia, lamb's-quarters, pale smartweed, redroot pigweed, Russian thistle, shepherd's-purse, stinkweed, volunteer canola (includes conventional and herbicide tolerant), wild buckwheat, wild mustard	Canada thistle, dandelion, perennial sow-thistle

1.4 Mode of Action of Pyrasulfotole

Pyrasulfotole is classified as a Group 27 Herbicide (refer to Regulatory Directive <u>DIR99-06</u>, *Voluntary Pesticide Resistance-Management Labelling Based on Target Site/Mode of Action*). The primary mode of action of pyrasulfotole is as an inhibitor of the enzyme 4-hydroxyphenylpyruvate dioxygenase (4-HPPD) in susceptible plants, thereby disrupting the synthesis of carotenoids that are produced by plants to protect against oxidative and photolytic damage. Visible effects may not be observed for several days and appear as white splotches on the leaves of susceptible plants, as pyrasulfotole is a pigment inhibiting or bleaching herbicide.

2.0 Methods of Analysis

2.1 Methods for Analysis of the Active Ingredient

The methods provided for the analysis of the active ingredient and the impurities in Pyrasulfotole Technical Herbicide have been validated and assessed to be acceptable for the determinations.

2.2 Method for Formulation Analysis

The methods provided for the analysis of the active ingredient in the formulations have been validated and assessed to be acceptable for use as enforcement analytical methods.

2.3 Methods for Residue Analysis

2.3.1 Multi-residue methods for residue analysis

Pyrasulfotole and pyrasulfotol-desmethyl were tested according to Protocols A, B and C of the FDA PAM I testing procedures. Protocol A of the PAM I testing procedures is not suitable for the detection of pyrasulfotole or pyrasulfotole-desmethyl because neither compound is an *N*-methyl carbamate or is naturally fluorescent. Protocol B of the PAM I testing procedures is not suitable for the detection of pyrasulfotole-desmethyl although pyrasulfotole is partially recovered through Protocol B. Protocol C module DG-17 could be used for the detection of pyrasulfotole. No other module in Protocol C can be used reliably for the detection of either pyrasulfotole or pyrasulfotole-desmethyl.

2.3.2 Methods for Residue Analysis of Plant and Plant Products

A high-performance liquid chromatography–electrospray ionization with tandem mass spectrometry (LC-MS/MS) method was developed for the analysis of pyrasulfotole, pyrasulfotole-desmethyl and pyrasulfotole-benzoic acid in food of plant origin. This method fulfilled the requirements with regards to specificity, accuracy and precision at the respective method limit of quantitation. The limit of quantitation for each analyte in plant products was reported to be 0.01 ppm. Acceptable recoveries (70–120%) of pyrasulfotole residues were obtained in plant matrices. Extraction efficiency data demonstrated that the enforcement method can account for incurred residues of pyrasulfotole, pyrasulfotole-desmethyl, and pyrasulfotole-benzoic acid in wheat grain, forage and hay.

2.3.3 Methods for Residue Analysis of Food of Animal Origin - Ruminant

A high-performance liquid chromatography–electrospray ionization with tandem mass spectrometry (LC-MS/MS) method was developed for the analysis of pyrasulfotole in ruminant matrices. This method fulfilled the requirements with regards to specificity, accuracy and precision at the respective method limit of quantitation. The limit of quantitation of 0.01 ppm was demonstrated for bovine meat, kidney, liver, fat and 0.005 ppm for whole milk, skim milk and whipping cream. Acceptable recoveries (70–120%) of pyrasulfotole residues were obtained in ruminant matrices. Extraction efficiency data demonstrated that the enforcement method can account for incurred residues of pyrasulfotole in kidney, liver and whole milk. However, the residues of pyrasulfotole-desmethyl were not determined in livestock commodities.

2.3.3.1 Methods for Residue Analysis of Food of Animal Origin - Poultry

A high-performance liquid chromatography–electrospray ionization with tandem mass spectrometry (LC-MS/MS) method was developed for the analysis of pyrasulfotole-benzoic acid in poultry matrices. This method fulfilled the requirements with regards to specificity, accuracy and precision at the respective method limit of quantitation. The limit of quantitation of 0.01 ppm was demonstrated for chicken muscle, liver, skin and eggs. Acceptable recoveries (70–120%) of pyrasulfotole-benzoic acid residues were obtained in poultry matrices.

3.0 Impact on Human and Animal Health

3.1 Toxicology Summary

The PMRA conducted a detailed review of the toxicological database for pyrasulfotole. The database consists of an array of laboratory animal (*in vivo*) and cell culture (*in vitro*) toxicity studies currently required for health hazard assessment purposes. The studies were carried out in accordance with currently accepted international testing protocols and Good Laboratory Practices. The scientific quality of the data is acceptable, and the database is considered adequate to characterize the toxicity of this pest control product.

Technical pyrasulfotole is of low acute toxicity by the oral, dermal, and inhalation routes in rats. It was not irritating when applied to the skin of rabbits, but was mildly irritating to the rabbit eye. The skin sensitization testing in guinea pigs using the maximization method was deficient because of inadequate topical induction and challenge applications. Thus, technical pyrasulfotole is considered a potential dermal sensitizer in the absence of adequate data.

The formulations of pyrasulfotole, namely, AE 0317309 02 SE 06 Herbicide and Infinity Herbicide, are of low acute toxicity by the dermal, and inhalation routes in rats. AE 0317309 02 SE 06 Herbicide also has low acute oral toxicity potential in rats, but Infinity Herbicide is moderately acutely toxic by the oral route in rats. They are moderately irritating to the rabbit eye and are mildly irritating to the rabbit skin. The formulations are not dermal sensitizers when tested in guinea pigs based on the Buehler protocol.

The absorption, distribution, elimination, and metabolism of pyrasulfotole were studied in male Wistar rats following single oral and i.v. administration. The results indicated that pyrasulfotole was rapidly absorbed and excreted. Over 96% of the administered dose was excreted within 24 h, mostly in the urine. Fecal excretion represented 8-10% of the administered dose. No volatile residues were detected. Residue levels in tissues were low. Metabolite identification indicated that 87-95% of the administered dose was excreted unchanged as pyrasulfotole. Hydroxymethyl pyrasulfotole, desmethyl-pyrasulfotole, and AE B197555 were observed as minor metabolites in the urine and feces. Based on the metabolite profiles, the major metabolic pathway occurred via N-demethylation of pyrasulfotole.

A 4-week dermal toxicity study in rats showed no skin reaction following daily application of pyrasulfotole at $\leq 1000 \text{ mg/kg bw/d}$. However, repeat dermal application of pyrasulfotole resulted in pathology of the pancreas (focal degeneration) at $\geq 100 \text{ mg/kg bw/d}$ in males and at 1000 mg/kg bw/d in females. In the male, thyroid pathology (colloid alteration) as well as increase in plasma levels of cholesterol and triglycerides were also induced at 1000 mg/kg bw/d.

In short- and long-term dietary toxicity studies in mice, rats, and dogs, pyrasulfotole induced systemic toxicity at high dose levels. Systemic toxicity invariably involved reduced food consumption and lowered body weight and body-weight gains. Increased levels of cholesterol and/or triglycerides were also observed. Organ toxicity involved the kidneys (rat: pelvic dilatation, mottled, gritty content, dilated renal pelvis, urothelial hyperplasia, interstitial fibrosis, pelvic urolithiasis; de dog: gritty content, tubular eosinophilic globular intracytoplasmic inclusions, sub-/intra-urothelial infiltrate, pelvic mineralization and/or urothelial erosion), urinary bladder and/or urinary tract (rat: urolitheasis and/or urothelial hyperplasia; rat: urolitheasis and/or urothelial hyperplasia gritty content, diffuse urothelial hyperplasia, diffuse submucosal granulation, diffuse suburothelial mixed-cell infiltrate, stones; σ^{Q} dog: urolithiasis and/or tubular eosinophilic globular intracytoplasmic inclusions). In the rat, pyrasulfotole induced corneal opacity and associated neovascularization, as well as thyroid pathology (colloidal alteration). It was postulated that the eye effect observed in the rat was associated with increased accumulation of plasma and cellular tyrosine. There was evidence that pyrasulfotole inhibited the tyrosine catabolic enzyme HPPDase. In the mouse and dog, apparently there was an effective alternate pathway for the catabolism of tyrosine. Thus, there was no apparent increase in tyrosine levels in these species. In the rat, however, the alternate pathway was deficient resulting in the increase in tyrosine levels.

Long-term dietary toxicity studies in mice and rats demonstrated systemic toxicity similar to that seen in shorter term studies. In the mouse, dietary exposure to pyrasulfotole resulted in gallstones and urinary bladder transitional cell carcinoma/papilloma in both sexes. There was evidence that the observed tumours in the urinary bladder were due to the irritation effects of

stones, and were not induced via a genotoxic process. Also, these tumours were observed at dose levels that were considered excessive due to increased mortality. In the male rat, a squamous cell papilloma and a squamous cell carcinoma of the eye were observed.

No evidence of mutagenic potential of pyrasulfotole was observed in a battery of *in vitro* and *in vivo* genotoxicity assays assessing gene mutation and chromosome aberration.

When tested in the rat, pyrasulfotole did not affect the reproductive performance. However, there was evidence of reproductive toxicity based on the reduced rearing indices and increased pup mortality at dose levels that also induced maternal toxicity. Developmental studies in rats and rabbits did not demonstrate teratogenic potential of pyrasulfotole. However, increased sensitivity of the offspring (at a maternally non-toxic dose) was observed in the rabbit study. The potential developmental toxicity in rabbits indicated an increased susceptibility of offspring compared to parental animals. In addition, there was no NOAEL established on a severe toxicity end-point (increased mortality of the F_2 pups) observed in the rat reproductive toxicity study.

Pyrasulfotole was not neurotoxic as demonstrated in acute and 90-day neurotoxicity studies in rats.

In conclusion, the toxicological database for pyrasulfotole was considered adequate for human risk assessment.

3.2 Determination of Acceptable Daily Intake

The lowest NOAEL of 1 mg/kg bw/d was established in the combined 2-year dietary toxicity and oncogenicity study in the rat.

Based on the lowest NOAEL of 1 mg/kg bw/d and the standard safety/uncertainty factor of 100 (margin of exposure) to account for the inter- and intra-species variations, and the additional 10x factor for offspring sensitivity and the lack of a NOAEL for a severe toxicity end-point, an ADI of 0.001 mg/kg bw/d is determined.

The ADI proposed is calculated according to the following formula:

 $ADI = \frac{1 \text{ mg/kg bw/d}}{100 \text{ x } 10} = 0.001 \text{ mg/kg bw/d}$

3.3 Determination of Acute Reference Dose

No acute reference dose (ARfD) for pyrasulfotole is required for the general population because of its low acute toxicity potential.

For females age 13+, an ARfD of 0.013 mg/kg bw is determined based on the NOAEL of 3.8 mg/kg bw/d from the developmental neurotoxicity study in the rat (based on decreased food consumption and ocular opacity), the standard SF/UF of 100, and an additional SF/UF of 3x accounting for the increased sensitivity of offspring demonstrated in the rabbit teratology study.

The ARfD proposed is calculated according to the following formula:

$$ARfD = 3.8 \text{ mg/kg bw/d} = 0.013 \text{ mg/kg bw}$$

100 x 3

3.4 Occupational and Residential Risk Assessment

3.4.1 Toxicological Endpoints

Occupational exposure to AE 0317309 02 SE06 Herbicide or Infinity Herbicide is characterized as short-term duration via the dermal or inhalation route. For dermal occupational risk assessment, the NOAEL from the 4-week rat dermal study is recommended. The NOAEL derived from the 4-week dermal study is 10 mg/kg bw/day. For inhalation occupational risk assessment, the NOAEL from the rat oral developmental neurotoxicity study of 3.8 mg/kg bw/day is recommended. The target MOEs for dermal and inhalation risk assessment are 300, which is based on a 100-fold uncertainty factor to account for expected differences in toxicological response within and between species and an additional factor of 3-fold to account for sensitivity of offspring in developmental studies.

With the lack of a dermal absorption study, a default of 100% dermal absorption was assumed.

3.4.2 Occupational Exposure and Risk

3.4.2.1 Mixer/loader/applicator Exposure and Risk Assessment

In addition to containing the new active, pyrasulfotole, Infinity Herbicide also contains the currently registered active ingredient, bromoxynil. As a result of the proposed rate and uses for bromoxynil fitting within the currently registered rates, a new occupational risk assessment was not required.

Individuals have potential for exposure to pyrasulfotole during mixing, loading and application. Exposure is expected to be short term in duration for both products. The products are intended for application by ground with groundboom equipment, and by air using fixed-wing or rotary aircraft equipment. For groundboom application, mixing/loading may be accomplished with either an open pour system or a liquid closed mixing/loading system and the same person may be involved in mixing/loading, application and clean-up activities. For aerial application, mixing/loading can be accomplished with a liquid closed mixing/loading system. The product label advises that the pilot must not mix chemicals to be loaded onto the aircraft, although loading of premixed chemicals with a closed system is permitted. Application equipment is typically cleaned when moving from one crop to another.

Exposure estimates for mixers, loaders, applicators (M/L/A) are based on data from the Pesticide Handlers Exposure Database (PHED) version 1.1. The PHED is a compilation of generic mixer/loader and applicator passive dosimetry data with associated software which facilitates the generation of scenario-specific exposure estimates. To estimate exposure for each use scenario, appropriate subsets of A and B (and C grade for Groundboom, closed cab) were created from the database files of PHED for liquid open mixing and loading and closed mixing and loading , groundboom application open cab and closed cab, and aerial (fixed wing & rotary- wing)/ liquid application. All data were normalized for kg of active ingredient handled. Exposure estimates are presented on the basis of the best-fit measure of central tendency, i.e., summing the measure of central tendency for each body part which is most appropriate to the distribution of data for that body part. The confidence level is high.

The estimated worker exposure was based on worker's body weight of 70 kg and dermal absorption of 100%, for males and females. All mixer/loaders wear a single layer of protective clothing consisting of long-sleeved shirt and long pants and chemical-resistant gloves, while applicators wear a single layer of protective clothing (a long-sleeved shirt and long pants) and gloves (open cab) or no gloves (closed cab or aerial).

Occupational Scenario		ATPD (ha/ day) ^d	Exposure (µg ai/ kg bw/day) ^b		Margin of Exposure		
			Dermal	Inhalation	Dermal ^a	Inhalation ^b	Combined ^c
Ground	PHED Farmer- Open M/L + open cab (single layer, gloves)	150	8.96	0.27	1116	14074	1034
6	PHED Custom- Open M/L + open cab (single layer, gloves)	300	17.92	0.55	558	6909	516
	PHED Custom Open M/L	490	17.9	0.56	559	6786	516
Aerial	PHED Custom- Pilot (single layer, NO gloves)	490	3.38	0.0245	2959	155102	2904
	PHED Custom- Closed M/L (single layer, NO gloves) + Application	490	10.01	0.063	999	60317	983

 Table 3.4.2.1.1 : Mixer/Loader/Applicator Exposure Estimates and Risk Assessment for

 AE 0317309 02 SE06 Herbicide

a	A NOAEL of 10 mg/kg bw/d from the 4-week rat dermal study is recommended. Target MOE of 300. Application rate
	of 0.05 kg pyrasulfotole/ha, 100% dermal absorption default
	$MOE = \frac{NOAEL (10000 \ \mu g/kg \ bw/d)}{10000 \ \mu g/kg \ bw/d}$
	Exposure (µg ai/ kg bw/d)
b	A NOAEL of 3.8 mg/kg bw/d from the developmental neurotoxicity study is recommended. Target MOE of 300.
	$MOE = \frac{NOAEL (3800 \ \mu g/kg \ bw/d)}{100}$
	Exposure (µg ai/ kg bw/d)
с	MOE (combined)= <u>1</u>
	1/ MOE (dermal) + 1/MOE (inhalation)
d	Area Treated Per Day

Target MOEs were achieved for farmers and custom applicators applying AE 0317309 02 SE06 Herbicide by groundboom or aerially and are considered acceptable.

Table 3.4.2.1.2: Mixer/Loader/Applicator Exposure Estimates and Risk Assessment for Infinity Herbicide (AE 0317309 03 EC23 Herbicide)

	Occupational Scenario	ATPD (ha/ day) ^d	Exposure (µg ai/ kg bw/day)		Margin of Exposure		
			dermal	inhalation	dermal ^a	inhalation ^b	combined ^c
Ground	PHED Farmer- Open M/L+ open cab (single layer, gloves)	150	5.61	0.17	1782	22353	1650
9	PHED Custom- Open M/L+ open cab (single layer, gloves)	300	11.22	0.34	891	11066	824
	PHED Custom- Open M/L	490	11.2	0.35	893	10857	825
Aerial	PHED Custom- Pilot (single layer, NO gloves)	490	2.12	0.015	4717	25333	3976
a	PHED Custom- Closed M/L,(single layer, NO gloves) + Application	490	6.27	0.039	1595	97436	1569

A NOAEL of 10 mg/kg bw/d from the 4-week rat dermal study is recommended. Target MOE of 300. Application rate of 0.0313 kg pyrasulfotole/ha, 100% dermal absorption default

 $MOE = \frac{NOAEL (10000 \mu g/kg bw/d)}{10000 \mu g/kg bw/d}$

Exposure (<u>µg</u> ai/ kg bw/d)

^b A NOAEL of 3.8 mg/kg bw/d from the developmental neurotoxicity study is recommended. Target MOE of 300. MOE= <u>NOAEL (3800 µg/kg bw/d)</u>

1

Exposure (µg ai/ kg bw/d)

^c MOE (combined)=

1/ MOE (dermal) + 1/MOE (inhalation)

d Area Treated Per Day

Target MOEs are achieved for farmers and custom applicators applying Infinity Herbicide by groundboom or aerially and are considered acceptable.

3.4.2.2 Postapplication Worker Exposure and Risk

AE 0317309 02 SE06 Herbicide and Infinity Herbicide are post-emergent herbicides that may be applied to the crops when at the 1 leaf stage of growth to the early flag leaf stage. The majority of applications are expected to be made when the crop is at the 1-to 2-tiller growth stage, at which time the crops would be approximately 20 to 25 cm in height. Cereal and grass crops are not cultivated after post-emergent herbicide applications. Re-entry activity would consist of scouting which would typically occur within the first week of application. Duration of scouting activities is dependent upon several factors including field size and treated area.

A tier one risk assessment was performed for workers (scouting) entering field crops treated with one application of AE 0317309 02 SE 06 Herbicide and Infinity Herbicide based on a default value of 20% dislodgeable foliar residues. With the lack of a dermal absorption study, a default of 100% dermal absorption was assumed. A 12 hour REI was proposed.

Table 3.4.2.2.1: Post Applicator Exposure Estimate and Risk Assessment for AE 0317309 02 SE06 Herbicide

	Scenario	Transfer Coefficient (cm ² /hr) ^a	Exposure (µg/kg bw/day) ^b	MOE ^c	
	Scouting	1500	17.14	583	
a	^a Transfer coefficient from Science Advisory Council for Exposure (revised 7 August 2000)- field/row crop low/medium spring wheat-scouting (full foliage development)				
b	^b Application rate of 0.5 µg pyrasulfotole/cm ² , 100% dermal absorption default				
	Exposure= Application rate (µg/cm ²)* 20% * TC (cm ² /hr)* 8 hr/d * dermal absorption				
	70 kg bw				
с	A NOAEL of 10 mg/kg bw/d from the 4-week rat dermal study is recommended. Target MOE of 300.			AOE of 300.	
	МОЕ= <u>NOAEL (10000 µg/kg bw/d)</u>				
	Exposure (µg ai/ kg bw/d)				

The target MOEs was achieved for workers (scouting) entering crops treated with one application of AE 0317309 02 SE06 Herbicide.

Table 3.4.2.2.2: Post Applicator Exposure Estimate and Risk Assessment for Infinity Herbicide (AE 0317309 03 EC23 Herbicide)

Scenario	Transfer Coefficient (cm ² /hr) ^a	Exposure (µg/kg bw/day) ^b	MOE ^c			
Scouting	1500	10.73	932			
	^a Transfer coefficient from Science Advisory Council for Exposure (revised 7 August 2000)- field/row crop low/medium					
b Application rat	Application rate of 0.313 µg pyrasulfotole/cm ⁻ , 100% dermal absorption default					
Exposure= <u>Application rate (µg/cm²)* 20% dislodgeable* TC (cm²/hr)* 8 hrs/d * dermal absorption</u> 70 kg bw						
A NOAEL of 10 mg/kg bw/d from the 4-week rat dermal study is recommended. Target MOE of 300						
	$MOE = \frac{NOAEL (10000 \ \mu g/kg \ bw/d)}{10000 \ \mu g/kg \ bw/d}$					
Exposure (µg ai/ kg bw/d)						

The target MOE was achieved for workers (scouting) entering crops treated with one application of Infinity Herbicide.

3.4.3 Residential Exposure and Risk Assessment

3.4.3.1 Handler Exposure and Risk

There are no domestic products, therefore a residential handler assessment was not required.

3.4.3.2 Post-Application Exposure and Risk

There are no domestic products, therefore a residential post-application assessment was not required.

3.4.3.3 Bystander Exposure and Risk

For bystanders, exposure is expected to be much less than that of field workers and is considered negligible. Therefore, health risks to bystanders are not of concern.

3.5 Food Residues Exposure Assessment

3.5.1 Residues in Plant and Animal Foodstuffs

The residue definition for enforcement and risk assessment purposes in plant and animal commodities is pyrasulfotole and the metabolite pyrasulfotole-desmethyl. The data gathering/enforcement analytical methodologies, high-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS), are valid for the quantitation of the analytes of interest in plant commodities, beef and poultry matrices. The residues of pyrasulfotole are stable in soybean grain and wheat matrices when stored in a freezer at -10°C for up to 11 months (336 days). However, residues of pyrasulfotole-desmethyl decline by 0.12% per day in wheat forage and hay. Wheat was processed into bran, flour, middling, shorts, germ and aspirated grain fraction using simulated commercial procedures. There was concentration of the residues in aspirated grain fractions (32.8-fold) and in wheat bran (1.6-fold). Quantifiable residues of

pyrasulfotole and pyrasulfotole-desmethyl are expected at or above the limit of quantitation in meat by-products as a result of feeding livestock with crops treated with pyrasulfotole. Supervised residue trials conducted across the United States and Canada using end-use products containing pyrasulfotole in or on wheat, triticale, rye, barley, oats and timothy (grown for seed production only) are sufficient to support the proposed maximum residue limits. Residue data for wheat was extended to rye in support of an import maximum residue limit.

3.5.2 Dietary Risk Assessment

Acute and chronic dietary risk assessments were conducted using the Dietary Exposure Evaluation Model (DEEM–FCIDTM, Version 2.03).

3.5.2.1 Chronic Dietary Exposure Results and Characterization

The refined chronic analysis took into account the following: residues in cereal grains based on median values, anticipated residue values for all animal commodities, and experimental processing factors as available. The refined chronic dietary exposure from all supported pyrasulfotole food uses (alone) for the total population, including infants and children, and all representative population subgroups are up to 3.2% (0.000032 mg/kg bw/day) of the acceptable daily intake (ADI). Aggregate exposure from food and water is considered acceptable. The PMRA estimates that the refined chronic dietary exposure to pyrasulfotole from food and water is 59.7% (0.000597 mg/kg bw/day) of the ADI for all population subgroups.

3.5.2.2 Acute Dietary Exposure Results and Characterization

The following considerations were made in a refined acute analysis: 100% crop treated, experimental processing factors, residues of cereal grains based on median values and anticipated residue values for all animal commodities. The subgroup of females 13-49 years old had no acute dietary exposure values that exceed the PMRA's level of concern. The refined acute dietary exposure (food alone) for all supported pyrasulfotole registered commodities is estimated to be 0.2% (0.000029 mg/kg/day) of the ARfD for females 13-49 years old at the 95th percentile (deterministic). The refined aggregate exposure from food and water is considered acceptable: 3.8% of the ARfD (0.000495 mg/kg/day) for females 13-49 years old.

3.5.3 Aggregate Exposure and Risk

There are at present no residential uses for pyrasulfotole. The aggregate risk from pyrasulfotole consists of exposure from food and drinking water sources only. Aggregate risks were calculated based on acute (females 13-49 years old) and chronic endpoints.

3.5.4 Proposed Maximum Residue Limits

Commodity	Recommended MRL (ppm)
Milk	0.01
Wheat, barley, rye, triticale; eggs, meat, meat by-product of poultry; fat, meat of cattle, goats, hogs, sheep, horses; meat by-product of hogs	0.02
Meat by-product of cattle, goats, sheep, horses	0.06
Oats	0.08
Liver of cattle, goats, sheep, horses	0.35

Table 3.5.1 Proposed Maximum Residue Limits

The nature of the residues in animal and plant matrices, analytical methodology, field trial data, and the acute and chronic dietary risk estimates are summarized in Tables 1, 5 and 6 in Appendix I.

4.0 Impact on the Environment

4.1 Fate and Behaviour in the Environment

Pyrasulfotole enters the soil when used as a herbicide on cereal crops. Under field conditions relevant to Canada, half-lives (as estimated by taking 1/3 of the 90% dissipation time) range from 15 to 177 days. The benzoic acid metabolite AE B197555 is a major transformation product in soil only, with half-lives in the field ranging from 27 to 122 days. The route of dissipation of pyrasulfotole is primarily through transformation by soil organisms and by binding to soils. Pyrasulfotole mobility is dependent on soil pH. Mobility increases with soil pH, with the greatest mobility occurring at neutral pH levels (e.g., around pH 7). Field data indicate that both pyrasulfotole and its major transformation product are expected to leach through the soil profile beyond 30 cm and therefore, may be expected to enter groundwater.

Pyrasulfotole could reach water systems by spray drift or runoff. It is very soluble in water, and the solubility is greatest at neutral pH. Pyrasulfotole is considered to be stable and persistent in aerobic water-sediment systems. Under acidic conditions, pyrasulfotole will partition to sediments, but is not lost from the system. Under neutral conditions, pyrasulfotole remains more evenly distributed between water and sediment, but is very persistent (a half-life could not be determined). The transformation product AE B197555 is produced only in minor amounts in aerobic aquatic systems. Pyrasulfotole is stable in anaerobic aquatic systems, with no identifiable transformation products being produced. The major route of dissipation is through binding to sediments.

The low vapour pressure and Henry's law constant indicate that pyrasulfotole is non-volatile in the environment. Therefore, pyrasulfotole residues are not expected in the atmosphere, and long-range transport is not expected.

Data on the fate and behaviour of pyrasulfotole and its major transformation product are summarized in Table 7 of Appendix I. The transformation pathway for pyrasulfotole is summarized in Figure 4.1 of Appendix I.

4.2 Effects on Non-Target Species

The toxicity of pyrasulfotole and its transformation product AE B197555 to terrestrial and aquatic organisms is summarized in Table 8. To estimate risk of potential adverse effects on non-target species, a quotient method is used. The risk quotient is calculated by dividing the exposure estimate by a value representing the most sensitive toxic endpoint. Risk quotients are initially calculated for a screening-level assessment in order to obtain higher estimates of risk. The screening-level assessment is a realistic worst-case scenario. Low risk is predicted if the risk quotient is less than the trigger value of one. If the trigger values are exceeded under the realistic worst-case scenario, then a refinement of the assessment is necessary to evaluate how frequently impacts might be expected in the range of conditions that occur in the field. A refined assessment takes into consideration more realistic exposure scenarios (e.g., drift to non-target habitats and runoff to water bodies) and may consider different toxicity endpoints.

4.2.1 Effects on Terrestrial Organisms

Risk of pyrasulfotole to terrestrial organisms was based upon evaluation of toxicity data for three mammal and two bird species representing vertebrates (acute gavage, short- and long-term dietary exposure); one bee species, two other arthropods and one earthworm species representing invertebrates (acute or short-term exposure); and ten crop species representing plants (short-term exposure) (Table 9, Appendix I). Risk of the transformation product AE B197555 was based upon evaluation of toxicity data for one mammal and one bird species (short term dietary exposure), one earthworm species (acute and short-term exposure), and ten crop species (short term dietary exposure) (Table 9, Appendix 1).

For terrestrial vertebrates, pyrasulfotole did not cause mortality or clinical signs of toxicity in an acute (gavage) limit test. A short-term dietary dose-response test showed corneal damage in female rats at 1000 mg a.i./kg diet. Observable effects on pup mortality and parental systemic toxicity in mammals was reported following long-term dietary exposure at 30 mg a.i./kg diet. The transformation product AE B197555 was not toxic to mammals on an acute oral or short-term dietary basis. The end-use product Infinity Herbicide was acutely toxic at 2000 mg/kg bw, while AE 0317309 02 SE06 did not show any mortality at the same rate. For birds, long-term dietary exposure resulted in reproductive effects (reduced hatchability for bobwhite quail) at 594 mg a.i./kg dw diet, and in reduced weight gain in adult mallard ducks at 557 mg a.i./kg dw diet. However, risk quotients calculated under a realistic worst-case scenario indicate that pyrasulfotole presents a low risk to wild mammals and birds following acute, short-term or long-term exposure; all risk quotients are less than one (Table 9, Appendix I).

For terrestrial invertebrates, pyrasulfotole was not toxic to earthworms or bees in acute doseresponse studies, with LC_{50} values exceeding the highest dose (limit) tested. The transformation product AE B197555 was also non-toxic to earthworms on an acute or chronic basis. The formulated product AE 0317309 02 SE06 A103, however, was toxic to beneficial predatory and parasitic arthropods, resulting in adult mortality and reduced reproductive rates. The median lethality rate (LR_{50}) for parasitic arthropods was 80 g a.i./ha and reproduction was significantly affected at the lowest tested rate of 18 g a.i./ha. Risk quotients calculated under realistic worstcase scenarios indicate that pyrasulfotole presents a low risk to terrestrial invertebrates following acute or short-term exposure; all risk quotients are less than one (Table 9, Appendix I).

For terrestrial plants, seedling emergence and vegetative vigour were examined. Ten species of plants were exposed to the end-use products AE 0317309 02 SE06 A102 and AE 0317309 03 EC23 A8, and to the transformation product AE B197555. Exposure to the transformation product AE B197555 did not result in significant phytotoxic effects (i.e, greater than 25% reduction in health of the plant population) for any of the plant species tested. For the two formulated products, plant toxicity was expressed relative to the amount of pyrasulfotole applied. With one exception, no monocotyledons showed significant phytototoxic effects. However, both formulated products had significant effects on seedling emergence and vegetative vigour for all dicotyledonous species tested. It was noted that vegetative vigour was more sensitive than seedling emergence with plant dry weight being the most sensitive endpoint. There was differential toxicity between the two formulated products, with plants being more sensitive to AE 0317309 03 EC23 A8 (which also contains the active ingredient bromoxynil) with an ER_{25} (effective rate for 25% of the population) of 0.19 g a.i./ha as pyrasulfotole, compared to AE 0317309 02 SE06 A102, with an ER₂₅ of 0.91g a.i./ha as pyrasulfotole. Risk quotients for both end-use products calculated under a realistic worst-case scenario exceeded the trigger value of one for dicotyledonous species tested (Table 9, Appendix I).

A refined assessment considered that the most likely scenario of exposure to non-target plants is through drift (Table 11, Appendix I). Under this scenario, exposure to off-field (non-target) plants was refined using empirical spray drift curves to more accurately determine the amount of drift reaching plants 1 m downwind from the edge of the application swath. Using a standard field sprayer with a boom height of 60 cm above the crop, and an assumed ASAE spray quality of medium (i.e., a volume median diameter [VMD] of 250 - 350 μ m) for this herbicide application, only 6% of the on-target rate is expected to drift 1 m downwind from the edge of the applications and resulting Tier I risk quotients from drift (see Table 11, Appendix 1) still indicate a risk to off-site non-target dicot plants 1 m downwind from the edge of the field. The proposed end-use products AE 0317309 02 SE 06 Herbicide and Infinity Herbicide will therefore require buffer zones to reduce the risk of adverse effects in non-target plants (see section "Measures to Minimize Risk" in Overview, for full buffer zone requirements).

4.2.2 Effects on Aquatic Organisms

Risk of pyrasulfotole to aquatic organisms was based upon evaluation of toxicity data for eight freshwater species (one invertebrate, three fish, three algae and one vascular plant), and four estuarine/marine species (two invertebrates, one fish and one alga) (Table 9, Appendix I). Risk of the transformation product AE B197555 was based upon evaluation of toxicity data for three freshwater species (one invertebrate, one fish, and one alga) and one estuarine/marine invertebrate species (Table 9, Appendix I).

In the freshwater environment, pyrasulfotole and its transformation product AE B197555 were not acutely toxic to fish or invertebrate species; median lethal concentrations (LC_{50} s) were all greater than the test limits, with the exception of AE B197555 exposure to rainbow trout (96-hr LC_{50} of 160 mg/L) (Table 9, Appendix I). Long-term exposure to pyrasulfotole resulted in reduced survival for pelagic invertebrates at 25 mg a.i./L (LOEC), and reduced length for larval fish at 1.1 mg a.i./L (LOEC). The toxicity of pyrasulfotole to algae was variable (EC_{50} values ranged from 11 to 53 mg a.i./L), and was high for aquatic plants (EC_{50} of 0.028 mg a.i./L). The EC_{50} for the transformation product AE B197555 for green algae was greater than 9.4 mg/L (beyond the limit of the test).

In the marine environment, pyrasulfotole was acutely toxic to pelagic invertebrates (LC₅₀ of 1.1 mg a.i./L) and algae (EC₅₀ of 8.3 mg a.i./L), however, it was not acutely toxic to fish (LC₅₀ was greater than 100 mg a.i./L) (Table 9, Appendix I). The transformation product AE B197555 was not acutely toxic to pelagic invertebrates (LC₅₀ of 145 mg/L).

Risk quotients calculated under a realistic worst-case scenario indicate that pyrasulfotole presents a low risk to freshwater and marine invertebrates, fish and algae following short-term or long-term exposure; risk quotients are all less than one (Table 9, Appendix I).

The risk to aquatic organisms was also assessed for Infinity Herbicide, which is a mixture of bromoxynil (210 g a.i./L) and pyrasulfotole (37.5 g a.i./L). The following endpoints were used to assess bromoxynil risk to aquatic organisms - amphibians: NOEC = 9.0 μ g a.i./L for early life stage exposure to fathead minnow (*Pimephales promelas*); freshwater organisms: 1/10th LC₅₀ = 2.9 μ g a.i./L for bluegill sunfish (*Lepomis macrochirus*); marine organisms: 1/10th LC₅₀ = 17.0 μ g a.i./L for sheepshead minnow (*Cyprinidon variegatus*). These data were obtained from the current PMRA re-evaluation for bromoxynil, which is based on the 1998 US EPA Re-Evaluation Decision document. Risk quotients were determined based on the proposed Canadian use rate for Infinity Herbicide. For the proposed single application rate of 1 L/ha Infinity Herbicide, buffer zones are required adjacent to sensitive freshwater habitats (see section "Measures to Minimize Risk" in Overview, for full buffer zone requirements).

The proposed end-use products AE 0317309 02 SE 06 and Infinity Herbicides contain a List 2 petroleum distillate, which is toxic to aquatic organisms. The risk to aquatic organisms was determined for the use pattern with the highest use rate for the List 2 formulant . The PMRA level of concern (i.e., a risk quotient greater than one) was not exceeded for either invertebrates, fish or amphibians (Table 10, Appendix I).

5.0 Value

5.1.1 AE 0317309 02 SE 06 Herbicide

Efficacy data were submitted from 37 replicated field trials conducted over a 2-year period at several locations in Alberta, Saskatchewan, Manitoba, Ontario and Québec. Treatments were included at various rates to determine the lowest effective rate. The herbicide treatments were applied using small plot application equipment, and were within the growth stage range indicated on the label.

The efficacy of AE 0317309 02 SE 06 Herbicide was visually assessed as percent weed control and compared to an untreated weedy check. Observations were made up to four times throughout the growing season.

5.1.2 Acceptable Efficacy Claims for AE 0317309 02 SE 06 Herbicide Applied as a Stand-Alone Herbicide Treatment

The submitted efficacy data established the lowest effective rate for AE 0317309 02 SE 06 Herbicide applied alone, and support the weed control claims summarized in Table 5.1.1.1.

Table 5.1.1.1 Weed Control Claims for AE 0317309 02 SE 06 Herbicide

Herbicide Rate	Weeds Controlled		
50 g a.i./ha or 1 L product/ha	lamb's quarters, redroot pigweed, wild buckwheat, volunteer canola (conventional and herbicide tolerant)		

5.1.3 Herbicide Tank Mix Combinations

No tank mixtures with AE 0317309 02 SE06 were proposed.

5.1.4 Infinity Herbicide

Efficacy data were submitted from 184 replicated field trials conducted over a 2-year period at several locations in Alberta, Saskatchewan, Manitoba, Ontario and Québec. The herbicide treatments were applied using small plot application equipment, and were within the growth stage range indicated on the proposed label.

The efficacy of Infinity Herbicide was visually assessed as percent weed control and compared to an untreated weedy check. Observations were made up to four times throughout the growing season.

5.1.5 Acceptable Efficacy Claims for Infinity Herbicide as a Stand-Alone Herbicide Treatment

The submitted efficacy data support the weed control claims summarized in Table 5.1.5.1 for Infinity Herbicide applied alone.

Table 5.1.5.1	Weed Control and Suppression	Claims for Infinity Herbicide
---------------	------------------------------	-------------------------------

Herbicide Rate	Weeds Controlled	Weeds Suppressed
205.5 g a.i./ha or 0.83 L product/ha (174.3 g bromoxynil/ha + 31.125 g pyrosulfotole/ha)	annual sow-thistle, chickweed, cleavers, flixweed, hemp-nettle, kochia, lamb's-quarters, pale smartweed, redroot pigweed, Russian thistle, shepherd's-purse, stinkweed, volunteer canola (includes conventional and herbicide tolerant), wild buckwheat, wild mustard	Canada thistle, dandelion, perennial sow-thistle

5.1.6 Rainfastness

The data from three simulated rainfall trials, using overhead irrigation, were submitted in support of a one hour rainfast interval. Treatments of AE 0317309 02 SE 06 were applied at 30, 60, 120 and 240 minutes prior to a simulated rainfall event of 25 mm of water across the entire trial area. Efficacy was visually assessed up to three times during the growing season, and was reported as percent control on a species-specific basis.

5.1.6.1 Supported Rainfastness Claim

Similar efficacy was demonstrated for AE 0317309 02 SE 06 Herbicide with both a one and four hour interval between application and a simulated rainfall. The data support a rainfastness claim of one hour for AE 0317309 02 SE 06 Herbicide.

5.1.7 Water Volumes Including Aerial Application

The data from ground and simulated aerial application (low water volume) trials were submitted in support of a minimum spray volume of 46.8 L/ha (ground and air) for AE 0317309 02 SE 06 Herbicide and 28.1 L/ha (air) and 46.8 L/ha (ground) for Infinity Herbicide. Applications of AE 0317309 02 SE 06 Herbicide and Infinity Herbicide were made in 28.1 or 46.8 L/ha of water and compared to treatments made in higher water volumes. All applications were made by ground boom. In addition, the trials included a tank mixture of Puma¹²⁰ Super and Buctril M applied in 28.1 L/ha to demonstrate the weed control provided by a relevant registered commercial herbicide that is labelled for aerial application.

The data support the application of AE 0317309 02 SE 06 Herbicide in a minimum water volume of 46.8 L/ha for application with ground or aerial equipment.

The data support the application of Infinity Herbicide in a minimum water volume of 46.8 L/ha for application with ground equipment and 28.1 L/ha for application with aerial equipment.

5.2 Phytotoxicity to Host Plants

5.2.1 AE 0317309 02 SE 06 Herbicide

Data from 107 trials (26 trials on spring wheat, 22 trials on durum wheat, 15 trials on winter wheat, 22 trials on spring barley, 19 trials on tame oats, nine trials on triticale, and seven trials on timothy) conducted at multiple locations over a 2-year period in Alberta, Saskatchewan, Manitoba, Ontario and Québec, were submitted in support of the host crop tolerance claims. Some trials included multiple crops, and all trials included treatments of AE 0317309 02 SE06 Herbicide applied at the 2X rate.

Crop injury (%) was visually assessed up to three times during the growing season. Crop yield, expressed as a percentage of a weed-free check, was reported in 67 dedicated crop tolerance trials.

5.2.2 Acceptable Claims for Host Plants for AE 0317309 02 SE 06 Herbicide

Crop injury to wheat (spring, durum and winter), barley, oats, triticale, and timothy (grown for seed production) treated with AE 0317309 02 SE 06 Herbicide applied alone was always less than 5%. Crop yield was also comparable to registered commercial treatments.

5.2.3 Infinity Herbicide

Data from 222 trials (101 trials on spring wheat, 50 trials on durum wheat, 18 trials on winter wheat, 52 trials on spring barley, six trials on triticale, and six trials on timothy) conducted at multiple locations over a 2-year period in Alberta, Saskatchewan, Manitoba, Ontario and Québec, were submitted in support of the host crop tolerance claims. Some trials included multiple crops, and all trials included treatments of Infinity Herbicide applied at the 2X rate.

Crop injury (%) was visually assessed up to three times during the growing season. Crop yield, expressed as a percentage of a weed-free check, was reported in 67 dedicated crop tolerance trials.

5.2.4 Acceptable Claims for Host Plants for Infinity Herbicide

Crop injury to wheat (spring, durum and winter), barley, triticale, and timothy (grown for seed production) treated with Infinity Herbicide applied alone was always less than 10%. Crop yield was also comparable to registered commercial treatments.

5.3 Impact on Succeeding Crops

Rotational crop tolerance data were submitted from 37 trials that were initiated within one to two years following an application of pyrasulfotole. The number of trials in which tolerance was evaluated varied by rotational crop. Trials were conducted in Alberta, Saskatchewan, Manitoba or Ontario.

5.3.1 Acceptable Claims for Rotational Crops for pyrasulfotole

The crop injury and yield data support a rotational crop tolerance claim for the following crops planted in the year (10 months) after application of pyrasulfotole: alfalfa, barley, canaryseed, canola, field corn, durum and spring wheat, field pea, flax, soybeans and tame oats. The data also support lentils as a rotational crop planted 22 months after an application of pyrasulfotole.

5.4 Economics

Wheat is Canada's largest agri-food export. In 2005, wheat was grown on nearly 10.1 million hectares and produced about 25.6 million tonnes of grain. In 2003 and 2004, Canada exported \$CAD 2.826 and \$CAD 3.479 billion dollars worth of wheat, respectively.

In 2004, barley was grown on nearly 4.8 million hectares and produced about 13.2 million tonnes of grain. In terms of total farm cash receipts, barley was worth about \$CAD 434 million in 2004, and ranked sixth after wheat, canola, potatoes, corn, durum and soybeans.

In 2005, tame oats were grown on nearly 2 million hectares and produced about 3 million tonnes of grain. In 2004, the Canadian farm cash receipts for tame oat production totalled \$CAD 231 million.

In Canada, the total triticale production for 2004 was 80,000 tonnes. This total has increased over two and a half times since 2001, when triticale production totaled 31,200 tonnes.

Timothy production in Canada is directed towards the hay and seed markets. In the 2002-03 August to July crop year, about 180 thousand tonnes of compressed timothy were produced in Canada. In 2003, preliminary estimates suggest that approximately 5543 tonnes of timothy seed were exported.

Pyrasulfotole is the first Group 27 herbicide for use in cereal crops in Canada, providing growers with a weed control alternative, important from a herbicide resistance management standpoint. A coformulation of pyrasulfotole and bromoxynil (WSSA Group 6 herbicide) provides growers with a useful resistance management herbicide option for small grain cereals and timothy.

5.5 Sustainability

5.5.1 Survey of Alternatives

According to the applicant, wild buckwheat and volunteer canola (including herbicide tolerant varieties) are the key weeds controlled by pyrasulfotole applied alone. The key herbicide options currently available for post-emergence control of wild buckwheat and volunteer canola in spring wheat are summarized in Table 5.5.1.1.

Technical Grade	Fred was Dreadwate	Wood Cloims	Herbicide Classification		
Active Ingredient	End-use Products	Weed Claims	Group	Mode of Action	
florasulam + clopyralid/MCPA	Spectrum Herbicide Tank Mix	controls: wild buckwheat, volunteer canola (including Roundup Ready, Liberty Link and Smart herbicide tolerant varieties), lamb's quarters, redroot pigweed, plus other broadleaved weeds.	2, 4	Acetolactate synthase (ALS) inhibitor. Synthetic auxin.	
florasulam + MCPA	Frontline Herbicide Tank Mix	controls: wild buckwheat, volunteer canola (including all herbicide tolerant varieties), lamb's quarters, redroot pigweed, plus other broadleaved weeds.	2, 4	Acetolactate synthase (ALS) inhibitor. Synthetic auxin.	
fluroxypyr + clopyralid/MCPA	Prestige Herbicide Tank Mix	controls: wild buckwheat, volunteer canola, lamb's quarters, redroot pigweed, plus other broadleaved weeds.	4, 4	Synthetic auxin.	
bromoxynil/MCPA	Badge, Bromox 450M, Brominal M, Bromox 560, Buctril M, Buctril M, Mextrol 400M, Platinum 560 EC,	controls :wild buckwheat, volunteer rapeseed (including canola), lamb's quarters, redroot pigweed, plus other broadleaved weeds.	6, 4	Photosynthetic inhibitor (PSII). Synthetic auxin.	

Table 5.5.1.1	Alternative Herbicides for Wild Buckwheat and Volunteer Canola Control in
	Spring Wheat

5.5.2 Compatibility with Current Management Practices Including Integrated Pest Management

Pyrasulfotole offers broad-spectrum weed control when used as a post-emergence herbicide in wheat (spring, durum and winter), barley, tame oats, triticale and timothy (grown for seed production). It is compatible with integrated weed management practices because it controls a range of broadleaf weeds with a single application and because its post-emergence application timing permits an assessment of whether this herbicide is suitable for the particular weed species present in the field. It is compatible with both conservation tillage and conventional production systems.

5.5.3 Information on the Occurrence or Possible Occurrence of the Development of Resistance

Repeated use of herbicides having the same mode of action in a weed control program increases the probability of selecting naturally resistant biotypes. Therefore, pyrasulfotole should be used in rotation with herbicides having different modes of action.

Both AE 0317309 02 SE 06 and Infinity Herbicides provide an alternative for growers to Group 2 and Group 4 chemistries.

Both the AE 0317309 02 SE 06 Herbicide label and the Infinity Herbicide label include the resistance management statements, as per Regulatory Directive <u>DIR99-06</u>, *Voluntary Pesticide Resistance-Management Labelling Based on Target Site/Mode of Action*.

6.0 Toxic Substances Management Policy Considerations

The management of toxic substances is guided by the federal government's Toxic Substances Management Policy, which puts forward a preventive and precautionary approach to deal with substances that enter the environment and could harm the environment or human health. The policy provides decision makers with direction and sets out a science-based management framework to ensure that federal programs are consistent with its objectives. One of the key management objectives is virtual elimination from the environment of toxic substances that result predominantly from human activity and that are persistent and bioaccumulative. These substances are referred to in the policy as Track 1 substances.

During the review process, pyrasulfotole was assessed in accordance with the PMRA Regulatory Directive <u>DIR99-03</u>, *The Pest Management Regulatory Agency's Strategy for Implementing the Toxic Substances Management Policy*. Substances associated with the use of pyrasulfotole were also considered, including major transformation products formed in the environment, microcontaminants in the technical product and formulants in the two proposed end-use products, Infinity Herbicide (AE 0317309 03 EC23) and AE 0317309 02 SE06 Herbicides. The PMRA has reached the following conclusions:

Pyrasulfotole does meet the Track 1 criteria for CEPA-toxic equivalence and for persistence in water and in sediment, however, it does not meet the criteria for persistence in soil or bioaccumulation. Based on a refined risk assessment, pyrasulfotole is entering the environment at levels that pose a risk to terrestrial plants and therefore would be considered "CEPA-toxic Equivalent" under the Canadian Environmental Protection Act. Pyrasulfotole was stable in water/sediment systems, and half-life values in water and sediment are expected to be above the criterion of ≥182, and ≥365 days, respectively. However, its half-life values in soil (as estimated by taking 1/3 of its 90% dissipation time) ranged from 15 to 177 days under field conditions, which are below the criterion of ≥182 days. Its log *n*-octanol–water partition coefficient of ≤ 0.276 is below the criterion of ≥5. Pyrasulfotole does not meet all four Track 1 criteria; therefore, it is not classified as a Track 1 substance.

- Limited data were available to assess the TSMP Track-1 criteria for the only major pyrasulfotole transformation product, AE B197555. There were no laboratory studies supplied on transformation rates for AE B197555, and environmental toxicity data were supplied for a limited number of organisms. The log *n*-octanol–water partition coefficient (log K_{ow}) for AE B197555 was also not provided. The applicant will be required to provide the log K_{ow} for AE B197555 to demonstrate that this transformation product is not bioaccumulative according to TSMP Track-1 criteria.
- Technical grade pyrasulfotole does not contain any contaminants of health or environmental concern identified in the *Canada Gazette*, Part II, Volume 139, Number 24, pages 2641–2643: *List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern*.
 - The end-use product AE 0317309 02 SE06 Herbicide does not contain any formulants of health or environmental concern identified in the *Canada Gazette*, Part II, Volume 139, Number 24, pages 2641–2643: *List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern*. However, it contains a petroleum distillate, which is a List 2 formulant, at a total of 30%.
- The end-use product AE 0317309 03 EC23 Herbicide does not contain any formulants of health or environmental concern identified in the *Canada Gazette*, Part II, Volume 139, Number 24, pages 2641–2643: *List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern*. However, it contains a petroleum distillate, which is a List 2 formulant, at a total of 40%.

Therefore, the use of pyrasulfotole in the proposed end-use products AE 0317309 02 SE06 Herbicide and Infinity Herbicide is not expected to result in the entry of Track 1 substances into the environment.

7.0 Summary

7.1 Human Health and Safety

The toxicology database submitted for pyrasulfotole is adequate to define the majority of toxic effects that may result from human exposure to pyrasulfotole. In short- and long-term toxicity studies on laboratory animals, target organs included the eye, kidneys, urinary bladder, thyroid, and pancreas. At dose levels that were considered excessive, there was evidence of carcinogenicity based on an increased incidence of urinary bladder tumours in mice and eye tumours in male rats. There was evidence of increased susceptibility of the offspring in the rabbit teratology study.

Mixer, loader, applicators and workers entering treated cereals fields are not expected to be exposed to levels of AE 0317309 02 SE06 Herbicide or Infinity Herbicide that will result in unacceptable risk when used according to label directions. The personal protective equipment on the product label is adequate to protect workers and no additional personal protective equipment is required.

The nature of the residue in plants and ruminants is adequately understood. The residue definition for risk and enforcement purposes is pyrasulfotole and pyrasulfotole-desmethyl in plant and animal commodities. The proposed use of pyrasulfotole on timothy, wheat, barley, oats, rye and triticale does not constitute an unacceptable chronic or acute dietary risk (food and drinking water) to any segment of the population, including infants, children, adults and seniors. Sufficient crop residue data have been reviewed to recommend maximum residue limits to protect human health. The PMRA recommends that the following maximum residue limits be specified for:

residues of pyrasulfotole and pyrasulfotole-desmethyl in and on wheat (0.02 ppm), barley (0.02 ppm), rye (0.02 ppm), triticale (0.02 ppm),oats (0.08 ppm); fat of cattle, sheep, goats, horses, poultry and hogs (0.02 ppm); meat of cattle, sheep, goats, horses, poultry and hogs (0.02 ppm); meat by-product of cattle, sheep, goats, horses (0.06 ppm); meat by-product of hogs, and poultry (0.02 ppm); liver of cattle, sheep, goats, horses (0.35 ppm); milk (0.01 ppm); eggs (0.02 ppm)

7.2 Environmental Risk

Pyrasulfotole and its major transformation product AE B197555 are of low risk to pelagic aquatic organisms at the proposed maximum Canadian use rate of 50 g a.i./ha (maximum RQ of 0.45 for pyrasulfotole exposure to the floating macrophyte *Lemna gibba*). However, the risk to benthic organisms was not assessed as no toxicity studies with benthic organisms were provided by the registrant. Given pyrasulfotole's ability to partition to sediments, and its persistence in aquatic systems, pyrasulfotole accumulation in sediments is likely to result in exposure to sediment-dwelling organisms.

Pyrasulfotole does pose a risk to non-target dicot plants, however, this may be mitigated by the observance of buffer zones for sensitive terrestrial habitats. The difference in aerial buffer zones between the two EP products (i.e., up to 85 m for AE 0317309 02 SE06 Herbicide vs. 375 m for Infinity Herbicide) is due to the higher toxicity seen with the Infinity formulation which also contains bromoxynil. The bromoxynil content in the Infinity formulation also poses a risk to freshwater organisms and therefore a 10 m buffer zone is required for Infinity Herbicide when sprayed upwind of sensitive freshwater habitats.

Of primary concern is pyrasulfotole's potential for persistence and mobility in the environment. Pyrasulfotole is transformed to AE B197555, a low risk transformation product, and mineralized to CO_2 through microbial activity in aerobic soil. Transformation is initially rapid. However, it soon slows down, leaving significant residues in the soil which persist for longer than one year. In terrestrial field studies in Canadian locations (or equivalent US Ecozones), up to 19% of applied pyrasulfotole remained in soils at the beginning of the following growing season. Laboratory studies showed that a significant portion of the applied pyrasulfotole may physically bind to the soil matrix (i.e., 35 - 62% bound residues), however, the field studies also showed that it has the potential to move vertically in the soil column up to 1 m, which suggests that it can reach groundwater.

Once it reaches the aquatic environment, pyrasulfotole is expected to be persistent. It does not undergo hydrolysis or photolysis and was shown to be stable in aerobic and anaerobic watersediment systems. In aerobic surface waters, pyrasulfotole may partition to sediments, particularly if water / soil pH is <5, however, it is not readily transformed and therefore is not lost from the system. Ground water modelling with LEACHM and surface water modelling with PRZM/EXAMS predicts that concentrations will continue to accumulate in water bodies with no outflow. Predicted annual concentrations in groundwater (38 µg a.i./L) and closed prairie dugouts (> 53 µg a.i./L) after a 50 year modelling scenario are greater than the EEC used to predict risk to aquatic organisms in this review (i.e., 6.3 µg a.i./L in an 80 cm deep water body). Therefore, it is possible that continuous use of this pesticide at the same site for an extended number of years could result in surface water concentrations in closed systems that may pose a risk to some aquatic plants.

7.3 Value

7.3.1 AE 0317309 02 SE 06 Herbicide

The data submitted to register AE 0317309 02 SE 06 Herbicide are adequate to describe its efficacy for use in wheat (spring, durum and winter), barley, tame oats, triticale, and timothy (grown for seed production). A single post-emergence application of AE 0317309 02 SE 06 Herbicide provides control of wild buckwheat and volunteer canola (including herbicide tolerant varieties), as well as lamb's quarters and redroot pigweed, in wheat (spring, durum, winter), barley, tame oats, triticale, and timothy (grown for seed production). The submitted phytotoxicity and yield data demonstrate an adequate margin of safety of labelled host crops to AE 0317309 02 SE 06 Herbicide. AE 0317309 02 SE 06 Herbicide (Group 27) provides an alternative mode of action to commonly used Group 2 and Group 4 herbicides.

7.3.2 Infinity Herbicide

The data submitted to register Infinity Herbicide are adequate to describe its efficacy for use in wheat (spring, durum and winter), barley, triticale, and timothy (grown for seed production). A single post-emergence application of Infinity Herbicide provides control of wild buckwheat and volunteer canola (including herbicide tolerant varieties) as well as lamb's quarters and redroot pigweed, in wheat (spring, durum, winter), barley, triticale, and timothy (grown for seed production). The submitted phytotoxicity and yield data demonstrate an adequate margin of

safety of labelled host crops to Infinity Herbicide. Infinity Herbicide (Group 27) provides an alternative mode of action to commonly used Group 2 and Group 4 herbicides.

8.0 Regulatory Decision

Health Canada's PMRA, under the authority of the *Pest Control Products Act* and in accordance with the Pest Control Products Regulations, has granted conditional registration for the sale and use of the technical grade active ingredient pyrasulfotole and the end-use products Infinity Herbicide and AE 0317309 02 SE06 Herbicide to control a range of broadleaved weeds in wheat (spring, durum and winter), barley, triticale, and timothy (grown for seed production).

An evaluation of current scientific data from the applicant, scientific reports and information from other regulatory agencies has resulted in the determination that, under the approved conditions of use, the end-use products have value and do not present an unacceptable risk to human health or the environment.

Although the risks and value have been determined to be acceptable when all risk reduction measures are followed, as a condition of these registrations, additional scientific information is being requested from the applicant as a result of this evaluation

Human Health

- An enforcement method that quantifies the parent pyrasulfotole and the metabolite pyrasulfotole-desmethyl in animal matrices, including extraction efficiency and ILV data.
- Two ion transitions should be monitored during the MS/MS analysis (Method AI-001-P04-01) for each analyte; pyrasulfotole and pyrasulfotole-desmethyl.

• Environment

- Provide the log K_{ow} for AE B197555 to demonstrate that this transformation product is not bioaccumulative according to TSMP Track-1 criteria.
- Due to the pyrasulfotole's persistence in water and ability to partition to sediments, a chronic toxicity study with a benthic invertebrate species, such as chironomids (DACO 9.3.4 Laboratory Studies with Other Species) is required. The study must conform to standard international guidelines (e.g. US EPA, OECD, ASTM, Environment Canada) and be conducted under GLP.

List of Abbreviations

μg	micrograms
μm	micrometer
1/n	exponent for the Freundlich isotherm
a.i.	active ingredient
ADI	acceptable daily intake
ALS	acetolactate synthase
ARfD	acute reference dose
atm	atmosphere
bw	body weight
CAS	chemical abstracts service
cm	centimetres
d	day(s)
DF	dry flowable
DNA	deoxyribonucleic acid
DT_{50}	dissipation time 50% (the dose required to observe a 50% decline in the test
	population)
DT ₇₅	dissipation time 75% (the dose required to observe a 75% decline in the test
	population)
dw	dry weight
EC_{10}	effective concentration on 10% of the population
EC_{25}	effective concentration on 25% of the population
EEC	estimated environmental concentration
ER_{25}	effective rate for 25% of the population
FDA	Food and Drugs Act
g	gram
h	hour(s)
ha	hectare(s)
HDT	highest dose tested
Hg	mercury
HPLC	high performance liquid chromatography
IUPAC	International Union of Pure and Applied Chemistry
kg	kilogram
K _d	soil-water partition coefficient
K _F	Freundlich adsorption coefficient
km	kilometre
K _{oc}	organic-carbon partition coefficient
$K_{\rm ow}$	<i>n</i> -octanol-water partition coefficient
L	litre
LC-MS/MS	liquid chromatography with tandem mass spectrometry
LC_{50}	lethal concentration 50%
LD ₅₀	lethal dose 50%
LOAEL	lowest observed adverse effect level
LOD	level of detection
LOEC	low observed effect concentration

1.00	
LOQ	limit of quantitation
LR_{50}	lethal rate 50%
m/z	mass to charge ratio
mg	milligram
mL	millilitre
MAS	maximum average score
MOE	margin of exposure
MRL	maximum residue limit
MS	mass spectrometry
MS/MS	mass tandem spectrometry
MTDB	maximum theoretical dietary burden
N/A	not applicable
NOAEL	no observed adverse effect level
NOEC	no observed effect concentration
NOEL	no observed effect level
NOER	no observed effect rate
N/R	not required
NZW	New Zealand white
OC	organic carbon content
OM	organic matter content
PCPA	Pest Control Products Act
PBI	plantback interval
PHI	preharvest interval
PHED	Pesticide Handlers Exposure Database
p <i>K</i> a	dissociation constant
PMRA	Pest Management Regulatory Agency
ppm	parts per million
REI	reentry interval
RSD	relative standard deviation
SC	soluble concentrate
SF	safety factor
t _{1/2}	half-life
Т3	tri-iodothyronine
T4	thyroxine
TRR	total radioactive residue
TSMP	Toxic Substances Management Policy
UAN	urea ammonium nitrate
UF	uncertainty factor
USEPA	United States Environmental Protection Agency
UV	ultraviolet
VMD	volume median diameter
v/v	volume per volume dilution

Appendix I Tables and Figures

Table 1	Residue Analysis
---------	-------------------------

Matrix	Method ID	Analyte	Method Type	LOQ	Reference
Plant	AI-004- A05-01	Pyrasulfotole, Pyrasulfotole- desmethyl, Pyrasulfotole-benzoic acid	LC-MS/MS	0.010 ppm for each analyte in each matrix	1.1899e+20
Beef Matrices	AI-004- A05-01	Pyrasulfotole	LC-MS/MS	0.010 ppm bovine muscle, liver, kidney, and fat; 0.005 ppm for bovine milk	1.1899e+20
Poultry Matrices	AI-005- A05-01	Pyrasulfotole-benzoic acid (AE B197555)	LC-MS/MS	0.010 ppm for tissues, including eggs	1.1899e+13

Table 2Acute Toxicity of Pyrasulfotole and Its Associated End-use Products (AE
0317309 02 SE 06 Herbicide and AE 0317309 03 EC23 Herbicide)

ACUTE STUDIES - TECHNICAL (pyrasulfotole; AE0317309)					
Study type	Species, strain	Results	Comments	PMRA #	
Oral	rat, Wistar (HsdCpb:Wu)	LD ₅₀ >2000	Low toxicity	1189970	
Dermal	rat, Wistar (HsdCpb:Wu)	LD ₅₀ >2000	Low toxicity	1189974	
Inhalation	rat, Wistar (HsdCpb:Wu)	LC ₅₀ >5.03 mg/L	Low toxicity	1189978	
Eye irritation	rabbit, New Zealand (NZ) albino	MIS at 1h = 16.3/110	mildly irritating CAUTION - EYE IRRITANT	1189984	
Skin irritation	rabbit, (Crl:KBL(NZW)BR)	MAS = 0/8	Non-irritating	1189981	
Skin sensitization (maximization)	guinea pig (Crl:HA)	study deficient due to inadequate induction and challenge	POTENTIAL SKIN SENSITIZER	1189987	
ACUTE STUDIES	S - FORMULATION [AE 03	17309 02 SE 06 Herbicid	le]		
Oral	rat, Wistar (HsdCpb:Wu)	LD ₅₀ >2000	Low toxicity	1309311	
Dermal	rat, Wistar (HsdCpb:Wu)	LD ₅₀ >4000	Low toxicity	1309312	
Inhalation	rat, Wistar (HsdCpb:Wu)	LC ₅₀ >2.9 mg/L	Low toxicity	1309313	
Eye irritation	rabbit, (Crl:KBL(NZW)BR)	MIS at 24h = 49/110 MAS = 35/110	moderately irritating WARNING - EYE IRRITANT	1309314	
Skin irritation	rabbit, (Crl:KBL(NZW)BR)	MIS at 72 h = 2.33/8 MAS = 2/8	mildly irritating CAUTION - SKIN IRRITANT	1309315	
Skin sensitization (Buehlar)	guinea pig (Crl:HA)	negative	Not a dermal sensitizer	1309316	

Study type	Species, strain	Results	Comments	PMRA #	
ACUTE STUDIES	ACUTE STUDIES - FORMULATION [AE 0317309 03 EC23 Herbicide]				
Oral	rat, Wistar (HsdCpb:Wu)	LD ₅₀ >300 <2000	moderately toxic WARNING POISON	1270163	
Dermal	rat, Wistar (HsdCpb:Wu)	LD ₅₀ >4000	Low toxicity	1270164	
Inhalation	rat, Wistar (HsdCpb:Wu)	LC ₅₀ >2 mg/L	Low toxicity	1270165	
Eye irritation	rabbit, (Crl:KBL(NZW)BR)	MIS at 24h = 44.7/110 MAS = 28.2/110	moderately irritating WARNING - EYE IRRITANT	1270166	
Skin irritation	rabbit, (Crl:KBL(NZW)BR)	MIS at 24/48 h = 2.34/8 MAS = 2.33/8	mildly irritating CAUTION - SKIN IRRITANT	1270167	
Skin sensitization (Buehlar)	guinea pig (Crl:HA)	negative	Not a dermal sensitizer (challenge dose of 25 % was too low)	1270168	

Table 3Toxicity Profile of Technical Pyrasulfotole

SHORT-TER	SHORT-TERM TOXICITY				
Study type	Species, strain	Results and comments	PMRA#		
14-day dietary	dog, beagle; ♂ 0, 18000 (dry diet), 18000 (moist diet) ppm = 0, 399, 330 mg/kg bw/d	 study not designed for NOAEL determination similar treatment-induced effects after administration of pyrasulfotole in dry or wet diet: red-coloured urine, slight ↓ bw, ↓ food intake, ↑ BUN, ↑ urinary ketones plasma and urinary level of pyrasulfotole peaked at 2 h elimination essentially complete at 24 h dry-feed group (2/5 dogs): urinary tract calculi with evidence of thickening of bladder 	1189890		
28-day dietary	mouse; C57BL/6J 0, 200, 1000, 5000 ppm ♂ = 0, 35.8, 192, 961; ♀ = 0, 45, 233, 1082 mg/kg bw/d	 NOAEL: ♂ = 1000 ppm (192 mg/kg bw/d) ♀ = 5000 ppm (1082 mg/kg bw/d) LOAEL: ♂ = 5000 ppm (961 mg/kg bw/d) based on pathology of urinary bladder (gritty content, diffuse urothelial hyperplasia, diffuse submucosal granulation, diffuse suburothelial mixed-cell infiltrate) ♀ >5000 ppm, HDT 	1189990		
28-day dietary	dog, beagle 0, 5000, 13000, 26000 ppm ♂ = 0, 174, 469, 860 ♀ = 0, 171, 440, 782 mg/kg bw/d	NOAEL not established (a range-finding study) treatment effects: 1 triglycerides, kidney and urinary bladder pathology	1189991		
90 (28)-day dietary	dog, beagle 0, 1500, 9000, 18000 ppm dose in mg/kg bw/d not determined	NOAEL not appropriate due to incomplete study excessive toxic effects; study terminated on day 28.	1189998		

Study type	Species, strain	Results and comments	PMRA#
90-day dietary	mouse; C57BL/6J@Ico 0, 100, 750, 1500, 3000 ppm σ [*] = 0, 17, 124, 259, 500; ♀ = 0, 20, 152, 326, 617 mg/kg bw/d	NOAEL: 3000 ppm σ = 500, φ = 617 mg/kg bw/d, HDT (hematology not investigated)	1189999
90-day dietary	rat, Wistar 0, 2, 30, 1000, 7000, 12000 ppm $\sigma = 0, 0.13, 1.96, 66, 454, 830; \varphi = 0, 0.15, 2.32, 77, 537, 956 mg/kg bw/d$	NOAEL = 30 ppm; ♂ = 1.96, ♀ = 2.32 mg/kg bw/d LOAEL = 1000 ppm; ♂ = 66, ♀ = 77 mg/kg bw/d (↑ plasma cholesterol and triglycerides, ↑ urinary ketones, thyroid histopathology) notable findings at 7000 ppm: ♂♀ - corneal opacity and/or neovascularisation	1190000
90-day dietary	dog, beagle 0, 100, 500, 1000 ppm; ♂ = 0, 3, 17, 40 ♀ = 0, 3, 17, 33 mg/kg bw/d	NOAEL = 1000 ppm; $\sigma = 40$, $\varphi = 33 \text{ mg/kg bw/d}$, HDT. MTD was not reached. Repeat study unnecessary because availability of 1-year dog study tested at a higher dose.	1190009
1-year dietary	dog, beagle 0, 250, 1000, 3000 ppm ♂ = 0, 7, 34, 101 ♀ = 0, 9, 33, 93 mg/kg bw/d	NOAEL: ♂ = 250 ppm or 7mg/kg bw/d; ♀ = 1000 ppm or 33 mg/kg bw/d LOAEL: ♂ = 250 ppm or 34 mg/kg bw/d (kidney histopathology) ♀ = 3000 ppm or 93 mg/kg bw/d (liver hepatocytomegaly, ↑ liver and thyroid wt)	1190010
4-week dermal	rat, Wistar 0, 10, 100, 1000 mg/kg bw/d	NOAEL: localized toxicity = 1000 mg/kg bw/d, HDT systemic toxicity: ♂ = 10 mg/kg bw/d; ♀ = 100 mg/kg bw/d LOAEL: systemic ♂ = 100 mg/kg bw/d (pancreas pathology) ♀ = 1000 mg/kg bw/d (pathology of pancreas and liver)	1190013
CHRONIC TO	DXICITY AND ONCOGENIO	CITY	
78-week dietary oncogenicity	mouse 0, 100, 1000, 4000 ppm ♂ = 0, 13.6, 137, 560 ♀ = 0, 16.7, 168, 713 mg/kg bw/d	NOAEL = not established; gallstones at all test groups oncogenicity NOAEL : ♂♀ = 1000 ppm (♂ = 137, ♀ = 168 mg/kg bw/d) oncogenicity LOAEL: 4000 ppm (♂ = 560, ♀ = 713 mg/kg bw/d) based on urinary bladder tumours notable findings: gallstones	1190031
2-year dietary/ oncogenicity	rat, Wistar 0, 25, 250, 1000, 2500 ppm ♂ = 0, 0.97, 9.92, 40.5, 104.3 ♀ = 0, 1.39, 13.8, 56.9, 140.1 mg/kg bw/d	 NOAEL = 25 ppm; ♂ = 1, ♀ = 1.4 mg/kg bw/d LOAEL = 250 ppm; ♂ = 9.9, ♀ = 13.8 mg/kg bw/d based on bw, bwg, pathology of the eye, liver, thyroid, kidneys oncogenicity NOAEL: ♂ = 1000 ppm or 41 mg/kg bw/d ♀ = 2500 ppm or 140 mg/kg bw/d 2500 ppm: tumour: eye (squamous cell papilloma (1♂) and squamous cell carcinoma (1♂) notable findings: pathology of liver, thyroid, kidneys, pancreas, and eye 	1190028

Study type	Species, strain	Results and comments	PMRA#
REPRODUCT	TION AND DEVELOPMENT	AL TOXICITY	
2-generation reproductive toxicity	rat, Wistar 0, 30, 300, 3000 ppm $\sigma = 0, 2.5, 26.3, 272.4$ $\Im = 0, 3.1, 32.6, 345.7$ mg/kg bw/d	NOAELs: parental systemic toxicity <30 ppm; $\sigma < 2.5$, $\varphi < 3.1 \text{ mg/kg bw/d}$ offspring toxicity <30 ppm; $\sigma < 2.5$, $\varphi < 3.1 \text{ mg/kg bw/d}$ reproductive toxicity = 30 ppm; $\sigma = 2.5$, $\varphi = 3.1 \text{ mg/kg bw/d}$ LOAELs: parental systemic toxicity = 30 ppm; $\sigma = 2.5$, $\varphi = 3.1 \text{ mg/kgbw/d}$ (thyroid pathology - colloid alteration) offspring toxicity = 30 ppm; $\sigma = 2.5$, $\varphi = 3.1 \text{ mg/kg bw/d}$ († F ₂ pup mortality) reproductive toxicity = 300 ppm; $\sigma = 26.3$, $\varphi = 32.6 \text{ mg/kg bw/d}$ (F ₂ generation: \downarrow rearing indices) notable findings: parental: cornial opacity; pathology of liver, kidneys, thyroid) offspring: \downarrow viability; corneal effects	1190038
Development al toxicity	rat, Sprague Dawley 0, 10, 100, 300 mg/kg bw/d	NOAELs: maternal and developmental toxicity = 10 mg/kg bw/d LOAELs: maternal and developmental toxicity = 100 mg/kg bw/d (maternal: clinical signs, ↓ bwg developmental: ↓ fetal wt, skeletal variation) Note: the eyes were not examined	1190044
Development al toxicity	rabbit, NZ white 0, 10, 75, 250 mg/kg bw/d	NOAELs: maternal toxicity = 75 mg/kg bw/d developmental toxicity = 10 mg/kg bw/d LOAELs: maternal toxicity = 250 mg/kg bw/d (↓ bw, ↓ food intake, liver pathology) developmental toxicity = 75 mg/kg bw/d (↑ skeletal variation) Fetotoxicity at maternal non-toxic dose	1190044

GENOTOXICIT	GENOTOXICITY				
Study	Species and strain or cell type and concentrations or doses	Results	PMRA#		
Gene mutations in bacteria	Salmonella typhimurium strains TA 98, TA 100, TA 102, TA 1535 and TA 1537	negative	1190016		
Gene mutations in mammalian cells <i>in vitro</i>	Chinese hamster V79 cells (HGPRT locus)	negative	1190022		
Chromosome aberrations <i>in</i> <i>vitro</i>	Chinese hamster V79 cells	negative	1190019		
Micronucleus assay (in vivo)	mouse, HsdNVin: NMR σ [*] = 0, 125, 250, 500; ♀ = 0, 250, 500, 1000 mg/kg bw	similar toxic effects between ♂ & ♀; consequently, only ♂ used to assess micronucleus induction negative	1190025		
SPECIAL STUD	IES				
Study type	Species/strain/dose levels	Results and Comments	PMRA#		
acute neurotoxicity	rat, Wistar 0, 200, 500, 2000 mg/kg bw	NOAELs: acute neurotoxicity = 2000 mg/kg bw, HDT systemic toxicity = 500 mg/kg bw 2000 mg/kg bw: marginal ↓ motor activity at day 0 insufficient evidence of neurotoxicity	1190047		
90-day dietary neurotoxicity	rat, Wistar 0, 45, 2500, 5000 ppm $\sigma = 0, 32.3, 166, 345$ $\varphi = 0, 41.9, 206, 416$ mg/kg bw/d	neurotoxicity NOAEL = 5000 ppm; ♂ = 345, ♀ = 416 mg/kg bw/d, HDT notable findings: a few ♀ had corneal opacity, but no dose relationship	1190050		
developmental neurotoxicity	rat, Wistar 0, 45, 450, 4500 ppm ♀ = 0, 3.8, 37, 354 mg/kg bw/d	NOAELs: maternal systemic = 45 ppm; 3.8 mg/kg bw/d offspring toxicity = 45 ppm; 3.8 mg/kg bw/d developmental neurotoxicity = 45 ppm; 3.8 mg/kg bw/d LOAELs: maternal systemic = 450 ppm; 37 mg/kg bw/d (1 food intake and ocular opacity) offspring toxicity = 450 ppm; 37 mg/kg bw/d (1 bw & bwg, delayed preputial separation, & retinal degeneration) developmental neurotoxicity = 450 ppm; 37 mg/kg bw/d (1 passive avoidance test performance)	1190053		

Study type	Species/strain/dose levels	Results and Comments	PMRA#
Mechanistic study: dietary tyrosine and ocular toxicity	mouse, CD-1; rat, CD,; rat, Brown Norway tyrosine at 0, 2%, 5% daily administration for 14 d	 Purpose of study: to determine relationship of plasma tyrosine level and ocular toxicity species/strain susceptibility of tyrosine-induced ocular lesions ocular toxicity: CD-1 mice: no effects CD rats: ♂ at 5% - severe Brown Norway rats: 1♂ at 5%, slight positive relationship between plasma tyrosine level and corneal lesions Conclusions: Corneal opacity found in ♂ CD rats (and 1 ♂ Brown Norway rats, only slight effect) that received tyrosine at 5% level; some correlation of increased plasma tyrosine level and corneal opacity in ♂ CD rats 	1189895
Mechanistic study: NTBC on cellular level of tyrosine and HPLA, <i>in vitro</i>	Liverbeads TM from rat, mouse, rabbit, dog, and human incubation of Liverbeads TM with NTBC (30 µM), L- tyrosine (100 mg/L), or combination of NTBC and L-tyrosine	 Purpose of study: to determine inhibition of metabolism of tyrosine the presence of an alternate tyrosine metabolic pathway rat, dog, rabbit LiverbeadsTM: minimal HPLA detected after incubation with NTBC; deficient alternate tyrosine metabolic pathway mouse and human LiverbeadsTM: HPLA detected, level increased with time of incubation with NTBC; efficient alternate tyrosine metabolic pathway Conclusions: No clear evidence of increased tyrosine levels due to inhibition of HPPDase by NTBC - demonstration of an efficient alternate tyrosine metabolic pathway in mouse and human hepatocytes but not in rat, dog, or rabbit hepatocytes 	1189897
Mechanistic study: tyrosemia on pregnancy, embryo-feto development	rat, Sprague Dawley 0, tyrosine (dietary 20000 ppm), NTBC (10 µg/kg bw/d), tyrosine (dietary 20000 ppm) + NTBC (10 µg/kg bw/d)	Purpose of study: to determine an association of fetal skeletal effects and increased plasma tyrosine levels maternal toxicity: NTBC groups - slight ↓ bw (GD 6-8) combined tyrosine/NTBC group - slight ↓ food intake; corneal opacity fetotoxicity: NTBC groups - slight ↓ bw; ↑ minor skeletal anomalies (mostly delayed/incomplete ossification) plasma tyrosine levels: NTBC groups - ↑; more pronounced in combined tyrosine/NTBC group Conclusions: Minor skeletal anomalies (developmental delays) associated with fetotoxicity, secondary to maternal toxicity; association of skeletal effects and increased plasma tyrosine levels a possibility but not definitive	1189892

Study type	Species/strain/dose levels	Results and comments	PMRA#
Oral	rat, Sprague Dawley	LD ₅₀ >5000 mg/kg bw Low toxicity	1189961
28-day dietary	rat, Sprague Dawley 0, 150, 500, 5000, 15000 ppm ♂= 0, 11.1, 37.6, 377, 1118; ♀ = 0, 12.7, 42.7, 421, 1269 mg/kg bw/d	NOAEL = 15000 ppm; ♂ = 1118, ♀ = 1269 mg/kg bw/d, HDT	
90-day dietary	rat, Sprague Dawley; 0, 1200, 4800, 12000 ppm ♂= 0, 73.2, 306, 769; ♀ = 0, 93.1, 371, 952 mg/kg bw/d	NOAEL = 12000 ppm; o = 769, 9 = 952 mg/kg bw/d, HDT	1189966
Developmental toxicity	rat, Sprague Dawley 0, 75, 250, 750 mg/kg bw/d	NOAELs: maternal toxicity = 75 mg/kg bw/d developmental toxicity = 750 mg/kg bw/d, HDT LOAELS: maternal toxicity = 250 mg/kg bw/d (1 food intake, transient 1 bw)	1189948
Gene mutations in bacteria	Salmonella typhimurium strains TA 98, TA 100,TA 1535 and TA 1537	negative	1189963
Gene mutations in mammalian cells <i>in vitro</i>	Chinese hamster ovary cells (HGPRT locus)	negative	1189958
Chromosome aberrations <i>in</i> <i>vitro</i>	Chinese hamster ovary cells	negative	1189955
Micronucleus assay (<i>in vivo</i>) mouse	mice, Crl:CD-l®(ICR) BR	negative	1189952
78-week mouse d	v: ≥7000 ppm (≥454 mg/kg bw/	d) - \$\sigma'; 12000 ppm (956 mg/kg bw/d) - \$\varphi\$ (\$\sigma' = 560, \$\varphi\$ = 713 mg/kg bw/d) 104 mg/kg bw/d)	
additonal safety f (ARD) for the sul	creased sensitivity of offspring actor (SF) of 3x was applied to	at maternal non-toxic dose demonstrated in the rabbit teratology the standard SF of 100 in the determination of the acute reference. The recommended ARD is 0.013 mg/kg bw based on the NOA	e dose
		uired, since pyrasulfotole was not considered to present an acute langs in the acute or short-term toxicity studies or in the acute or su	

Recommended ADI: 0.001 mg/kg bw/d based the NOAEL of 1 mg/kg bw/d established in the combined 2-year rat dietary toxicity and oncogenicity; the standard safety factor of 100 is applied and an additional 10x factor accounting for higher sensitivity of offspring in the absence of maternal toxicity observed in the rabbit teratology study and the lack of an established NOAEL for a severe toxicity end-point (F_2 pup mortality) observed in the rat reproductive toxicity study.

Tox endpoints for occupational risk assessment:

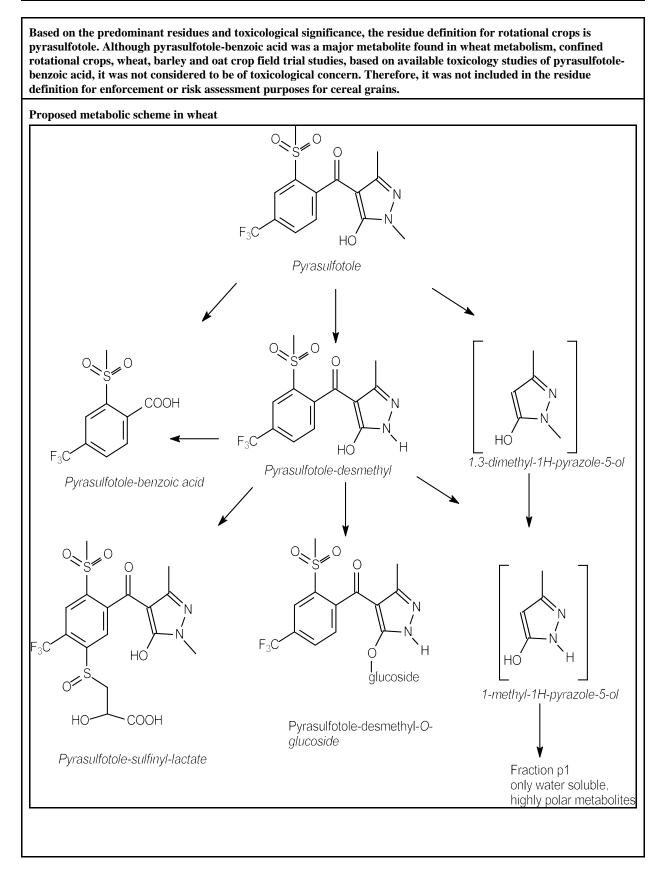
MOE = 300

short-term dietary and dermal exposure: 28-d rat dermal NOAEL of 10 mg/kg bw/d short-term occupational inhalation exposure: NOAEL of 3.8 mg/kg bw/d from the rat DNT study

Table 4Toxicology Endpoints for Use in Health Risk Assessment for Pyrasulfotole

Exposure scenario	NOAEL used (mg/kg bw/d)	UF/SF	ARfD / ADI (mg/kg bw/d)	MOS / Remarks
Acute dietary risk - General population	-	-	-	Not required because of low acute toxicity
Acute dietary risk - Females 13-49 years of age	3.8 from rat DNT study	10x interspecies variation 10x intraspecies variation 3x increased offspring sensitivity at maternal non-toxic dose	3.8/10x10x3 = 0.013	
Chronic dietary - All population	1 from 2-year rat dietary/oncogenicity	10x interspecies variation 10x intraspecies variation 10x increased offspring sensitivity at maternal non-toxic dose and the absence of an established NOAEL for a severe toxicity end-point (F ₂ pup mortality) observed in rat reproductive toxicity study	1/10x10x10 = 0.001	MOS for systemic toxicity = $1/0.001 =$ 1000 MOS for eye tumour in σ rat = $104.3/0.001$ = 1430 MOS for rat F ₂ pup mortality = $4.2/0.001$ = 4200
short-term occupational dietary/dermal	10 from 28-day rat dermal toxicity study	10x interspecies variation 10x intraspecies variation 3x increased offspring sensitivity at maternal non-toxic dose		MOS = 300
short-term occupational inhalation	3.8 from rat DNT study	10x interspecies variation 10x intraspecies variation 3x increased offspring sensitivity at maternal non-toxic dose		300

Table 5	Integrated Food Residue Chemistry Summary
---------	---

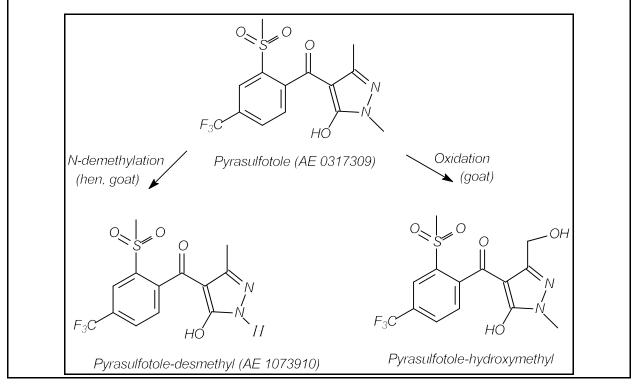

NATURE OI With and With		PMRA # 1190095					
Radiolabel Position	[¹⁴ C-Phenyl]						
Test Site	Outdoor,	vegetation hall, surrounded by wire	-mesh fencing, covered with a glass roof				
Treatment	Wheat pla	unts treated at growth stage 21-22 (e	arly tillering)				
Rate	96 g a.i./h	a (without safener); 98 g a.i./ha + 6	8 g a.i./ha mefenpyr-diethyl				
End-use product	[¹⁴ C-Phen	yl]-pyrasulfotole formulated as an c	oil suspension (OD 5)				
Preharvest interval	79 days						
Matrix	PHI (days)	[¹⁴ C-Phenyl]-pyrasulfotole with mefenpyr-diethyl (ppm)	[¹⁴ C-Phenyl]-pyrasulfotole without mefenpyr-diethyl (ppm)				
Forage	21	2.40	2.44				
Нау	44	3.14	3.12				
Straw	79	2.90	2.8				
Grain	79	0.16	0.24				
Metabolites Identified	Major M	etabolites (> 10% TRR)	Minor Metabolites (< 10% TRR)				
Radiolabel Position		[¹⁴ C-Phenyl]	[¹⁴ C-Phenyl]				
		Without Mefenpyr-diethyl					
Wheat forage		e, Pyrasulfotole-benzoic acid, e-desmethyl-O-glucoside	Pyrasulfotole-sulfinyl-lactate				
Wheat hay		e, Pyrasulfotole-benzoic acid, e-desmethyl-O-glucoside	Pyrasulfotole-sulfinyl-lactate				
Wheat straw	Pyrasulfotol desmethyl-C	e-benzoic acid, Pyrasulfotole-)-glucoside	Pyrasulfotole, Pyrasulfotole-sulfinyl-lactate				
Wheat grain	Pyrasulfotol	e-benzoic acid	-				

	JRE OF THE RESIDUE IN WHEAT nd Without Safener (mefenpyr-diethyl)	PMRA # 1190095					
With Mefenpyr-diethyl							
Wheat forage	Pyrasulfotole-benzoic acid, Pyrasulfotole- desmethyl-O-glucoside	Pyrasulfotole, Pyrasulfotole-sulfinyl-lactate					
Wheat hay	Pyrasulfotole-benzoic acid, Pyrasulfotole- desmethyl-O-glucoside	Pyrasulfotole, Pyrasulfotole-sulfinyl-lactate					
Wheat straw	Pyrasulfotole-benzoic acid, Pyrasulfotole- desmethyl-O-glucoside	Pyrasulfotole, Pyrasulfotole-sulfinyl-lactate					
Wheat grain	Pyrasulfotole-benzoic acid	<u>-</u>					

pyrasulfotole-desmethyl for enforcement and risk assessment purposes.

NATURE OF T Withou	PMRA # 11	90094/1190096			
Radiolabel Position	[¹⁴ C-Ph	enyl]	[¹⁴ C-Pyrazole		
Structure	$ \begin{array}{c c} & & & \\ \hline \\ \hline$				
Test Site		Outdoor co	onditions		
Treatment	Wheat j	plants treated at growth	n stage 21-22 (early til	lering)	
Rate	100	0 g a.i./ha; 200 g a.i./ha	a (to isolate metabolite	es)	
End-use product	[¹⁴ C-Phenyl] and [¹⁴ C	C-Pyrazole]-pyrasulfoto	ole formulated as an oi	l suspension (OD 5)	
Preharvest interval	90 da	ys	89 days		
Matrix	PHI (days)	TRR (ppm)	PHI (days)	TRR (ppm)	
Whole plant	0	10.96	0	11.49	
Forage	28	0.44	27	0.47	
Нау	50	0.18	49	0.06	
Straw	90	0.55	89	0.38	
Grain	90	0.30	89	0.03	

Metabolites Iden	tified	Major Metabolite	es (> 10%	TRR)	Mir	Minor Metabolites (< 10% TRR)			
Radiolabel Positi	on	[¹⁴ C-Phenyl]	[¹⁴ C-Pyrazole]		[¹⁴ C-Phenyl]	[¹⁴ C-Pyrazole]		
Wheat forage		Pyrasulfotole-benzoic acid, Pyrasulfotole- desmethyl-O- glucoside	Pyrasulf desmeth glucosid	yl- <i>O</i> -		-	-		
Wheat hay		Pyrasulfotole-benzoic acid, Pyrasulfotole- desmethyl-O- glucoside	Pyrasulf desmeth glucosid	yl- <i>O</i> -		-	-		
Wheat straw		Pyrasulfotole-benzoic acid	Pyrasulf desmeth glucosid	yl- <i>O</i> -	desi	asulfotole- methyl- <i>O</i> - coside	-		
Wheat grain		Pyrasulfotole-benzoic acid	-		-		Pyrasulfotole- desmethyl- <i>O</i> - glucoside		
CONFINED AC Wheat, Swiss Ch		ON IN ROTATIONAL C ips	ROPS –			PMRA	# 1190083		
Radiolabel Positi	on	[¹⁴ C-Phenyl]			[¹⁴ C-Pyrazole]				
Test site		Oval tub moved between gree				enhouse and patio as needed.			
Formulation use	d for trial	Suspension concentrate (SC) formulation blank with added [14C-Phenyl] or [14C-Pyraz					enyl] or [¹⁴ C-Pyrazole].		
Application rate	and timing		82 g a.i./ł	na applied to	soil i	n large troughs.			
Metabolites Iden	tified	Major Metabo	Major Metabolites (> 10% TRR)			Minor Metabolites (< 10% T			
Matrix	PBI (days)	[¹⁴ C-Phenyl]		[¹⁴ C- Pyrazole]		[¹⁴ C-Phenyl]	[¹⁴ C-Pyrazole]		
Wheat Forage	120	Pyrasulfotole-benzoi	c acid	-		-	-		
Wheat Hay	120	Pyrasulfotole-benzoi	c acid	-		-	Pyrasulfotole		
Wheat Straw	120	Pyrasulfotole-benzoi	c acid	-		-	Pyrasulfotole		
Wheat Grain	120	Pyrasulfotole-benzoi	c acid	-		Pyrasulfotole			
Wheat Forage	301	Pyrasulfotole-benzoi	c acid						
Wheat Hay	301	Pyrasulfotole-benzoi	c acid			Pyrasulfotole			
Wheat Straw	301	Pyrasulfotole-benzoi	c acid						
Wheat Grain	301	Pyrasulfotole-benzoi	c acid						


NATURE OF THE RESIDU	PMRA # 1190101/1190102				
Six laying hens were each dose equivalents (0.82 mg/kg body weight/day). Hens were sacrifi the administered dose was reco label study, most of the radioad tissues and eggs.	weight/day), and 10.5 ppr ced approximately 30 min overed in the excreta as p	n [pyrazole-3- ¹⁴ C]-pyras nutes after the last dose. I yrasulfotole, with less tha	ulfotole equivalents (0 For the phenyl-label st in 0.4% in tissues and	0.81 mg/kg body tudy, more than 97% of eggs. For the pyrazole-	
Matrices			% of Adm	inistered Dose	
			[¹⁴ C-Phenyl]	[¹⁴ C-Pyrazole]	
Excreta			97.158	85.234	
Muscle			0.050	0.048	
Fat			0.005	0.016	
Liver			0.307	0.108	
Eggs			0.006	0.005	
Metabolites identified	Major Metabolit	es (> 10% TRR)	Minor Metabolites	(< 10% TRR)	
Radiolabel Position	[¹⁴ C-Phenyl]	[¹⁴ C-Pyrazole]	[¹⁴ C-Phenyl]	[¹⁴ C-Pyrazole]	
Muscle	Pyrasulfotole	Pyrasulfotole	Pyrasulfotole- desmethyl	Pyrasulfotole- desmethyl	
Fat	Pyrasulfotole	Pyrasulfotole	Pyrasulfotole- desmethyl	Pyrasulfotole- desmethyl	
Liver	Pyrasulfotole	Pyrasulfotole	Pyrasulfotole- desmethyl	Pyrasulfotole- desmethyl	
Eggs	-	-			
Based on the predominant re metabolite pyrasulfotole-desi		significance, the residu	e definition is pyrasu	ulfotole and the	
NATURE OF THE RESIDU	E IN LACTATING GO	AT	PMRA # 1190103/1190108		
Two lactating goats were dosed pyrasulfotole equivalents (0.93 consecutive days at a dose leved day). Goats were sacrificed 23 pyrasulfotole in urine and fece pyrazole-radiolabel study, mos 0.1% in milk, and 0.9% in tissu	8 mg /kg body weight per el equal to 28.1 ppm [pyra hours after the last dose. s, with less than 1.2% in t st of the radioactivity (>92	day). Also, two lactating azole-3- ¹⁴ C]-pyrasulfotole More than 67% of the ad tissues, and 0.012% in mi	goats were dosed ora e equivalents (1.24 mg ministered dose was r ilk for the phenyl-labe	Ily once daily for 3 g/kg body weight per recovered as el study. In the	
Matrices			% of Adm	inistered Dose	
	[¹⁴ C-Phenyl]	[¹⁴ C-Pyrazole]			
Urine and feces			67.3	92.3	
Muscle			0.004	0.003	
	0.004 0.003				

NATURE OF THE RESID	PMRA # 1190103/	1190108		
Kidney	0.064	0.027		
Liver			1.074	0.892
Milk			0.012	0.1
Metabolites identified	Minor Metabolites	s (< 10% TRR)		
Radiolabel Position	[¹⁴ C-Phenyl]	[¹⁴ C-Phenyl] [¹⁴ C-Pyrazole]		[¹⁴ C-Pyrazole]
Muscle	Pyrasulfotole	-	Pyrasulfotole- hydroxymethyl	-
Fat	-	-	-	-
Kidney	Pyrasulfotole	Pyrasulfotole	-	-
Liver	Pyrasulfotole	Pyrasulfotole	-	Pyrasulfotole- desmethyl
Milk	Pyrasulfotole	Pyrasulfotole, Pyrasulfotole- desmethyl	Pyrasulfotole- hydroxymethyl	-

Based on the predominant residues and toxicological significance, the residue definition is pyrasulfotole and the metabolite pyrasulfotole-desmethyl for enforcement and risk assessment purposes.

Proposed Metabolic Scheme in Livestock

The metabolic profile involved *N*-demethylation of the parent pyrasulfotole to afford the pyrasulfotole-desmethyl metabolite (AE 1073910), or oxidation resulting in the pyrasulfotole-hydroxymethyl metabolite.

STORAGE ST	ABILITY						PMRA #	[‡] 1190082	
pyrasulfotole-d	wheat grain, whea esmethyl and pyra rasulfotole-desmet	sulfotole-b	enzoic	acid. Sampl	es were an	alyzed at 1,	0.250 ppm wit 3, 6, and 11 m	h each pyra	
						Pe	rcent decline		
А	nalyte	in	orage terval lays)		bean ain	Wheat grai	n Whea forag		Wheat hay
Pyrasulfotole			336	1	.0	1.4	6.2		7.5
Pyrasulfotole-d	lesmethyl		336		0	1.5	46.3		46.5
Pyrasulfotole-b	enzoic acid		336	(0	0	0		0
CROP FIELD	TRIALS ON WI	HEAT]	PMRA # 1190	060	
trial), 5(KS, IL, trials), 11(ID; 1 Wheat trials c	0317309 03 EC23 , NE, MN, ON; 6 . trial) and 14(SA, onducted with the rted as < LOD we	trials), 6(TZ AB, MB; 1 e end-use p	X; 1 tria 15 trials	al), 7(ND, N s). t AE 03173	E, SD, ND	, SA; 10 tria 5 A1.	als), 7A(AB; 1		
Commodity	Total Applic.	PHI			o Q TOT Pu		evels (ppm)		
	Rate (kg a.i./ha)	(days)	n	Min.	Max.	HAFT	Median	Mean	Std. Dev.
		Ру	rasulfo	otole-benzoio	c acid (AE	B197555)			
T.		18-25	68	0.003	0.447	0.437	0.030	0.081	0.1
Forage		41-46	68	0.002	0.296	0.273	0.024	0.058	0.071
Grain	0.046-0.055	40-56	72	0.028	0.873	0.502	0.121	0.149	0.117
Hay	-	21-25	70	0.015	1.149	1.100	0.176	0.236	0.202
Straw		40-56	72	0.022	0.420	0.388	0.083	0.104	0.085
	1	I	yrasul	fotole-desme	ethyl (AE 1	073910)	1		1
Forage		18-25	68	<lod< td=""><td>0.165</td><td>0.169</td><td>0.009</td><td>0.032</td><td>0.047</td></lod<>	0.165	0.169	0.009	0.032	0.047
6	4	41-46	68	<lod< td=""><td>0.072</td><td>0.064</td><td>0.007</td><td>0.013</td><td>0.018</td></lod<>	0.072	0.064	0.007	0.013	0.018
Grain	0.046-0.055	40-56	72	0.001	0.009	0.008	0.005	0.004	0.002
Hay	4	21-25	70	0.016	0.567	0.492	0.150	0.165	0.115
Straw		40-56	72	0.005	0.154	0.149	0.049	0.055	0.038

				Pyrasulf	otole				
		18-25	68	<lod< td=""><td>0.061</td><td>0.058</td><td>0.005</td><td>0.008</td><td>0.011</td></lod<>	0.061	0.058	0.005	0.008	0.011
Forage		41-46	68	<lod< td=""><td>0.026</td><td>0.026</td><td>0.005</td><td>0.006</td><td>0.004</td></lod<>	0.026	0.026	0.005	0.006	0.004
Grain	0.046-0.055	40-56	72	0.001	0.009	0.008	0.005	0.005	0.001
Нау		21-25	70	<lod< td=""><td>0.625</td><td>0.563</td><td>0.009</td><td>0.042</td><td>0.108</td></lod<>	0.625	0.563	0.009	0.042	0.108
Straw		40-56	72	0.001	0.030	0.025	0.003	0.005	0.005
	onducted with the rted as < LOD we						nputation.		
Commodity	Total Applic.	PHI	Resid	ue Levels (pp	om)				
	Rate (kg a.i./ha)	(days)	n	Min.	Max.	HAFT	Median	Mean	Std. Dev.
	•	Ру	rasulfo	tole-benzoic	acid (AE B	197555)			
P		18-25	64	0.005	0.362	0.350	0.029	0.076	0.091
Forage		41-46	64	0.003	0.214	0.208	0.022	0.049	0.059
Grain	0.035-0.042	40-56	72	0.022	0.386	0.354	0.110	0.127	0.081
Hay		21-25	62	0.036	0.795	0.727	0.174	0.207	0.14
Straw		40-56	72	0.019	0.281	0.246	0.065	0.088	0.059
	1	F	yrasulf	otole-desmet	hyl (AE 10	73910)			
Forage	0.035-0.042	18-25	64	<lod< td=""><td>0.138</td><td>0.135</td><td>0.010</td><td>0.029</td><td>0.035</td></lod<>	0.138	0.135	0.010	0.029	0.035
		41-46	64	<lod< td=""><td>0.050</td><td>0.044</td><td>0.005</td><td>0.010</td><td>0.013</td></lod<>	0.050	0.044	0.005	0.010	0.013
Grain	_	40-56	72	0.001	0.006	0.006	0.005	0.004	0.002
Нау	_	21-25	62	0.014	0.601	0.594	0.142	0.165	0.118
Straw		40-56	72	0.004	0.151	0.146	0.043	0.051	0.037
	1		1	Pyrasulf	otole				
Forage	0.035-0.042	18-25	64	<lod< td=""><td>0.060</td><td>0.060</td><td>0.005</td><td>0.009</td><td>0.012</td></lod<>	0.060	0.060	0.005	0.009	0.012
	4	41-46	64	<lod< td=""><td>0.026</td><td>0.024</td><td>0.005</td><td>0.006</td><td>0.004</td></lod<>	0.026	0.024	0.005	0.006	0.004
Grain	4	40-56	72	0.001	0.005	0.005	0.005	0.005	0.001
Нау	4	21-25	62	<lod< td=""><td>0.361</td><td>0.294</td><td>0.008</td><td>0.031</td><td>0.062</td></lod<>	0.361	0.294	0.008	0.031	0.062
Straw		40-56	72	0.001	0.016	0.016	0.004	0.005	0.004

CROP FIELD	TRIALS ON BA	RLEY					PMI	RA # 119005	58
pyrasulfotole i (SE06) or AE 5(NE, MN, ON	ield trials (33 harve n/on barley hay, gr 0317309 03 EC23 N, WI; 4 trials), 5B SK, AB, MB; 10 tr	rain, and str A8 (EC23) (ON, QC; 1	aw follow on barley	ving applicat y. Trials for l	tion of the	end-use pr alations we	oducts AE 03 re carried out	317309 02 S in zones 2(E06 A1 GA; 1 trial),
	conducted with th orted as < LOD we						nputation.		
Commodity	Total Applic.	PHI			F	Residue Lev	vels (ppm)		
	Rate (kg a.i./ha)	(days)	n	Min.	Max.	HAFT	Median	Mean	Std. Dev.
		Ру	rasulfoto	le-benzoic a	cid (AE B	197555)			
Grain		35-45	50	0.004	0.116	0.110	0.031	0.034	0.025
Hay	0.046-0.055	21-25	56	0.027	0.631	0.614	0.133	0.184	0.14
Straw		34-45	48	0.008	0.451	0.380	0.054	0.084	0.092
		F	yrasulfot	ole-desmeth	yl (AE 10	73910)			
Grain		35-45	50	<lod< td=""><td>0.008</td><td>0.008</td><td>0.002</td><td>0.003</td><td>0.002</td></lod<>	0.008	0.008	0.002	0.003	0.002
Hay	0.046-0.055	21-25	56	0.01	0.185	0.171	0.067	0.082	0.045
Straw		34-45	48	0.004	0.220	0.156	0.027	0.043	0.04
				Pyrasulfo	tole				
Grain		35-45	50	<lod< td=""><td>0.005</td><td>0.005</td><td>0.005</td><td>0.004</td><td>0.001</td></lod<>	0.005	0.005	0.005	0.004	0.001
Hay	0.046-0.055	21-25	56	<lod< td=""><td>0.050</td><td>0.044</td><td>0.008</td><td>0.013</td><td>0.012</td></lod<>	0.050	0.044	0.008	0.013	0.012
Straw		34-45	48	<lod< td=""><td>0.031</td><td>0.022</td><td>0.003</td><td>0.006</td><td>0.006</td></lod<>	0.031	0.022	0.003	0.006	0.006

Commodity	Total Applic.	PHI		Residue Levels (ppm)							
	Rate (kg a.i./ha)	(days)	n	Min.	Max.	HAFT	Median	Mean	Std. Dev.		
		Ру	rasulfoto	le-benzoic a	cid (AE B	197555)					
Grain		35-45	50	0.003	0.080	0.077	0.026	0.031	0.022		
Hay	0.035-0.042	21-25	48	0.024	0.401	0.391	0.116	0.155	0.104		
Straw		35-45	50	0.007	0.326	0.289	0.050	0.062	0.054		
	-	Р	yrasulfot	ole-desmeth	yl (AE 10	73910)					
Grain		35-45	50	<lod< td=""><td>0.005</td><td>0.005</td><td>0.005</td><td>0.004</td><td>0.002</td></lod<>	0.005	0.005	0.005	0.004	0.002		
Hay	0.035-0.042	21-25	48	0.007	0.168	0.161	0.059	0.062	0.039		
Straw		35-45	50	0.003	0.070	0.066	0.024	0.026	0.017		
				Pyrasulfo	tole						
Grain		35-45	50	<lod< td=""><td>0</td><td>0.005</td><td>0.005</td><td>0</td><td>0.001</td></lod<>	0	0.005	0.005	0	0.001		
Hay	0.035-0.042	21-25	48	0.001	0.027	0.024	0.007	0.009	0.007		
Straw		35-45	50	<lod< td=""><td>0.011</td><td>0.010</td><td>0.004</td><td>0.004</td><td>0.003</td></lod<>	0.011	0.010	0.004	0.004	0.003		

	TRIALS ON OA rted as < LOD wo		d to be h	alf the LOQ) for purp	oses of	PM	IRA # 11900	59
in/on oat forag EC23 A8 (EC2 trials), 2(FL; 1	4 and 2005 growin e, hay, grain, and s 3). In total, 38 fiel trial), 5(KS, IL, N trial) and 14(SK,	straw follow d trials (36 E, MN, OH	ving appl harvest a I, ON, NI	ication of eit and 2 decline	her AE 03) for both	17309 02 S formulation	SE06 A1 (SI ns were carr	E06) or AE 03 ied out in zor	317309 03 nes 1(PA; 1
Commodity	Total Applic. Rate	PHI (days)							
	(kg a.i./ha)		n	Min.	Max.	HAFT	Median	Mean	Std. Dev.
		Ру	rasulfoto	le-benzoic a	cid (AE B	197555)			
		21-26	60	0.001	0.133	0.124	0.014	0.026	0.031
Forage		41-46	60	<lod< td=""><td>0.156</td><td>0.146</td><td>0.008</td><td>0.019</td><td>0.035</td></lod<>	0.156	0.146	0.008	0.019	0.035
Grain	0.046-0.055	35-50	54	0.002	0.085	0.080	0.006	0.016	0.021
Hay		21-26	60	0.026	0.509	0.431	0.142	0.168	0.115
Straw		35-50	54	0.007	0.107	0.097	0.033	0.041	0.029
		Р	yrasulfot	ole-desmeth	yl (AE 10	73910)			
F		21-26	60	0.001	0.116	0.100	0.014	0.023	0.023
Forage		41-46	60	<lod< td=""><td>0.072</td><td>0.066</td><td>0.005</td><td>0.010</td><td>0.014</td></lod<>	0.072	0.066	0.005	0.010	0.014
Grain	0.046-0.055	35-50	54	0.001	0.083	0.080	0.008	0.011	0.016
Hay		21-26	60	0.036	0.587	0.527	0.147	0.167	0.107
Straw		35-50	54	0.010	0.156	0.144	0.048	0.053	0.031
				Pyrasulfo	tole			-	
Foress		21-26	60	<lod< td=""><td>0.006</td><td>0.006</td><td>0.003</td><td>0.003</td><td>0.002</td></lod<>	0.006	0.006	0.003	0.003	0.002
Forage		41-46	60	<lod< td=""><td>0.005</td><td>0.005</td><td>0.005</td><td>0.004</td><td>0.001</td></lod<>	0.005	0.005	0.005	0.004	0.001
Grain	0.046-0.055	35-50	54	<lod< td=""><td>0.022</td><td>0.020</td><td>0.005</td><td>0.004</td><td>0.004</td></lod<>	0.022	0.020	0.005	0.004	0.004
Hay		21-26	60	0.002	0.105	0.081	0.010	0.016	0.02
Straw		35-50	54	<lod< td=""><td>0.014</td><td>0.012</td><td>0.004</td><td>0.004</td><td>0.003</td></lod<>	0.014	0.012	0.004	0.004	0.003

Summary of R	Residue Data from	n Oat Field '	Trials wi	ith AE 0317	'309 03 EC	C23 A8.					
	Total Applic.	PHI	Residue Levels (ppm)								
Commodity	Commodity Rate (kg a.i./ha)		n	Min.	Max.	HAFT	Median	Mean	Std. Dev.		
		Pyr	asulfotol	e-benzoic ac	id (AE B1	97555)					
F and a second		21-26	48	0.003	0.131	0.105	0.013	0.025	0.03		
Forage		41-46	48	<lod< td=""><td>0.146</td><td>0.118</td><td>0.005</td><td>0.017</td><td>0.032</td></lod<>	0.146	0.118	0.005	0.017	0.032		
Grain	0.035-0.042	35-50	52	0.003	0.128	0.116	0.007	0.019	0.029		
Hay		21-26	48	<lod< td=""><td>0.510</td><td>0.472</td><td>0.163</td><td>0.188</td><td>0.129</td></lod<>	0.510	0.472	0.163	0.188	0.129		
Straw		35-50	52	0.007	0.108	0.106	0.035	0.041	0.028		
Pyrasulfotole-desmethyl (AE 1073910)											
F		21-26	48	0.001	0.107	0.105	0.018	0.026	0.027		
Forage		41-46	48	0.001	0.087	0.077	0.005	0.010	0.016		
Grain	0.035-0.042	35-50	52	0.001	0.089	0.088	0.005	0.010	0.017		
Hay		21-26	48	<lod< td=""><td>0.623</td><td>0.606</td><td>0.167</td><td>0.209</td><td>0.143</td></lod<>	0.623	0.606	0.167	0.209	0.143		
Straw		35-50	52	0.012	0.137	0.134	0.046	0.052	0.03		
				Pyrasulfot	tole						
		21-26	48	<lod< td=""><td>0.005</td><td>0.005</td><td>0.003</td><td>0.003</td><td>0.002</td></lod<>	0.005	0.005	0.003	0.003	0.002		
Forage		41-46	48	<lod< td=""><td>0.005</td><td>0.005</td><td>0.005</td><td>0.005</td><td>0.001</td></lod<>	0.005	0.005	0.005	0.005	0.001		
Grain	0.035-0.042	35-50	52	<lod< td=""><td>0.022</td><td>0.022</td><td>0.005</td><td>0.004</td><td>0.004</td></lod<>	0.022	0.022	0.005	0.004	0.004		
Нау]	21-26	48	<lod< td=""><td>0.050</td><td>0.046</td><td>0.012</td><td>0.013</td><td>0.01</td></lod<>	0.050	0.046	0.012	0.013	0.01		
Straw]	35-50	52	<lod< td=""><td>0.012</td><td>0.011</td><td>0.003</td><td>0.004</td><td>0.003</td></lod<>	0.012	0.011	0.003	0.004	0.003		

FIELD ACCUMULATION IN ROTATIONAL CROPS

PMRA # 1190056

AE 0317309 02 SE06 A1 was applied to wheat planted in silty loam soil at a nominal rate of 0.050 kg a.i./ha with one application at three sites (zone 4 and 5) in 2004. The wheat crop was harvested and/or destroyed to allow planting of corn and soybeans with a plant-back interval (PBI) of 114 to 123 days following the application to wheat.

Summary of Residue Data in Rotational Crops Following Primary Treatment with AE 0317309 02 SE06 A1.

Commodity	Total Applic.	PBI			I	Residue Le	vels (ppm)		
	Rate (kg a.i./ha)	(days)	n	Min.	Max.	HAFT	Median	Mean	Std. Dev.
		Pyr	asulfotol	e-benzoic ac	id (AE B1	97555)			
Corn forage	0.049-0.051	114-123	6	<lod< td=""><td>0.0018</td><td>0.0018</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	0.0018	0.0018	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Corn Grain	0.049-0.051	114-123	6	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Corn Stover	0.049-0.051	114-123	6	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Soybean Forage	0.049-0.051	114-123	6	<lod< td=""><td>0.0027</td><td>0.0026</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	0.0027	0.0026	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Soybean Grain	0.049-0.051	114-123	4	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Soybean Hay	0.049-0.051	114-123	6	<lod< td=""><td>0.0126</td><td>0.0124</td><td><lod< td=""><td>0.005</td><td>0.0055</td></lod<></td></lod<>	0.0126	0.0124	<lod< td=""><td>0.005</td><td>0.0055</td></lod<>	0.005	0.0055
Pyrasulfotole-desmethyl (AE 1073910)									
Corn forage	0.049-0.051	114-123	6	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Corn Grain	0.049-0.051	114-123	6	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Corn Stover	0.049-0.051	114-123	6	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Soybean Forage	0.049-0.051	114-123	6	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Soybean Grain	0.049-0.051	114-123	4	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Soybean Hay	0.049-0.051	114-123	6	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
			Pyras	ulfotole (AI	E 0317309))			
Corn forage	0.049-0.051	114-123	6	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Corn Grain	0.049-0.051	114-123	6	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Corn Stover	0.049-0.051	114-123	6	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>

Commodity	Total Applic.	PBI				I	Residue Le	vels (ppm)		
	Rate (kg a.i./ha)	(n	Min.	Max.	HAFT	Median	Mean	Std. Dev.
			I	Pyras	ulfotole (AE	E 0317309))			
Soybean Grain	0.049-0.051	114-12	3	4	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Soybean Hay	0.049-0.051	114-12	3 6 <lod <lod="" <lod<="" td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod>				<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
PROCESSED	FOOD AND FEI	AND FEED						PMRA # 1	1190057	
Test Site Zone 5 (Sabin, Minnesota)										
Treatment			Sprir	ng wheat wa	s treated a	t the flag st	age of developm	ent (BBCH	39)	
Rate						0.258 kg a	i./ha			
End-use produ	ıct		AE 0317309 02 SE6; suspo-emulsion containing pyrasulfotole and mefenpyr- diethyl							
Preharvest int	erval		57 days							
Processed Con	nmodity					Р	rocessing 1	Factor		
Aspirated Grain	n Fractions						32.8			
Wheat Bran							1.6			
Wheat Flour 0.3										
Wheat Middlin	g						0.4			
Wheat Shorts							0.6			
Wheat Germ			0.7							

LIVESTO	OCK FEEDING – Da	airy cattle					PMRA	# 1190061	
There were 30 ppm in	ole was administered e 3 animals per treatm the feed (dry weight dietary burden in dai	nent group ar basis). This c	nd a single contr corresponds to 7	ol animal, v .7-fold, 23-	which were of fold, and 77	dosed at ('-fold of t) ppm (co he calcula	ntrol), 3 ppr	n, 9 ppm or
Matrix	Feeding Level (ppm/d)	n	LOD	Min	Max	Me	edian	Mean	Standard Deviation
Milk	30 ^a	30	0.0015	0.0042	0.0134	0.0)103	0.0096	0.0024
Milk Fat	30	3	0.0003	0.0061	0.0085	0.0	0074	0.0073	0.0012
Milk Skim	30	3	0.0002	0.0086	0.0105	0.0)090	0.0094	0.0010
Fat	3	3		0.0017	0.0062	0.0	0040	0.0040	0.0022
	9	3	0.0007	<lod< td=""><td>0.0033</td><td>_</td><td></td><td></td><td></td></lod<>	0.0033	_			
	30	3		0.0024	0.0143	0.0	0046	0.0071	0.0064
Kidney	3	3		0.1748	0.2224	0.1	973	0.1982	0.0238
	9	4	0.0004	0.1232	0.4240	0.2	2420	0.2631	0.1515
	30	3		0.3778	0.4144	0.3	3811	0.3911	0.0202
Liver	3	3		1.019	1.230	1.	187	1.145	0.1113
	9	3	0.0005	0.6922	1.594	1.	577	1.288	0.5159
	30	3		1.642	1.939	1.	795	1.792	0.1488
Muscle	3	3		<lod< td=""><td>0.0010</td><td>_</td><td></td><td></td><td></td></lod<>	0.0010	_			
	9	3	0.0006	<lod< td=""><td>0.0007</td><td>_</td><td></td><td></td><td></td></lod<>	0.0007	_			
	30	3		0.0013	0.0039	0.0	0025	0.0026	0.0013

^a For milk samples at the 30 ppm level Day 0 were excluded from the statistical analysis because dosing was not started until Day 1 (i.e. Day 0 was predosing).

Commodity	Feeding level	Maximum Residues (ppm)*	MTDB (ppm)	Anticipated Residue (ppm)				
	(ppm)		Beef/Dairy	Hog	Beef/Dairy	Hog		
Milk	9	0.0066	0.18	0.014	0.00013	-		
Fat	3	0.0124	0.39	0.014	0.00161	0.00006		
Kidney	3	0.4448	0.39	0.014	0.0578	0.0021		
Liver	3	2.46	0.39	0.014	0.3198	0.011		
Muscle	3	0.002	0.39	0.014	0.0003	0.000009		

* Maximum residues include residues of pyrasulfotole from the feeding study and the assumption that pyrasulftole-desmethyl residues would be of equivalent amount in the tissues.

LIVESTOCK FEEDING – Laying hens	PMRA # 1190062
LIVESTOCK FEEDING – Laying itens	$1 M M \pi \pi 11 / 0002$

Forty laying hens, divided into three treatment groups with three sub-groups of four hens each and four control hens, were orally dosed once daily for 29 consecutive days with pyrasulfotole-benzoic acid (AE B197555) at target dose rates of 0 ppm (control), 0.4, 1.2, or 4.0 ppm/day in the feed. The applicant based these levels on field residue data that were approximately 6.9-fold, 20.7-fold and 67-fold the anticipated maximum dietary burden of 0.058 ppm arising from the use of pyrasulfotole (AE 0317309) on cereal grains.

					Residue Leve	els (ppm)		
Matr ix	Feeding Level	n	LOD	Min	Max	Median	Mean	Standard Deviation
Egg	4.0 ppm ^a	30	0.0022	<lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td></td></lod<>			
	0.4 ppm	3		<lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td></td></lod<>			
Fat	1.2 ppm	3	0.0014	<lod< td=""><td>0.0085</td><td></td><td></td><td></td></lod<>	0.0085			
	4.0 ppm	3		0.0025	0.0057	0.0052	0.0045	0.0018
	0.4 ppm	3		<lod< td=""><td>0.0016</td><td></td><td></td><td></td></lod<>	0.0016			
Liver	1.2 ppm	3	0.0010	0.0024	0.0035	0.0031	0.0029	0.0008
	4.0 ppm	3		0.0102	0.0209	0.0105	0.0139	0.0061
	0.4 ppm	3		<lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td></td></lod<>			
Musc le	1.2 ppm	3	0.0018	<lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td></td></lod<>			
10	4.0 ppm	3		0.0023	0.0038	0.0036	0.0032	0.0008
	0.4 ppm	3		0.0014	0.0030	0.0017	0.0021	0.0009
Skin	1.2 ppm	3	0.0014	0.0040	0.0073	0.0042	0.0052	0.0019
	4.0 ppm	3		0.0203	0.0226	0.0207	0.0212	0.0013

^a For egg samples at 4.0 ppm dosing level, samples from Day 0 were excluded in the statistical analysis since dosing was not started until Day 1 (i.e., Day 0 was pre-dosing day).

Commodity	Feeding level (ppm)	Maximum residues * (ppm)	MTDB (ppm)	Anticipated residue (ppm)
Muscle	8.6	0.037	0.058	0.0002
Fat	8.6	0.065	0.058	0.0004
Liver	8.6	1.557	0.058	0.0105
Eggs	8.6	-	0.058	-

Table 6Food Residue Chemistry Overview of Metabolism Studies and Risk
Assessment

PLANT STUDIES	5
RESIDUE DEFINITION FOR ENFORCEMENT AND RISK ASSESSMENT Primary crops	Pyrasulfotole and pyrasulfotole-desmethyl
Rotational crops	Pyrasulfotole
Based on the structural similarity between the parent and the pyras absence of toxicological evidence to the contrary, pyrasulfotole-de comparable toxicity to the parent.	
Pyrasulfotole-desmethyl had quantifiable levels in wheat (forage, h (forage, grain, hay and straw) in the submitted crop field trial studi commodities pyrasulfotole-desmethyl was present at levels equal to	es. Additionally, in the majority of the
Although pyrasulfotole-benzoic acid was a major metabolite found crops, wheat, barley and oats crop field trial studies, based on avail from the parent pyrasulfotole, it was considered to be not of toxico in the residue definition for enforcement or risk assessment purpos	able toxicology studies and dissimilar structure logical concern. Therefore, it was not included
METABOLIC PROFILE IN DIVERSE CROPS	The profile in diverse crops cannot be determined because only wheat was investigated.
ANIMAL STUDIE	S
ANIMALS	Ruminant
RESIDUE DEFINITION FOR ENFORCEMENT AND RISK ASSESSMENT	Pyrasulfotole, pyrasulfotole-desmethyl
In available crop field trials, pyrasulfotole-desmethyl was one of the items; therefore, the secondary residues that livestock are likely to instead of parent.	
METABOLIC PROFILE IN ANIMALS (goat, hen, rat)	The profile is similar in that all the metabolites found in ruminants were also identified in rat.
FAT SOLUBLE RESIDUE	No

DIETARY RISK FROM FOOD AND WATER				
	POPULATION	ESTIMATED RISK % of ACCEPTABLE DAILY INTAKE (ADI)		
		Food Only	Food and Water	
Refined chronic non-cancer dietary risk ADI = 0.001 mg/kg bw Estimated chronic drinking water concentration = 0.0085 ppm	All infants < 1 year	1.0	59.7	
	Children 1–2 years	3.2	29.8	
	Children 3 to 5 years	3.2	28.1	
	Children 6–12 years	1.9	19.1	
	Youth 13–19 years	1.0	14.0	
	Adults 20–49 years	1.0	17.7	
	Adults 50+ years	1.1	18.7	
	Total population	1.3	19.2	
Refined acute dietary exposure analysis, 95 th percentile	POPULATION	ESTIMATED RISK % of ACUTE REFERENCE DOSE (ARfD)		
Estimated acute drinking water concentration = 0.0098 ppm		Food Only	Food and Water	
ARfD = 0.013 mg/kg bw	Females 13–49 years	0.2	3.8	

Table 7Fate and Behaviour in the Environment

Property	Test substance	Value	Comments			
Terrestrial Environment						
Abiotic transformation						
Hydrolysis	[pyrazole-3- ¹⁴ C] AE 0317309 pH 5, pH 7, pH 9	Stable in water at pHs 5, 7 and 9.	Stable to hydrolysis at environmentally relevant pH levels (no transformation occurred over 30 day study).			
Phototransformation on soil	[pyrazole-3- ¹⁴ C] AE 0317309	Stable on silt loam soil, pH 7.4.	Stable to photolysis on soils (no difference between irradiated and dark controls).			

Property	Test substance	Value	Comments			
	Ter	restrial Environment	•			
Biotransformation						
Biotransformation in aerobic soil	[phenyl-U- ¹⁴ C] and [pyrazole-3- ¹⁴ C] AE 0317309	DT_{50} , DT_{90} , 1/3 DT_{90} of both radiolabels combined: Loamy sand soil: 5.8, 749, 249 days Silt loam soil: 63, 1424, 475 days Sandy loam soil: 23, 208, 69 days	Moderately persistent to persistent in aerobic soils based on $1/3 \text{ DT}_{90}$ estimates.			
Biotransformation in anaerobic soil	[phenyl-U- ¹⁴ C] and [pyrazole-3- ¹⁴ C] AE 0317309	t_{ν_2} of both radiolabels combined: whole system = stable	Stable in anaerobic soils.			
		Mobility				
Adsorption or desorption in soil	[pyrazole-3- ¹⁴ C] AE 0317309	Non-Freundlich coefficients in silt loam (x2), loamy sand, clay loam and sandy loam soils, and one sandy loam sediment: K_{d-ads} : 0.37-18.2 K_{OC-ads} : 22 - 395 K_{d-des} : 0.15 - 12.7 K_{OC-des} : 9 - 276	Moderate to very high mobility.			
	AE B197555	Freundlich coefficients in clay loam, sandy loam and silt loam: K_{F-ads} : 0.01 - 0.03 $K_{FOC-ads}$: 1 - 2 1/n: 0.53 - 0.86 K_{F-des} : not determined* $K_{FOC-des}$: not determined*	Very high mobility.			
Soil leaching		Not submitted.	Not required.			
Volatilization		Not submitted.	Not required.			
	•	Field studies				
0317309 02 SH A103 (50 g a.i pyrasulfotole) Canadian studi AE 0317309 0 OD14 A102 (1 g a.i./L pyrasulfotole +		North Dakota DT ₅₀ : 6 days DT ₉₀ : 44 days 1/3 DT ₉₀ : 15	Slightly persistent based on $1/3 \text{ DT}_{90}$ estimate.			
	pyrasulfotole + 29 g a.i./L mefenpyr-	Washington DT_{50} : 6 days DT_{90} : 213 days $1/3 DT_{90}$: 71	Moderately persistent based on $1/3 DT_{90}$ estimate.			
		Saskatchewan DT ₅₀ : 10 days DT ₉₀ : 260 days 1/3 DT ₉₀ : 87	Moderately persistent based on $1/3 \text{ DT}_{90}$ estimate.			
		Manitoba DT ₅₀ : 9 days DT ₉₀ : 531 days 1/3 DT ₉₀ : 177	Moderately persistent based on $1/3 \text{ DT}_{90}$ estimate.			

Property	Test substance	Value		Comments			
Terrestrial Environment							
		Ontario DT_{50} : 18 days DT_{90} : 178 days $1/3 DT_{90}$: 59		Moderately persistent based on $1/3 DT_{90}$ estimate.			
Field leaching		Not submitted.		Not required.			
	Aq	uatic Environment					
	Abi	otic transformation	-				
Hydrolysis	[pyrazole-3- ¹⁴ C] AE 0317309	Estimated $t_{t/2}$: > 1 year at pH 5, 7, 9	Stable to hydrolysis.				
Phototransformation in water	[phenyl-U- ¹⁴ C] and [pyrazole-3- ¹⁴ C] AE 0317309	$t_{y_2} = stable$	Stable to photolysis in water.				
	E	Biotransformation					
Biotransformation in aerobic water systems	[phenyl-U- ¹⁴ C] and [pyrazole-3- ¹⁴ C] AE 0317309	Sandy loam system $t_{\frac{1}{2}}$ whole system = could not be determined (stable)	Considered stable in aerobic whole water-sediment system due to test material partitioning to bound residues in sediment, but not being lost from the system.				
		Silt clay system Observed $DT_{50} > 131$ days in water, sediment and whole system.		n aerobic whole ediment system.			
Biotransformation in anaerobic water systems	[phenyl-U- ¹⁴ C] AE 0317309	Observed $DT_{50} > 1$ year	Stable in anaerobic whole water-sediment system.				
[pyrazole-3 AE 031730		Observed $DT_{50} > 1$ year	Stable in anaerobic whole water-sediment system.				
		Partitioning					
Adsorption or desorption in sediment (results from soil adsorption / desorption study)	[pyrazole-3- ¹⁴ C] AE 0317309	Non-Freundlich coefficients in Nidda sandy loam sediment K_{d-ads} : 18.2 K_{OC-ads} : 395 K_{d-des} : 12.7 K_{OC-des} : 276	Modera	te mobility.			
		Field studies					
Field dissipation	Not Submitted						

Fate process	Test material	Major transformation products	Minor transformation products
Hydrolysis	[pyrazole-3- ¹⁴ C] AE 0317309	None.	None.
Phototransformation on soil	[pyrazole-3- ¹⁴ C] AE 0317309	None.	None.
Phototransformation in water	[phenyl-U- ¹⁴ C] and [pyrazole-3- ¹⁴ C] AE 0317309	None.	Unknown A (detected once at 4.1% on Day 3; [phenyl-U- ¹⁴ C] label only).
Biotransformation in aerobic soil	[phenyl-U- ¹⁴ C] and [pyrazole-3- ¹⁴ C] AE 0317309	AE B197555 ([phenyl-U- 14 C] label only, 3.8 - 12.2%; Days 7 - 30) CO ₂ (16.3 - 40.5%; study termination, Days 120 - 358)	Unidentified polar compounds (2.6 - 14.1%; Days 41 - 358)
Biotransformation in anaerobic soil (flooded soil)	[phenyl-U- ¹⁴ C] and [pyrazole-3- ¹⁴ C] AE 0317309	None.	AE B197555 ($\leq 0.6\%$) Unidentified polar compounds ($\leq 1.5\%$)
Field dissipation	U.S. studies: AE 0317309 02 SE06 A103 (50 g a.i./L pyrasulfotole) Canadian studies: AE 0317309 02 OD14 A102 (115 g a.i./L pyrasulfotole + 29 g a.i./L mefenpyr- diethyl)	AE B197555 (20.8 – 67.3%; Days 7 – 29)	None.
Biotransformation in aerobic water/sediment system	[phenyl-U- ¹⁴ C] and [pyrazole-3- ¹⁴ C] AE 0317309	None.	Both sandy loam and silty clay systems: AE B197555 (max. 2.6-3.0% in whole systems; phenyl-U- ¹⁴ C label only). Unidentified [¹⁴ C]residues (total max. 3.0% in the whole systems both labels).
Biotransformation in anaerobic water/sediment system	[phenyl-U- ¹⁴ C] and [pyrazole-3- ¹⁴ C] AE 0317309	None.	Unidentified polar compounds $(\leq 3.4\%)$. CO ₂ ($\leq 2.8\%$).

Organism	Exposure	Test substance	End point value	Degree of toxicity ^a
		Invertebrates	5	
Earthworm	Acute (artificial soil)	AE 0317309 (95.4% purity)	NOEC = 1000 mg a.i./kg soil $LC_{50} > 1000$ mg a.i./kg soil	Practically non- toxic
	Acute (artificial soil)	AE B197555 (990 g/kg purity) ^b	NOEC = 556 mg/kg soil $LC_{50} > 1000$ mg/kg soil	Practically non- toxic
	Chronic (artificial soil)	AE B197555 (990 g/kg purity)	NOEC = 1000 mg/kg soil	
Bee	Oral	AE 0317309 (95.4% purity)	NOEC = 120 ug a.i./bee LD ₅₀ > 120 ug a.i./bee (i.e., LD ₅₀ > 134 kg a.i./ha)	Relatively non- toxic.
	Contact	AE 0317309 (95.4% purity)	NOEC = 75 ug a.i./bee LD ₅₀ > 75 ug a.i./bee (i.e., LD ₅₀ > 84 kg a.i./ha)	Relatively non- toxic.
Predatory arthropod	Contact	AE 0317309 02 SE06 A103 [4.32% w/w AE 0317309 plus 1.02% w/w AE F107892 (product safener)]	A103 [4.32% NOEC = 18 g a.i./ha AE 0317309 $LR_{50} > 100$ g a.i./ha 1.02% w/w Reproduction: 107892 NOEC = 18 g a.i./ha	
Parasitic arthropod	Parasitic arthropod Contact		Mortality: NOEC = 32 g a.i./ha $LR_{50} = 80.3$ g a.i./ha Reproduction: NOEC = <18 g a.i./ha $IR_{50} = 31.1$ g a.i./ha	
		Birds		
Bobwhite quail	Acute	AE 0317309 (95.4% purity)	NOEL = 2000 mg a.i./kg bw $LD_{50} > 2000$ mg a.i./kg bw	Practically non- toxic.
	Dietary	AE 0317309 (95.4% purity)	NOEC = 4911 mg a.i./kg diet $LC_{50} > 4911$ mg a.i./kg diet	Practically non- toxic.
		AE B197555 (990 g/kg purity)	NOEC = 5620 mg a.i./kg diet $LC_{50} > 5620$ mg a.i./kg diet	Practically non- toxic.
	Reproduction	AE 0317309 (95.4% purity)	NOEC = 205 mg a.i./kg diet Endpoint: proportion of hatchlings to live 3-week embryos.	

Table 8 Toxicity to Non-Target Species

Organism	Exposure	Test substance	End point value	Degree of toxicity ^a
Mallard duck	Acute	Not submitted.	Not submitted.	
	Dietary	AE 0317309 (95.4% purity)	NOEC = 5089 mg a.i./kg diet $LC_{50} > 5089$ mg a.i./kg diet	Practically non- toxic.
	Reproduction	AE 0317309 (95.4% purity)	NOEC = 167 mg a.i./kg diet Endpoint: adult male body weight gain	
		Mammals		
Rat	Acute	AE 0317309 (95.4% purity)	NOAEL = 2000 mg a.i./kg bw $LD_{50} > 2000$ mg a.i./kg bw Enpoint: mortality	Practically non- toxic.
	Dietary (90- Day)	AE 0317309 (95.4% purity)	NOAEL= 30 mg a.i./kg diet σ = 1.96 mg a.i./kg bw/d φ = 2.32 mg a.i./kg bw/d Endpoint: decreased kidney function in σ and corneal opacity in φ	
	2-Generation Reproduction	AE 0317309 (95.4% purity)	NOAELs: parental systemic toxicity <30 mg a.i./kg diet o [*] <2.5, 9 <3.1 mg/kg bw/d Endpoint: thyroid effects	
			offspring toxicity <30 mg a.i./kg diet & <2.5, \$ <3.1 mg/kg bw/d Endpoint: pup mortality	
			reproductive toxicity = 30 mg a.i./kg diet $\sigma = 2.5, \varphi = 3.1$ mg/kg bw/d Endpoint: decreased rearing indices	
	Acute	AE B197555 (990 g/kg purity)	NOAEL = 5000 mg/kg bw $LD_{50} > 5000$ mg/kg bw Endpoint: no mortality	Practically non- toxic.
	Dietary (28- Day)	AE B197555 (990 g/kg purity)	NOAEL = 15000 mg/kg diet Endpoint: no mortality, sublethal effects	Practically non- toxic.
	Dietary (90- Day)	AE B197555 (990 g/kg purity)	NOAEL = 12000 mg/kg diet Endpoint: no mortality, sublethal effects	Practically non- toxic.
	Developmental toxicity	AE B197555 (990 g/kg purity)	NOAEL = 75 mg/kg bw/d Endpoint: maternal toxicity (decreased food intake, transient decreased bw)	

Organism	Exposure	Test substance	End point value	Degree of toxicity ^a
	Acute	AE 0317309 02 SE06 Herbicide	LD ₅₀ >2000 mg/kg bw	Practically non- toxic.
	Acute	AE 0317309 03 EC23 Herbicide	LD ₅₀ >300 <2000 mg/kg bw	Slightly toxic.
Mouse	Dietary (90-Day)	AE 0317309 (95.4% purity)	NOAEL= 3000 mg a.i./kg diet $\sigma = 500$ mg a.i./kg bw/d $\varphi = 617$ mg a.i./kg bw/d Endpoint: no mortality, sublethal effects	Practically non- toxic.
Rabbit	Developmental toxicity	AE 0317309 (95.4% purity)	NOAELs: maternal toxicity = 75 mg/kg bw/d Endpoints: kidney function, decreased bw, decreased food intake, increased liver wt developmental toxicity = 10 mg/kg bw/d Endpoints: skeletal variation, but effects not considered biologically relevant at 10 mg/kg bw/d	
		Vascular plan	its	
Vascular plant	Seedling emergence	AE 0317309 03 EC23 (37.5 g a.i./L)	$EC_{25} = 0.28$ g a.i./ha Endpoint: tomato dry weight	
		AE 0317309 02 SE06 (50 g a.i./L)	EC ₂₅ = 1.23 g a.i./ha Endpoint: tomato dry weight	
		AE B197555 (990 g/kg purity)	EC ₂₅ > 157 g/ha Endpoint : none > 25%	
	Vegetative vigour	AE 0317309 03 EC23 (37.5 g a.i./L)	$EC_{25} = 0.19$ g a.i./ha Endpoint: cucumber dry weight	
		AE 0317309 02 SE06 (50 g a.i./L)	EC ₂₅ = 0.91 g a.i./ha Endpoint: tomato dry weight	
		AE B197555 (990 g/kg purity)	EC ₂₅ > 146 g/ha Endpoint : none > 25%	

Organism	Exposure	Test substance	End point value	Degree of toxicity ^a
		Aquatic Inverteb	rates	
Water flea (Daphnia magna)	Acute	AE 0317309 (97.4% purity)	NOEC = 95.8 mg a.i./L EC ₅₀ > 95.8 mg a.i./L	Practically non- toxic
		AE B197555 (990 g/kg purity) ^b	NOEC = 150 mg/L EC ₅₀ > 150 mg/L	Practically non- toxic
	Chronic	AE 0317309 (95.4% purity)	NOEC = 12.8 mg a.i./L EC ₅₀ > 52.9 mg a.i./L	
		Aquatic Vertebr	ates	
Rainbow trout (Oncorhynchus	Acute	AE 0317309 (97.4% purity)	NOEC = 96.0 mg a.i./L $LC_{50} > 96.0$ mg a.i./L	Practically non- toxic
mykiss)		AE B197555 (990 g/kg purity)	NOEC = 130 mg a.i./L $LC_{50} = 160 mg/L$	Practically non- toxic
Fathead minnow (<i>Pimephales</i> promelas)	Chronic (Early Life Stage test)	AE 0317309 (95.4% purity)	NOEC = 0.58 mg a.i./L LOEC = 1.10 mg a.i./L Effects: length (most sensitive parameter), dry weight	
Bluegill sunfish (Lepomis macrochirus)	Acute	AE 0317309 (98.2% purity)	NOEC = 96.5 mg a.i./L $LC_{50} > 96.5$ mg a.i./L	Practically non- toxic
		Freshwater algae /	plants	
Green algae (Pseudokirchneriella subcapitata)	Acute	AE 0317309 (95.4% purity)	NOEC = 2.6 mg a.i./L EC ₅₀ = 11.0 mg a.i./L Endpoint: cell density, biomass	
		AE B197555 (990 g/kg purity)	NOEC = 2.4 mg a.i./L EC ₅₀ > 9.4 mg a.i./L Endpoint: cell density	
Diatom (Navicula pelliculosa)	Acute	AE 0317309 (95.4% purity)	NOEC = 25.8 mg a.i./L EC ₅₀ = 53.0 mg a.i./L Endpoint: biomass	
Blue-green algae (Anabaena flos- aquae)	Acute	AE 0317309 (95.4% purity)	NOEC = 40.1 mg a.i./L EC ₅₀ = 45.7 mg a.i./L Endpoint: growth rate	
Vascular plant (Lemna gibba)	Acute	AE 0317309 (95.4% purity)	NOEC = $0.00957 \text{ mg a.i./L}$ EC ₅₀ = 0.028 mg a.i./L Endpoint: frond dry weight	

Organism	Exposure	Test substance	End point value	Degree of toxicity ^a
		Marine speci	es	
Crustacean (Mysidopsis bahia)	Acute	AE 0317309 (95.4% purity)	NOEC = 0.37 mg a.i./L LC ₅₀ = 1.1 mg a.i./L	Moderately toxic
		AE B197555 (990 g/kg purity)	$NOEC = 25 mg/L$ $LC_{50} = 145 mg/L$	Practically non- toxic
Mollusk (Crassostrea virginica)	Acute	AE 0317309 (95.4% purity)	NOEC = 104 mg a.i./L EC ₅₀ > 104 mg a.i./L	Practically non- toxic
Sheepshead minnow (Cyprinidon variegatus)	Acute	AE 0317309 (95.4% purity)	NOEC = 100 mg a.i./L LC ₅₀ > 100 mg a.i./L	Practically non- toxic
Marine alga (Skeletonema costatum)	Acute	AE 0317309 (95.4% purity)	NOEC = 2.53 mg a.i./L EC ₅₀ = 8.3 mg a.i./L	

Table 9 Screening Level Risk Assessment on Non-target Species

Organism	Test Substance	Exposure	End point value	EEC	RQª
		Ter	restrial Invertebrates		
Earthworm	AE 0317309	Acute	1/2 LC ₅₀ > 500 mg a.i./kg soil	0.022 mg a.i./kg dw soil	0.000044
	AE B197555	Acute	$1/2 \text{ LC}_{50} > 500 \text{ mg/kg soil}$	0.016 mg/kg dw soil ^f	0.000032
		Chronic	NOEC = 500 mg/kg soil	0.016 mg/kg dw soil ^b	0.000032
Bee	AE 0317309	Oral	$LD_{50} > 120 \text{ ug a.i./bee}$ (i.e., $LD_{50} > 134 \text{ kg a.i./ha}$)	50 g a.i./ha	0.00037
		Contact	$LD_{50} > 75$ ug a.i./bee (i.e., $LD_{50} > 84$ kg a.i./ha)	50 g a.i./ha	0.00060
Predatory arthropod	AE 0317309	Contact	LR ₅₀ > 100 g a.i./ha	50 g a.i./ha	0.50
Parasitic arthropod	AE 0317309	Contact	$LR_{50} = 80.3 \text{ g a.i./ha}$	50 g a.i./ha	0.62
		Te	rrestrial Vertebrates		
Bobwhite quail	AE 0317309	Acute	NOEL = 2000 mg a.i./kg bw	0.929 mg a.i./kg bw ^c	0.00046
		Dietary	NOEC = 4911 mg a.i./kg diet	8.75 mg a.i./kg dw diet	0.0018
		Reproduction	NOEC = 205 mg a.i./kg diet	8.75 mg a.i./kg dw diet	0.042
	AE B197555	Dietary	NOEC = 5620 mg/kg diet	6.48 mg/kg diet ^b	0.0012

Organism	Test Substance	Exposure	End point value	EEC	RQ ^a
Mallard duck	AE 0317309	Dietary	NOEC = 5089 mg a.i./kg diet	1.69 mg a.i./kg dw diet	0.00033
		Reproduction	NOEC = 167 mg a.i./kg diet	1.69 mg a.i./kg dw diet	0.010
Rat	AE 0317309	Acute	LD ₅₀ >2000 mg a.i./kg bw	4.32 mg a.i./kg bw ^d	0.0022
		90-d Dietary	NOAEL = 30 mg a.i./kg diet	25.22 mg a.i./kg dw diet	0.84
		2-Generation Reproduction	LOAEL = 30 mg a.i./kg diet	25.22 mg a.i./kg dw diet	0.84 (note: RQ for LOAEL; RQ for NOAEL could not be determined)
	AE B197555	Acute oral	LD ₅₀ >5000 mg/kg bw	3.19 mg/kg bw ^e	0.00064
		28-d Dietary	NOAEL = 15000 mg/kg diet	18.66 mg/kg dw diet ^f	0.0012
		Development al toxicity	NOAEL = 75 mg/kg bw/d maternal toxicity (decreased food intake, transient decrease body weight)	3.19 mg/kg bw ^e	0.043
	AE 0317309 02 SE06 Herbicide	Acute	LD ₅₀ >2000 mg/kg bw	95.9 mg/kg bw ^f	0.048
	AE 0317309 03 EC23 Herbicide	Acute	LD ₅₀ >300 <2000 mg/kg bw	130.9 mg/kg bw ^g	0.44
Mouse	AE 0317309	28-d Dietary	NOAEL = 1000 mg a.i./kg diet	25.07 mg a.i./kg dw diet	0.025
Rabbit	AE 0317309	Development al toxicity	NOAEL = 10 mg/kg bw/d developmental toxicity	1.13 mg/kg bw ^h	0.11
			Terrestrial Plants		
Vascular plant	AE 0317309 03 EC 23	Seedling emergence	$EC_{25} = 0.28 \text{ g a.i./ha}$	31.25 g a.i./ha	112
		Vegetative vigour	$EC_{25} = 0.19 \text{ g a.i./ha}$	31.25 g a.i./ha	164
	AE 0317309 02 SE 06	Seedling emergence	EC ₂₅ = 1.23 g a.i./ha	50 g a.i./ha	41
		Vegetative vigour	$EC_{25} = 0.91$ g a.i./ha	50 g a.i./ha	55
	AE B197555	Seedling emergence	EC ₂₅ > 157 g/ha	37 g/ha ^b	0.24
		Vegetative vigour	EC ₂₅ > 146 g/ha	37 g/ha ^b	0.25

magna . Rainbow trout . Rainbow trout . Bluegill . sunfish . Fathead . minnow . Amphibians . Freshwater . alga .	AE 0317309	Free			
magna . Rainbow trout . Rainbow trout . Bluegill . sunfish . Fathead . minnow . Amphibians . Freshwater . alga .	AE 0317309		shwater Invertebrates		
Rainbow trout Anphibians Amphibians Amphibia		Acute	$1/2 \text{ EC}_{50} > 47.9 \text{ mg a.i./L}$	0.0063 mg a.i./L	0.00013
Rainbow trout		Chronic	NOEC = 12.8 mg a.i./L	0.0063 mg a.i./L	0.00049
Bluegill	AE B197555	Acute	1/2 EC ₅₀ > 75 mg/L	0.0047 mg/L ^b	0.000063
Bluegill sunfish Fathead minnow Amphibians Amphibians Amphibians Again alga Amphibian		Fre	eshwater Vertebrates		
Bluegill . sunfish . Fathead . minnow . Amphibians . Freshwater . alga .	AE 0317309	Acute	$1/10 \text{ LC}_{50} > 9.6 \text{ mg a.i./L}$	0.0063 mg a.i./L	0.00066
sunfish Fathead minnow Amphibians Freshwater alga	AE B197555	Acute	$1/10 \text{ LC}_{50} = 16.0 \text{ mg/L}$	0.0047 mg/L ^b	0.00029
minnow Amphibians Amph	AE 0317309	Acute	$1/10 \text{ LC}_{50} > 9.65 \text{ mg a.i./L}$	0.0063 mg a.i./L	0.00065
Freshwater alga	AE 0317309	Chronic	NOEC = 0.58 mg a.i./L	0.0063 mg a.i./L	0.011
alga	AE 0317309	Chronic	NOEC = $0.58 \text{ mg a.i./L}^{g}$	0.033 mg a.i./L	0.057
alga]	Freshwater Plants		•
-	AE 0317309	Acute	$1/2 \text{ EC}_{50} = 5.5 \text{ mg a.i./L}$	0.0063 mg a.i./L	0.0012
Vascular	AE B197555	Acute	$1/2 \text{ EC}_{50} > 4.7 \text{ mg a.i./L}$	0.0047 mg/L ^b	0.0010
plant (<i>Lemna</i> <i>gibba</i>)	AE 0317309	Acute	$1/2 \text{ EC}_{50} = 0.014 \text{ mg a.i./L}$	0.0063 mg a.i./L	0.45
•		Μ	arine Invertebrates		-
Marine . crustacean	AE 0317309	Acute	$1/2 \text{ LC}_{50} = 0.55 \text{ mg a.i./L}$	0.0063 mg a.i./L	0.012
(mysid)	AE B197555	Acute	$1/2 \text{ LC}_{50} = 72.5 \text{ mg/L}$	0.0047 mg/L ^b	0.000065
Marine . mollusk	AE 0317309	Acute	$1/2 \text{ EC}_{50} > 52 \text{ mg a.i./L}$	0.0063 mg a.i./L	0.00012
		N	Iarine Vertebrates		
Marine . salmonid	AE 0317309	Acute	$1/10 \text{ LC}_{50} > 10 \text{ mg a.i./L}$	0.0063 mg a.i./L	0.00063
			Marine Plants		
Marine alga	AE 0317309	Acute	$1/2 \text{ EC}_{50} = 4.2 \text{ mg a.i./L}$	0.0063 mg a.i./L	0.0015

^a Risk quotient = exposure / toxicity. Bold RQ values indicate that the risk quotient exceeds the PMRA LOC of 1.

^b EECs for AE B197555 (a.k.a RPA 203328) based on assumed 100% conversion of pyrasulfotole and a molar ratio of 0.74 (268.2 g/mol AE B197555 / 362.3 g/mol pyrasulfotole). For example, 50 g a.i./ha * 0.74 = 37 g/ha AE B197555.

 $^{\circ}$ EEC according to body weight = 8.75 mg a.i./kg dw diet for bobwhite quail x 0.0189 kg dw diet/day for daily food intake rate (Nagy 1987) / 0.178 kg for body weight (Dunning 1993).

 d EEC according to body weight = 25.22 mg a.i./kg dw diet for rat x 0.060 kg dw diet/day for daily food intake rate (U.S. EPA 1988) / 0.35 kg for body weight (U.S. EPA 1988).

^e EEC according to body weight = 18.66 mg a.i./kg dw diet for rat x 0.060 kg dw diet/day for daily food intake rate (U.S. EPA 1988) / 0.35 kg for body weight (U.S. EPA 1988).

^f Conversion of EEC in diet: 25.22 mg a.i./kg dw diet / 4.51% pyrasulfotole in SE06 formulation = 559.2 mg/kg dw diet. EEC according to body weight = 559.2 mg/kg dw diet for rat x 0.060 kg dw diet/day for daily food intake rate (U.S. EPA 1988) / 0.35 kg for body weight (U.S. EPA 1988).

^g Conversion of EEC in diet: 25.22 mg a.i./kg dw diet / 3.30% pyrasulfotole in EC23 formulation = 763.5 mg/kg dw diet. EEC according to body weight = 763.5 mg/kg dw diet for rat x 0.060 kg dw diet/day for daily food intake rate (U.S. EPA 1988) / 0.35 kg for body weight (U.S. EPA 1988).

^h EEC according to body weight = 37.72 mg a.i./kg dw diet for rabbit x 0.060 kg dw diet/day for daily food intake rate (U.S. EPA 1988) / 2.0 kg for body weight (U.S. EPA 1988).

Table 10 Screening Level Risk Assessment for List 2 Petroleum Distillate Formulant on Non-target Aquatic Species

Organism	Test Substance	Exposure	End point value	EEC	RQ ^a
Daphnia magna	List 2 Petroleum Distillate	Acute	1/2 EC ₅₀ = 0.475 mg/L	0.038 mg/L ^b	0.1
Rainbow trout	List 2 Petroleum Distillate	Acute	$1/10 LC_{50} = 0.234 mg/L$	0.038 mg/L ^b	0.2
Amphibians	List 2 Petroleum Distillate	Acute	$1/10 LC_{50} = 0.234 mg/L^{c}$	0.20 mg/L	0.9

^a Risk quotient = exposure / toxicity. Bold RQ values indicate that the risk quotient exceeds the PMRA LOC of 1. ^b EEC for aquatic habitats based on an application rate of 300.4 g/ha List 2 petroleum distillate to a 1 ha pond 80 cm deep.

 $^{\circ}$ 1/10 LC₅₀ from acute rainbow trout study was used to determine risk to amphibians in a 15 cm deep water body.

Table 11	Refined Risk Assessment on Non-Target Terrestrial Plant Species
----------	---

Organism	Test Substance	Exposure	End point value	EEC	RQ ^a
Vascular plant	AE 0317309 03 EC 23	Seedling emergence	$EC_{25} = 0.28 \text{ g a.i./ha}$	1.9 g a.i./ha	6.7
		Vegetative vigour	$EC_{25} = 0.19 \text{ g a.i./ha}$	1.9 g a.i./ha	9.9
	AE 0317309 02 SE 06	Seedling emergence	$EC_{25} = 1.23 \text{ g a.i./ha}$	3.0 g a.i./ha	2.4
		Vegetative vigour	$EC_{25} = 0.91$ g a.i./ha	3.0 g a.i./ha	3.3

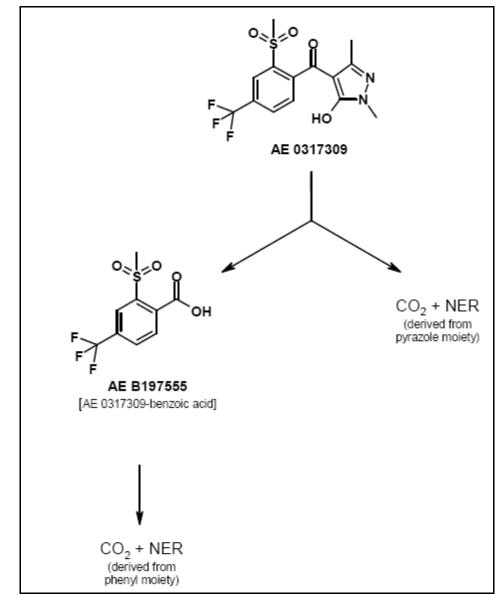


Figure 4.1Transformation Pathway for pyrasulfotole (AE 0317309) in Aerobic Soil

References

A. LIST OF STUDIES/INFORMATION SUBMITTED BY REGISTRANT

1.0 Chemistry Assessment

PMRA 1189809	2006, AE 0317309 - Technical material - Discussion of the formation of impurities, M-265968-01-1, DACO: 2.12.2,2.13.4
PMRA 1189810	2006, Analytical Testing of Pyrasulfotole (AE 0317309) - Determination of Cyanide, 2006/0009/01, DACO: 2.13.3
PMRA 1189811	2006, Material accountability of Ae 0317309 (pyrasulfotole) Analytical profile of five production batches, PA05/052, DACO: 2.13.3
PMRA 1189812	2006, AE 0317309 - Technical grade active substance - Description of the manufacturing process of the technical A.S., M-265958-01-1, DACO: 2.11.1,2.11.2,2.11.3,2.11.4
PMRA 1189813	2006, External composition statement technical material - Pyrasulfotole AE 0317309, M-264794-01-1, DACO: 2.12.1,2.12.2,2.13.4
PMRA 1189814	2006, AE 0317309; substance, pure - AE 0317309 00 1B99 0001 - Melting point, boiling point, thermal stability - 1st amendment to report-No. 20040374.01, 20040374.01, DACO: 2.14.4,2.14.5,2.16
PMRA 1189815	2005, Storage stability and corrosion characteristics of AE 0317309, PA03/076, DACO: 2.14.14
PMRA 1189817	2005, Stability of AE 0317309 to normal and elevated temperature, metals and metal ions, PA04/097, DACO: 2.14.13
PMRA 1189818	2003, AE 0317309 - substance, technical - AE 0317309 00 1C96 0001 - Auto-flammability (Solids - Determination of relative self-ignition temperature), 20031005.03, DACO: 2.16
PMRA 1189819	2003, AE 0317309 - substance, technical - AE 0317309 00 1C96 0001 - Explosive properties, 20031005.02, DACO: 2.16
PMRA 1189820	2003, AE 0317309 - substance, technical - AE 0317309 00 1C96 0001 - Flammability (solids), 20031005.01, DACO: 2.16
PMRA 1189821	2005, AE 0317309 substance, pure - Surface tension - Code: AE 0317309 00 1B99 0001, M-255551-01-1, DACO: 2.16

PMRA 1189822	2003, Determination of the pH -value of AE 0317309 substance, pure Code: AE 0317309 00 1B99 0001, C033462, DACO: 2.16
PMRA 1189823	2005, Final report AE 0317309; substance, technical AE 0317309 001C99 0002 - Oxidizing properties A.17, 20050877.01, DACO: 2.16
PMRA 1189824	2005, Relative density of AE 0317309 substance, technical, PA05/101, DACO: 2.16
PMRA 1189825	2006, The oxidation or reduction properties of AE 0317309 - Technical substance - AE 0317309 00 1C99 0002, PA05/110, DACO: 2.16
PMRA 1189826	2003, AE 0317309 - Relative density, PA03/040, DACO: 2.14.6
PMRA 1189827	2004, Vapour pressure AE 0317309; substance, pure Code: AE 0317309 00 1B99 0001, C042368, DACO: 2.14.9
PMRA 1189828	2003, AE 0317309 - Physical characteristics color, appearance and odor, PA03/044, DACO: 2.14.1,2.14.2,2.14.3
PMRA 1189829	2005, Physical characteristics color, appearance and odor of AE 0317309 substance, technical, PA05/102, DACO: 2.14.1,2.14.2,2.14.3
PMRA 1189830	2003, AE 0317309 - Spectral data (UV/VIS, IR, 1H-NMR, 13C-NMR, MS) and molar extinction coefficient, PA03/023, DACO: 2.13.2,2.14.12
PMRA 1189831	2004, Water solubility of AE 0317309 at pH 4, pH 7, pH 9 and bidistilled water, PA03/008, DACO: 2.14.7
PMRA 1189832	2003, AE 0317309 - Solubility in organic solvents, PA03/009, DACO: 2.14.8
PMRA 1189833	2003, AE 0317309 - Partition coefficient 1-octanol/water (AE 0317309 00 1B99 0001), PA03/010, DACO: 2.14.11
PMRA 1189834	2006, AE 0317309 - Determination of the dissociation constant, PA03/045A1, DACO: 2.14.10,8.2.3.2
PMRA 1189837	2006, Material safety data sheet - Pyrasulfotole technical, M-266812-01-1, DACO: 2.11.2

PMRA 1189838	2004, Determination of AE 0317309 in technical grade and pure AE 0317309 by high performance liquid chromatographie (HPLC), C045951, DACO: 2.13.1
PMRA 1189839	2006, Validation of HPLC-method AM006904FP1 Determination of AE 0317309 in technical grade and pure AE 0317309 by high performance liquid chromatographie (HPLC), AF04/086, DACO: 2.13.1
PMRA 1189840	2006, AE 0317309 - Determination of cyanide by polarography validation of method 2201-0225603-96, VB-2201-0225603, DACO: 2.13.4
PMRA 1189841	2005, Analytical method - Determination of by-products in technical grade and pure AE 0317309 by high performance liquid chromatography (HPLC), AM007505FP1, DACO: 2.13.4
PMRA 1189842	2005, Analytical method: determination of the solvents Acetonitrile (AE 0173080), Toluene (AE F125577) and MTBE (AE F146605) in AE 0317309 technical materials by gas chromatography, AM009105FP2, DACO: 2.13.4
PMRA 1189843	1996, Cyanide; FRee and inorganicly bound cyanide - Polarography, 2201-0225603-96, DACO: 2.13.4
PMRA 1189844	2005, Laboratory method LM011306FP1 Determination of chloride in AE 0317309 by titration, Lm011306FP1, DACO: 2.13.4
PMRA 1189845	2005, Laboratory method LM011306FP1 Determination of triethyamine in AE 0317309 by titration, LM011406FP1, DACO: 2.13.4
PMRA 1189846	2000, MT 30 Water ; 30.1 Karl Fischer Method, CIPAC MT 30.1, DACO: 2.13.4
PMRA 1189847	2005, Validation of GC-method AM009105FP1: determination of Acetonitril (AE 0173080), Toluene (AE F125577) and MTBE (AE F146605) in technical grade and pure AE 0317309 by gas chromatography (GC), AF05/30, DACO: 2.13.4
PMRA 1189848	2005, Validation of HPLC-method AM00750FP1- Determination of by-products in technical grade and pure AE 0317309 by high performance liquid chromatographie (HPLC), AF05/008, DACO: 2.13.4

PMRA 1326887	2003, The Determination of the pKa for the Isoxaflutole Metabolite RPA203328, CX/03/016A, DACO: 2.14.11
PMRA 1188988	2006, Stability of AE 0317309 02 SE06 A105, 201423-1, DACO: 3.5.10,3.5.14,3.5.5
PMRA 1188996	2006, BCS DER for AE 0317309 02 SE06 herbicide product chemistry data review for the registration of a manufacturing concentrate (MA) or an end-use product (EP)., M-268189-01-1, DACO: 3.1.1,3.1.2,3.1.3,3.1.4,3.2.1,3.2.2,3.2.3,3.3.1,3.3.2,3.4.1,3.4.2,3.5.1
PMRA 1188997	2006, BCS DER for AE 0317309 02 SE06 herbicide product chemistry data, M-268189-01-1, DACO: 3.1.1,3.1.2,3.1.3,3.1.4,3.2.1,3.2.2,3.2.3,3.3.1,3.3.2,3.4.1,3.4.2,3.5.1, 3.5.10,3.5.11,3.5.12,3.5.13,3.5.14,3.5.15,3.5.2,3.5.3,3.5.4,3.5.5,3.5. 6,3.5.7,3.5.8,3.5.9
PMRA 1189096	2006, BCS DER for AE 0317309 03 EC23 herbicide product chemistry data, —268193- 01-1, DACO: 3.1.1,3.1.2,3.1.3,3.1.4,3.2.1,3.2.2,3.2.3,3.3.1,3.3.2,3.4.1,3.4.2,3.5.1, 3.5.10,3.5.11,3.5.12,3.5.13,3.5.14,3.5.15,3.5.2,3.5.3,3.5.4,3.5.5,3.5. 6,3.5.7,3.5.8,3.5.9
PMRA 1189097	2006, BCS DER for AE 0317309 03 EC23 herbicide product chemistry data, M-268193-01-1, DACO: 3.1.1,3.1.2,3.1.3,3.1.4,3.2.1,3.2.2,3.2.3,3.3.1,3.3.2,3.4.1,3.4.2,3.5.1, 3.5.10,3.5.14,3.5.2,3.5.3,3.5.4,3.5.5,3.5.6,3.5.7,3.5.9
PMRA 1189124	2006, Stability of AE 0317309+bromoxynil EC23, 201394-1, DACO: 3.5.10,3.5.14,3.5.5
PMRA 1224379	2006, Product Chemistry AE 0317309 + Bromo Herbicide, DACO: 3.1.1,3.1.2,3.1.3,3.1.4,3.2.1,3.2.2,3.2.3,3.3.1,3.4.1,3.4.2,3.5.1,3.5.1 0,3.5.14,3.5.2,3.5.3,3.5.4,3.5.5,3.5.6,3.5.7,3.5.9
2.0 Impact on I	Human and Animal Health
PMRA 1188970	2006. AE 0317309 02 SE06 A1 - Acute inhalation toxicity in rats. Lab report # AT01972, Bayer HealthCare AG. DACO: 4.6.3
PMRA 1188973	2006. AE 0317309 02 SE06 A1 - Acute toxicity in the rat after dermal application. Lab report # AT01987, Bayer HealthCare AG. DACO: 4.6.2
PMRA 1188975	2006. Acute toxicity in the rat after dermal application. Lab report # M-267974-01-1, Bayer CropScience AG. DACO: 4.6.2

PMRA 1188976	2006. AE 0317309 02 SE06 A1 - Acute toxicity in the rat after oral administration. Lab report # AT01989, Bayer HealthCare AG. DACO: 4.6.1
PMRA 1188979	2006. AE 0317309 02 SE06 A1 - Acute eye irritation on rabbits. Lab report # AT02030, Bayer HealthCare AG. DACO: 4.6.4
PMRA 1188982	2006. AE 0317309 02 SE06 A1 - Acute skin irritation/corrosion on rabbits. Lab report # AT02029, Bayer HealthCare AG. DACO: 4.6.5
PMRA 1188985	2006, AE 0317309 02 SE06 A1 (Project: AE 0317309) - Study for the skin sensitization effect in guinea pigs (Buehler Patch Test). Lab report # AT02026, Bayer HealthCare AG. DACO: 4.6.6
PMRA 1189066	2005. AE 0317309 03 EC23 A8 - Acute eye irritation on rabbits . Lab report # AT01910, Bayer HealthCare AG. DACO: 4.6.4
PMRA 1189067	2005. AE 0317309 03 EC23 A8 - Acute inhalation toxicity in rats. Lab report # AT01974, Bayer HealthCare AG. DACO: 4.6.3
PMRA 1189068	2005. AE 0317309 03 EC23 A8 - Acute skin irritation/corrosion on rabbits. Lab report # AT01911, Bayer HealthCare AG. DACO: 4.6.5
PMRA 1189069	2006. AE 0317309 03 EC23 A8 - Acute toxicity in the rat after dermal application. Lab report # AT01956, Bayer HealthCare AG. DACO: 4.6.2
PMRA 1189070	2006. AE 0317309 03 EC23 A8 - Acute toxicity in the rat after oral administration. Lab report # AT01957, Bayer HealthCare AG. DACO: 4.6.1
PMRA 1189071	2005. AE 0317309 03 EC23 A8 - Study for the skin sensitization effect in guinea pigs (Buehler patch test). Lab report # AT02006, Bayer HealthCare AG. DACO: 4.6.6
PMRA 1189888	2005. The Metabolism of (Phenyl-UL- ¹⁴ C) and (Pyrazole-3- ¹⁴ C) AE 0317309 in Rats. Lab report # MEAIX021, Bayer CropScience. DACO 4.5.9
PMRA 1189890	2006. A 14-day Comparative Toxicity Feeding Study in M Beagle Dogs with Technical Grade AE 0317309. Lab report # 201379, Bayer CropScience. DACO 4.2.9, 4.3.8, 4.4.5, 4.5.8, 4.8

PMRA 1189892	2006. Effect of Tyrosinaemia on Pregnancy and Embryo-fetal Development in the Rat. Lab report # SA 05192, Bayer CropScience DACO 4.2.9, 4.3.8, 4.4.5, 4.5.8, 4.8
PMRA 1189895	1995. Tyrosine. Exploratory 14-day (Ocular Toxicity) Study in the Rat and Mouse. Lab report # C021325, Rhone-Poulenc Agrochimie Centre de Recherche. DACO 4.2.9, 4.3.8, 4.4.5, 4.5.8, 4.8
PMRA 1189897	2006. NTBC - <i>In Vitro</i> Inhibition of HPPDase using Liverbeads TM from Different Species. Lab report # SA04276, Bayer CropScience DACO 4.2.9, 4.3.8, 4.4.5, 4.5.8, 4.8
PMRA 1189900	1995. 28-day Toxicity Study in the Rat by Dietary Administration - RPA203328 (a Metabolite of RPA201772). Lab report # R005242, Rhone-Poulenc Agrochimie Centre de recherche. MRID: 43904813, DACO: 4.1
PMRA 1189930	Anon. 2006. RPA203328: Developmental Toxicology Study in the Rat by Gavage. Lab report # SA 98427, Bayer CropScience. DACO: 4.1
PMRA 1189933	1999. RPA203328: Developmental Toxicity Study in the Rat by Gavage. Lab report # SA 98427, Bayer CropScience. DACO: 4.1
PMRA 1189934	1998. Mutagenicity test on RPA 203328 in the In Vivo Mouse Micronucleus Assay. Lab report # 19201-0-4550ECD, B CS. DACO: 4.1
PMRA 1189935	1998. Mutagenicity Test on RPA 203328 in the In Vivo Mouse Micronucleus Assay. Lab report # M-268153-01-1, B CS. DACO: 4.1
PMRA 1189936	1998. RPA 203328 - 90-day Oral Toxicity (Dietary) - Rat. Lab report # M-267685-01-1, B CS. DACO: 4.1
PMRA 1189937	1998. RPA 203328 - 90-Day Oral Toxicity (Dietary) - Rat. Lab report # SA 98129, B CS. DACO: 4.1
PMRA 1189938	1998. Mutagenicity Test on RPA 203328 - In the CHO/HGPRT Forward Mutation Assay with Duplicate Cultures and a Confirmatory Assay. Lab report # M-267725-01-1, B CS. DACO: 4.1

PMRA 1189940	1998. Mutagenicity test on RPA 203328 - In the CHO/HGPRT Forward Mutation Assay with Duplicate Cultures and a Confirmatory Assay. Lab report # 19201-0-435-OECD, BCS. DACO: 4.1
PMRA 1189941	1998. Mutagenicity Test on RPA 203326 Measuring Chromosomal Aberrations. Lab report # 19201-0-4370ECD, BCS. DACO: 4.1
PMRA 1189943	1994. RPA 203328 - Salmonella typhimurium Reverse Mutation Assay (Ames Tes). Lab report # SA 94057, BCS. DACO: 4.1
PMRA 1189945	1994. RPA 203328 - Salmonella Typhimurium Reverse Mutation Assay (Ames Test). Lab report # SA 94057, BCS. DACO: 4.1
PMRA 1189948	1999. Developmental Toxicology Study in the Rat by Gavage - RPA203328. Lab report # SA 98427, Rhone-Poulenc Agrochimie Centre de Recerche. MRID: 45655906, DACO: 4.1
PMRA 1189952	1998. Mutagenicity Test on RPA 203328 in the In Vivo Mouse Micronucleus Assay. Lab report # C026351, Covance Laboratories Inc. MRID: 44545302, DACO: 4.1
PMRA 1189955	1998. Mutagenicity Test on RPA203328 - Measuring Chromosomal Aberrations in Chinese Hamster Ovary (CHO) Cells. Lab report # R000093, Covance Laboratories Inc. MRID: 44545301, DACO: 4.1
PMRA 1189958	1998. Mutagenicity test on RPA203328 in the CHO/HGPRT Forward Mutation Assay with Duplicate Cultures and a Confirmatory Assay. Lab report # 19201-0-435 OECD, Covance Laboratories Inc. MRID: 44545303, DACO: 4.1
PMRA 1189961	1995. Oral limit test in the rat RPA203328. Lab report # R005364, Rhone-Poulenc Agrochimie Centre de Recherche. MRID: 43904812, DACO: 4.1
PMRA 1189963	1994. RPA203328. Salmonella typhimurium. Reverse Mutation Assay (Ames Test). Lab report # R005218, Rhone-Poulenc Secteur Agro Centre de Recherche. MRID: 43904814, DACO: 4.1
PMRA 1189966	1998. RPA 203328: 90-Day Toxicity Study in the Rat by Dietary Administration. Lab report # B003642, Rhone-Poulenc Agrochimie Centre de Recherche. MRID: 45655903, DACO: 4.1

PMRA 1189970	2004. AE 0317309 - Acute Toxicity in Rat After Oral Administration. Lab report # AT01067, Bayer HealthCare AG. DACO 4.2.1
PMRA 1189974	2004. AE 0317309 - Acute Toxicity in Rat After Dermal Application. Lab report # AT01069, Bayer HealthCare AG. DACO 4.2.2
PMRA 1189978	2004. AE 0317309 - Study on Acute Inhalation Toxicity in Rats According to OECD no. 403. Lab report # AT00964, Bayer HealthCare AG. DACO 4.2.3
PMRA 1189981	2004. AE 0317309 - Acute Skin Irritation/Corrosion on Rabbits. Lab report # M-003613-01-3, Bayer HealthCare AG. DACO 4.2.5
PMRA 1189984	2006. AE 0317309 Technical - Primary Eye Irritation Study in Rabbits. Lab report # 18739, Product Safety Laboratories. DACO 4.2.4
PMRA 1189987	2004. AE 0317309 - Study for the Skin Sensitization Effect in Guinea Pigs (Guinea Pig Maximization Test According to Magnusson and Kligman). Lab report # AT01261, Bayer HealthCare AG. DACO 4.2.6
PMRA 1189990	2002. AE 0317309 - Preliminary 28 Day Toxicity Study in the Mouse by Dietary Administration. Lab report # M-211308-01-3, Bayer CropScience. DACO 4.3.3
PMRA 1189991	2002. AE 0317309 - Preliminary 28-Day Toxicity Study in the Dog by Dietary Administration. Lab report # SA 02053, Bayer CropScience. DACO 4.3.3
PMRA 1189998	2006. Technical Grade AE 0317309: A 90-Day Subchronic Toxicity Feeding Study in the Beagle Dog. Lab report # 201019-1, Bayer CropScience. DACO 4.3.3
PMRA 11899999	2003. AE 0317309 - 90-day Toxicity Study in the Mouse by Dietary Administration. Lab report # SA03015, Bayer CropScience. DACO 4.3.1
PMRA 1190000	2003. AE 0317309 - 90-Day Toxicity Study in the Rat by Dietary Administration. Lab report # M-102924-01-2, Bayer CropScience. DACO 4.3.1

PMRA 1190009	2005. Technical Grade AE 0317309 - A 90-Day Subchronic Toxicity Feeding Study on the Beagle Dog. Lab report # 201210, Bayer CropScience. DACO 4.3.2
PMRA 1190010	2006. A Chronic Toxicity Feeding Study in the Beagle Dog with Technical Grade AE 0317309. Lab report # 201450, Bayer Corporation LP. DACO 4.3.2
PMRA 1190013	2005. AE0317309 - Subacute Toxicity Study in the Rat (4 Weeks Dermal Administration). Lab report # AT02678, Bayer HealthCare AG. DACO 4.3.5
PMRA 1190016	2004. AE 0317309 - Salmonella/Microsome Test - Plate Incorporation and Preincubation Method. Lab report # AT01032, Bayer HealthCare AG. DACO 4.5.4
PMRA 1190019	2004. AE 0317309 - <i>In Vitro</i> Chromosome Aberration Test with Chinese Hamster V79 Cells. Lab report # AT01285, Bayer HealthCare AG. DACO 4.5.6
PMRA 1190022	2006. AE 0317309 (Project: AE 0317309) - V79/HPRT- Test <i>In</i> <i>Vitro</i> Detection of Induced Forward Mutations - 1. Amendment to Bayer report AT01401 of July 6, 2004. Lab report # AT01401A, Bayer HealthCare AG. DACO 4.5.5
PMRA 1190025	2005. AE 0317309 - Micronucleus-Test Using Mice. Lab report # AT00719, Bayer HealthCare AG. DACO 4.5.7
PMRA 1190028	2006. 6-Month Toxicity, Chronic Toxicity and Carcinogenicity Study of AE 0317309 in the Wistar Rat by Dietary Administration. Lab report # SA02453, Bayer CropScience SA. DACO 4.4.2, 4.4.4
PMRA 1190031	2006. Carcinogenicity Study of AE 0317309 in the C57BL/6J Mouse by Dietary Administration. Lab report # SA03172, Bayer CropScience SA. DACO 4.4.3
PMRA 1190038	2005. AE 0317309 - Two-Generation Reproduction Study in the Wistar Rat by Administration in the Diet. Lab report # AT02705, Bayer HealthCare AG. DACO 4.5.1
PMRA 1190041	2006. AE 0317309 - Developmental Toxicity Study in the Rat by Gavage. Lab report # M-267036-01-2, Bayer CropScience SA. DACO 4.5.2

PMRA 1190044	2006. AE 0317309 - Developmental Toxicity Study in the Rabbit by Gavage. Lab report # M-266702-01-2, Bayer CropScience SA. DACO 4.5.3
PMRA 1190047	2005. An Acute Oral Neurotoxicity Screening Study with Technical Grade AE 0317309 in Wistar Rats. Lab report # 201392, Bayer CropScience SA. DACO 4.5.12
PMRA 1190050	2005. A Subchronic Neurotoxicity Screening Study with Technical Grade AE 0317309 in Wistar Rats. Lab report # 201381, Bayer CropScience SA. DACO 4.5.13
PMRA 1190053	2006. A Developmental Neurotoxicity Screening Study with Technical Grade AE0317309 in Wistar Rats. Lab report # 201439, Bayer CropScience SA. DACO 4.5.14
PMRA 1388309	2007. AE 0317309 - Historiacl control data for selected findings from the mouse oncogenicity study SA 03172.
PMRA 1388310	2007. AE 0317309 - Historical control data for selected findings from the rat chronic / oncogenicity study SA 02453
PMRA 1388311	2007. AE 0317309 - Historical control data for fetal body weight in rabbit developmental toxicity study SA 03131
PMRA 1189010	Canadian Use Description Scenario for AE 0317309 02 SE06 Herbicide. Report Date 16-MAR-06. Lab Report No. BCS RA 06- 03. Company Report No. —267809-01-1. DACO 5.2 Description of pest problem.
PMRA 1189013	Occupational exposure & risk assessment for mixer/loaders, applicators and reentry workers during use of AE 0317309 02 SE06. Report Date 13-MAR-06. Lab Report No. 201488. Company Report No. —267815-01-1. DACO 5.3 Pesticides handlers exposure database assessment (or other database).
PMRA 1189108	Canadian use description scenario for AE 0317309 03 EC23 herbicide. Report Date 16-MAR-06. Lab Report No. M-267813-01-1. Company Report No. M- 267813-01. DACO 5.2 Description of pest problem.
PMRA 1189870	2006, Extraction Efficiency of AE B197555, AE 1073910, and AE 0317309 by Method AI-0001-P04-01, Bayer CropScience, RAAIX011, DACO: 7.2.2,8.2.2.4

PMRA 1189871	2006, Extraction Efficiency of Bayer CropScience Method AI- 004-A05-01 - Analytical Method for the Determination of Residues of AE 0317309 in Animal Tissues and Milk Using LC- MS/MS, Bayer CropScience, RAAIX010, DACO: 7.2.2,8.2.2.4
PMRA 1189872	2006, Independent Laboratory Validation of Method AI-005-A05- 01 - An Analytical Method for the Determination of AE B197555 in Poultry and Eggs Using LC/MS/MS, Enviro-Test Laboratories, RAAIP011, DACO: 7.2.1,7.2.3,7.2.4,8.2.2.4
PMRA 1189873	2005, Independent Laboratory Validation of the Analytical Method Al-004-A05-01 for the Determination of Residues of AE 0317309 in Animal Tissues and Milk Using LC-MS/MS, Bayer CropScience AG, MR-122/05, DACO: 7.2.1,7.2.3,7.2.4,8.2.2.4
PMRA 1189874	2005, Independent Laboratory Validation of the Analytical Method AI-001-P04-01 for the Determination of Residues of AE 0317309, AE 1073910 and AE B197555 in Plant Material, Bayer CropScience AG, MR-097/05, DACO: 7.2.1,7.2.3,7.2.4,8.2.2.4
PMRA 1189875	2006, PAM I multiresidue protocol testing of AE 0317309 and its metabolite: AE 1073910, Pyxant Labs Inc., 1624, DACO: 7.2.1,7.2.4
PMRA 1189880	2006, Validation of Bayer CropScience Method AI-001-P04-01 an Analytical Method for the Determination of Residues of AE 0317309, AE 1073910, and AE B197555 in Wheat, Corn, and Soybean Matrices Using LC/MS/MS, Bayer CropScience, RAAIX005, DACO: 7.2.1,7.2.4
PMRA 1189882	2006, Validation of Bayer CropScience Method AI-004-A05-01 Analytical Method for the Determination of Residues of AE 0317309 in Animal Tissues and Milk Using LC-MS/MS, Bayer CropScience, RAAIX006, DACO: 7.2.2,7.2.5,8.2.2.4
PMRA 1189884	2006, Validation of Bayer CropScience method AI-005-A05-01 Analytical Method for the Determination of Residues of AE B197555 in Poultry and Eggs Using LC/MS/MS, Bayer CropScience, RAAIP012, DACO: 7.2.2,7.2.5,8.2.2.4
PMRA 1190056	2006, AE 0317309 - Magnitude of the Residue in Corn and Soybeans Planted as Rotational Crops Following Treatment of Wheat with AE 0317309 02 SE06 A1 (120-Day Plant-Back Interval), Bayer CropScience, RAAIM021, DACO: 7.4.4

PMRA 1190057	2006, AE 0317309 02 SE06 A1 - Magnitude of the Residue in/on Wheat Aspirated Grain Fractions and Wheat Processed Commodities, Bayer CropScience, RAAIM003, DACO: 7.4.1,7.4.5
PMRA 1190058	2006, AE 0317309 02 SE06 A1 and AE 0317309 03 EC23 A8 Magnitude of the Residue in/on Barley, Bayer CropScience, RAAIM004, DACO: 7.4.1,7.4.2,7.4.6
PMRA 1190059	2006, AE 0317309 02 SE06 A1 and AE 0317309 03 EC23 A8 Magnitude of the Residue in/on Oats, Bayer CropScience, RAAIM006, DACO: 7.4.1,7.4.2,7.4.6
PMRA 1190060	2006, AE 0317309 02 SE06 A1 and and AE 0317309 03 EC23 A8 - Magnitude of the Residue in/on Wheat, Bayer CropScience, RAAIM002, DACO: 7.4.1,7.4.2,7.4.6
PMRA 1190061	2006, AE B197555 - Magnitude of the Residue in Laying Hens, Bayer Corporation, RAAIP004, DACO: 7.5.1
PMRA 1190062	2006, AE0317309 - Magnitude of the Residue in Lactating Cows, Bayer CropScience, RAAIX017, DACO: 7.5.1
PMRA 1190082	2006, Storage Stability of AE 0317309, AE 1073910, and AE B197555 in Soybean and Wheat Matrices (Data to 11 Months of Storage), Bayer CropScience, RAAIX009, DACO: 7.3
PMRA 1190083	2006, The Accumulation of [Phenyl-UL- ¹⁴ C] and [Pyrazole-3-14C] AE 0317309 in Confined Rotational Crops, Bayer CropScience, 201152, DACO: 7.4.3
PMRA 1190094	2004, Metabolism of [Phenyl-U- ¹⁴ C]AE 0317309 in Wheat (Triticum aestivum) Following Treatment at a Nominal Application Rate of 100 g a.s./ha, Bayer CropScience GmbH, MEF-193/03, DACO: 6.3
PMRA 1190095	2004, Metabolism of [Phenyl-U-14C]AE 0317309 in Wheat Following Treatment at an Application Rate of 100 g/ha with and without Safener, Bayer CropScience AG, M-128001-01-2, DACO: 6.3
PMRA 1190096	2004, Metabolism of [Pyrazole-3- ¹⁴ C]AE 0317309 in Wheat (Triticum aestivum) Following Treatment at a Nominal Application Rate of 100 g a.s./ha, Bayer CropScience GmbH, MEF-194/03, DACO: 6.3,7.4.3

PMRA 1190101	2006, Metabolism of [Phenyl-U- ¹⁴ C]-AE 0317309 in the Laying Hen, Bayer CropScience, MEAIM012, DACO: 6.2
PMRA 1190102	2006, Metabolism of [pyrazole-3- ¹⁴ C]-AE 0317309 in the laying hen, Bayer CropScience, MEAIM011, DACO: 6.2
PMRA 1190103	2006, AE 0317309 - Metabolism of [Pyrazole-3- ¹⁴ C]-AE 0317309 in the Lactating Goat, Bayer CropScience, MEAIM010, DACO: 6.2
PMRA 1190108	2006, Metabolism of [phenyl-U- ¹⁴ C]-AE 0317309 in the Lactating Goat, Bayer CropScience, MEAIM009, DACO: 6.2

3.0 Impact on the Environment

- 1189849 2006, AE 0317309 Analytical Method for the Determination of AE 0317309 and its Meabolite AE B197555 in Soil and Sediment by LC/MS/MS, AI-002-S05-02, DACO: 8.2.2.1
- 1189854 2006, In House Laboratory Validation of an Analytical Method for the Determination of Residues of AE 00317309 and its Metabolite AE B197555 in Soil and Sediment Using LC/MS/MS, 04MEAIX017, DACO: 8.2.2.1
- 1189855 2005, Independent Laboratory Validation of Method AI002-S05-01 for the Determination of AE 0317309 and its Metabolite AE B197555 in Soil and Sediment by LC/MS/MS., MR-112/05, DACO: 8.2.2.1
- 1189856 2006, Stability of AE 0317309 and AE B197555 in Soil During Frozen Storage, USA, 2005 (Reported Through a Maximum of 320 Days Storage), RAAIX008, DACO: 8.2.2.1
- 1189857 2006, AE 0317309 Analytical Method for the Determination of AE 0317309 and its Metabolite AE B197555 in Water by LC/MS/MS, AI-003-W05-02, DACO: 8.2.2.3
- 1189860 2006, In House Laboratory Validation of an Analytical Method for the Determination of Residues of AE 00317309 and its Metabolite AE B197555 in Water Using LC/MS/MS, MEAIX018, DACO: 8.2.2.3

1189861	2005, Independent Laboratory Validation of Method AI-003-W05-01 for the Determination of AE 0317309 and its Metabolite AE B197555 in Water, MR-139/05, DACO: 8.2.2.3
1190109	2005, (Phenyl-UL-14C) and (Pyrazole-3-14C)AE 0317309: Anaerobic Soil Metabolism, 04MEAIP001, DACO: 8.2.3.4.4
1190112	2004, [Pyrazole-3-14C] AE 0317309: Phototransformation on Soil, 200638, DACO: 8.2.3.3.1
1190115	2005, AE 0317309: Calculation of the Chemical Lifetime in the Troposphere, MEAIM006, DACO: 8.2.3.3.3
1190116	2006, Aquatic Ecological and Drinking Water Exposure Assessment for AE 0317309 and its Major Metabolite AE B197555 (Canada), M-267796-02-1, DACO: 8.5.1,8.6
1190117	2006, Aquatic Ecological and Drinking Water Exposure Assessment for AE 0317309 and its Major Metabolite AE B197555 (United States), MEAIY010, DACO: 8.5.1,8.6
1190131	2006, Terrestrial Field Dissipation of AE 0317309 in Washington soil, 2004, MEAIY009, DACO: 8.5.1,8.6
1190133	2006, Terrestrial Field Dissipation of AE 0317309 in Canada, 2003-2004, MEAIM004, DACO: 8.5.1,8.6
1190134	2006, Terrestrial Field Dissipation of AE 0317309 in Kansas Soil, 2004, MEAIY008, DACO: 8.5.1,8.6
1190135	2006, Terrestrial Field Dissipation of AE 0317309 in North Dakota Soil, 2004, MEAIY007, DACO: 8.5.1,8.6
1190136	2005, [phenyl-U-14C]- and [pyrazole-3-14C]-AE 0317309: Aerobic soil metabolism in a loamy sand soil of US origin under laboratory conditions at 25¿¿C, MEF-386/03, DACO: 8.2.3.4.2
1190137	2004, [phenyl-U-14C]- and [pyrazole-3-14C]-AE 0317309: Aerobic Soil Metabolism in a Silt Loam Soil of US Origin Under Laboratory Conditions at 25 degrees Celsius, MEF-387/03, DACO: 8.2.3.4.2
1190138	2005, [Phenyl-UL-14C] and [Pyrazole-3-14C]AE 0317309: Aerobic Soil Metabolism in a European Soil, MEF-05/459, DACO: 8.2.3.4.2

1190145	2003, Adsorption/Desorption of AE 0317309 on Five Souls and One Sediment, MEF-186/03, DACO: 8.2.4.2
1190148	2004, (14C)-RPA 203328: Adsorption / Desorption in Five Soils, C040534, DACO: 8.2.4.2
1190151	2004, [Pyrazole-3-14C] AE0317309: Hydrolytic Degradation, 200578, DACO: 8.2.3.2
1190154	2005, [14C-UL-phenyl] and [14C-3-pyrazole] AE 0317309: Phototransformation in Water, M-248236-02-1, DACO: 8.2.3.3.2
1190155	2006, [Pyrazol-3-14C]AE 0317309 and [Phenyl-UL-14C]AE 0317309: Aerobic Aquatic Metabolism, MEAIM008, DACO: 8.2.3.5.2,8.2.3.5.4
1190158	2005, [Phenyl-UL-14C]AE 0317309: Anaerobic Aquatic Metabolism, 200593, DACO: 8.2.3.5.5,8.2.3.5.6
1190159	2005, [Pyrazole-3-14C]AE 0317309: Anaerobic Aquatic Metabolism, 200495, DACO: 8.2.3.5.5,8.2.3.5.6
1188989	2006, Non-target terrestrial plants: seedling emergence and growth test (Tier 2) suspo-emulsion: 50 + 12.5 g/L (Code: AE 0317309 02 SE06 A102), EBAIX020, DACO: 9.8.4
1188992	2006, Non-target terrestrial plants: vegetative vigour test (Tier 2) AE 0317309 + mefenpyr di-ethyl (AE F107892); suspo-emulsion: 50 + 12.5 g/L (Code: AE 0317309 02 SE06 A102), VV04/005, DACO: 9.8.6
1189109	2006, Non-target terrestrial plants: seedling emergence and seedling growth test (Tier 2), AE 0317309 + mefenpyr di-ethyl + bromoxynil, (Code: AE 0317309 03 EC23 A8), EBAIX028, DACO: 9.8.4
1189110	2006, Non-target terrestrial plants: vegetative vigour test (Tier 2), AE 0317309 + mefenpyr di-ethyl + bromoxynil, (Code: AE 0317309 03 EC23 A8), VV05/002, DACO: 9.8.4
1190166	2006, Technical AE 0317309: An acute oral LD50 with northern bobwhite, 201125, DACO: 9.6.2.1,9.6.2.2,9.6.2.3
1190171	1998, RPA 203328: A Dietary LC50 Study with the Northern Bobwhite, B004404, MRID: 44693501, DACO: 9.6.2.4,9.6.2.5
1190172	2005, Technical AE0317309: A subacute dietary LC 50 with mallards, EBAIM003, DACO: 9.6.2.4,9.6.2.5

1190173	2005, Technical AE0317309: A subacute dietary LC 50 with northern bobwhite, EBAIM002, DACO: 9.6.2.4,9.6.2.5
1190178	2006, Effect of technical AE 0317309 on mallard reproduction, EBAIX017, DACO: 9.6.3.1,9.6.3.2,9.6.3.3
1190179	2006, Effect of technical AE 0317309 on northern bobwhite reproduction, EBAIX016, DACO: 9.6.3.1,9.6.3.2,9.6.3.3
1190180	2004, Acute Toxicity of AE 0317309 Technical to the Sheepshead Minnow (Cyprinodon variegatus) Under Static Conditions, 200820, DACO: 9.4.2,9.4.3,9.4.4
1190181	2004, AE 0317309 - Acute Toxicity to Eastern Oysters (Crassostrea virginica) Under Flow-Through Conditions, EBAIX013, DACO: 9.4.2,9.4.3,9.4.4
1190182	2004, AE 0317309 - Acute Toxicity to Mysids (Americamysis bahia) Under Static Conditions, EBAIX011, DACO: 9.4.2,9.4.3,9.4.4
1190187	1998, RPA 203328 - Acute Toxicity to Mysids (Mysidopsis bahia) Under Static Acute Conditions, C026471, MRID: 44718801, DACO: 9.4.2,9.4.3,9.4.4
1190188	2004, Toxicity of AE 0317309 technical to the saltwater diatom Skeletonema costatum, 200697, DACO: 9.4.2,9.4.3,9.4.4
1190189	1997, Amendment to the final study report - RPA203328 - Determination of effects on vegetative vigor of ten plant species, R005076, MRID: 44399906, DACO: 9.8.4
1190190	1997, RPA203328 - Determination of effects on seedling emergence of ten plant species, R005075, MRID: 44399907, DACO: 9.8.4
1190191	1997, A Laboratory Assessment of the Effect of RPA 203328 on Soil Microflora Respiration and Nitrogen Transformations According to EPPO Bulletin 24, 1-16 (1994), R000492, DACO: 9.3.4,9.6.6,9.9
1190192	2004, AE 0317309 tech. (AE 0317309 00 1C96 0001): Determination of Effects on Carbon Transformation in Soil, LKC-C-23/04, DACO: 9.3.4,9.6.6,9.9
1190193	2004, AE 0317309 tech. (AE 0317309 00 1C96 0001): Determination of Effects on Nitrogen Transformation in Soil, LKC-N-26/03, DACO: 9.3.4,9.6.6,9.9

1190194	2004, Isoxaflutole-RPA203328 (AE B197555): Reproduction Toxicity to Earthworm Eisenia fetida in Artificial Soil, C041342, DACO: 9.3.4,9.6.6,9.9
1190195	1995, RPA203328 - Acute Toxicity to Rainbow Trout (Oncorhynchus mykiss) Under Flow-Through Conditions, R005254, MRID: 43904825, DACO: 9.3.4,9.6.6,9.9
1190198	2006, The 96 hour acute toxicity to the rainbow trout, Oncorhynchus mykiss, in a static system - AE 0317309 technical, 97.4%w/w (Amended report), 02DT35541-a, DACO: 9.5.2.1,9.5.2.3
1190201	2006, The 96 hour acute toxicity to the bluegill sunfish, Lepomis macrochirus, in a static system - AE 0317309 technical, 98.2% w/w (Amended report), 02DT35540-a, DACO: 9.5.2.2,9.5.2.3
1190204	2004, Early life stage toxicity of AE 0317309 technical to fathead minnow (Pimephales promelas) under flow-through conditions, EBAIX015, DACO: 9.5.3.1
1190207	1994, RPA203328 - Acute Toxicity to Ddaphnids (Daphnia magna) Under Flow-Through Conditions, R005204, MRID: 43573241, DACO: 9.3.2
1190208	2005, The 48 Hour Acute Toxicity to the Water Flea, Daphnia magna, in a Static System - AE 0317309 Technical, 97.4%w/w (Amended Report), 02DT35542-a, DACO: 9.3.2
1190211	2004, Chronic Toxicity of AE 0317309 Technical to the Daphnia magna Under Static Renewal conditions, EBAIX014, DACO: 9.3.3
1190212	1995, 5-day toxicity to the freshwater green alga, Selenastrum capricornutum RPA203328 Final Report, R005374, MRID: 43904826, DACO: 9.8.2,9.8.3
1190219	2004, Toxicity of AE 0317309 technical to the freshwater diatom Navicula pelliculosa, 200761, DACO: 9.8.2,9.8.3
1190220	2004, Toxicity of AE 0317309 technical to the green alga Pseudokirchneriella subcapitata (a.k.a. Selenastrum capricornutum), 200714, DACO: 9.8.2,9.8.3
1190221	2004, Toxictiy of AE 0317309 technical to the blue-green algae Anabaena flos-aquae, 200752, DACO: 9.8.2,9.8.3

1190224	1997, RPA203328 technical - Toxicity to the duckweed, Lemna gibba, R004953, MRID: 44399910, DACO: 9.8.5
1190225	2006, Toxicity of AE 0317309 05 EC15 A103 to duckweed (Lemna gibba G3) under static conditions, EBAIP008, DACO: 9.8.5
1190226	2004, Toxicity of AE 0317309 technical to duckweed (Lemna gibba G3) under static conditions, 200641, DACO: 9.8.5
1190229	2002, Oral Toxicity (LD50) to Honey Bees (Apis mellifera L.) Substance Technical code: AE 0317309 00 1C98 0001, C027636, DACO: 9.2.4.2
1190232	2002, Contact Toxicity (LD50) to Honey Bees (Apis mellifera L.) Substance Technical Code: AE 0317309 00 1C98 0001, CW02/048, DACO: 9.2.4.1
1190233	2004, Toxicity to the Parasitoid Wasp Aphidius rhopalosiphi (DeStephani-Perez) (Hymenoptera: Braconidae) in the Laboratory - AE 0317309 + AE F107892 - Suspo-emulsion - 50 + 12.5 g/L, CW04/030, DACO: 9.2.6
1190234	2004, Toxicity to the Predatory Mite Typhlodromus pyri SCHEUTEN (Acari, Phytoseiidae) in the laboratory - AE 0317309 + AE F107892 - Suspo-emulsion - 50 + 12.5 g/L, CW04/049, DACO: 9.2.5
1190235	2004, AE 0317309, Substance, Technical (Code: AE 0317309 00 1C96 0001): Acute Toxicity to Earthworms (Eisenia fetida) tested in Artificial Soil, LKC/Rg-A-27/04, DACO: 9.2.3.1
1190238	1997, RPA 203328 - Acute Toxicity (14-Day) to Earthworms (Eisenia foetida) - Artificial Soil Method, C026475, DACO: 9.2.3.1
4.0 Value PMRA 11889	

PMRA 1189072AE 0317309 03 EC23 Herbicide (Pyrasulfotole + Bromoxynil) for
Broadleaf Weed Control in Cereals and Timothy- Canadian Value
Package. 2531 pp. DACOs 10.2.3.3, 10.3.2, 10.3.3, 10.4, 10.5.1,
10.5.2.1, 10.5.4

ADDITIONAL INFORMATION

Impact on the Environment

The US EPA RED document (Bromoxynil, EPA CASE # 2070) is available on the "Office of Pesticide Program website at <u>www.regulations.gov</u>.