

Proposed Registration Decision

PRD2021-09

Flutianil and GATTEN

(publié aussi en français)

21 December 2021

This document is published by the Health Canada Pest Management Regulatory Agency. For further information, please contact:

Publications Pest Management Regulatory Agency Health Canada 2720 Riverside Drive A.L. 6607 D Ottawa, Ontario K1A 0K9 Internet: canada.ca/pesticides pmra.publications-arla@hc-sc.gc.ca Facsimile: 613-736-3758 Information Service: 1-800-267-6315 or 613-736-3799 pmra.info-arla@hc-sc.gc.ca

ISSN: 1925-0878 (print) 1925-0886 (online)

Catalogue number: H113-9/2021-9E (print version) H113-9/2021-9E-PDF (PDF version)

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Health Canada, 2021

All rights reserved. No part of this information (publication or product) may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, or stored in a retrieval system, without prior written permission of Health Canada, Ottawa, Ontario K1A 0K9.

Table of Contents

Overview		. 1
Proposed	registration decision for Flutianil	. 1
What does	s Health Canada consider when making a registration decision?	. 1
What is F	lutianil?	. 2
Health con	nsiderations	2
Environm	ental considerations	4
Value con	siderations	. 5
Measures	to minimize risk	. 5
Next steps	5	. 6
Other info	prmation	. 6
Science eval	luation	. 7
1.0 The	active ingredient, its properties and uses	7
1.1	Identity of the active ingredient	7
1.2	Physical and chemical properties of the active ingredient and end-use product	7
1.3	Directions for use	. 9
1.4	Mode of action	. 9
2.0 Met	thods of analysis	9
2.1	Methods for analysis of the active ingredient	9
2.2	Method for formulation analysis	. 9
2.3	Methods for residue analysis	. 9
3.0 Imp	pact on human and animal health	10
3.1	Hazard assessment	10
3.1.1	Toxicology summary	10
3.1.2	Pest Control Products Act hazard characterization	13
3.2	Toxicology reference values	13
3.2.1	Route and duration of exposure	13
3.2.2	Occupational and residential toxicology reference values	13
3.2.3	Acute reference dose (ARfD)	14
3.2.4	Acceptable daily intake (ADI)	14
3.2.5	Cancer assessment	15
3.2.6	Aggregate toxicology reference values	15
3.3	Dermal absorption	15
3.4	Occupational and residential exposure assessment	15
3.4.1	Occupational exposure and risk assessment	15
3.4.2	Residential exposure and risk assessment	17
3.4.3	Bystander exposure and risk assessment	18
3.5	Dietary exposure and risk assessment	18
3.5.1	Exposure from residues in foods of plant and animal origin	18
3.5.2	Exposure from residues in drinking water	19
3.5.3	Dietary risk assessment	20
3.6	Aggregate exposure and risk assessment	21
3.7	Cumulative assessment	21

3.8 N	faximum residue limits	21
3.9 H	lealth incident reports	22
4.0 Impa	ct on the environment	22
4.1 F	ate and behaviour in the environment	22
4.1.1	Terrestrial environment	22
4.1.2	Aquatic environment	23
4.1.3	Air transformation	24
4.1.4	Bioaccumulation	24
4.2 E	nvironmental risk characterization	24
4.2.1	Risks to terrestrial organisms	25
4.2.2	Risks to aquatic organisms	28
5.0 Value	s 	33
6.0 Pest (Control Product policy considerations	34
6.1 T	oxic substances management policy considerations	34
6.2 F	ormulants and contaminants of health or environmental concern	34
7.0 Propo	osed regulatory decision	35
List of abbr	eviations	36
Appendix I	Tables and figures	39
Table 1a	Residue analysis	39
Table 1b	Residue analysis	40
Table 2	Identification of select transformation products and metabolites of Flutianil	41
Table 3	Toxicity profile of Technical Flutianil	41
Table 4	Toxicity profile of the end-use product GATTEN, containing Flutianil	49
Table 5	Toxicology reference values for use in health risk assessment for Flutianil	50
Table 6	AHETF and PHED Unit exposure estimates for mixers, loaders and applicator	S
	handling GATTEN (µg/kg a.i. handled)	50
Table 7	Mixer/Loader/Applicator exposure and risk estimates for GATTEN	51
Table 8	Flutianil dislodgeable foliar residue study results on apples, grapes and cantalo	oupe
T 11 0	using GATTEN	52
Table 9	Workers postapplication exposure and risk estimates for Flutianil on day 0 after	er er
T 11 10	the last application	52
Table 10	Residential Postapplication Exposure and Risk Estimates on Day 0 from Orcha	ard
T 11 11	I rees I reated Commercially with Flutianil	53
Table 11	Integrated food residue chemistry summary	54
Table 12	Food residue chemistry overview of metabolism studies and risk assessmen	t 63
Table 13	Fate and behaviour in the environment	64
Table 14	Record of transformation products	66
Table 15	Effects on terrestrial organisms	/3
Table 16	Effects on aquatic organisms	/6
Table 1/	Endpoints and uncertainty factors used to establish effects metrics for the ris	SK
T-11 10	assessment.	85
Table 18 T_{a}	Screening level risk to terrestrial organisms other than birds and mammals.	91
Table 19	Screening level risk to birds and mammals	94
Table 20 T_{11}	Screening level risk to aquatic organisms.	95
Table 21	Refined risk to aquatic organisms from spray drift	100

Table 22	Environmental fate parameters used for the ecological water modelling 104
Table 23	EECs (in µg a.i./L) for the ecological risk assessment of Flutianil 105
Table 24	Refined risk to aquatic organisms from runoff
Table 25	Toxic substances management policy considerations-comparison to TSMP
	Track 1 criteria
Table 26	List of supported uses 110
Appendix II	Supplemental maximum residue limit information—International situation and
	trade implications
References	

Overview

Proposed registration decision for Flutianil

Health Canada's Pest Management Regulatory Agency (PMRA), under the authority of the <u>Pest</u> <u>Control Products Act</u>, is proposing registration for the sale and use of Flutianil Technical, and GATTEN, containing the technical grade active ingredient flutianil, for control of powdery mildew on cherries (Crop Subgroup 12-09A), cucurbit vegetables (Crop Group 9) and grape.

An evaluation of available scientific information found that, under the approved conditions of use, the health and environmental risks and the value of the pest control products are acceptable.

This Overview describes the key points of the evaluation, while the Science Evaluation provides detailed technical information on the human health, environmental and value assessments of flutianil and GATTEN.

What does Health Canada consider when making a registration decision?

The key objective of the *Pest Control Products Act* is to prevent unacceptable risks to people and the environment from the use of pest control products. Health or environmental risk is considered acceptable¹ if there is reasonable certainty that no harm to human health, future generations or the environment will result from use or exposure to the product under its proposed conditions of registration. The Act also requires that products have value² when used according to the label directions. Conditions of registration may include special precautionary measures on the product label to further reduce risk.

To reach its decisions, the PMRA applies modern, rigorous risk-assessment methods and policies. These methods consider the unique characteristics of sensitive subpopulations in humans (for example, children) as well as organisms in the environment. These methods and policies also consider the nature of the effects observed and the uncertainties when predicting the impact of pesticides. For more information on how the Health Canada regulates pesticides, the assessment process and risk-reduction programs, please visit the <u>Pesticides section</u> of Canada.ca.

¹ "Acceptable risks" as defined by subsection 2(2) of the *Pest Control Products Act*.

² "Value" as defined by subsection 2(1) of the *Pest Control Products Act*: "the product's actual or potential contribution to pest management, taking into account its conditions or proposed conditions of registration, and includes the product's (*a*) efficacy; (*b*) effect on host organisms in connection with which it is intended to be used; and (*c*) health, safety and environmental benefits and social and economic impact."

Before making a final registration decision on flutianil and GATTEN, Health Canada's PMRA will consider any comments received from the public in response to this consultation document.³ Health Canada will then publish a Registration Decision⁴ on flutianil and GATTEN, which will include the decision, the reasons for it, a summary of comments received on the proposed registration decision and Health Canada's response to these comments.

For more details on the information presented in this Overview, please refer to the Science Evaluation of this consultation document.

What is Flutianil?

Flutianil is a narrow spectrum, conventional fungicide that targets certain species of powdery mildew. The exact mode of action of flutianil is not known. It is applied as a foliar spray using broadcast or airblast ground equipment against certain species of powdery mildew on cherries (Crop Subgroup 12-09A), cucurbit vegetables (Crop Group 9) and grape crops.

Health considerations

Can approved uses of Flutianil affect human health?

GATTEN, containing flutianil, is unlikely to affect your health when used according to label directions.

Potential exposure to flutianil may occur through the diet (food and drinking water), when handling and applying the end-use product, or when coming into contact with treated surfaces. When assessing health risks, two key factors are considered: the levels at which no health effects occur and the levels to which people may be exposed. The dose levels used to assess risks are established to protect the most sensitive human population (for example, children and nursing mothers). As such, sex and gender are taken into account in the risk assessment. Only uses for which the exposure is well below levels that cause no effects in animal testing are considered acceptable for registration.

Toxicology studies in laboratory animals describe potential health effects from varying levels of exposure to a chemical and identify the dose level at which no effects are observed. The health effects noted in animals occur at doses more than 100-times higher (and often much higher) than levels to which humans are normally exposed when pesticide products are used according to label directions.

In laboratory animals, the acute toxicity of the technical grade active ingredient flutianil was low via the oral, dermal and inhalation routes of exposure. Flutianil was non-irritating to the eyes and skin. It did not cause an allergic skin reaction.

³ "Consultation statement" as required by subsection 28(2) of the *Pest Control Products Act*.

⁴ "Decision statement" as required by subsection 28(5) of the *Pest Control Products Act*.

The acute toxicity of the end-use product GATTEN, containing flutianil, was low via the oral, dermal and inhalation routes of exposure. GATTEN was moderately irritating to the eyes and mildly irritating to the skin, and caused an allergic skin reaction. Consequently, the signal word "WARNING" and the hazard statements "EYE AND SKIN IRRITANT" and "POTENTIAL SKIN SENSITIZER" are required on the label.

Registrant-supplied short- and long-term (lifetime) animal toxicity tests, as well as information from the published scientific literature, were assessed for the potential of flutianil to cause neurotoxicity, immunotoxicity, chronic toxicity, cancer, reproductive and developmental toxicity, and various other effects. The most sensitive endpoints for risk assessment were effects on the liver, delayed bone development and the respiratory tract. There was an indication that the young were more sensitive than the adult animals. The risk assessment protects against the effects noted above and other potential effects by ensuring that the level of exposure to humans is well below the lowest dose at which these effects occurred in animal tests.

Residues in food and drinking water

Dietary risks from food and drinking water are not of health concern.

Animal studies revealed no acute health effects. Consequently, a single dose of flutianil is not likely to cause acute health effects in the general population (including infants and children).

Aggregate chronic dietary (food plus drinking water) intake estimates for the general population and all population subgroups are expected to be less than 3% of the acceptable daily intake, and are not of health concern. Infants are the subpopulation expected to be subject to the highest exposure relative to body weight.

The *Food and Drugs Act* prohibits the sale of adulterated food, that is, food containing a pesticide residue that exceeds the established maximum residue limit (MRL). Pesticide MRLs are established for *Food and Drugs Act* purposes through the evaluation of scientific data under the *Pest Control Products Act*. Given that dietary risks from the consumption of foods are shown to be acceptable when flutianil is used according to the supported label directions, MRLs are being proposed as a result of this assessment (refer to PMRL2021-31, *Flutianil*).

MRLs for flutianil determined from the acceptable residue trials conducted throughout the United States, including growing regions representative of Canada, on summer squash, cucumbers, cantaloupe, cherries, grapes, apples, and strawberries can be found in the Science Evaluation of this consultation document.

Occupational risks from handling GATTEN

Occupational risks are not of health concern when GATTEN is used according to the proposed label directions, which include protective measures.

Workers mixing, loading or applying GATTEN, and workers entering recently treated fields, orchards and vineyards can come in direct contact with flutianil residues on the skin. Therefore, the label specifies that anyone mixing, loading and applying GATTEN must wear a long-sleeved

shirt, long pants, chemical-resistant gloves, socks and shoes, and protective eyewear. The label also requires that workers do not enter or be allowed entry into treated fields, orchards or vineyards during the restricted-entry interval (REI) of 12 hours. Taking into consideration the label statements, the number of applications and the duration of exposure for handlers and postapplication workers, the risks to these individuals are not of health concern.

Health risks in residential and other non-occupational environments

Risks in residential and other non-occupational environments are not of health concern when GATTEN is used according to the proposed label directions and REIs are observed.

Residential risks from exposure to GATTEN during pick-your-own fruit activities in treated orchards and following commercial application to fruit trees in residential areas are not of health concern.

Health risks to bystanders

Bystander risks are not of health concern when GATTEN is used according to the proposed label directions and spray drift restrictions are observed.

A standard label statement to protect against drift during application is on the label. Therefore, health risks to bystanders are not of concern.

Environmental considerations

What happens when Flutianil is introduced into the environment?

When used according to label directions, the risks associated with the use of flutianil are acceptable from the viewpoint of environmental protection.

Flutianil can enter the environment when it is applied as a foliar spray to cucurbit vegetables, cherries, and grape to control powdery mildew. Flutianil is persistent under most terrestrial and aquatic conditions, except in shallow water in the presence of sunlight, where it can break down rapidly. Flutianil is not expected to be found in the atmosphere. It binds to soil, thus, it is expected to have limited mobility to groundwater. Flutianil breaks down in the field, forming three major transformation products that are expected to have very high, slight to low, and low mobility, respectively.

Flutianil presents a negligible risk to earthworms, bees, beneficial arthropods, birds, and mammals. Flutianil may, however, present a risk to non-target terrestrial plants adjacent to treated fields, which could also affect wildlife habitat. In waterbodies, flutianil may pose a risk to aquatic organisms, such as aquatic invertebrates, fish, plants, and amphibians. Precautionary measures, such as spray buffer zones and label statements, are thus required to minimize the exposure to non-target terrestrial plants and aquatic habitats. When flutianil is used in accordance with label directions, and when the required risk reduction measures are applied, the risks to the environment are considered to be acceptable.

Value considerations

What is the value of GATTEN?

The availability of GATTEN will provide Canadian users with an additional product to control powdery mildew disease on cherries (Crop Subgroup 12-09A), cucurbit vegetables (Crop Group 9) and grape.

Crops on the GATTEN label have a high susceptibility to powdery mildew and require multiple fungicide sprays over the growing season for disease management. GATTEN, applied as a spray to leaves and fruit, effectively controls powdery mildew on these economically important crops.

Measures to minimize risk

Labels of registered pesticide products include specific instructions for use. Directions include risk-reduction measures to protect human and environmental health. These directions must be followed by law.

The key risk-reduction measures being proposed on the labels of Flutianil Technical and GATTEN to address the potential risks identified in this assessment are as follows.

Key risk-reduction measures

Human health

To reduce the potential of workers coming into direct contact with flutianil on the skin or through inhalation of sprays, workers must wear a long-sleeved shirt, long pants, chemical-resistant gloves, socks, shoes, and protective eyewear during mixing, loading and applying GATTEN, as well as during cleaning and repair activities. The label also requires that workers do not enter or be allowed entry into treated fields, orchards and vineyards during the REI of 12 hours. Furthermore, standard label statements to protect against drift during application or to prevent the use of handheld airblast, misters and foggers are present on the label.

Rotational Crops

Cucurbit vegetables may be planted immediately after the last application.

For all other crops except for registered crops, **DO NOT** plant within 12 months after the last application.

Environment

Precautionary statements are required to inform users of the toxicity of flutianil to toxicity to aquatic organisms and non-target terrestrial plants.

Spray buffer zones are required to reduce the risk of spray drift to terrestrial and freshwater habitats are required.

Next steps

Before making a final registration decision on flutianil and GATTEN, Health Canada's PMRA will consider any comments received from the public in response to this consultation document. Health Canada will accept written comments on this proposal up to 45 days from the date of publication of this document. Please note that, to comply with Canada's international trade obligations, consultation on the proposed MRLs will also be conducted internationally via a notification to the World Trade Organization. Please forward all comments to Publications (contact information on the cover page of this document). Health Canada will then publish a Registration Decision, which will include its decision, the reasons for it, a summary of comments received on the proposed decision and Health Canada's response to these comments.

Other information

When the Health Canada makes its registration decision, it will publish a Registration Decision on flutianil and GATTEN (based on the Science Evaluation of this consultation document). In addition, the test data referenced in this consultation document will be available for public inspection, upon application, in the PMRA's Reading Room.

Science evaluation

Flutianil and GATTEN

1.0 The active ingredient, its properties and uses

1.1 Identity of the active ingredient

Active substance

Function Fungicide

Chemical name

- International Union (Z)-[3-(2-methoxyphenyl)-1,3-thiazolidin-2-ylidene](α,α,α,4of Pure and Applied tetrafluoro-m-tolylthio)acetonitrile Chemistry (IUPAC)
- 2. Chemical Abstracts (2Z)-2-[[2-fluoro-5-(trifluoromethyl)phenyl]thio]-2-[3-(2-Service (CAS) methoxyphenyl)-2-thiazolidinylidene]acetonitrile

CAS number	958647-10-4
Molecular formula	$C_{19}H_{14}F_4N_2OS_2$
Molecular weight	426.45
Structural formula	N S F

CN

Purity of the active 99.4% ingredient

1.2 Physical and chemical properties of the active ingredient and end-use product

Technical product—Flutianil Technical

Property	Result
Colour and physical state	White to light brown crystalline powder
Odour	No characteristic odour
Melting range	178–179°C
Boiling point or range	Decomposes prior to boiling

Property	Result			
Density	1.45 g/cm ³ at 20°C			
Vapour pressure at 20°C	1.530×10^{-7} I	Pa		
Ultraviolet (UV)-visible	<u>Methanol</u>	λ_{\max} (nm)	<u>ε (L / (mol × cm))</u>	
spectrum	Neutral	282.0	1.75×10^{4}	
		244.5	1.69×10^{4}	
	Acidic	283.0	1.71×10^4	
		245.0	1.63×10^4	
	Alkali	282.0	1.76×10^{4}	
		245.0	1.67×10^{4}	
Solubility in water at 20°C	0.0079 mg/L			
Solubility in organic solvents at	Solvent		<u>Solubility (g/L)</u>	
20°C	n-hexane		<0.01	
	toluene		11.2	
	dichlorometh	ane	169	
	acetone		66.4	
	methanol		5.62	
	ethyl acetate		22.8	
<i>n</i> -Octanol-water partition	<u>pH</u>	<u>log <i>l</i></u>	<u>K_{ow}</u>	
coefficient (K _{ow})	4, 7, 10	3.1		
Dissociation constant (p <i>K</i> _a)	No dissociable moiety at environmental pH.			
Stability (temperature, metal)	The technical material was found to be stable after storage for two weeks at 54 °C.			

End-use product—GATTEN

Property	Result			
Colour	Yellow			
Odour	Weak sweet fruity odour			
Physical state	Transparent homogenous liquid			
Formulation type	EC (emulsifiable concentrate)			
Label concentration	50.7 g/L			
Container material and	Plastic bottle or jug, 500–2000 mL			
description				
Density	1.08 g/cm ³ at 20°C			
pH of 1% dispersion in water	4.87			
Oxidizing or reducing action	Oxidizing property is not expected.			
Storage stability	The product is stable for 14 days when stored in plastic bottles at 54°C.			

Property	Result
Corrosion characteristics	The product was demonstrated to be free of interactions with its
	packaging.
Explodability	The product does not contain any explosive components.

1.3 Directions for use

All uses of GATTEN require an application rate of 400-690 mL/ha (20–35 g a.i./ha) and an application interval of 7–14 days, where higher rates and shorter intervals within the rate ranges are used under conditions favouring high disease pressure. For control of powdery mildew on grape and cherries (Crop Subgroup 12-09A), GATTEN is applied as a foliar spray during fruiting a maximum of four times per year using airblast ground equipment. For control of powdery mildew on cucurbit vegetables (Crop Group 9), GATTEN is applied as a foliar spray from the seedling stage to fruiting a maximum of five times per year using broadcast ground equipment.

1.4 Mode of action

Flutianil is classified as a Group U13 fungicide by the Fungicide Resistance Action Committee (FRAC); however, the mode of action of flutianil is not definitively known. It has been observed to disrupt the formation of haustoria, which are structures that initiate powdery mildew infection. Recently, cucurbit powdery mildew strains were observed to possess cross-resistance towards flutianil and pyriofenone.

2.0 Methods of analysis

2.1 Methods for analysis of the active ingredient

The methods provided for the analysis of the active ingredient and impurities in the technical product have been validated and assessed to be acceptable.

2.2 Method for formulation analysis

The method provided for the analysis of the active ingredient in the formulation has been validated and assessed to be acceptable for use as an enforcement analytical method.

2.3 Methods for residue analysis

High-performance liquid chromatography methods with tandem mass spectrometry (HPLC-MS/MS) were developed and proposed for data generation and enforcement purposes. These methods fulfilled the requirements with regards to selectivity, accuracy and precision at the respective method limit of quantitation. Acceptable recoveries (70–120%) were obtained in environmental media. Methods for residue analysis are summarized in Appendix I, Table 1a.

High performance liquid chromatography methods with tandem mass spectrometric detection (LC-MS/MS; Method 181C-105 and QuEChERS; Method DFG S 19), a gas chromatography method with mass selective detection (GC/MSD; Method RM-44C-2), and a gas chromatography method with electron capture detection (GC-ECD; Method CLE 2554/019-01V) were developed and proposed for data generation and/or enforcement purposes in plant matrices. These methods fulfilled the requirements with regards to specificity, accuracy and precision at the respective method limit of quantitation. Acceptable recoveries (70–120%) were obtained in plant matrices. The proposed enforcement methods were successfully validated in plant matrices by an independent laboratory. Adequate extraction efficiencies were demonstrated for enforcement Method CLE 2554/019-01V using radiolabelled samples of cucumber and apple. Methods for residue analysis are summarized in Appendix I, Table 1b.

3.0 Impact on human and animal health

3.1 Hazard assessment

3.1.1 Toxicology summary

Flutianil is a thiazolidine fungicide with fungitoxic and fungistatic contact action. The details of the pesticidal mode of action have not been fully elucidated.

A detailed review of the toxicology database for flutianil was conducted. The database is complete, consisting of the full array of toxicity studies currently required for hazard assessment purposes. A number of studies assessing the toxicity of select metabolites and transformation products of flutianil were also submitted. The studies were carried out in accordance with currently accepted international testing protocols and Good Laboratory Practices. The scientific quality of the toxicology data is acceptable and the database is considered adequate to characterize the potential health hazards that may result from exposure to flutianil.

Metabolism and toxicokinetics following single- and repeat-dose oral administration in the rat were investigated using flutianil radiolabelled at the methoxyphenyl ring or fluorotolyl ring. Absorption, as determined by radioactive residues in bile, urine, and tissues, was low and decreased with increasing dose level, ranging from 18% to approximately 2% of the administrated dose (AD). Maximum plasma concentrations were achieved between 3 and 13 hours post-dosing. Limited amount of flutianil absorbed was widely distributed throughout the tissues following oral administration. With the exception of the gastrointestinal tract and carcass, the liver, followed by the kidney, contained the greatest amount of radioactivity. Elimination of radioactivity was rapid and extensive, with greater than 80% of the AD recovered within 48 hours. The major route of excretion was via the feces, representing up to 98% of the AD. Recovered radiolabel represented up to 11% of the AD in bile and up to 19% of the AD in urine. Radioactivity in tissues 120 hours after a single-dose administration was low and there was no evidence of retention within tissues. The metabolic and toxicokinetic parameters measured were generally comparable between sexes. When compared with single-dose administration, repeateddose administration resulted in slightly lower urinary excretion, but no major differences in the absorption, distribution, metabolism or excretion of flutianil.

Unchanged flutianil was the major component identified in the feces, reflecting poor absorption and low degree of metabolism. The major urinary metabolite, Met 6, accounted for up to 5.5% of the AD, and it was identified as a hydroxylated methylsulphoxy trifluoromethyl ring structure. Numerous uncharacterized metabolites were present in urine, feces and bile. None of the metabolites accounted for more than 10% of the AD.

In acute toxicity testing, the technical grade active ingredient flutianil was of low acute toxicity via the oral, dermal and inhalation routes in rats. It was non-irritating to the eyes and skin of rabbits. Flutianil was negative for skin sensitization in guinea pigs when tested using the maximization method.

The end-use product, GATTEN, was determined to be of low acute toxicity in rats via the oral, dermal and inhalation routes of exposure. It was moderately irritating to the eyes and mildly irritating to the skin of rabbits. It was positive for skin sensitization when tested in guinea pigs using the Buehler method.

Repeat-dose dietary toxicity studies with flutianil were available in mice and rats, and flutianil was administered via capsule in repeat-dose oral toxicity studies in dogs. The most sensitive species for toxicity was the rat, in which the main target of toxicity was the liver, with increased incidences of hepatic foci of cellular alteration observed in males and bile duct hyperplasia observed in females at the highest dose tested (HDT) after long-term exposure. Following both short-term and long-term dosing, increases in the incidence of hyaline droplet deposition in the kidney were observed in male rats. Immunohistochemical staining revealed that these droplets were alpha 2µ-globulin, and in the absence of any other evidence of nephropathy in the toxicology database, this finding was considered non-adverse. Given that this finding has been demonstrated to be specific to male rats with no relevance to humans (PMRA# 3227602), the dose levels administered to male rats were lowered for chronic dosing to avoid excessive kidney toxicity associated with this mode of action that could potentially confound detection of other relevant effects. Prolonged clotting time (prothrombin time and activated partial thromboplastin time) was observed after short-term exposure in rats. This effect was not observed in the longterm study. In the dietary oncogenicity study in the mouse, increased incidences of luminal dilatation in the urinary bladder, urinary bladder distended with urine, and softening/atrophy of the testis were observed in males, and decreased body weight was noted in females, all of which occurred at the HDT. With the exception of effects in males in the rat dietary combined chronic toxicity/oncogenicity study, the observed effects occurred at or above the limit dose of testing.

In a 28-day inhalation toxicity study in rats, effects were observed at the highest concentration tested. These included hepatocellular hypertrophy, atrophy of the olfactory epithelium, hyperplasia/hypertrophy of the mucous cells in the nose, and centriacinar inflammation in the lungs in both sexes, decreased body weight, inflammation of the nasal turbinates and tubular hyaline droplets in the kidneys in males, and increased liver weight in females.

No systemic toxicity occurred in rats following daily dermal application of flutianil up to the limit dose for 28 days.

Functional observation batteries were performed in the 28-d dermal and 90-d and 2-year dietary rat toxicity studies, and no effects were observed. A waiver was provided for the conditionally required acute and 90-day neurotoxicity studies. The waiver was accepted based on the absence of treatment-related findings in the functional observation batteries conducted in the short- and long-term studies.

There was no evidence of immune dysregulation in a 28-day dietary immunotoxicity study in rats.

There was no evidence of genotoxicity in a battery of in vitro and in vivo genotoxicity studies conducted with flutianil, nor was there evidence of tumourigenicity in mice or rats after long-term dietary administration.

In a 2-generation dietary reproductive toxicity study in rats, no parental offspring, or reproductive toxicity was observed up to the limit dose of testing. There was no evidence of sensitivity of the young.

In the gavage developmental toxicity studies, there was no evidence of sensitivity of the young in rabbits. Maternal rabbits were tested up to the limit dose and no treatment-related maternal or developmental effects were observed. In the rat developmental toxicity study, there was evidence of sensitivity of the young, as increased incidences of incomplete ossification or non-ossification of the sternal centra were observed in fetuses in the absence of maternal toxicity at the limit dose of testing. This developmental effect is not considered a serious effect, reflecting a delay in fetal development.

The toxicity of select metabolites and transformation products of flutianil were investigated. There was no evidence of genotoxicity when OC 53276 (environmental transformation product) and OC 56635 (environmental transformation product and intermediate metabolite in the rat) were tested in in vitro bacterial reverse mutation and mammalian forward gene assays, or in in vivo micronucleus assays. In an acute oral toxicity study in rats, treatment with OC 56635 resulted in mortality at the limit dose, and was considered of moderate acute toxicity via the oral route. Due to the highly acidic nature of OC 56635, the sodium salt form (OC 63421) was used to evaluate the subchronic toxicity of OC 56635. OC 63421 did not cause mortality in rats at the limit dose in acute toxicity testing, and was considered of low acute toxicity via the oral route. In a 28-day dietary study with OC 63421 in rats, no effects were observed above the limit dose of testing. Based on the available information, metabolites OC53276 and OC 56635 were considered of equivalent toxicity to flutianil.

The identification of select transformation products and metabolites is presented in Appendix I, Table 2. Results of the toxicology studies conducted on laboratory animals with flutianil, along with studies conducted with select transformation products, and its associated end-use product are summarized in Appendix I, Tables 3 and 4, respectively. The toxicology reference values for use in the human health risk assessment are summarized in Appendix I, Table 5.

3.1.2 Pest Control Products Act hazard characterization

For assessing risks from potential residues in food or from products used in or around homes or schools, the *Pest Control Products Act* (PCPA) requires the application of an additional 10-fold factor to threshold effects to take into account completeness of the data with respect to the exposure of, and toxicity to, infants and children, and potential prenatal and postnatal toxicity. A different factor may be determined to be appropriate on the basis of reliable scientific data.

With respect to the completeness of the toxicity database as it pertains to the toxicity to infants and children, the database contains the full complement of required studies including oral gavage developmental toxicity studies in rats and rabbits, and a dietary 2-generation reproductive toxicity study in rats.

With respect to potential prenatal and postnatal toxicity, no evidence of sensitivity of the young was observed in the 2-generation reproductive toxicity study in rats or in the developmental toxicity study in the rabbit. In a developmental toxicity study in rats, a delay in ossification of fetuses was noted in the absence of maternal toxicological effects. This developmental effect is not considered serious in nature, and occurred only at the limit dose of testing.

Overall, endpoints in the young were well-characterized and not considered serious in nature. On the basis of this information, the PCPA factor was reduced to onefold.

3.2 Toxicology reference values

3.2.1 Route and duration of exposure

Occupational exposure to GATTEN is expected to occur predominantly via the dermal and inhalation routes for mixers, loaders and applicators (M/L/As), and through the dermal route for postapplication workers and residents. Exposure is expected to be intermittent over a short-term duration for farmers and intermediate-term duration for custom applicators as there are four applications made 7–14 days apart and various postapplication activities occurring during that time period (which can result in exposure for greater than 30 days). Exposure duration for residents is expected to be less than that of postapplication workers.

3.2.2 Occupational and residential toxicology reference values

Short- and intermediate-term dermal

For short- and intermediate-term dermal risk assessment, a NOAEL of 333 mg/kg bw/day from the developmental toxicity study in rats was selected. Toxicity was observed in the form of delayed bone ossification at a LOAEL of 1000 mg/kg bw/day. Worker populations could include pregnant or lactating women and therefore this endpoint was considered appropriate for the occupational risk assessment. The available 28-day dermal toxicity study did not assess the relevant endpoints of concern (that is, developmental effects following prenatal exposure).

The target MOE for all dermal scenarios is 300, which includes uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability. Furthermore, a threefold uncertainty factor was applied to account for residual uncertainty with respect to differences in absorption when extrapolating from an oral toxicity study to the dermal route of exposure. This uncertainty stems from the fact that the oral absorption of flutianil was demonstrated to be quite low at the dose levels tested in the oral toxicity studies, while absorption via the dermal route is not known, and therefore assumed to be 100% (default value). For residential scenarios, the PCPA factor was reduced to onefold, for the reasons outlined in the *Pest Control Products Act* Hazard Characterization section. The selection of this study and target MOE is considered protective of all populations, including nursing infants and the unborn children of exposed female workers.

Short- and intermediate-term inhalation

For short- and intermediate-term occupational inhalation risk assessment, a NOAEC of 0.1 mg/L (equivalent to a dose level of 26 mg/kg bw/day) from the 28-day inhalation toxicity study in rats was selected. Toxicity was observed in the form of effects on the respiratory tract, liver and body weight at the LOAEC of 1 mg/L (261 mg/kg bw/day).

The target MOE for all inhalation scenarios is 100, which includes uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability. The selection of these studies and target MOE is considered protective of all populations, including nursing infants and the unborn children of exposed female workers.

3.2.3 Acute reference dose (ARfD)

Establishment of an acute reference dose is not required, as an endpoint of concern attributable to a single exposure was not identified in the oral toxicity studies.

3.2.4 Acceptable daily intake (ADI)

To estimate risk following repeated dietary exposure, the NOAEL of 82 mg/kg bw/day from the 2-year dietary chronic toxicity/oncogenicity study in the rat was selected. At the LOAEL of 249 mg/kg bw/day, increased incidence of hepatic foci of cellular alteration were observed in males. This study provides the lowest oral NOAEL in the database. Standard uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability were applied. As discussed in the *Pest Control Products Act* Hazard Characterization section, the PCPA factor was reduced to onefold.

The composite assessment factor (CAF) is thus 100.

The ADI is calculated according to the following formula:

ADI = NOAEL = 82 mg/kg bw/day = 0.8 mg/kg bw/day of flutianilCAF 100

3.2.5 Cancer assessment

There was no evidence of tumourigenicity and, therefore, a cancer risk assessment was not necessary.

3.2.6 Aggregate toxicology reference values

Aggregate exposure is the total exposure to a single pesticide that may occur from dietary (food and drinking water), residential and other non-occupational sources, and from all known or plausible exposure routes (oral, dermal and inhalation). Acute aggregate exposure to flutianil may be comprised of food, drinking water and residential exposure via the dermal route.

No endpoints were selected for the acute aggregate risk assessment as no endpoints of concern attributable to a single exposure were identified. The most relevant toxicology endpoint and assessment factor for the chronic oral aggregate exposure is the same as that selected for the ADI (see Section 3.2.4).

3.3 Dermal absorption

A chemical-specific dermal absorption study was not submitted and is not on file for flutianil. Therefore, the default dermal absorption value of 100% was used in the occupational and residential exposure assessments.

3.4 Occupational and residential exposure assessment

3.4.1 Occupational exposure and risk assessment

3.4.1.1 Mixer, loader and applicator exposure and risk assessment

Individuals have the potential to be exposed to GATTEN during mixing, loading and application. Exposure estimates were derived for mixers, loaders and applicators applying GATTEN to cherries (Crop Subgroup 12-09A), grape and cucurbit vegetables (Crop Group 9) using groundboom, airblast and handheld equipment (backpack, manually-pressurized handwand and mechanically-pressurized handgun equipment).

The unit exposure estimates in the risk assessment are based on mixers/loaders/applicators wearing a single layer and chemical-resistant gloves (unless inside a closed-cab tractor).

As chemical-specific data for assessing human exposure were not submitted, dermal and inhalation exposures for workers were estimated using data from the Agricultural Handlers Exposure Task Force (AHETF), of which the applicant is a member and has full access to the data, or the Pesticide Handlers Exposure Database (PHED). Both are compilations of generic mixer/loader and applicator passive dosimetry data, which facilitate the generation of scenario-specific exposure estimates (Appendix I, Table 6).

Dermal exposure was estimated using the unit exposure values with the amount of product handled per day and the dermal absorption value of 100% (default value). Inhalation exposure was estimated by coupling the unit exposure values with the amount of product handled per day with 100% inhalation absorption. Exposure was normalized to mg/kg bw/day by using 80 kg adult body weight.

The exposure estimates were compared to the selected flutianil toxicology reference values (dermal NOAEL = 333 mg/kg bw/day and inhalation NOAEL= 26 mg/kg bw/day) to obtain the margin of exposure (MOE). The target MOEs are 300 for dermal exposure and 100 for inhalation exposure. Dermal and inhalation MOEs were not combined since the dermal and inhalation endpoints are based on different toxicological effects. The calculated MOEs are greater than the target MOEs (Appendix I, Table 7) when using groundboom, airblast and handheld equipment (backpack, manually-pressurized handwand and mechanically-pressurized handgun equipment) and are therefore not of health concern for mixers, loaders and applicators.

3.4.1.2 Exposure and risk assessment for workers entering treated areas

Flutianil has a vapour pressure of 1.530×10^{-10} kPa (at 20°C). This is lower than the North American Free Trade Agreement (NAFTA) criterion for a non-volatile product at 1×10^{-4} kPa for outdoor uses at 20–30°C. Inhalation risk is not of health concern for postapplication workers as flutianil is considered non-volatile and the REI of 12 hours will allow residues to dry, suspended particles to settle and vapours to dissipate.

Chemical-specific dislodgeable foliar residue (DFR) study on apples, grapes and cantaloupe was reviewed and used for assessing human exposure during postapplication activities specific to cherries, grapes and cucurbits. The study was conducted at three locations on three different crops (apples in New York, grapes in California and cantaloupe in Texas). At all three sites, the application rate corresponded to the maximum rate proposed on the label (45.9 g a.i./ha) and, therefore, is not expected to underestimate exposure. Applications were done at seven-day intervals with a maximum of five applications (only four applications on apples in New York). Sampling was conducted before and after each application as well as spanning 35 days after the last application. Data were not corrected for recovery as all field fortification samples were above 95% (Appendix I, Table 8).

For the purpose of this risk assessment, the peak grape DFR value $(0.193 \ \mu g/cm^2)$ was deemed the most appropriate for estimating postapplication exposure to grapes and the peak apple DFR value $(0.083 \ \mu g/cm^2)$ was deemed the most appropriate for estimating exposure to cherries (crop subgroup 12-09A). The peak values were chosen since the r² of the regression equations were below 0.85 and, therefore, the regression equation could not be used to estimate a dissipation rate. For the cantaloupe data, the r² was above 0.85 (0.91) and, therefore, the regression equation from the cantaloupe DFR analysis was used to estimate a dissipation rate for cucurbit vegetables (crop group 9). When the actual values from the study were used, they were adjusted for the difference in application rate between the study rate and the label rate (35 g a.i./ha vs. 45.9 g a.i./ha). Postapplication dermal exposure may occur when workers enter treated cherry orchards, grape vineyards and cucurbit vegetable fields to perform various activities. Dermal exposure to workers entering treated areas is estimated by combining chemical-specific DFR values and a 100% dermal absorption (default value) with activity-specific transfer coefficients (TCs). Activity-specific TCs are based on data from the Agricultural Re-entry Task Force (ARTF).

The exposure estimates were compared to the flutianil dermal toxicology reference value (NOAEL = 333 mg/kg bw/day) to obtain the MOE. The target MOE is 300. Since the calculated MOEs are greater than the target MOE of 300 (Appendix I, Table 9), the postapplication exposure is not of health concern and the REI of 12 hours is adequate.

3.4.2 Residential exposure and risk assessment

3.4.2.1 Handler exposure and risk assessment

GATTEN is not a domestic class product; therefore, a residential handler risk assessment is not required.

3.4.2.2 Postapplication exposure and risk assessment

GATTEN is proposed for use on cherries where pick-your-own activities are possible, as well as, there is the potential for trees in residential settings to be treated. As such, a residential postapplication risk assessment is required.

3.4.2.2.1 Pick-Your-Own (PYO) activities

Given that cherries can be treated with flutianil, there is potential for exposure during pick-yourown activities. The postapplication occupational risk assessment is protective of the risk associated with dermal exposure to the public in a pick-your-own facility and, therefore, a quantitative risk assessment is not required.

3.4.2.2.2 Trees in residential areas treated with GATTEN

When a commercial applicator is hired to treat orchard trees in a residential area or a farmer treats orchard trees adjacent to residential areas, there is potential for postapplication dermal exposure to residents.

The residential postapplication dermal risk assessment was conducted for adults (16 years old and over) and children (6 to less than 11 years old) when contacting treated fruit trees to perform activities such as hand harvesting, thinning, pruning, etc. The maximum application rate, maximum number of applications per season and minimum retreatment interval (RTI) were used. As mentioned previously, a chemical-specific DFR study was submitted and the peak apple DFR value (0.083 μ g/cm²) was deemed the most appropriate for estimating exposure to the cherries (crop subgroup 12-09A). This value was adjusted for the difference in application rate between the study rate and the label rate (35 g a.i./ha vs 45.9 g a.i./ha).

Dermal exposure was estimated using the DFR value, the TCs, durations of exposure and body weights from the 2012 United States Environmental Protection Agency Residential Standard Operating Procedures. Using the dermal toxicology reference value, calculated MOEs were greater than the target MOE of 300 (Appendix I, Table 10) for all residential postapplication exposure scenarios on Day zero. As such, health risks are not of concern and the individuals can enter the treated area once the sprays have dried.

3.4.3 Bystander exposure and risk assessment

Bystander exposure should be negligible since the potential for drift is expected to be minimal. Application is limited to agricultural crops only when there is low risk of drift to areas of human habitation or activity such as houses, cottages, schools and recreational areas, taking into consideration wind speed, wind direction, temperature, application equipment and sprayer settings.

3.5 Dietary exposure and risk assessment

3.5.1 Exposure from residues in foods of plant and animal origin

The residue definition for risk assessment in plant products is flutianil and the metabolite OC 56635 [2-fluoro-5-(trifluoromethyl)benzenesulfonic acid] for fruits (cherries, grapes, apples, strawberries) and flutianil only for cucurbit vegetables. The residue definition for enforcement in plant products is flutianil. The data gathering/enforcement analytical methods are valid for the quantitation of flutianil and metabolite OC 56635 residues in crop matrices. The residues of flutianil are stable in apples for up to 18 months, in grapes, grape juice, and raisins for up to 14.6 months, in summer squash for up to 13 months, in cucumber for up to 15 months, in cantaloupe for up to 11 months, in cherries and strawberries for up to 12 months, in radish and spinach for up to 7.3 months, in wheat forage for up to 8.2 months, in wheat hay for up to 8.9 months, in radish and spinach for metabolite OC 56635 are stable in grapes, grape juice, and raisins for up to 8.9 months, in radish and spinach for up to 7.3 months, in wheat forage for 8.2 months, in wheat hay for up to 8.9 months, in radish and spinach for up to 7.3 months, in grapes, grape juice, and raisins for up to 8.9 months, and in wheat straw and grain for up to 4.4 months when stored in a freezer at -20°C. The residues of metabolite OC 56635 are stable in grapes, grape juice, and raisins for up to 8.9 months, and in wheat straw and grain for up to 7.3 months, in wheat forage for 8.2 months, in wheat hay for up to 8.9 months, and in a freezer at -20°C.

Flutianil residues concentrated in the following processed commodities: apple wet pomace $(3.3\times)$ and raisins $(1.2\times)$. Crop field trials conducted throughout the United States, including growing regions representative of Canada, using end-use products containing flutianil at equivalent or at slightly exaggerated rates in or on summer squash, cucumbers, cantaloupe, cherries, grapes, apples, and strawberries are sufficient to support the proposed maximum residue limits. Field rotational crop studies were conducted in/on radish, wheat, lettuce, and spinach. The data are adequate to demonstrate that a 12-month plant-back interval is appropriate for non-labelled crops.

3.5.2 Exposure from residues in drinking water

3.5.2.1 Modelling estimates

Environmental concentrations of flutianil in potential drinking water sources were estimated using numerical models for the human health risk assessment. Modelling was conducted using the Pesticides in Water Calculator (PWC) version 1.52, using standard PMRA scenarios which take into account regional weather and soil characteristics as well as relevant plant properties.

3.5.2.2 Application information and model inputs

A conservative use pattern was modelled consisting of five applications of 35 g a.i./ha with an interval of 7 days, yearly applications not exceeding 175 g a.i./ha, with application dates between early April and mid-September. Modelling inputs for drinking water estimated environmental concentrations (EEC) differ from environmental fate parameters given the residue definition (Table 1).

Fate parameter	Flutianil	Flutianil + OC 56635 + OC 56574	Unit
K _d	451	0.024	L/kg
Water $t_{1/2}$ at 20°C	579	693	d
Sediment t _{1/2} at 20°C	1.98×10^{3}	1.35×10^{3}	d
Aquatic Photolysis $t_{1/2}$ at latitude $40^{\circ}N$	1.03	494	d
Hydrolysis t _{1/2} (pH=7)	stable	stable	d
Soil t _{1/2} at 20°C	2.41×10^{3}	2.09×10^{3}	d
Foliar $t_{1/2}$	stable	stable	d
MWT	426	426	g/mol
Vapor Pressure (20°C)	1.94×10^{-9}	$1.94 imes 10^{-9}$	torr
Solubility $(pH = 7)$	0.0079	0.0079	mg/L
Henry's law constant (20°C)	1.3×10^{-7}	1.3×10^{-7}	unitless
Air Diffusivity	3.4×10^{3}	3.4×10^{3}	cm ² /day
Heat of Henry	5.25×10^4	5.25×10^4	J/mol

Table 1 Major fate input parameters for the drinking water modelling assessment

3.5.2.3 Estimated environmental concentrations in drinking water

For surface water, PWC calculates the amount of pesticide entering the water body by run-off and drift, and the subsequent degradation of the pesticide in the water system. Estimated drinking water concentrations were calculated by modelling a total land area of 173 ha draining into a 5.3 ha reservoir with a depth of 2.7 m. Ground water EECs are calculated by simulating leaching through a layered soil profile and reporting the average concentration in the top 1 m of the water table.

The Level 1 EECs for the combined residue of flutianil and the transformation products OC 56635 and OC 56574 in potential sources of drinking water are provided in Table 2. Level 1 EECs are conservative values intended to screen out pesticides that are not expected to pose any concern related to drinking water. These are calculated using conservative inputs with respect to application rate, application timing, and geographic scenario. Level 1 EECs cover all regions of Canada.

Table 2Level 1 Estimated environmental concentrations of the combined residue of
Flutianil + OC 56635 + OC 56574 in potential sources of drinking water,
reported as parent equivalent

Use pattern	Groundwater (µg a.i./L)		Surface water (µg a.i./L)		
	Daily ¹	Yearly ²	Daily ³	Yearly ⁴	Overall ⁵
5 applications of 35 g a.i./ha at 7- day intervals	244	244	8.1	1.7	1.2

¹ 90th percentile of daily concentrations

² 90th percentile of 365-day moving average concentrations

³ 90th percentile of the highest 1-day average concentration from each year

⁴ 90th percentile of yearly average concentrations

⁵ Average of all yearly average concentrations

3.5.3 Dietary risk assessment

A chronic dietary risk assessment was conducted using the Dietary Exposure Evaluation Model (DEEM–FCIDTM, Version 4.02, 05-10-c), which incorporates consumption data from the National Health and Nutrition Examination Survey/What We Eat in America (NHANES/WWEIA) for the year 2005-2010.

3.5.3.1 Acute dietary exposure results and characterization

No appropriate toxicological reference value attributable to a single dose for the general population (including children and infants) was identified.

3.5.3.2 Chronic dietary exposure results and characterization

The following criteria were applied to the basic chronic analysis for flutianil: 100% crop treated, default processing factors (where available), the proposed Canadian MRLs, and the American tolerances for imported commodities. The basic chronic dietary exposure from all supported flutianil food uses (alone) for the total population, including infants and children, and all representative population subgroups is less than 1% of the acceptable daily intake (ADI), which is not of health concern. Aggregate exposure from food and drinking water is considered acceptable. The PMRA estimates that chronic dietary exposure to flutianil from food and drinking water is 0.7% (0.006 mg/kg bw/day) of the ADI for the total population. The highest exposure and risk estimate is for all infants (< 1 year) at 2.5% (0.020 mg/kg bw/day) of the ADI.

3.6 Aggregate exposure and risk assessment

There is potential for individuals to be exposed to flutianil via different routes of exposure concurrently. As such, the following scenarios were considered.

Aggregation of acute dietary (food and drinking water) and dermal exposure to flutianil from pick-your-own activities is not required, as no dietary acute reference value was identified for the general population, including infants and children.

Aggregation of chronic dietary (food and drinking water) and dermal exposure to flutianil from harvesting, pruning, thinning of trees in residential settings is not required, as the dietary and dermal endpoints are based on different toxicological effects.

3.7 Cumulative assessment

The *Pest Control Products Act* requires that the PMRA consider the cumulative effects of pest control products that have a common mechanism of toxicity. Accordingly, an assessment of a potential common mechanism of toxicity with other pesticides was undertaken for flutianil. Based on its chemical structure, flutianil has been classified as a thiazolidine fungicide. Currently, flutianil and thiadifluor are the only members of that class. Thiadifluor is not currently registered in Canada or the United States. For the current evaluation, the PMRA did not identify information indicating that flutianil shares a common mechanism of toxicity with other pest control products. Therefore, no cumulative health risk assessment is required at this time.

3.8 Maximum residue limits

MRL (ppm)	Food commodity
0.7	Small fruits vine climbing, except fuzzy kiwifruit (Crop subgroup 13- 07F)
0.5	Low growing berries (Crop subgroup 13-07G)
0.4	Cherries (Crop subgroup 12-09A)
0.2	Squash/Cucumber (Crop subgroup 9B)
0.15	Apples
0.07	Melons (Crop subgroup 9A)

Table 3.8-1Recommended maximum residue limits

MRLs are proposed for each commodity included in the listed crop groupings in accordance with the <u>Residue Chemistry Crop Groups</u> webpage in the <u>Pesticides section</u> of Canada.ca.

For additional information on Maximum Residue Limits (MRLs) in terms of the international situation and trade implications, refer to Appendix II.

The nature of the residues in plant matrices, analytical methodologies, field trial data, and chronic dietary risk estimates are summarized in Appendix I, Tables 1b, 11and 12.

3.9 Health incident reports

Flutianil is a new active ingredient pending registration for use in Canada, and as of 12 March 2021, no incident reports have been submitted to the PMRA.

4.0 Impact on the environment

The environmental assessment was conducted based on data and information from the registrant, as well as other regulatory agencies, such as the United States Environmental Protection Agency and the European Food Safety Authority.

4.1 Fate and behaviour in the environment

A summary of the environmental fate properties of flutianil and its transformation products are summarized in Appendix I, Tables 13 and 14.

4.1.1 Terrestrial environment

In the terrestrial environment, hydrolysis is not expected to contribute significantly to the dissipation of flutianil as it is stable to hydrolysis under all conditions (half-life > 365 days at pH 4, 7, and 9).

In soil, phototransformation of flutianil is slow (half-life = 110 days). Phototransformation may, however, be a transformation pathway for flutianil due to the formation of a single major transformation product; OC 56635, reaching a high of 10.7% of the applied radioactivity (AR) at study termination (37 days). Two identified minor transformation products were also produced, OC 56574, and OC 53276.

Flutianil is persistent in terrestrial biotic transformation processes in both the laboratory (aerobic half-life = 1114 to 2855 days; anaerobic half-life = 1460 to 13191 days) and field (DT_{50} = 312 to 398 days). Under laboratory conditions, no major transformation products were produced, yet OC 56635, OC 53276, OC 56574, and OC 53279 were observed in both the aerobic and anaerobic studies in minor quantities. Under field conditions, three of these transformation products were identified as major transformation products, OC 56635, OC 56574, and OC 53276 (maximum of 29.8, 11.4, and 14.4% AR, respectively). Based on information from the field dissipation study; OC 53276 was considered to be persistent (half-life = 259 days), while OC 56635 was considered to be slightly persistent (half-life = 42.2 days). The maximum concentration of flutianil residues observed during field trials was 34.6% AR after 460 days in one replication at the New York site, yet it was not detected after 271 days in the other two replications in New York or at the Iowa site. As such, flutianil may have the potential to carry-over under field conditions. A label statement pertaining to carry-over, however, is not required as flutianil is strongly bound to soil, is a non-leacher, and, generally, is not toxic to terrestrial organisms or aquatic organisms from runoff.

Flutianil is expected to be immobile in soil ($K_{oc} = 11779$ to 47320 L/kg) and was not detected below 8 cm depth in the field dissipation study, except at one sampling point where it was detected at 15 cm. The three main soil transformation products are all expected to have higher mobility than flutianil. Based on the adsorption information, OC 56574 and OC 53276 are expected to have slight to low mobility (K_{oc} = 1278 to 2090 L/kg) and low mobility (K_{oc} = 821 to 919 L/kg), respectively, and were not detected below 8 cm in the field dissipation study. Based on the information available, flutianil, OC 53276, and OC 56574 are not expected to reach groundwater sources according to the criteria of Cohen et al. (1984) and Gustafson (1989). The third transformation product, OC 56635, is expected to be very mobile in soil, due to the lack of adsorption (no K_{oc} calculation possible due to minimal adsorption) and its high water solubility $(> 1000 \text{ g/L} \text{ at } 20^{\circ}\text{C})$. Consequently, it is classified as a leacher according to the criteria of Cohen et al. (1984) and Gustafson (1989). This transformation product, however, was detected at a maximum depth of between 8 and 15 cm in the field dissipation study and was transient in nature. Even though the physicochemical parameters of OC 56635 suggest that it has the potential to reach groundwater, the persistance of the parent along with the limited mobility demonstrated in the field dissipation study indicates that a leaching statement on the label is not required for flutianil or its transformation products.

4.1.2 Aquatic environment

In the aquatic environment, hydrolysis is not expected to contribute significantly to the dissipation of flutianil as it is stable to hydrolysis under all conditions (half-life > 365 days at pH 4, 7, and 9).

Aquatic phototransformation of flutianil is rapid (half-life = 1 to 1.1 day), transforming to OC 56635, and unidentified transformation products, Unk AP5A and Unk AP1B, at up to 71% (7 days), 30% (1 day), and 26% (2 days) AR, respectively. The estimated half-lives of the major transformation products Unk AP5A and Unk AP1B (half-life = 3.8 to 4.4 and 3.8 to 6.0 days, respectively) indicate that they are transient, whereas OC 56635 is likely to be present in the environment for longer periods of time based on the estimated extrapolated half-life of 62 to 71 days. Phototransformation usually only occurs when the compound is at or near the surface of the water and light can penetrate through. Therefore, even though aquatic phototransformation is rapid, it is unlikely to be a major breakdown pathway of flutianil.

Under laboratory conditions, flutianil is persistent in aquatic aerobic biotransformation systems (whole system $DT_{50} = 236$ to 699 days). Two major transformation products were produced, OC 56574 (up to a maximum of 13.7% AR after 272 days) and OC 53279 (up to a maximum of 3.7% AR after 61 days). In aquatic anaerobic systems, flutianil is persistent (whole system $DT_{50} = 766$ to 2280 days). No major transformation products were observed in the laboratory under anaerobic conditions.

4.1.3 Air transformation

Flutianil has low solubility in water (0.0079 mg/L), low vapour pressure (1.53×10^{-7} Pa at 20°C), and a low Henry's law constant (4.853×10^2 Pa at 20°C). The intrinsic physio-chemical properties suggest that flutianil is not likely to volatilize from moist soil or water surfaces under field conditions. Flutianil, therefore, has a low potential for transport in the atmosphere.

The rate of the gas-phase reaction between photochemically produced hydroxyl radicals and flutianil in the atmosphere is expected to be rapid, with an estimated half-life of 0.285 days.

4.1.4 Bioaccumulation

The *n*-octanol/water partitioning coefficient of flutianil (log $K_{ow} = 3.1$) indicates that it has the potential to bioaccumulate. However, the measured bioconcentration in rainbow trout (*Oncorhynchus mykiss*) was low (whole body kinetic bioconcentration factor, BCF_k \leq 380 L/kg). Flutianil had a depuration half-life of < 2 days in rainbow trout, and nearly all residues (~95%) were eliminated rapidly from fish tissues after 6.5 days. Flutianil is, therefore, not expected to bioaccumulate.

The transformation product OC 56635 was identified as a possible hydrophobic ionogenic organic compound that may be expected to bioaccumulate. It was thus modelled using the Bioconcentration for Ionizable Organics (BIONIC V2) model and yielded a range of BCFs from 1 to 2, implying that there is a low potential for bioaccumulation.

4.2 Environmental risk characterization

The environmental risk assessment integrates environmental exposure and ecotoxicology information to estimate the potential for adverse effects to non-target species. This integration is achieved by comparing EECs in various environmental media (food, water, soil, and air) with the concentrations at which adverse effects occur. The EECs are estimated using standard models that take into consideration the application rate(s), and chemical and environmental fate properties, including the dissipation of the pesticide between applications.

Ecotoxicology information includes acute and chronic toxicity data for organisms (invertebrates, vertebrates, and plants) from both terrestrial and aquatic habitats. Effects metrics are the toxicity study endpoints that have been adjusted by an uncertainty factor to account for potential differences in species sensitivity as well as varying protection goals (in other words, protection at the community, population, or individual level). A summary of the terrestrial and aquatic endpoints available and the effects metrics used in the risk assessment are presented in Appendix 1, Tables 15, 16, and 17, respectively.

Initially, a screening level risk assessment is performed to identify pesticides and/or specific uses that do not pose a risk to non-target organisms, and to identify groups of organisms for which there may be a potential risk. The screening level risk assessment uses simple methods, conservative exposure scenarios (for example, direct application at a maximum cumulative application rate) and sensitive toxicity endpoints. A risk quotient (RQ) is calculated by dividing

the EEC by the appropriate effects metric and is then compared to the level of concern (LOC; Appendix I, Table 17). If the screening level risk quotient is below the LOC, the risk is considered negligible, and no further risk characterization is necessary. If the screening level RQ is equal to or greater than the LOC, further characterization of the risk is conducted by taking into consideration more realistic exposure scenarios and effects metrics. These considerations may include additional exposure modelling, monitoring data, results from field or mesocosm studies, and probabilistic risk assessment methods.

One end-use product, GATTEN, is proposed for registration. The potential risk from the use of this product was assessed at the following application rates:

• five applications of 35 g a.i./ha (175 g a.i./ha total) with a 7-day re-application interval.

The screening level risk assessment and further characterization of risk for flutianil and its enduse product is summarized in in Appendix I, Tables 18 to 24.

4.2.1 Risks to terrestrial organisms

Terrestrial organisms, such as earthworms, honey bees, beneficial arthropods, birds, small mammals, and terrestrial non-target vascular plants can be exposed to flutianil through direct contact with spray, spray drift, run-off, contact with sprayed surfaces, or from ingestion of contaminated food. A risk assessment of flutianil, its transformation products, and the associated end-use product, GATTEN, was undertaken based on available toxicity data for earthworms, honey bees and other beneficial arthropods, birds, small wild mammals, and terrestrial plants. A summary of the toxicity of flutianil to terrestrial organisms is provided in Appendix I, Table 15. The terrestrial effects metrics used in the risk assessment are provided in Appendix I, Table 17.

When used according to the proposed label directions, risks associated with the use of flutianil are acceptable for the following terrestrial organisms:

- Earthworms,
- Pollinators,
- Beneficial arthropods, and
- Birds and mammals.

The LOC was exceeded for the following organisms and further characterization of the risk was completed:

• Terrestrial vascular plants.

With the observance of mitigation measures (in other words, buffer zones) to reduce exposure, the risks towards terrestrial vascular plants associated with the use of flutianil are acceptable.

4.2.1.1 Screening level risk assessment

The screening level risk assessment determines the potential risk to non-target terrestrial organisms assuming they are within the area that will receive direct application of the pesticide.

The calculated EECs were compared to the most sensitive effect metric for each group of terrestrial organisms. EECs for the transformation products were assumed to be a 100% conversion (molecular w/w) from flutianil. When the LOC was exceeded, further characterization of the risks was completed and presented in Section 4.2.1.2.

Earthworms and soil-dwelling arthropods

Earthworms and soil-dwelling arthropods may be exposed to flutianil through contact with residues in soil. Soil EECs were calculated based on a direct overspray, considering the maximum cumulative application rate of five applications of 35 g a.i./ha (175 g a.i./ha total) with a 7-day re-application interval and a soil half-life of 2410 days. Soil EECs were converted from g a.i./ha to mg a.i./kg soil using the assumption that flutianil was homogeneously mixed in the top 15-cm soil layer, and the soil had a bulk density of 1.5 g/cm³.

Effects metrics were compared to the screening level soil EEC of 0.077 mg a.i./kg. The resulting RQs did not exceed the LOC for flutianil or its transformation products (RQs \leq 0.01; Appendix I, Table 18), indicating that risks to earthworms and soil-dwelling arthropods are acceptable when flutianil is used according to the label.

Foliar-dwelling beneficial arthropods

The main route of exposure of flutianil to foliar-dwelling beneficial arthropods is via contact to surface residues as a result of a spray application. For direct overspray to plant surfaces in the field, the maximum cumulative application rate was considered with a default foliar dissipation half-life of 10 days.

Effects metrics were compared to the screening level foliar EEC of 83.01 g a.i./ha. The RQs did not exceed the LOC for the end-use product, GATTEN, or the transformation product, OC 53276 (RQs \leq 0.35; Appendix I, Table 18), indicating that risks to foliar-dwelling arthropods are acceptable when flutianil is used according to the label.

Bees

Foraging bees could be exposed directly to flutianil via spray droplets during application, to residues on the surface of leaves (acute contact exposure), and through the ingestion of contaminated pollen and nectar (oral exposure). In addition, brood may be exposed to flutianil as foraging bees bring contaminated pollen and nectar back to the hive. For the screening level risk assessment, it was conservatively assumed that flutianil is systemic, although it is not expected to move through plants to the pollen and nectar. The estimated contact and oral exposure for bees is compared to the toxicity endpoints (expressed in μg a.i./bee) derived from laboratory studies. As such, a conversion of the application rate from kg a.i./ha to μg a.i./bee is required for both contact and oral studies.

The LOC was not exceeded for all bee studies with either flutianil or the end-use product, GATTEN (RQs ≤ 0.05 ; Appendix I, Table 18), indicating that risks to pollinators are acceptable when flutianil is used according to the label.

Terrestrial vertebrates

Birds and small mammals could be exposed directly to flutianil via spray droplets during application or to residues on the surface of leaves (acute contact exposure). Foraging birds and small mammals could also be exposed to flutianil through the ingestion of a contaminated diet (oral exposure). To assess the risk to birds and mammals, the estimated concentration of flutianil on various food items was used to determine the amount of pesticide in the diet (the estimated daily exposure (EDE)). Exposure is dependent on the body weight of the organism, and the amount and type of food consumed. As such, a set of generic body weights was used to represent a range of species (20, 100, and 1000 g for birds and 15, 35, and 1000 g for mammals) and specialized feeding guilds (in other words, herbivore, frugivore, insectivore, and granivore) were considered for each category of animal weights (Appendix I, Table 19).

The LOC was not exceeded for all feeding guilds of birds and mammals (RQs < 0.04 and < 0.02 for birds and mammals, respectively; Appendix I, Table 19), indicating that risks to birds and mammals are acceptable when flutianil is used according to the label.

Non-target terrestrial plants

The screening level risk assess the direct exposure of plants to the pesticide. This assessment was conducted for seedling emergence, using the soil half-life of 2410 days, and for vegetative vigour, using the default foliar dissipation half-life of 10 days. The highest rate tested (a single nominal application rate of GATTEN at 44.8 g a.i./ha) was below the maximum proposed annual application rate. At this rate, a 25% effect level was not established, suggesting that effects to 25% will be observed at higher application rates.

This right-censored endpoint was used as the effect metric and resulted in RQs that slightly exceed the LOC (RQs of < 4.09 and < 1.95 for seedling emergence and vegetative vigour, respectively; Appendix I, Table 18), indicating a potential risk to non-target terrestrial plants. The risk was thus further characterized in Section 4.2.1.2.

4.2.1.2 Further risk characterization

The LOC was exceeded for terrestrial plants in the screening level assessment. Therefore, further risk characterization was completed. The further characterization considered applications to cucurbits, and cherries and grape separately, using the following proposed rates:

- Cucurbits: five applications of 35 g a.i./ha (175 g a.i./ha total) with a 7-day re-application interval; and
- Cherries and grape: four applications of 35 g a.i./ha (140 g a.i./ha total) with a 7-day reapplication interval.

4.2.1.2.1 Spray drift

Further characterization of exposure was conducted considering off-target spray drift. The amount of spray drift depends on the type of equipment used and the size of the spray droplets, as well as the type of crop. To calculate off-field EECs, spray drift factors were applied to the infield EECs. The spray drift factor is defined as the maximum percentage of spray drift deposition at 1 m downwind from the point of application. For flutianil, the product should be applied using an ASAE fine⁵ spray quality. The corresponding spray drift factors of 11% for field sprayers using a fine spray, and 74 and 59% for early- and late-season airblast sprayers, respectively, were used to determine estimated exposure due to spray drift.

Non-target terrestrial plants

Based on the RQs using the off-field EECs from drift, the level of concern is not exceeded for applications to cucurbits via field sprayer (RQ < 0.45; Appendix I; Table 18). However, the off-field RQs for application to cherries and grape via airblast exceed the LOC (RQs of < 1.08 to < 2.43), indicating that risks to non-target terrestrial plants are possible when flutianil is used according to the label.

Overall conclusion about potential risks to non-target terrestrial plants

There may be potential risks to non-target terrestrial plants from the use of flutianil. To inform users of the potential risk to non-target terrestrial plants, label statements pertaining to the toxicity of flutianil towards non-target terrestrial plants are required on the label of GATTEN.

Additionally, spray buffer zones of 1 to 3 m are required to mitigate the risk to non-target terrestrial habitats. With the implementation of these proposed mitigation measures, the risks are considered acceptable.

4.2.2 Risks to aquatic organisms

Aquatic organisms, such as invertebrates, fish, amphibians, and aquatic plants can be exposed to flutianil via spray drift or through runoff entering aquatic habitats. The aquatic risk assessment was conducted following a tiered approach, with a conservative screening assessment followed by refinements for spray drift and runoff if concerns were identified at the screening level. A summary of the effects on aquatic organisms considered in the selection of toxicity endpoints is provided in Appendix I, Table 16. The most sensitive aquatic endpoints used in the risk assessment are provided in Appendix I, Table 17.

⁵ Droplet size classification system of the American Society of Agricultural Engineers (ASAE) based on the volume median diameter (VMD) of spray droplets.

When used according to approved label directions, the risks associated with flutianil are acceptable for the following aquatic organisms:

• Marine plants.

The level of concern was exceeded for the following organisms:

- Freshwater and marine invertebrates,
- Freshwater and marine fish,
- Amphibians, and
- Freshwater plants.

With the observance of preventative measures and use-restrictions to reduce exposure, the risks towards aquatic organisms associated with the use of flutianil are acceptable.

4.2.2.1 Screening level risk assessment

Flutianil is classified as very highly toxic to practically non-toxic to freshwater organisms (Appendix I, Table 16). However, most endpoints were empirically estimated to be higher than the highest concentration tested, as test concentrations were capped at the limit of solubility of flutianil (0.0079 mg/L). As such, many of the calculated RQs in the screening level risk assessment are a conservative representation of the potential risk.

The screening level EECs in surface waters were calculated considering a direct overspray of flutianil at the maximum cumulative application rate of five application of 35 g a.i./ha with a 7-day re-treatment interval. Water bodies of two different depths were evaluated: EECs in surface water of 0.115 and 0.022 mg a.i./L for 15- and 80-cm depth were used to determine the risks to amphibians and all other aquatic organisms, respectively, aside from sediment-dwelling organisms, where the soil EEC of 0.077 mg a.i./kg was conservatively used for sediment concentrations. When the level of concern was exceeded, further characterization of the risk was completed and presented in Section 4.2.2.2.

For the purposes of the screening level risk assessment, the EECs for the transformation products were assumed to be a 100% conversion (molecular w/w) from flutianil.

Aquatic invertebrates

Freshwater

In the screening level risk assessment, the LOC was exceeded for both acute and chronic flutianil exposure to the water flea, *Daphnia magna* (RQ < 6.62 and 3.03, respectively, Appendix I, Table 20). However, acute exposures to GATTEN and the transformation products OC 56635, OC 56574, and OC 53276 did not exceed the LOC (RQs of < 0.01 to 0.98) nor did chronic exposure to OC 56635 (RQ < 0.01).

The concentration of flutianil in sediment did not pose a chronic risk to the sediment-dwelling amphipod, *Hyallela azteca* (RQ = 0.01), yet the RQs for *H. azteca* exceeded the LOC based on overlying and pore water concentrations (RQ = 3.84 and 1.02, respectively). Risks to freshwater invertebrates will be further characterized.

Marine

The risk quotients for marine invertebrates resulting from acute and chronic exposures to flutianil exceeded the LOC in two cases (Appendix I, Table 20); flutianil and GATTEN pose a potential acute risk to eastern oysters, *Crassostrea virginica* (RQs of < 2.26 and < 1.20, respectively), but is not expected to pose a chronic risk to saltwater mysids, *Americamysis bahia* (RQ = 0.47) or to the sediment dwelling amphipod, *Leptocheirus plumulosus*, based on sediment concentration (RQ = 0.01). Acute risks to marine invertebrates will be further characterized.

Fish

Freshwater

The screening level RQs for freshwater fish were exceeded in three out of seven instances (RQs of < 0.01 to < 41.2; Appendix I, Table 20). The risk quotients for fathead minnow, *Pimephales promelas*, resulting from acute exposure to flutianil (RQ < 41.2), rainbow trout, *Oncorhynchus mykiss*, resulting from acute exposure to GATTEN (RQs = 4.12), and fathead minnow resulting from chronic exposure to flutianil (RQ = 8.96) exceeded the LOC. There were no effects of acute or chronic exposure to the transformation products on freshwater fish (RQs < 0.07). Risks to freshwater fish will be further characterized.

Marine

The risk quotients for the marine fish, sheepshead minnow (*Cyprinodon variegatus*), resulting from acute exposure to the end-use product, GATTEN, exceeded the LOC (RQ < 2.79; Appendix I, Table 20). Flutianil alone is not expected to pose an acute or chronic risk to sheepshead minnow (RQs of < 0.25 and 0.31, respectively). Risks to marine fish will be further characterized.

Amphibians

When rainbow trout and fathead minnows were used as surrogates for amphibians, the LOC was exceeded, with RQs of < 220 for acute and 47.8 for chronic exposures to flutianil, and 22.0 for acute exposures to GATTEN (Appendix I, Table 20). There were no effects of acute or chronic exposure to the transformation products on amphibians (RQs < 0.34). Risks to amphibians will be further characterized.

Algae and vascular plants

Freshwater

The LOC was not exceeded for freshwater vascular plants exposed to GATTEN (duckweed, *Lemna gibba*, RQ < 0.20; Appendix I, Table 20). However, the LOC was exceeded for green algae, *Pseudokirchneriella subcapitata*, exposed to flutianil (RQ \leq 3.14). There were no effects of the transformation products on freshwater plants (RQs \leq 0.02). Risks to freshwater plants will be further characterized.

Marine

The LOC was not exceeded for the marine diatom, *Skeletonema costatum* (RQ = 0.33; Appendix I, Table 20). Risks to marine plants are acceptable when flutianil is used according to the label.

4.2.2.2 Further risk characterization

Due to the insoluble nature of flutianil, the majority of the screening level risk assessment for aquatic organisms is based on non-definitive endpoints with an additional uncertainty factor applied. Applying an uncertainty factor to non-definitive endpoints in studies where no effects were observed is overly conservative. To further characterize the risk, a more representative effect metric was used; either the lowest non-definitive endpoint without the uncertainty factor applied or the lowest endpoint from a study that did display effects with the uncertainty factor still applied, whichever is lowest.

4.2.2.2.1 Spray drift

Non-target aquatic organisms can also be exposed to flutianil via spray drift. The refinement parameters for freshwater organisms and amphibians were the same as for the terrestrial spray drift refinement. For marine organisms, spray buffer zones are determined based on acute endpoints and the maximum single application rate only to reflect the lower potential of chronic exposure due to higher water renewal rates in tidal/estuarine areas.

Cucurbit vegetables

The further risk characterization resulted in RQs of ≤ 0.01 to 5.26 (Appendix I, Table 21). Only acute and chronic exposure of flutianil to amphibians (RQs of < 2.42, and 5.26, respectively), and acute exposures of GATTEN to amphibians (rainbow trout; RQ = 2.42) resulted in an exceedance of the LOC. The LOC for all other aquatic organisms was not exceeded (RQs of ≤ 0.99). In the absence of mitigative measures, risks to amphibians remains possible from spray drift of flutianil applied to cucurbit vegetables. Therefore, mitigation is required.
Cherries and grape

Taking early- and late-season airblast into account, the consideration of spray drift resulted in RQs ranging from ≤ 0.04 to 28.4 and ≤ 0.03 to 22.7, respectively (Appendix I, Table 21). Chronic exposure of flutianil to sediment-dwelling amphipods in pore water (RQs of 0.61 and 0.49 for early- and late-season airblast, respectively) and acute marine exposures (RQs ≤ 0.18) did not result in an exceedance of the LOC.

In the absence of mitigative measures, risks to aquatic invertebrates, fish, amphibians, and freshwater plants remain possible from spray drift of flutianil applied to cherries and grape. Therefore, mitigation is required.

Summary of spray drift risk to aquatic organisms

There is a potential risk to aquatic organisms from the use of flutianil when taking spray drift into account. To protect these organisms, standard label statements pertaining to aquatic organisms are required on the label of GATTEN. Freshwater spray buffer zones of up to 25 m will be required on GATTEN product labels to protect freshwater organisms from the potential effects of spray drift from the use of flutianil on cucurbit vegetables, and cherries and grape fruit. Marine spray buffer zones are based on the maximum single application rate, not the cumulative, and are thus not required. With implementation of these proposed mitigation measures, the risks from the use of GATTEN are considered acceptable.

4.2.2.2.2 Runoff

Given the high K_{oc} and low solubility of flutianil, it is not expected to be mobile in soils. Flutianil can, however, travel to waterbodies bound to soil particles in runoff, resulting in exposure to aquatic organisms.

Refined EECs from surface runoff of flutianil were based on the parent only (no combined residues) and were modelled based on a 10-ha watershed adjacent to a 1-ha water body of 15-cm depth (amphibian habitat) or 80-cm depth (shallow pond; for model inputs see Appendix I, Table 22). The model simulates pesticide application over a 50-year period, during which time, the maximum acute and chronic EECs are generated based on the amount of pesticide entering the water body by runoff and the subsequent degradation of the pesticide in the aquatic systems. Deposition of pesticide on the water body due to spray drift is not included. The risk quotients for the refined assessment from run-off are presented in Appendix I, Table 24.

Cucurbit vegetables

Based on the modelling EECs, acute and chronic risk quotients were calculated using the 24hour run-off EEC of 0.0029 mg a.i./L and 21-d EEC of 0.0019 mg a.i./L, respectively (Appendix I, Table 23). The 21-day pore water EEC was 0.0018 mg a.i./L.

The refined risk assessment, taking runoff into account, results in RQs of 0.09 to 0.85 (Appendix I, Table 24). Therefore, the LOC for all aquatic organisms was not exceeded. Risk to aquatic organisms is thus acceptable from runoff of flutianil applied to cucurbit vegetables.

Cherries and grape

Acute and chronic risk quotients were calculated using the 24-hour run-off EEC of 0.0019 mg a.i./L and 21-d EEC of 0.0009 mg a.i./L, respectively (Appendix I, Table 23). The 21-day pore water EEC was 0.00078 mg a.i./L.

The refined risk assessment results in RQs ranging from 0.04 to 0.42 (Appendix I, Table 24). Therefore, the LOC for all aquatic organisms was not exceeded. Risk to aquatic organisms is thus acceptable from runoff of flutianil applied to cherries and grape.

Summary of surface runoff risk to aquatic organisms

The risk to aquatic organisms from the use of flutianil when taking runoff into account is acceptable. However, standard label statements pertaining to runoff are required on the label of GATTEN. Vegetative filter strips are recommended as a best management practice to protect aquatic habitats from runoff. When used according to label directions, the risks from the use of flutianil are considered acceptable from the viewpoint of environmental protection.

5.0 Value

The results of field efficacy trials were submitted that demonstrated control of certain species of powdery mildew on cherries (Crop Subgroup 12-09A), cucurbit vegetables (Crop Group 9) and grape by application of GATTEN according to label directions. GATTEN was shown to protect leaves and fruits of cherry and grape crops and leaves of cucurbit crops from powdery mildew infection under conditions of moderate to high disease pressure. No adverse effects, including phytotoxicity, to treated crops were observed in any of the trials.

Effective powdery mildew management must be enacted preventatively and may require multiple fungicide applications over the growing season. As the active ingredient in GATTEN, flutianil, has been shown to effectively control certain species of powdery mildew on cucurbits, cherry and grape at application rates that are lower than those of registered alternatives, the availability of GATTEN may help to reduce the amount of pesticide active ingredient entering the environment. Because flutianil is a narrow spectrum active ingredient that specifically targets certain species of powdery mildews, use of GATTEN may reduce pressure on non-target species of fungi that have beneficial effects on the agro-ecosystem.

Because the risk of fungicide resistance is elevated for powdery mildews, particularly in crops such as cherry and grape in which crop rotation is not possible to break the cycle of infection, GATTEN will constitute an effective alternative product for use in fungicide rotation programs that serve to mitigate resistance development.

Details of the supported uses are provided in Appendix I, Table 26.

6.0 Pest control product policy considerations

6.1 Toxic substances management policy considerations

The *Toxic Substances Management Policy* (TSMP)⁶ is a federal government policy developed to provide direction on the management of substances of concern that are released into the environment. The TSMP calls for the virtual elimination of Track 1 substances, in other words, those that meet all four criteria outlined in the policy: persistent (in air, soil, water and/or sediment), bio-accumulative, primarily a result of human activity, and toxic as defined by the *Canadian Environmental Protection Act*. The PCPA requires that the TSMP be given effect in evaluating the risks of a product.

During the review process, flutianil and its transformation products were assessed in accordance with the PMRA Regulatory Directive DIR99-03 and evaluated against the Track 1 criteria. The PMRA has reached the following conclusion:

• Flutianil and its transformation products do not meet all of the TSMP Track 1 criteria.

Please refer to Appendix I, Table 25 for further information on the TSMP assessment.

6.2 Formulants and contaminants of health or environmental concern

During the review process, contaminants in the active ingredient as well as formulants and contaminants in the end-use products are compared against Parts 1 and 3 of the *List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern.*⁷ The list is used as described in the PMRA Science Policy Note SPN2020-01⁸ and is based on existing policies and regulations, including the *Toxic Substances Management Policy* and *Formulants Policy,*⁹ and taking into consideration the *Ozone-Depleting Substance Regulations,* 1998, of the *Canadian Environmental Protection Act* (substances designated under the *Montreal Protocol*).

The PMRA has reached the conclusion that flutianil and its end-use product, GATTEN, do not contain any formulants or contaminants identified in the *List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern*.

⁶ DIR99-03, The Pest Management Regulatory Agency's Strategy for Implementing the Toxic Substances Management Policy.

⁷ SI/2005-114, last amended on June 24, 2020. See Justice Laws website, Consolidated Regulations, *List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern.*

⁸ PMRA's Science Policy Note SPN2020-01, Policy on the List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern under paragraph 43(5)(b) of the Pest Control Products.

⁹ DIR2006-02, Formulants Policy and Implementation Guidance Document.

The use of formulants in registered pest control products is assessed on an ongoing basis through PMRA formulant initiatives and Regulatory Directive DIR2006-02.

7.0 Proposed regulatory decision

Health Canada's PMRA, under the authority of the *Pest Control Products Act*, is proposing registration for the sale and use of Flutianil Technical and GATTEN, containing the technical grade active ingredient flutianil, for control of powdery mildew on cherries (Crop Subgroup 12-09A), cucurbit vegetables (Crop Group 9) and grape.

An evaluation of available scientific information found that, under the approved conditions of use, the health and environmental risks and the value of the pest control products are acceptable.

List of abbreviations

1	increased
\downarrow	decreased
3	male
9	female
μg	micrograms
1/n	exponent for the Freundlich isotherm
a.i.	active ingredient
AD	administered dose
ADI	acceptable daily intake
AHETF	Agricultural Handlers Exposure Task Force
ALS	acetolactate synthase
APTT	activated partial thromboplastin time
ARfD	acute reference dose
ARTF	Agricultural Reentry Task Force
atm	atmosphere
ATPD	area treated per day
AUC	area under the curve
BAF	bioaccumulation Factor
BBCH	Biologishe Bundesanstalt, Bundessortenamt and Chemical industry
BCF	bioconcentration Factor
bw	body weight
bwg	body weight gain
CAF	composite assessment factor
CAS	Chemical Abstracts Service
CG	Crop Group
cm	centimetres
Cmax	maximum plasma concentration
CR	chemical-resistant
CSG	Crop Subgroup
DF	dry flowable
DFR	dislodgeable foliar residue
DNA	deoxyribonucleic acid
DT50	dissipation time 50% (the time required to observe a 50% decline in
	concentration)
DT ₉₀	dissipation time 90% (the dose required to observe a 90% decline in
	concentration)
dw	dry weight
EC ₂₅	effective concentration on 25% of the population
EC ₅₀	effective concentration on 50% of the population
EDE	estimated daily exposure
EEC	estimated environmental exposure concentration
ER ₂₅	effective rate for 25% of the population
ER50	effective rate on 50% of the population
FIR	food ingestion rate
FRAC	Fungicide Resistance Action Committee

g	gram
GC-ECD	gas chromatography with electron capture detection
GC/MSD	gas chromatography with mass selective detection
ha	hectare(s)
HAFT	highest average field trial
HDT	highest dose tested
Hg	mercury
HPLC	high performance liquid chromatography
HPLC-MS	high performance liquid chromatography with mass spectroscopy
hr(s)	hour(s)
ILV	independent laboratory validation
IUPAC	International Union of Pure and Applied Chemistry
kg	kilogram
Kd	soil-water partition coefficient
$K_{ m F}$	Freundlich adsorption coefficient
km	kilometre
$K_{ m oc}$	organic-carbon partition coefficient
Kow	<i>n</i> -octanol-water partition coefficient
k <i>P</i> a	kiloPascal
L	litre
LC_{50}	concentration estimated to be lethal to 50% of the test population
LD_{50}	dose estimated to be lethal to 50% of the test population
LC-MS/MS	liquid chromatography with tandem mass spectrometry
LAFT	lowest average field trial
LOAEC	lowest observed adverse effect concentration
LOAEL	lowest observed adverse effect level
LOC	level of concern
LOEC	low observed effect concentration
LOQ	limit of quantitation
LR_{50}	lethal rate 50%
mg	milligram
M/L/A	Mixer/Loader/Applicator
mL	millilitre(s)
MAS	maximum average score
MIS	maximum irritation score
MOE	margin of exposure
MRL	maximum residue limit
MS	mass spectrometry
N/A	not applicable
NAFTA	North American Free Trade Agreement
ND	not detected
NOAEC	no observed adverse effect concentration
NOAEL	no observed adverse effect level
NOEC	no observed effect concentration
NOEL	no observed effect level
NOER	no observed effect rate
N/R	not required
	-

NZW	New Zealand white
OC 53276	(Z)-2-[fluoro-5-(trifluoromethyl)phenyl sulfinyl]-2-[3-(2-methoxyphenyl)
	thiazolidinylidene]acetonitrile
OC 53279	(2Z)-{[2-fluoro-5-(trifluoromethyl)phenyl]sulfanyl}[4-hydroxy-3-(2-
	methoxyphenyl)-1,3-thiazolidin-2-ylidene]acetonitrile
OC 56574	(Z)-2-[2-fluoro-5-(trifluoromethyl)phenylthio]-2-[3-(2-methoxyphenyl)-1-oxo-
	1,3-thiaolidin-2-ylidene Jacetonitrile
OC 56635	2-fluoro-5-(trifluoromethyl)bensenesulfonic acid
OC OV	organic carbon content
OM	organic matter content
PBI	plant-back interval
PCPA	Pest Control Product Act
PHED	Pesticide Handlers Exposure Database
PHI	prenarvest interval
рка	dissociation constant
PMKA	Pest Management Regulatory Agency
PPE	Personal protective equipment
ppm	parts per million
PI	prothrombin time
RAC	raw agricultural commodity
REI	Restricted-entry interval
RQ	risk quotient
RSD	relative standard deviation
SC	soluble concentrate
SKBC	sheep red blood cells
t _{1/2}	
13	tri-iodothyronine
14 TC	thyroxine
	I ransfer coefficient
IDAK	1-dependent antibody response
	total radioactive residue
ISMP	Toxic Substances Management Policy
UAN	urea ammonium nitrate
	uncertainty factor
USEPA	United States Environmental Protection Agency
U V	
V/V	volume per volume dilution
wt	weight

Appendix I Tables and figures

Table 1aResidue analysis

Analyte	Matrix	Method type	LOQ (ppm)	Reference
OK-5203 (flutianil)	Soil/sediment*	HPLC-MS/MS	0.01	PMRA# 2962226
	Soil/sediment*	GC-ECD	0.01	PMRA# 2962050
	Surface water	HPLC-MS/MS	0.0100 mg/L	PMRA# 2961044, 2961920
	Ground water	HPLC-MS/MS	0.0100 mg/L	PMRA #2961044, 2961920
OC 53276	Soil/sediment*	HPLC-MS/MS	0.01	PMRA #2962226
	Soil/sediment*	GC-ECD	0.01	PMRA #2962050
	Surface water	HPLC-MS/MS	0.0100 mg/L	PMRA #2961044, 2961920
	Ground water	HPLC-MS/MS	0.0100 mg/L	PMRA #2961044, 2961920
OC 53279	Surface water	HPLC-MS/MS	0.0100 mg/L	PMRA #2961044, 2961920
	Ground water	HPLC-MS/MS	0.0100 mg/L	PMRA #2961044, 2961920
OC 56574	Soil/sediment*	HPLC-MS/MS	0.01	PMRA #2962226
	Soil/sediment*	GC-ECD	0.01	PMRA #2962050
	Surface water	HPLC-MS/MS	0.0100 mg/L	PMRA #2961044, 2961920
	Ground water	HPLC-MS/MS	0.0100 mg/L	PMRA #2961044, 2961920
OC 56635	Soil/sediment*	HPLC-MS/MS	0.01	PMRA #2962226
	Soil/sediment*	GC-ECD	0.01	PMRA #2962050
	Surface water	HPLC-MS/MS	0.0100 mg/L	PMRA# 2961044, 2961920
	Ground water	HPLC-MS/MS	0.0100 mg/L	PMRA# 2961044, 2961920
Flutianil and major metabolites	Plant/animal	Being reviewed by HED residue evaluator.		
* The soil method can be extended to sediment.				

Table 1bResidue analysis

Analytical methods	Matrix	Analyte(s)	Method ID/ Type	LOQ (ppm)	Reference
Plant commodit	ies				
Enforcement	Grape, strawberry, cucumber, apple	Flutianil	GC-ECD (CLE 2554/019-01V)	0.01	Study No. 2554/019 PMRA# 2962214
Method	Grape and processed commodities	Flutianil and metabolite OC 56635	LC-MS/MS (181C-105)	0.01	Study No. 181C- 105 PMRA# 2962224
Data-Gathering Method	Apple	Flutianil	GC/MSD (adapted from RM-44C-2)	0.01	Study No. 09634 (PMRA# 2962228) and 09634.06-CAR17 (PMRA# 2962237)
ILV of Enforcement Method	Grape, cucumber	Flutianil	GC-ECD (CLE 2554/019-01V)	0.01	Study No. CEMS-3577 PMRA# 2962218
	Grapes, raisin, juice	Flutianil and metabolite OC 56635	LC-MS/MS (181C-105)	0.01	Study No. 2K15- 1403-0114 PMRA# 2962247
	Grape, wheat grain, sunflower seed	Flutianil	QuEChERS (DFG S 19; extended revision): Multi Method L 00.00- 34	0.01	Study No. EBJ0005 PMRA# 2962222
Radiovalidation	Cucumber, apple	Flutianil	GC-ECD (CLE 2554/019-01V) GC-MSD (adapted from RM-44C-2)	N/A	Study No. 2554/033 PMRA# 2962216
	Apple	Flutianil	GC-ECD (CLE 2554/019-01V) GC-MSD (adapted from RM-44C-2)	N/A	Study No. 181C- 108 PMRA# 2962228

Analytical methods	Matrix	Analyte(s)	Method ID/ Type	LOQ (ppm)	Reference
Multiresidue Method Testing	Cucumber, grape, wheat	Flutianil	QuEChERS (DFG S 19; extended revision): Multi Method L 00.00- 34	0.01	Study No. S10- 02916 PMRA# 2962220
	grain, dry bean seed, sunflower seed	OC 56635		0.01	Study No. ADPEN-2K15- OAT-0501-001 PMRA# 2962230

N/A: not applicable

Table 2Identification of select transformation products and metabolites of Flutianil

Code	Chemical name	Source
OC 56635	2-fluoro-5-(trifluoromethyl)benzenesulfonic acid	Transformation product, rat metabolite
OC 63421	sodium 2-fluoro-5-(trifluoromethyl) benzenesulfonate	Sodium salt of OC 56635
OC 53276	(Z)-2-[2-fluoro-5- (trifluoromethyl)phenylsulfinyl]-2-[3-(2- methoxyphenyl) thiazolidinylidene]acetonitrile	Transformation product
OC 53429	(z)-2-[(2-fluoro-5-methyl)phenylthio]-2-[3- (2-methoxyphenyl)-2- thiazolidinylidene]acetonitrile	Rat metabolite
OC 53982	(z)-2-[(2-fluoro-5- difluoromethyl)phenylthio]-2-[3-(2- methoxyphenyl)-2- thiazolidinylidene]acetonitrile	Rat metabolite

Table 3Toxicity profile of Technical Flutianil

Effects observed in both sexes are presented first followed by sex-specific effects in males, then females, each separated by semi-colons. Organ weight effects reflect both absolute organ weights and relative organ to body weights unless otherwise noted. Effects seen above the LOAEL(s) have not been reported in this table for most studies for reasons of brevity.

Study Type/Animal/PMRA#	Study results
Toxicokinetic studies	
Absorption, distribution,	Absorption, distribution, metabolism and excretion were investigated with
toxicokinetics, metabolism	[CF ₃ Ph-U- ¹⁴ C]-flutianil or [MeOPh-U- ¹⁴ C]-flutianil. Single doses were
and excretion study	administered by gavage at 10, 250 or 1000 mg/kg bw. Bile duct-cannulated rats
following single and repeat	were administered a single oral gavage dose of 1 mg/kg bw. In a repeated dose
gavage doses	study, animals were administered 10 mg/kg bw/day of flutianil for 14 days

Wistar Rats	followed by a single dose of [CF ₃ Ph-U- ¹⁴ C]-flutianil or [MeOPh-U- ¹⁴ C]- flutianil at 10 mg/kg bw.
PMRA# 2961986, 2961989, 2961991, 2961993 and 2961996	Absorption Absorption was low and decreased with increasing dose level, ranging from approximately 18% to 2% of the administered dose (AD). The increases in AUC and Cmax of blood from 10 to 1000 mg/kg bw were not proportional to the increase in dose, suggesting saturation of absorption. Comparison of the plasma and blood concentration data suggested that flutianil and/or its radiolabelled metabolites were associated with the cellular fraction of the blood. There were no significant sex-related differences in absorption with either radiolabel.
	Distribution Flutianil was widely distributed throughout the tissues following oral administration. For most tissues, the maximum tissue concentration was detected at 2 hrs and 8 hrs for animals treated with [MeOPh-U- ¹⁴ C]-flutianil and [CF ₃ Ph-U- ¹⁴ C]-flutianil, respectively. With the exception of the gastrointestinal tract and carcass, liver followed by kidney contained the greatest amount of radioactivity. The increases of radioactivity in tissues were not proportional to the increases in the dose levels. Overall, tissue retention was low with low or no detectable levels of the radioactivity retained in tissues at 120 hrs post-dosing.
	Excretion Most of the radioactivity (>80%) was eliminated in feces within 48 hrs post- dosing. Excretion was mainly via the feces, accounted for up to 97.9% of the AD. Urinary excretion accounted for up to 19% of the AD. Biliary excretion accounted for up to 11% of the AD. The proportion of urinary radioactivity was lower in cannulated rats when compared to that of the intact rats, which suggested enterohepatic circulation of unchanged flutianil and/or metabolites.
	Metabolism There was no significant sex difference in the metabolite profile. The major urinary metabolites were Met 6 and Met 11. Met 6 was identified as a mercapturate conjugate of a hydroxylated methylsulphoxy trifluoromethyl ring structure accounting for up to 5.5% of the AD. Met 11 accounted for up to 3.72% of the AD. Unchanged flutianil was the major component identified in the feces, indicating limited metabolism. Two minor metabolites OC 53429 and OC 53982 were identified in feces, which accounted for up to 3.8% and 1.42% of the AD, respectively. The major biliary metabolites were Met 8 and Met 9, which accounted for 2.03% and 1.21% of the AD, respectively. Numerous uncharacterized metabolites were present in urine, feces and bile. None of the metabolites accounted for more than 10% of the AD.
	When compared with single-dose administration, repeated-dose administration resulted in slightly lower urinary excretion, but resulted in no major differences in the absorption, distribution, metabolism or excretion of flutianil.

Acute toxicity studies	
Acute oral toxicity	$LD_{50} > 5000 \text{ mg/kg bw} (\bigcirc)$
(gavage)	
	No clinical signs of toxicity
Sprague-Dawley rats	
	Low acute toxicity
PMRA# 2961735	
Acute dermal Toxicity	$LD_{50} > 5000 \text{ mg/kg bw} (3/2)$
5	
Sprague-Dawley rats	No clinical signs of toxicity
PMRA# 2961737	Low acute toxicity
Acute inhalation Toxicity	$LC_{50} > 5.17 \text{ mg/L} (3/2)$
Wistar rats	Clinical signs at 5.17 mg/L included unkempt appearance, vocalization, wet fur
	and staining of the head
PMRA# 2961739	Low acute toxicity
Primary eye irritation	MAS = 0/110
	MIS = 4.7/110 at 1 hour
Japanese White rabbits	
1	Non-irritating
PMRA# 2961741	6
Primary dermal irritation	MAS = 0/8
	MIS = 0/8
Japanese White rabbits	
	Non-irritating
PMRA# 2961743	
Skin sensitization	Negative
(Maximization Method)	
(With Milling and	
Hartley Guinea nigs	
Finite pigs	
PMR A# 2961745	
Short-term toxicity studie	
28-day oral toxicity	Supplemental
(dietary)	NOAFL and LOAFL not established
(chetary)	NOTALE and LOTALE not estublished
ICR mice	No treatment-related effects
	No treatment-related effects
PMR A# 2961922	Limitations: no histopathology assessment
90-day oral toxicity	NOAEL = $1387/1555 \text{ mg/kg bw/day} \left(\frac{3}{2}\right)$
(dietary)	I OAFL not identified
(urotary)	
ICR mice	No treatment-related effects
DMD A # 2061020	
1 IVIINA# 2901929	

28-day oral toxicity	NOAFI = $159/172 \text{ mg/kg hw/day} (2/0)$
(distant)	$HOAEL = 155/172 \operatorname{Ing/kg} \operatorname{bw/day} \left(\left(\frac{1}{2} \right) \right)$
(dietary)	LOAEL = 1333/1/14 mg/kg bw/day (0/2)
Wistar rats	Effects at LOAEL: \uparrow thyroid wt, \uparrow liver wt (\Diamond / \heartsuit); \downarrow plasma glucose, \downarrow plasma triglyceride. \downarrow plasma total bilirubin. \uparrow kidney wt. \uparrow incidence of hyaline
PMRA# 2961924	droplets in kidney (\eth); \downarrow heart wt, \downarrow spleen wt (\updownarrow)
90-day oral toxicity	NOAEL = $122/1500 \text{ mg/kg bw/day} (3/2)$
(dietary)	LOAEL = 1271 mg/kg bw/day/not established ($3/2$)
Wistar rats	
	Effects at LOAEL: \uparrow liver wt, \uparrow PT, \uparrow APTT, \uparrow incidence of hyaline droplets in
PMRA# 2961932	kidney
28-day oral toxicity	Supplemental- dose range-finding
(capsule)	NOAEL and LOAEL not established
Beagle dogs	No treatment-related effects
DMD A # 2061024	
PNIRA# 2901934	$NOAEL = 1000 m \sigma/leg hm/dage$
90-day oral toxicity	NOAEL = 1000 mg/kg bw/day
(capsule)	LUAEL not identified
Beagle dogs	No treatment-related effects
PMRA# 2961936	
12-month oral toxicity	NOAEL = 1000 mg/kg bw/day
(capsule)	LOAFL not identified
(eupsure)	
Beagle dogs	No treatment-related effects
PMRA# 2961956	
28-day dermal toxicity	NOAEL = 1000 mg/kg bw/day
	LOAEL Not identified
W1star rats	
DMD A # 20(1020	No treatment-related effects
PMRA# 2961938	
90-Day dermal toxicity	Request to waive conditional requirement for 90-day dermal toxicity study
(waiver request)	accepted based on low toxicity of flutianil in the 28-day dermal study and low
DMD A # 2061702	overall toxicity in oral studies. In addition, this study was not required for this
$\frac{1}{28} \text{ Day inhelation toyicity}$	use pattern. NOAEC = 0.1 mg/L (~ 26 mg/kg by /day) ($\frac{2}{\sqrt{2}}$)
28-Day initialation toxicity	$IOAEC = 0.1 \text{ mg/L} (\sim 20 \text{ mg/kg bw/day}) (0/\mp)$ $IOAEC = 1 \text{ mg/L} (\sim 261 \text{ mg/kg bw/day}) (3/9)$
Sprague-Dawley rats	$EOAEC = 1 \operatorname{mg/E} (\sim 201 \operatorname{mg/kg} \operatorname{ow/day}) (0/ \pm)$
Sprague-Dawley rats	Effects at $IOAEC$, \uparrow incidence of hepatocellular hypertrophy, atrophy of the
PMR A # 2961940	olfactory enithelium in the nose, hyperplasia/hypertrophy of the mucous cells
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	in the pass and centriaginar inflammation in the lungs $(A^{1} \cap)$: hwy there a
	in the hose and centracinal inflammation in the tungs $(\bigcirc \uparrow \downarrow), \downarrow \cup W, \downarrow \cup Wg, \downarrow$
	droplets in kidney (\mathcal{A}) : \uparrow liver wt (\bigcirc)
	an opticis in Kidney (\bigcirc), liver wt (\mp)

90-Day inhalation toxicity	Request to waive conditional requirement for 90-day inhalation toxicity study
(waiver request)	accepted based on the margins of exposure obtained for the inhalation exposure
	risk assessment when using the point of departure from the 28-day inhalation
PMRA# 2961703	toxicity study.
Chronic toxicity/Oncogen	icity studies
78-week oncogenicity	NOAEL = $321/316 \text{ mg/kg bw/day} (\mathcal{O}/\mathcal{Q})$
(dietary)	$LOAEL = 1084/1063 \text{ mg/kg bw/day} (\bigcirc / \bigcirc)$
CD-1 mice	Effects at LOAEL: incidence of luminal dilatation in urinary bladder, urinary
	bladder distended with urine, softening/atrophy of the testis (\bigcirc); \downarrow bw (wks 20-
DMD A # 2061650	60) (¥)
PMRA# 2901039	No evidence of tumourigenicity
2-year combined chronic	NO Evidence of fullhoungementy NOAFL = $82/376 \text{ mg/kg bw/day} (\mathcal{Z}/\mathbb{Q})$
toxicity/oncogenicity with	$I \cap AEL = \frac{32}{3} \sqrt{6} \lim_{\beta \to \infty} \log \log \log \left(\frac{3}{2}\right)$ $I \cap AEL = \frac{249}{1247} \log \log \log \left(\frac{3}{2}\right)$
1-year satellite group	$EOALE = 24771247 \operatorname{mg/kg} Ow/day (O7+)$
(dietary)	Effects at LOAEL: \uparrow incidences of foci of cellular alteration in liver. \uparrow
(incidence of hvaline droplets in kidney (\mathcal{E}): \uparrow liver wt. \uparrow incidences of bile duct
Wistar rats	hyperplasia (\bigcirc)
PMRA# 2961961	No evidence of tumourigenicity
Developmental/Reproduc	tive toxicity studies
1-generation reproductive	Supplemental - dose range-finding
toxicity (dietary)	NOAEL and LOAEL not established
	Parental
Wistar rats	Effect at and above $111/227 \text{ mg/kg bw/day} (3/2)$: \uparrow liver wt
	Reproductive
	No treatment-related reproductive effects
	Offspring
PMRA# 2961951	No treatment-related offspring effects
2-generation reproductive	Parental NOAEL = $1286/1942$ mg/kg bw/day (\mathcal{O}/\mathcal{P})
toxicity (dietary)	Parental LOAEL not identified
Wistar rats	No adverse treatment-related parental effects
PMRA# 2961954	Offspring NOAEL = $1286/1942 \text{ mg/kg bw/day} (3/2)$
	Offspring LOAEL not identified
	No treatment-related offspring effects
	Reproductive NOAEL = $1286/1942 \text{ mg/kg bw/day} (3/2)$
	Reproductive LOAEL not identified
	No treatment-related reproductive effects

	No avidence of consistivity of the years				
	No evidence of sensitivity of the young				
Developmental toxicity	Supplemental - dose range-finding				
(gavage)	NOAEL and LOAEL not established				
Wistar rats	No treatment-related maternal or developmental effects (external examination				
	only) observed up to 1000 mg/kg bw/day				
PMRA# 2961942					
Developmental toxicity	Maternal NOAEL = 1000 mg/kg/day				
(gavage)	Maternal LOAEL not identified				
	Developmental NOAEL = 333 mg/kg bw/day				
Wistar rats	Developmental LOAEL = 1000 mg/kg bw/day				
	Effects at LOAEL: \uparrow incidence of incompletely or unossified sternal centra				
PMRA# 2961944	No treatment-related malformations				
	Evidence of sensitivity of the young				
Developmental toxicity	Supplemental - dose range-finding				
(gavage)	NOAEL and LOAEL not established				
NZW rabbits	No treatment-related maternal or developmental effects (external examination				
	only) observed up to 1000 mg/kg bw/day				
PMRA# 2961946					
Developmental toxicity	Maternal NOAEL = 1000 mg/kg bw/day				
(gavage)	Maternal LOAEL not identified				
	Developmental NOAEL = 1000 mg/kg bw/day				
NZW rabbits	Developmental LOAEL not identified				
PMRA# 2961948	No treatment-related malformations				
	No evidence of sensitivity of the young				
Genotoxicity studies					
Bacterial reverse mutation	Negative \pm metabolic activation				
assay	Tested up to a limit concentration				
Salmonella typhimurium					
(TA 1535, TA 1537, TA					
98, TA 100); E. coli					
(WP2uvrA)					
PMRA# 2961966					
In vitro mammalian cell forward gene mutation	Negative \pm metabolic activation				
assav	Tested up to a precipitating concentration				
	- conce ap to a precipitating concentration				

L5178Y TK ⁴ Mouse Lymphoma Cells PMRA# 2961972 In vitro mammalian cytogenetics [chromosome aberration] Test up to a cytotoxic concentration Human lymphocyte cells PMRA# 2961978 In vitvo cytogenetics - micronucleus assay in mouse No mortality or clinical signs of toxicity NMRI mice PMRA# 2961980 Special studies (non-guideline) 28-day immunotoxicity NOAEL = 1251 mg/kg bw/day (♂) Q4 dictary) No treatment-related effects (general systemic effects or on anti-SRBC TDAR response) PMRA# 2961997 No evidence of immune system dysregulation Neurotoxicity Request to waive the conditional requirement for neurotoxicity testing accepted (waiver request) based on the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90- PMRA# 2961740 day and two-year chronic toxicity/oncogenicity or al studies in rats, as well as consideration of the overall low toxicity of flutinil in the oral toxicity studies. Metabolite studies Metabolite of con mg/kg bw and 1000 mg/kg bw (♀) (gavage) Moderate toxicity Wistar rats The single animal dosed at 2000 mg/k		
Lymphoma Cells PMRA# 2961972 In vitro mammalian cytogenetics [chromosome aberration] Negative ± metabolic activation cytogenetics = micronucleus assay in mouse PMRA# 2961978 In vivo cytogenetics - micronucleus assay in mouse Negative No mortality or clinical signs of toxicity NMRI mice PMRA# 2961980 Special studies (non-guideline) 28-day immunotoxicity NOAEL = 1251 mg/kg bw/day (♂) (dictary) LOAEL not identified Wistar rats No treatment-related effects (general systemic effects or on anti-SRBC TDAR response) PMRA# 2961997 No evidence of immune system dysregulation Neurotoxicity Neetato the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90- day and two-year chronic toxicity/oncogenicity oral studies in rats, as well as consideration of the overall low toxicity of flutianil in the oral toxicity studies. Metabolite studies Metabolite of 56635 Acute oral toxicity (Fixed (gavage) LD ₅₀ between 500 mg/kg bw and 1000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Regative ± metabolic activation assay	$I 5178V TK^{\pm} Mouse$	
Lymptolial Cetis PMRA# 2961972 In vitro mammalian cytogenetics [chromosome aberration] Negative ± metabolic activation Human lymphocyte cells PMRA# 2961978 In vivo cytogenetics - micronucleus assay in mouse Negative mortality or clinical signs of toxicity NMRI mice Tested up to a limit dose PMRA# 2961980 Tested up to a limit dose Special studies (non-guideline) LOAEL not identified 28-day immunotoxicity NOAEL not identified Wistar rats No treatment-related effects (general systemic effects or on anti-SRBC TDAR response) PMRA# 2961997 No evidence of immune system dysregulation Neurotoxicity Request to waive the conditional requirement for neurotoxicity testing accepted based on the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90- PMRA# 2961740 Metabolite studies Metabolite studies Metabolite Studies Moderate toxicity Metabolite Studies Moderate toxicity Metabolite Studies Moderate toxicity Metabolite OC 56635 Accute oral toxicity (Fixed dose) (gavage) Moderate toxicity Moderate toxicity Wistar rats The sing	LJ1/81 IK Wouse	
PMRA# 2961972 In vitro mammalian cytogenetics [chromosome aberration] In vitro mammalian cytogenetics [chromosome aberration] Test up to a cytotoxic concentration Human lymphocyte cells Test up to a cytotoxic concentration PMRA# 2961978 In vivo cytogenetics - micronucleus assay in mouse No mortality or clinical signs of toxicity No mortality or clinical signs of toxicity NMRI mice Tested up to a limit dose PMRA# 2961980 Special studies (non-guideline) 28-day immunotoxicity NOAEL = 1251 mg/kg bw/day (♂) 28-day immunotoxicity NOAEL = 1251 mg/kg bw/day (♂) (dietary) LOAEL not identified Wistar rats No treatment-related effects (general systemic effects or on anti-SRBC TDAR response) PMRA# 2961997 No evidence of immune system dysregulation Neurotoxicity Request to waive the conditional requirement for neurotoxicity testing accepted based on the absence of treatment-related findings in the neurotoxicity functional observation batterics that were assessed in the rat 28-day dermal, 90-PMRA# 2961740 (gavage) Moderate toxicity Metabolite studies Metabolite studies Metabolite Studies Metabolite official cyb between 500 mg/kg bw and 1000 mg/kg bw (♀) dose) (gavage) Moderate toxicity	Lymphoma Cells	
PMRA# 2961972 In vitro mammalian In vitro mammalian Negative ± metabolic activation everation] Test up to a cytotoxic concentration Human lymphocyte cells Test up to a cytotoxic concentration PMRA# 2961978 Negative In vivo cytogenetics - Negative micronucleus assay in No mortality or clinical signs of toxicity NMRI mice Tested up to a limit dose PMRA# 2961980 Special studies (non-guideline) 28-day immunotoxicity NOAEL = 1251 mg/kg bw/day (♂) (dietary) LOAEL not identified Wistar rats No treatment-related effects (general systemic effects or on anti-SRBC TDAR response) PMRA# 296197 No evidence of immune system dysregulation Neurotoxicity Request to waive the conditional requirement for neurotoxicity testing accepted based on the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90- day and two-y-car chronic toxicity or all studies in rats, as well as consideration of the overall low toxicity of flutianil in the oral toxicity studies. Metabolite studies Metabolite studies Metabolite studies Moderate toxicity Widetar trats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five		
PMRA# 29619/2 In vitro mamalian Negative ± metabolic activation cytogenetics [chromosome aberration] Test up to a cytotoxic concentration Human lymphocyte cells Test up to a cytotoxic concentration PMRA# 2961978 In vivo cytogenetics - micronucleus assay in mouse No mortality or clinical signs of toxicity NMRI mice Tested up to a limit dose PMRA# 2961980 Special studies (non-guideline) 28-day immunotoxicity NOAEL = 1251 mg/kg bw/day (♂) (dictary) LOAEL not identified Wistar rats No treatment-related effects (general systemic effects or on anti-SRBC TDAR response) PMRA# 2961997 No evidence of immune system dysregulation Neurotoxicity studies Request to waive the conditional requirement for neurotoxicity testing accepted based on the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90-PMRA# 2961740 Metabolite studies Metabolite CC 56635 Acute oral toxicity (Fixed LD ₂₉₀ between 500 mg/kg bw and 1000 mg/kg bw (?) (gavage) Moderate toxicity Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation	D) (D A // 20(1072	
In vitro mammalian Negative \pm metabolic activation cytogenetics [chromosome aberration] Test up to a cytotoxic concentration Human lymphocyte cells Negative \pm metabolic activation with the provided of	PMRA# 2961972	
eytogenetics [chromosome aberration] Human lymphocyte cells PMRA# 2961978 In vivo cytogenetics - micronucleus assay in mouse No mortality or clinical signs of toxicity NMRI mice PMRA# 2961980 Special studies (non-guideline) 28-day immunotoxicity (dietary) VOAEL = 1251 mg/kg bw/day (♂) LOAEL not identified Wistar rats No treatment-related effects (general systemic effects or on anti-SRBC TDAR response) PMRA# 2961997 No evidence of immune system dysregulation Neurotoxicity studies Neurotoxicity Request to waive the conditional requirement for neurotoxicity testing accepted based on the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90- PMRA# 2961740 day and two-year chronic toxicity/oncogenicity oral studies in rats, as well as consideration of the overall low toxicity of flutianil in the oral toxicity studies. Metabolite OC 56635 Acute oral toxicity (Fixed dose) (gavage) Moderate toxicity Wistar rats PMRA# 2961731 Bacterial reverse mutation Negative ± metabolic activation	In vitro mammalian	Negative \pm metabolic activation
aberration] Test up to a cytotoxic concentration Human lymphocyte cells Test up to a cytotoxic concentration PMRA# 2961978 Negative In vivo cytogenetics - Negative micronucleus assay in No mortality or clinical signs of toxicity NMRI mice Tested up to a limit dose PMRA# 2961980 Special studies (non-guideline) 28-day immunotoxicity NOAEL = 1251 mg/kg bw/day (3) LOAEL not identified UOAEL not identified Wistar rats No treatment-related effects (general systemic effects or on anti-SRBC TDAR response) PMRA# 2961997 No evidence of immune system dysregulation Neurotoxicity studies Request to waive the conditional requirement for neurotoxicity testing accepted based on the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 25-day dermal, 90-PMRA# 2961740 day and two-year chronic toxicity/oncogenicity oral studies in rats, as well as consideration of the overall low toxicity of flutianil in the oral toxicity studies. Metabolite studies Moderate toxicity Wetare tar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. Wistar rats The single animal dosed at 2000 mg/kg bw. PMRA# 2961731	cytogenetics [chromosome	
Human lymphocyte cells Test up to a cytotoxic concentration Human lymphocyte cells In vivo cytogenetics - micronucleus assay in mouse No mortality or clinical signs of toxicity NMRI mice PMRA# 2961980 Special studies (non-guideline) 28-day immunotoxicity NOAEL = 1251 mg/kg bw/day (♂) (dietary) LOAEL not identified Wistar rats No treatment-related effects (general systemic effects or on anti-SRBC TDAR response) PMRA# 2961997 No evidence of immune system dysregulation Neurotoxicity studies Request to waive the conditional requirement for neurotoxicity testing accepted (waiver request) based on the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90- PMRA# 2961740 day and two-year chronic toxicity/oncogenicity oral studies in rats, as well as consideration of the overall low toxicity of flutianil in the oral toxicity studies. Metabolite studies Metabolite of 56635 Acute oral toxicity (Fixed LD ₅₀ between 500 mg/kg bw and 1000 mg/kg bw (♀) dose) (gavage) Wistar rats The single animal dosed at 2000 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation Bacterial reverse mutation	aberration]	
Human lymphocyte cells PMRA# 2961978 In vivo cytogenetics - micronucleus assay in mouse No mortality or clinical signs of toxicity NMRI mice Tested up to a limit dose PMRA# 2961980 Special studies (non-guideline) 28-day immunotoxicity NOAEL = 1251 mg/kg bw/day (♂) LOAEL not identified Wistar rats No treatment-related effects (general systemic effects or on anti-SRBC TDAR response) PMRA# 2961997 No evidence of immune system dysregulation Neurotoxicity studies Neurotoxicity Request to waive the conditional requirement for neurotoxicity testing accepted (waiver request) based on the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90- PMRA# 2961740 day and two-year chronic toxicity of flutianil in the oral toxicity studies. Metabolite or 56635 Acute oral toxicity (Fixed LD ₅₀ between 500 mg/kg bw and 1000 mg/kg bw (?) dose) (gavage) Moderate toxicity Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation Negative ± metabolic activation		Test up to a cytotoxic concentration
PMRA# 2961978 Negative In vivo cytogenetics - Negative micronucleus assay in No mortality or clinical signs of toxicity NMRI mice Tested up to a limit dose PMRA# 2961980 Tested up to a limit dose Special studies (non-guideline) 28-day immunotoxicity NOAEL = 1251 mg/kg bw/day (♂) LOAEL not identified Wistar rats No treatment-related effects (general systemic effects or on anti-SRBC TDAR response) PMRA# 2961997 No evidence of immune system dysregulation Neurotoxicity studies Request to waive the conditional requirement for neurotoxicity testing accepted based on the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90- PMRA# 2961740 Metabolite studies Metabolite studies Metabolite OC 56635 Acute oral toxicity (Fixed LDs₀ between 500 mg/kg bw and 1000 mg/kg bw (♀) (gavage) Moderate toxicity Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation Bacterial reverse mutation Negative ± metabolic activation	Human lymphocyte cells	
PMRA# 2961978 In vivo cytogenetics - micronucleus assay in mouse Negative micronucleus assay in mouse NMRI mice PMRA# 2961980 Special studies (non-guideline) 28-day immunotoxicity NOAEL = 1251 mg/kg bw/day (♂) LOAEL not identified Wistar rats No treatment-related effects (general systemic effects or on anti-SRBC TDAR response) PMRA# 2961997 No evidence of immune system dysregulation Neurotoxicity Request to waive the conditional requirement for neurotoxicity testing accepted (waiver request) based on the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90- day and two-year chronic toxicity/oncogenicity oral studies in rats, as well as consideration of the overall low toxicity of flutianil in the oral toxicity studies. Metabolite tot C 56635 Acute oral toxicity (Fixed dose) (gavage) Moderate toxicity Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation		
PMRA# 2961978 In vivo cytogenetics - In vivo cytogenetics - Negative micronucleus assay in No mortality or clinical signs of toxicity NMRI mice Tested up to a limit dose PMRA# 2961980 Tested up to a limit dose Special studies (non-guideline) 28-day immunotoxicity 28-day immunotoxicity NOAEL = 1251 mg/kg bw/day (♂) (dietary) LOAEL not identified Wistar rats No treatment-related effects (general systemic effects or on anti-SRBC TDAR response) PMRA# 2961997 No evidence of immune system dysregulation Neurotoxicity studies Request to waive the conditional requirement for neurotoxicity testing accepted based on the absence of treatment-related findings in the neurotoxicity functional observation batterics that were assessed in the rat 28-day dermal, 90- PMRA# 2961740 day and two-year chronic toxicity/oncogenicity oral studies in rats, as well as consideration of the overall low toxicity of flutianil in the oral toxicity studies. Metabolite studies Metabolite oC 56635 Accute oral toxicity (Fixed LDs ₀ between 500 mg/kg bw and 1000 mg/kg bw (♀) dose) Moderate toxicity Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Ba		
In vivo cytogenetics - Negative micronucleus assay in mouse No mortality or clinical signs of toxicity NMRI mice Tested up to a limit dose PMRA# 2961980 Special studies (non-guideline) 28-day immunotoxicity NOAEL = 1251 mg/kg bw/day (δ) (dictary) LOAEL not identified Wistar rats No treatment-related effects (general systemic effects or on anti-SRBC TDAR response) PMRA# 2961997 No evidence of immune system dysregulation Neurotoxicity studies Neurotoxicity Request to waive the conditional requirement for neurotoxicity testing accepted based on the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90- PMRA# 2961740 Metabolite studies Metabolite Studies Metabolite OC 56635 Acute oral toxicity (Fixed dose) (gavage) Moderate toxicity Wistar rats The single animal dosed at 2000 mg/kg bw (\diamondsuit) (\bigcirc) Mathematical systems and 1000 mg/kg bw (\diamondsuit) (\bigcirc) Mathematical studies Metabolite ore studies	PMRA# 2961978	
micronucleus assay in mouseNo mortality or clinical signs of toxicityNMRI miceTested up to a limit dosePMRA# 2961980Tested up to a limit doseSpecial studies (non-guideline)28-day immunotoxicity28-day immunotoxicityNOAEL = 1251 mg/kg bw/day (δ)(dietary)LOAEL not identifiedWistar ratsNo treatment-related effects (general systemic effects or on anti-SRBC TDAR response)PMRA# 2961997No evidence of immune system dysregulationNeurotoxicity studiesRequest to waive the conditional requirement for neurotoxicity testing accepted (waiver request)based on the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90- MRA# 2961740Metabolite StudiesMetabolite OC 56635Acute oral toxicity (Fixed dose) (gavage)LDs0 between 500 mg/kg bw and 1000 mg/kg bw (\mathcal{Q}) dose) at toxicity (Fixed date toxicityWistar ratsThe single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw.PMRA# 2961731Bacterial reverse mutation assay	In vivo cytogenetics -	Negative
mouse No mortality or clinical signs of toxicity NMRI mice Tested up to a limit dose PMRA# 2961980 Special studies (non-guideline) 28-day immunotoxicity NOAEL = 1251 mg/kg bw/day (♂) (dictary) LOAEL not identified Wistar rats No treatment-related effects (general systemic effects or on anti-SRBC TDAR response) PMRA# 2961997 No evidence of immune system dysregulation Neurotoxicity studies Neurotoxicity for example of the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90- PMRA# 2961740 day and two-year chronic toxicity or al studies in rats, as well as consideration of the overall low toxicity of flutianil in the oral toxicity studies. Metabolite studies Metabolite OC 56635 Acute oral toxicity (Fixed LD ₅₀ between 500 mg/kg bw and 1000 mg/kg bw (♀) dose) (gavage) Moderate toxicity Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation Bacterial reverse mutation Negative ± metabolic activation	micronucleus assay in	
NMRI mice Tested up to a limit dose PMRA# 2961980 Tested up to a limit dose Special studies (non-guideline) NOAEL = 1251 mg/kg bw/day (♂) 28-day immunotoxicity NOAEL = 1251 mg/kg bw/day (♂) (dietary) LOAEL not identified Wistar rats No treatment-related effects (general systemic effects or on anti-SRBC TDAR response) PMRA# 2961997 No evidence of immune system dysregulation Neurotoxicity studies Request to waive the conditional requirement for neurotoxicity testing accepted (waiver request) based on the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90-PMRA# 2961740 day and two-year chronic toxicity/oncogenicity oral studies in rats, as well as consideration of the overall low toxicity of flutianil in the oral toxicity studies. Metabolite studies Metabolite OC 56635 Acute oral toxicity (Fixed dose) LD ₅₀ between 500 mg/kg bw and 1000 mg/kg bw (♀) dose) Moderate toxicity Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation Bacterial reverse mutation Negative ± metabolic activation <td>mouse</td> <td>No mortality or clinical signs of toxicity</td>	mouse	No mortality or clinical signs of toxicity
NMRI mice Tested up to a limit dose PMRA# 2961980 Tested up to a limit dose Special studies (non-guideline) NOAEL = 1251 mg/kg bw/day (♂) (dietary) LOAEL not identified Wistar rats No treatment-related effects (general systemic effects or on anti-SRBC TDAR response) PMRA# 2961997 No evidence of immune system dysregulation Neurotoxicity studies Request to waive the conditional requirement for neurotoxicity testing accepted (waiver request) based on the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90-QMRA# 2961740 day and two-year chronic toxicity/oncogenicity oral studies in rats, as well as consideration of the overall low toxicity of flutianil in the oral toxicity studies. Metabolite studies Metabolite OC 56635 Acute oral toxicity (Fixed LD ₅₀ between 500 mg/kg bw and 1000 mg/kg bw (♀) dose) Moderate toxicity Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation Bacterial reverse mutation Negative ± metabolic activation		
PMRA# 2961980Tested up to a limit doseSpecial studies (non-guideline)28-day immunotoxicityNOAEL = 1251 mg/kg bw/day (3°)(dietary)LOAEL not identifiedWistar ratsNo treatment-related effects (general systemic effects or on anti-SRBC TDAR response)PMRA# 2961997No evidence of immune system dysregulationNeurotoxicity studiesRequest to waive the conditional requirement for neurotoxicity testing accepted based on the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90-day and two-year chronic toxicity/oncogenicity oral studies in rats, as well as consideration of the overall low toxicity of flutianil in the oral toxicity studies.Metabolite studiesLD50 between 500 mg/kg bw and 1000 mg/kg bw (\bigcirc)(gavage)Moderate toxicityWistar ratsThe single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw.PMRA# 2961731Bacterial reverse mutationNegative \pm metabolic activation	NMRI mice	
PMRA# 2961980 Special studies (non-guideline) 28-day immunotoxicity NOAEL = 1251 mg/kg bw/day (♂) (dietary) LOAEL not identified Wistar rats No treatment-related effects (general systemic effects or on anti-SRBC TDAR response) PMRA# 2961997 No evidence of immune system dysregulation Neurotoxicity studies Request to waive the conditional requirement for neurotoxicity testing accepted (waiver request) Neurotoxicity Request to waive the conditional trequirement findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90- PMRA# 2961740 day and two-year chronic toxicity/oncogenicity oral studies in rats, as well as consideration of the overall low toxicity of flutianil in the oral toxicity studies. Metabolite studies Metabolite OC 56635 Acute oral toxicity (Fixed LD ₅₀ between 500 mg/kg bw and 1000 mg/kg bw (♀) dose) (gavage) Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation Negative ± metabolic activation Negative ± metabolic activation		Tested up to a limit dose
Special studies (non-guideline) 28-day immunotoxicity NOAEL = 1251 mg/kg bw/day (δ) (dietary) LOAEL not identified Wistar rats No treatment-related effects (general systemic effects or on anti-SRBC TDAR response) PMRA# 2961997 No evidence of immune system dysregulation Neurotoxicity studies Request to waive the conditional requirement for neurotoxicity testing accepted based on the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90-day and two-year chronic toxicity/oncogenicity oral studies in rats, as well as consideration of the overall low toxicity of flutianil in the oral toxicity studies. Metabolite studies Metabolite OC 56635 Acute oral toxicity (Fixed dose) (gavage) (gavage) Moderate toxicity Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation Nogative \pm metabolic activation	PMRA# 2961980	
28-day immunotoxicity NOAEL = 1251 mg/kg bw/day (♂) (dietary) LOAEL not identified Wistar rats No treatment-related effects (general systemic effects or on anti-SRBC TDAR response) PMRA# 2961997 No evidence of immune system dysregulation Neurotoxicity studies Request to waive the conditional requirement for neurotoxicity testing accepted based on the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90-day and two-year chronic toxicity/oncogenicity oral studies in rats, as well as consideration of the overall low toxicity of flutianil in the oral toxicity studies. Metabolite Studies Metabolite OC 56635 Acute oral toxicity (Fixed dose) LD50 between 500 mg/kg bw and 1000 mg/kg bw (♀) (gavage) Moderate toxicity Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation	Special studies (non-guide	line)
(dietary) LOAEL not identified Wistar rats No treatment-related effects (general systemic effects or on anti-SRBC TDAR response) PMRA# 2961997 No evidence of immune system dysregulation Neurotoxicity studies Request to waive the conditional requirement for neurotoxicity testing accepted based on the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90-PMRA# 2961740 day and two-year chronic toxicity/oncogenicity oral studies in rats, as well as consideration of the overall low toxicity of flutianil in the oral toxicity studies. Metabolite studies Metabolite OC 56635 Acute oral toxicity (Fixed dose) LD ₅₀ between 500 mg/kg bw and 1000 mg/kg bw (♀) Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Negative ± metabolic activation	28-day immunotoxicity	NOAEL = 1251 mg/kg bw/day (3)
Wistar rats No treatment-related effects (general systemic effects or on anti-SRBC TDAR response) PMRA# 2961997 No evidence of immune system dysregulation Neurotoxicity studies Request to waive the conditional requirement for neurotoxicity testing accepted based on the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90-day and two-year chronic toxicity/oncogenicity oral studies in rats, as well as consideration of the overall low toxicity of flutianil in the oral toxicity studies. Metabolite studies Metabolite OC 56635 Acute oral toxicity (Fixed dose) LD ₅₀ between 500 mg/kg bw and 1000 mg/kg bw (♀) dose) (gavage) Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation	(dietary)	LOAEL not identified
Wistar rats No treatment-related effects (general systemic effects or on anti-SRBC TDAR response) PMRA# 2961997 No evidence of immune system dysregulation Neurotoxicity studies Request to waive the conditional requirement for neurotoxicity testing accepted based on the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90-day and two-year chronic toxicity/oncogenicity oral studies in rats, as well as consideration of the overall low toxicity of flutianil in the oral toxicity studies. Metabolite studies Metabolite OC 56635 Acute oral toxicity (Fixed dose) LD ₅₀ between 500 mg/kg bw and 1000 mg/kg bw (♀) (gavage) Moderate toxicity Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation Negative ± metabolic activation Negative ± metabolic activation	(
No. in thisIn the induction of the origination of the originati	Wistar rats	No treatment-related effects (general systemic effects or on anti-SRBC TDAR
PMRA# 2961997 No evidence of immune system dysregulation Neurotoxicity studies Request to waive the conditional requirement for neurotoxicity testing accepted based on the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90-PMRA# 2961740 Metabolite studies Metabolite studies Metabolite studies Metabolite oC 56635 Acute oral toxicity (Fixed dose) LD ₅₀ between 500 mg/kg bw and 1000 mg/kg bw (♀) (gavage) Moderate toxicity Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation Noderate toxicity Noderate toxicity	vi istai rats	response)
No evidence of immune system dysregulationNeurotoxicity studiesNeurotoxicityRequest to waive the conditional requirement for neurotoxicity testing accepted based on the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90- day and two-year chronic toxicity/oncogenicity oral studies in rats, as well as consideration of the overall low toxicity of flutianil in the oral toxicity studies.Metabolite studiesMetabolite OC 56635Acute oral toxicity (Fixed dose) (gavage)LD ₅₀ between 500 mg/kg bw and 1000 mg/kg bw (\mathcal{Q})Wistar ratsThe single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw.PMRA# 2961731Bacterial reverse mutation assav	PMR A# 2961997	
Neurotoxicity studies Neurotoxicity Request to waive the conditional requirement for neurotoxicity testing accepted (waiver request) based on the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90-day and two-year chronic toxicity/oncogenicity oral studies in rats, as well as consideration of the overall low toxicity of flutianil in the oral toxicity studies. Metabolite studies Metabolite OC 56635 Acute oral toxicity (Fixed dose) LDs₀ between 500 mg/kg bw and 1000 mg/kg bw (♀) Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation Negative ± metabolic activation Negative ± metabolic activation		No evidence of immune system dysregulation
Neurotoxicity Request to waive the conditional requirement for neurotoxicity testing accepted (waiver request) based on the absence of treatment-related findings in the neurotoxicity PMRA# 2961740 functional observation batteries that were assessed in the rat 28-day dermal, 90- PMRA# 2961740 day and two-year chronic toxicity/oncogenicity oral studies in rats, as well as consideration of the overall low toxicity of flutianil in the oral toxicity studies. Metabolite studies Metabolite OC 56635 Acute oral toxicity (Fixed dose) LD ₅₀ between 500 mg/kg bw and 1000 mg/kg bw (♀) Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation assay	Neurotovicity studies	
(waiver request) Interfacts to waive the continional requirement for neurotoxicity testing accepted based on the absence of treatment-related findings in the neurotoxicity functional observation batteries that were assessed in the rat 28-day dermal, 90-day and two-year chronic toxicity/oncogenicity oral studies in rats, as well as consideration of the overall low toxicity of flutianil in the oral toxicity studies. Metabolite studies Metabolite OC 56635 Acute oral toxicity (Fixed dose) LD ₅₀ between 500 mg/kg bw and 1000 mg/kg bw (♀) Moderate toxicity Moderate toxicity Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation Negative ± metabolic activation Negative ± metabolic activation	Neurotoxicity	Request to waive the conditional requirement for neurotoxicity testing accepted
Warver request)based on the absence of treatment-refaced mutings in the neurooxiety functional observation batteries that were assessed in the rat 28-day dermal, 90- day and two-year chronic toxicity/oncogenicity oral studies in rats, as well as consideration of the overall low toxicity of flutianil in the oral toxicity studies.Metabolite studiesMetabolite OC 56635Acute oral toxicity (Fixed dose) (gavage)LD50 between 500 mg/kg bw and 1000 mg/kg bw (\mathcal{Q})Wistar ratsThe single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw.PMRA# 2961731Bacterial reverse mutation assay	(waiver request)	based on the absence of treatment related findings in the neurotoxicity
PMRA# 2961740 Intertional observation batteries that were assessed in the rat 28-day definal, 90-day and two-year chronic toxicity/oncogenicity oral studies in rats, as well as consideration of the overall low toxicity of flutianil in the oral toxicity studies. Metabolite studies Metabolite OC 56635 Acute oral toxicity (Fixed dose) LD ₅₀ between 500 mg/kg bw and 1000 mg/kg bw (♀) Moderate toxicity Moderate toxicity Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation Negative ± metabolic activation Negative ± metabolic activation	(warver request)	functional observation bettering that were assagged in the rat 28 day darmal 00
PMRA# 2961740 day and two-year chronic toxicity/oncogeneity or a studies in rais, as well as consideration of the overall low toxicity of flutianil in the oral toxicity studies. Metabolite studies Metabolite OC 56635 Acute oral toxicity (Fixed dose) LD ₅₀ between 500 mg/kg bw and 1000 mg/kg bw (♀) (gavage) Moderate toxicity Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation assay	DMDA # 2061740	dev and two year abraria toxicity/anon cominity and studies in rate, as well as
Consideration of the overall low toxicity of fluthamin in the oral toxicity studies. Metabolite studies Metabolite OC 56635 Acute oral toxicity (Fixed dose) LD ₅₀ between 500 mg/kg bw and 1000 mg/kg bw (♀) (gavage) Moderate toxicity Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation Negative ± metabolic activation Negative ± metabolic activation	FWIKA# 2901/40	day and two-year chrome toxicity/oncogenicity of al studies in fais, as well as
Metabolite Studies Metabolite OC 56635 Acute oral toxicity (Fixed dose) LD ₅₀ between 500 mg/kg bw and 1000 mg/kg bw (♀) (gavage) Moderate toxicity Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation Negative ± metabolic activation		consideration of the overall low toxicity of flutianif in the oral toxicity studies.
Metabolite OC 56635 Acute oral toxicity (Fixed dose) (gavage) LD ₅₀ between 500 mg/kg bw and 1000 mg/kg bw (Q) Wistar rats Moderate toxicity Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Negative ± metabolic activation assay	Vietabolite studies	
Acute oral toxicity (Fixed dose) (gavage)LD50 between 500 mg/kg bw and 1000 mg/kg bw (\mathcal{P})Wistar ratsModerate toxicityWistar ratsThe single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw.PMRA# 2961731Negative \pm metabolic activation assav	Metabolite OC 56635	
dose) Moderate toxicity (gavage) Moderate toxicity Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation Negative ± metabolic activation	Acute oral toxicity (Fixed	LD_{50} between 500 mg/kg bw and 1000 mg/kg bw (\uparrow)
(gavage) Moderate toxicity Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation Negative ± metabolic activation	dose)	
Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation Negative ± metabolic activation	(gavage)	Moderate toxicity
Wistar rats The single animal dosed at 2000 mg/kg bw died; no mortality or signs of toxicity in all five animals dosed at 300 mg/kg bw. PMRA# 2961731 Bacterial reverse mutation Negative ± metabolic activation		
PMRA# 2961731 toxicity in all five animals dosed at 300 mg/kg bw. Bacterial reverse mutation assay Negative ± metabolic activation	Wistar rats	The single animal dosed at 2000 mg/kg bw died; no mortality or signs of
PMRA# 2961731 Bacterial reverse mutation Negative ± metabolic activation assav		toxicity in all five animals dosed at 300 mg/kg bw.
Bacterial reverse mutation Negative ± metabolic activation	PMRA# 2961731	
assav	Bacterial reverse mutation	Negative \pm metabolic activation
	assay	
Tested up to a limit concentration		Tested up to a limit concentration

Salmonella typhimurium	
(TA 1535, TA 1537, TA	
98, TA 100); E. coli	
(WP2uvrA)	
PMRA# 2961968	
In vitro mammalian cell	Negative \pm metabolic activation
forward gene mutation	
assay	Tested up to a limit concentration
L5178Y TK [±] Mouse	
Lymphoma Cells	
DMD A # 20(1074	
In vivo autogenetics	Nagativa
micronucleus assay in mice	Inegative
interonucleus assay in intee	Test up to a maximum tolerated dose
ICR mice	rest up to a maximum toterated dose
PMRA# 2961982	
Metabolite OC 63421	
Acute oral toxicity	$LD_{50} > 2000 \text{ mg/kg bw} (\bigcirc)$
(gavage)	
Wistar rats	No clinical signs of toxicity
PMRA# 2961733	Low acute toxicity
28-day oral (dietary)	NOAEL = $4740/4860 \text{ mg/kg bw/day} (2/2)$
	LOAEL not established
W1star rats	
DMD A # 2061027	No treatment-related effects
Motobolite OC 53276	
Rectarial reverse mutation	Negative + metabolic activation
assav	
ussuy	Tested up to a limit concentration
Salmonella typhimurium	
(TA 1535, TA 1537, TA	
98, TA 100); E. coli	
(WP2uvrA)	
PMRA# 2961970	
In vitro mammalian cell	Negative \pm metabolic activation
forward gene mutation	
assay	
	Tested up to a precipitating concentration or a cytotoxic concentration

L5178Y TK [±] Mouse		
Lymphoma Cells		
PMRA# 2961976		
In vivo cytogenetics - micronucleus assay in	Negative	
mouse	Tested up to a limit dose	
ICR mice		
PMRA# 2961984		

Table 4Toxicity profile of the end-use product GATTEN, containing Flutianil

Study type/Animal/PMRA #	Study results
Acute oral toxicity	$LD_{50} > 5000 \text{ mg/kg bw } (\bigcirc)$
(gavage)	
	No clinical signs of toxicity
Sprague-Dawley rats	
	Low acute toxicity
PMRA# 2962256	
Acute dermal toxicity	$LD_{50} > 5000 \text{ mg/kg bw} (3/2)$
Constant Developments	
Sprague-Dawley rats	ino clinical signs of toxicity
PMRA# 2962258	Low acute toxicity
Acute inhalation toxicity	$LC_{50} > 4.82 \text{ mg/L} (3/2)$
XX7 • , , ,	
Wistar rats	Clinical signs at 4.82 mg/L included wet fur, hunched posture,
	increased respiratory rate and red/brown staining around eyes
PMRA# 2962260	Low acute toxicity
Primary eye irritation	MAS = 20.2/110
	MIS = 23.3/110 at 24 hr
NZW rabbits	
	Moderately irritating
PMRA# 2962262	
Primary dermal irritation	MAS = 1.7/8
	MIS = 1.7/8 at 24, 48 and 72 hrs
NZW rabbits	
	Mildly irritating
PMRA# 2962264	

Study	Study results
type/Animal/PMRA #	
Skin sensitization	Positive
(Buehler)	
	Potential dermal sensitizer
Hartley guinea pig	
PMRA# 2962266	

Table 5 Toxicology reference values for use in health risk assessment for Flutianil

Exposure	Study	CAF ¹ or							
scenario	-		Target MOE						
Acute dietary	Not required, as an endpoint of concern attributable to a single exposure was								
general population	not identified.								
Repeated	2-year dietary chronic	NOAEL = 82 mg/kg bw/day	100						
(chronic) dietary	toxicity/oncogenicity								
	study in rats	Liver toxicity							
	ADI = 0.8 mg/kg bw/d	lay							
Short and	Developmental toxicity	Developmental NOAEL = 333 mg/kg	300						
intermediate -term	study in rats	bw/day							
dermal ²									
		Delayed bone development							
Short and	28-day inhalation	NOAEC = 0.1 mg/L (~ 26 mg/kg	100						
intermediate -term	toxicity study in rats	bw/day)							
inhalation									
		Effects in the liver, nasal cavity and							
		lung as well as decreased body weight							
Cancer	No treatment-related tu	mours were observed; therefore, a cance	er risk						
	assessment is not required								

¹ CAF (composite assessment factor) refers to a total of uncertainty and PCPA factors for dietary assessments; MOE refers to a target MOE for occupational and residential assessments. ² Since an oral NOAEL was selected, a dermal absorption factor of 100% (default value) was used in a route-to-route extrapolation.

Table 6AHETF and PHED Unit exposure estimates for mixers, loaders and
applicators handling GATTEN (μg/kg a.i. handled)

Expos	sure scenario and PPE	Dermal	Inhalation ¹					
PPE:	PPE: Single layer and chemical-resistant gloves							
Mixer	Mixer/loader AHETF estimates							
Α	AOpen Mix/Load Liquids58.50.63							
Applicator AHETF estimates								
B	Open Cab Airblast Liquid Application – Without CR Hat	3769.3	9.08					
С	Open Cab Groundboom Liquid Application 25.40 1.68							

Expo	sure scenario and PPE	Dermal	Inhalation ¹					
Mixe	Mixer/loader + applicator AHETF estimates							
$\Lambda + \mathbf{P}$	Open Mix/Load Liquids and Open Cab Airblast Liquid	3827.8	0.71					
AID	Application – Without CR Hat	3827.8	7./1					
A+C Open Mix/Load Liquids and Open Cab Groundboom Liquid Application		82.0	2 21					
		83.9	2.31					
PHEI	D Mixer/loader/applicator							
Е	Liquid/Open Pour/Backpack (M/L/A)	5445.85	62.10					
F	F Liquid/Open Pour/Manually-Pressurized Handwand		45.20					
G	Liquid/Open Pour/Mechanically-Pressurized Handgun	5585.49	151					

¹ Light inhalation rate (moderate for backpack)

Table 7 Mixer/Loader/Applicator exposure and risk estimates for GATTEN

Exposure scenario	Dermal unit exposur e (µg/kg a.i. handle d) ¹	Inhalati on unit exposur e (µg/kg a.i. handled) ¹	ATPD (ha/day or L/day) ²	Rate (kg a.i./h a)	Dermal daily exposur e (mg/kg bw/day) 3	Inhalati on daily exposur e (mg/kg bw/day) 3	Dermal MOE ⁴	Inhalati on MOE ⁵
PPE: Single	layer and	chemical-r	esistant glo	oves	I			1
Open Mix/Load Liquids and Open Cab Airblast Application – Without CR Hat	3827.8	9.71	20 ha (cherries / grapes)	0.035	0.03349	8.50E-05	9942	306,017
Open Mix/Load Liquids and Open Cab Groundboo m Application	83.9	2.31	26 ha (cucurbi ts)	0.035	0.00095	1.080E- 05	348,924	989,487
Liquid/ Open Pour / Backpack	5445.85	62.10	150 L	0.035	0.00191	2.181E- 05	174,241	1,193,03 7
Liquid/ Open Pour/ Manually- Pressurize Handwand	943.37	45.20	150 L	0.035	0.00033	1.59E-05	1,005,8 53	1,639,10 7

Exposure scenario	Dermal unit exposur e (µg/kg a.i. handle d) ¹	Inhalati on unit exposur e (µg/kg a.i. handled) ¹	ATPD (ha/day or L/day) ²	Rate (kg a.i./h a)	Dermal daily exposur e (mg/kg bw/day) 3	Inhalati on daily exposur e (mg/kg bw/day) 3	Dermal MOE ⁴	Inhalati on MOE ⁵
Liquid/ Open Pour/ Mechanical ly- Pressurized Handgun	5585.49	151	3800 L	0.035	0.04965 70	0.00134 2	6706	19,368

PPE: personal protective equipment; CR: chemical-resistant.

¹ Unit exposure based on AHETF or PHED.

² Default Area Treated per Day table (updated on 2017-09-20) or lowest dilution (187 L/ha).

³ Daily exposure = (Unit exposure [μ g/kg a.i.] × ATPD [ha/day or L/day] × Rate [kg a.i./ha]) ÷ (80 kg bw × 1000 μ g/mg).

⁴ Based on the dermal NOAEL of 333 mg/kg bw/day and a dermal target MOE of 300.

⁵ Based on the inhalation NOAEL of 26 mg/kg bw/day and an inhalation target MOE of 100.

Table 8Flutianil dislodgeable foliar residue study results on apples, grapes and
cantaloupe using GATTEN

Site	Trend	\mathbf{R}^2	Peak DFR (% of application rate after last application)
Apples (New	$y = -0.0017 \times -$	R ² =	19.5%
York)	1.9421	0.8384	(0.193 µg/cm)
Grapes	$y = -0.0029 \times -$	R ² =	8.83%
(California)	2.9366	0.8119	(0.083 µg/cm)
Cantaloupe	$y = -0.0051 \times -$	R ² =	29%
(Texas)	2.4506	0.9171	(0.165 µg/cm)

Table 9Workers postapplication exposure and risk estimates for Flutianil on day 0
after the last application

Postapplication activity	Peak DFR (μg/cm²) ¹	TC (cm²/hr)²	Dermal exposure (mg/kg bw/day) ³	MOE ⁴	REI ⁵
	Cherries	(crop subgroup	o 12-09A)		
Thinning		3000	0.0189	17 619	
Hand harvesting	0.063	1400	0.0088	37 755	
Scouting, training	(adjusted	580	0.0037	91 133	12 hours
Transplanting	actual	230	0.0014	229 814	12 nours
Hand weeding, bird control, propping	value)	100	0.0006	528 571	

		Grapes			
Girdling		19,300	0.2837	1174	
Tying, training, hand harvesting	0.147	8500	0.1250	2665	
Hand set irrigation		1750	0.0257	12 945	12 hours
Scouting and various other orchard activities	value)	640	0.0094	35 395	
Transplanting		230	0.0034	98 492	
	Cucurbits	vegetables (cro	op group 9)		
Irrigation (handset)		1750	0.0271	12 287	
Hand harvesting, mechanically assisted harvesting, turning, training	0.155	550	0.0085	39 096	12 hours
Transplanting	(predicted)	230	0.0036	93 490	
Scouting, hand weeding, hand pruning, hand thinning	1	90	0.0014	238,919	

DFR = Dislodgeable foliar residue; TC = Transfer Coefficient; MOE = Margin of Exposure; REI = Restricted-Entry Interval ¹ Calculated using the actual highest peak DFR value from the grapes (0.193 μ g/cm²) and apples (0.083 μ g/cm²) after the last application at 45.9 g a.i./ha application rate from the DFR study. The peak DFR was adjusted using the supported rate of 35 g a.i./ha by taking the peak DFR value and multiplying it by the ratio of the supported rate vs the study rate. (Peak DFR × (35 g a.i./ha ÷ 45.9 g a.i./ha)). For cucurbits, the predicted DFR value was calculated using a dissipation rate of 29% per day from the cantaloupe DFR study regression analysis.

² Transfer coefficients obtained from PMRA Agricultural TCs Table.

³ Exposure = (Peak DFR [μ g/cm²] × TC [cm²/hr] × 8 hours/day) ÷ (80 kg bw × 1000 μ g/mg).

⁴ Based on the dermal NOAEL of 333 mg/kg bw/day and a dermal target MOE of 300.

⁵ Minimum REI is 12 hours to allow residues to dry, suspended particles to settle and vapours to dissipate.

Table 10Residential Postapplication Exposure and Risk Estimates on Day 0 from
Orchard Trees Treated Commercially with Flutianil

Crop (Max rate; # app; RTI)	Life stage	Peak DFR (μg/cm²) ¹	TC (cm²/hr)²	Exposure duration (hr/day)	Dermal exposure (mg/kg bw/day) ³	MOE ⁴	REI
Cherries (35 g a.i./ha; 4/season;	Adults (≥16 years)	0.062	1700	1	1.34E-03	248,739	Until sprays have dried
7-day RTI)	Children (6 < 11 years)	0.003	930	0.5	9.15E-04	363,748	Until sprays have dried

DFR = Dislodgeable foliar residue; TC = Transfer Coefficient; MOE = Margin of Exposure.

¹ Calculated using the actual highest peak DFR value for apples (0.083 μ g/cm²) after the last application at 45.9 g a.i./ha application rate from the DFR study. The peak DFR was adjusted using the supported rate of 35 g a.i./ha by taking the peak DFR value and multiplying it by the ratio of the supported rate vs the study rate. (Peak DFR × (35 g a.i./ha ÷ 45.9 g a.i./ha)). ² A single TC is representative of all activities in residential fruit trees. TCs were obtained from the PMRA memo entitled

"Review of U.S. EPA Residential SOPs (2012) Section 4: Gardens and Trees" (Sept. 6, 2019) and the 2012 USEPA SOP for Residential Pesticide Exposure Assessment.

³ Exposure = (Peak DFR $[\mu g/cm^2] \times TC [cm^2/hr] \times Exposure duration [hours/day]) \div$ (Body weight [80 kg for adults; 32 kg for children] \times 1000 µg/mg). ⁴ Based on the dermal NOAEL of 333 mg/kg bw/day and a dermal target MOE of 300.

Table 11 Integrated food residue chemistry summary

Nature of the residue	in grapes		PMRA# 2961903				
	[methoxypheny	'l-U- ¹⁴ C]flutianil (MP-lab	el; specific activity 1.25-1.26				
Radiolabel Position	MBq/mg) and [MBq/mg) and [trifluoromethylfluorobenzene-U- ¹⁴ C]flutianil (FP-label;					
	specific activity	v 1.23-1.25 MBq/mg)					
Treatment							
Test Site	In outdoor plots	s in Porterville, CA					
Treatment	Four foliar broa (×2)	dcast sprays at BBCH 79	, BBCH 81, and BBCH 85				
Total Rate	Target: 40 g a.i.	./ha each, for a total rate of	of 160 g a.i./ha				
Formulation	Suspension con	centrate (SC) formulation	1				
Harvest	Grape bunches 21 days (early r	and foliage were harveste nature), and 45 days (late	ed at PHIs of 1 day (immature), mature).				
Extraction solvents	Methanol (3×), hydrochloric ac	methanol:water (1:1, v/v , id (1×), 0.1N sodium hyd	3×), water (1×), 0.1N roxide (1×), acetone (1×)				
Matriag	PHI	MP-label	FP-label				
wiatrices	(days)	TRR (ppm)	TRR (ppm)				
Grape	l (Immature)	0.302	0.355				
	21 (Early mature)	0.149	0.222				
	45 (Mature)	0.170	0.228				
	l (Immature)	3.974	2.693				
Foliage	21 (Early mature)	5.186	5.409				
	45 (Mature)	5.337	3.872				
NATURE OF THE R	ESIDUE IN APPL	E	PMRA# 2961905				
Radiolabel Position	[methoxypheny MBq/mg) and [specific activity	⁴ l-U- ¹⁴ C]flutianil (MP-lab trifluoromethylfluoroben v 3.735 MBg/mg)	el; specific activity 3.782 zene-U- ¹⁴ C]flutianil (FP-label;				
Treatment		1 0/					
Test Site	In outdoor plots	s in Porterville. CA					
Treatment	Three foliar bro	badcast applications at BB	CH 79 (2×) and BBCH 81				
Total Rate	Target: 75 g a.i.	./ha each, for a total rate of	of 225 g a.i./ha				

Formulation	Emulsifiabl	e concentrate (EC) formulatio	n			
Harvest	Mature app	les were harvested at PHIs of	1, 14, 21, and 35 days. Foliage			
Extraction solvents	Methanol (3 hvdrochlori	$3\times$), methanol:water (1:1, v/v; c acid (1×), 0.1N sodium hydr	$3\times$), water (1×), 0.1N coxide (1×), and acetone (1×).			
	PHI	MP-label	FP-label			
Matrices	(days)	TRR (ppm)	TRR (ppm)			
	1	0.151	0.188			
	14	0.078	0.077			
Apple	21	0.075	0.046			
	35	0.093	0.027			
	14	8.499	4.873			
Foliage	30	8.209	5.055			
	35	6.726	4.530			
NATURE OF THE RES	DUE IN CU	JCUMBER	PMRA# 2961907			
	[methoxyph	enyl-U-14C]flutianil (MP-labe	el; specific activity 3.782			
Radiolabel Position	MBg/mg) and [trifluoromethylfluorobenzene-U- ¹⁴ Clflutianil (FP-label:					
	specific activity 3.735 MBq/mg)					
Treatment	1	<u> </u>				
Test Site	In individua	l containers in a greenhouse i	n North Yorkshire, UK			
Treatment	Four foliar planting.	broadcast applications at 50, 6	4, 78, and 91 days after			
Total Rate	Actual: 52– and 56–58 g Application	60 g a.i./ha each, for a total ra g a.i./ha each for a total rate of s were made 13 and 14 days a	te of 221 g a.i/ha (MP-label) 228 g a.i./ha (FP-label).			
Formulation	Emulsifiabl	e concentrate (EC) formulatio	n			
Harvest	Mature cuch davs. Cucur	umbers were harvested at BBC nber foliage was harvested at	CH 8, at PHIs of 1, 3, and 15 PHIs of 3 and 15 days.			
Extraction solvents	Methanol ($3 \times$), and 0.	8×), methanol:water (1:1, v/v; 1N sodium hydroxide (3×).	3×), 0.1N hydrochloric acid			
Matrices	PHI	MP-label	FP-label			
	(days)	TRR (ppm)	TRR (ppm)			
	1	0.012	0.026			
Cucumber	3	0.008	0.006			
	15	0.004	0.001			
Foliage	3	2.108	3.238			
1 onage	15	1.136	1.333			
NATURE OF THE RES	DUE IN LE	TTUCE	PMRA # 2961909			
Dediclobal Desition	[methoxyph	enyl-U- ¹⁴ C]flutianil (MP-labe	el; specific activity 3.782			
	specific acti	ivity 3.735 MBq/mg)	ene-0- Ojnunann (FP-iadel;			

Treatment							
Test Site	In container	rs in a greenhouse in North Yo	orkshire, UK.				
Treatment	Five foliar b planting.	proadcast applications at 57, 6	4, 71, 78, and 85 days after				
Total Rate	Actual: 42–46 g a.i./ha each, for a total rate of 223 g a.i/ha (MP-label) and 45 g a.i./ha each for a total rate of 225 g a.i./ha (FP-label). Applications were made 7 days apart.						
Formulation	Emulsifiabl	e concentrate (EC) formulatio	n				
Harvest	Mature lettu	ice was harvested 92 days after	er planting (7-day PHI)				
Extraction solvents	Methanol (3 hydrochlori	3×), methanol:water (1:1, v/v; c acid (3×), 0.1N sodium hydr	$3\times$), water ($3\times$), 0.1N coxide ($3\times$), and acetone.				
Matriaca	PHI	MP-label	FP-label				
wiatrices	(days)	TRR (ppm)	TRR (ppm)				
Lettuce heads	7 0.050 0.026						
Lettuce wrapper leaves	7	2.112	1.937				

Summary of major identified metabolites in plant matrices								
Radiolabel position	MP-label	FP-label						
Metabolites identified	Major metabolite	es						
Grapes	Flutianil	Flutianil						
Grape foliage	Flutianil	Flutianil						
Apples	Flutianil	Flutianil						
Apple foliage	Flutianil	Flutianil OC 56635 (35-day PHI only)						
Cucumbers	Flutianil Unknown 5(A) (15-day PHI only)	Flutianil						
Cucumber foliage	Flutianil	Flutianil						
Lettuce head	Flutianil	Flutianil						
Lettuce wrapper leaves	Flutianil	Flutianil						

Proposed Metabolic S	Scheme in Plants	8		
	C = 53276	$i = \frac{1}{2} \int_{C_{F_3}}^{C_{F_3}} \int_{C_{F_$	C_{56574} C_{56574} C_{56574} C_{56533} C_{56633} C_{56633} C_{56633} C_{56634}	
FREEZER STORAG	<u>GE STABILITY</u>	IN PLANT MATRIC	CES	1
Tested matrices	Analyte(s)	Tested intervals (months)	Temperature (°C)	Demonstrated stability (months)
Apple	Flutianil	$0, 1, 3, 6, 9, 12^1$ and		18
rr		18 ²		
Grapes	Flutianil	$0, 1, 3, 6, 9, \text{ and } 12^1$		12
Grapes, grape juice,	Flutianil	0, 3, 6, and 14.6 ¹		14.6
raisins	OC 56635	0, 3, and $\sim 6^1$		~6
Summer squash	Flutianil	~13 ²		~13
Cucumber	Flutianil	~15 ²	20	~15
Cantaloupe	Flutianil	~11 ²	-20	~11
Cherries	Flutianil	~12 ²		~12
Strawberries	Flutianil	~12 ²		~12
Radish	Flutianil + OC 56635	0, 1 and 7.3^2		7.3
Spinach	Flutianil + OC 56635	0, $1 \text{ and } 7.3^2$		7.3

Wheat	Flutianil + OC	$0, 1, 7, and 8.2^2$	8.2 (forag	ge)
	56635	(forage)	8.9 (hay	<i>י</i>)
		$0, 1, 6, and 8.9^2$	4.4 (straw	and
		(hay)	grain)	
		0, 1, and 4.4^2 (straw		
		and grain)		
¹ Stand-alone freezer s	storage stability s	tudy		

² Concurrent freezer storage stability data

Crop field trials and residue decline on cucurbit vegetables

PMRA# 2962239 (summer squash), 2962241 (cucumber), 2962243 (cantaloupe)

Crop field trials were conducted in 2006–2007. Cantaloupe trials were conducted in North American growing regions 2 (2 trials), 5 (1 trial), 6 (1 trial), and 10 (3 trials) for a total of 7 trials; cucumber trials were conducted in North American growing regions 2 (2 trials), 3 (1 trial), 5 (2 trials) and 6 (1 trial) for a total of 6 trials; summer squash trials were conducted in North American growing regions 1 (1 trial), 2 (1 trial), 3 (1 trial), 5 (1 trial), 10 (1 trial), and 11 (1 trial) for a total of 6 trials. V-10118, an emulsifiable concentrate formulation of flutianil, was applied five times as foliar broadcast sprays at a rate of 45 g a.i./ha for a seasonal application rate of 225 g a.i./ha. The applications were made at 7-day intervals with the last application occurring approximately 0 days before harvest. No adjuvant was used. Independence of trials was assessed for each representative crop from the various crop groups. Residue decline data show that residues of flutianil decreased in cantaloupe with increasing PHIs. Adequate concurrent storage stability data are available to support the storage intervals of the crop field trials. Samples were analyzed using a validated analytical method.

Сгор	Total Application Rate	plication Rate PHI a i /ha) (days)		Residue Levels (ppm)						
	(g a.i./ iia)	(uays)		n	LAFT	HAFT	Median	Mean	SDEV	
Summer squash	223–229	0	Election il	6	< 0.01	0.020	0.01	0.012	0.004	
Cucumber	221–231		0	0	Flutianii	6	< 0.01	0.012	0.01	0.010
Cantaloupe	224–226			7	< 0.01	0.042	0.014	0.018	0.011	

n = number of independent trials. LAFT = Lowest Average Field Trial, HAFT = Highest Average Field Trial, SDEV = Standard Deviation

For computation, values <LOQ are assumed to be at the LOQ.

PMRA# 2962269

Crop field trials and residue decline on cherries Crop field trials were conducted in 2007–2008 in North American growing regions 1 (1 trial), 5 (2 trials), 9 (1 trial), 10 (2 trials), 11 (1 trial), and 12 (3 trials) for a total of 10 trials; however, independence of trials was assessed and, after accounting for replicate trials, there are a total of 8 independent trials. V-10118, an emulsifiable concentrate formulation of flutianil, was applied four times as foliar broadcast sprays at a rate of 45 g a.i./ha for a seasonal application rate of 180 g a.i./ha. The applications were made at 6- to 8-day intervals with the last application occurring approximately 2-4 days before harvest. No adjuvant was used. Foliar applications were made using ground equipment with concentrated and/or dilute spray volumes; residues from dilute and concentrate spray volumes were similar. Residue decline data show that residues of flutianil decreased in cherries with increasing PHIs. Adequate concurrent storage stability data are available to support the storage intervals of the crop field trials. Samples were analyzed using a validated analytical method.

	Total Annihastion																
Crop	I otal Application Rate		PHI (devs)	Analyte		Residue Levels (ppm)						alyte					
	(g a.i./ha)		(uays)		n	LAFT	HAFT	Median	Mean	SDEV							
Cherrie	s 157–235		2–4	Flutianil	8	0.07	0.24	0.11	0.13	0.06							
n = number	of independent trials. LA	FT = Lc	owest Average F	ield Trial, HA	FT =	Highest A	Average Field	Trial, SD	EV = Sta	ndard							
Deviation	ld trials and residu	no do	lino on gra	nos				DM	D A # 70	062271							
Crop fig	ld trials ware condu	ated i	~ 2012 in N	pes orth Amori	000	arouin	a regions	1 (2 trio	$\frac{1}{1}$ 10	/022/1							
triala)	nd 11 (2 trials) for a	totol	112012 III No	however	can ndor	growin	g regions	1 (2 ti la	18), 10	(0 and							
ullais), a	ounting for ronlight	a trial	of 12 mais,	nowever, 1	inde	penden	t trials G	S Was as		alla, nuliad							
five time	ounting for replicat	t una	s, unere are a	101a1017	ho f		a unais. O	ligation	roto of	2214α							
nve tille	The applications was	o spra	ys al a fale (ntorvola w	11a 10 +h +h	$\frac{1}{2}$	isolial app		ing	224 g							
a.1./11a. 1	ne applications wer	oforo	horwost Ar	inci vais wi	urfo.	ic last a	upplication	on gran	ing has at a	11 field							
approxit	Ealier application		marvest. A f	a ground o		mont w	as used III	on grap	nd/or	li lieta							
	s. ronar application		to and conce	g ground e	quip	luma		lor Dog	idua da								
spray vo	lutionil in groups or		veriable to a	entrate spra		sith in or	were sinn	Iai. Kes	aue ut								
uata 01 1	data ara availabla t		anable to a	ssess decil	lle w	the are	easing Fr	lis. Aue	quale s	ara							
stability	uata are available to	5 supp	oll method	ige interva	5 01	the cro	p neid un	ais. Sain	ipies w	ele							
anaryzet	i using a vandated a		cal method.														
Crop	Total Application Rate	PHI	Analyte			Re	esidue Levels	(ppm)									
	(g a.ı./ha)	(days)	v	n		LAFT	HAFT	Median	Mean	SDEV							
Grapes	211–231	13– 15	Flutianil	7	0).0189	0.3826	0.056	0.101	0.127							
n = number	of independent trials. LA	FT = Lc	owest Average F	ield Trial, HA	FT =	Highest A	Average Field	Trial, SD	EV = Sta	ndard							
Deviation	tation values <1.00 are as	aumed	to be at the I OC)													
Cron fie	alloh, values <i>200 are as</i>	ne de	line on ann	Jes			р	MR A#	29622	37							
Crop fie	ld trials were condu	cted i	n 2006 in No	orth Ameri	can	orowin	g regions	1 (3 tria	$\frac{1}{1s}$ 2 (<u>)</u> 1 trial) 5							
(2 trials)	9(1 trial) 10(1 tr)	ial) a	nd 11 (4 tria	ls) for a to	tal o	f 12 trie	als: howev	ver inde	nendei	nce of							
trials wa	s assessed and after	r acco	unting for re	enlicate tri	als t	here an	e a total of	f 9 inde	penden	t trials							
V_{-10118}	an emulsifiable co	ncent	rate formula	tion of flu	tiani	l was a	nnlied for	ir times	as foli	ar							
broadcas	st sprays at a rate of	Δ5 σ	a i /ha for a	seasonal ar	mlic	ation re	te of 180	σai/ha	us ion The	a							
applicati	ons were made at 7	-dav i	ntervals with	h the last a	nnlia	ration c	ccurring s	5 a.i., it	nately	14 days							
before h	arvest. No adjuvant	wasi	ised Foliar	application	s we	re mad	e using or	ound ec	matery	nt with							
concent	ated and/or dilute s	nrav v	olumes: resi	idues from	dilu	te and a	concentrat	e snrav	volum	es were							
similar	Residue decline dat	a shov	v that residu	es of flutig	nil c	enerall	v decrease	e spray ed in an	nles wi	ith							
increasi	or PHIs Adequate s	storag	e stability da	ata are avai	lable	e to sur	nort the st	torage i	nterval	s of the							
cron field trials. Samples were analyzed using a validated analytical method																	
	Priore truis, sumples were undryzed using a vandated anarytedi method.																
Crop	I otal Application Rate (g a.i./ha)	PHI (davs)	Analyte					Madian	Maan	CDEV							
	(8)	12		n		LAFI	nar i	wiedian	wrean	SDEV							
Apples	157-191	15-	Flutianil	9	<	0.0185	0.062	0.031	0.036	0.014							
n = number	of independent trials I A		West Average E	ield Trial UA	FT -	Highest	Verage Field	Trial CD	EV = Sto	ndard							
Deviation	or mucpendent triais. LA	1 1 – L(west Average F		1,1 -	righest A	verage rield	111ai, SD	∟v – sta	nuaru							
For compu	For computation, values <loq are="" assumed="" at="" be="" loq.<="" td="" the="" to=""></loq>																

For computation, values <LOQ are assumed to be at the LOQ.

Crop field trials and residue decline on strawberries

PMRA# 2962245 Crop field trials were conducted in 2006-2007 in North American growing regions 2 (2 trials), 3 (1 trial), 5 (1 trial), 10 (3 trials), and 12 (1 trial) for a total of 8 trials. V-10118, an emulsifiable concentrate formulation of flutianil, was applied five times as foliar broadcast sprays at a rate of 45 g a.i./ha for a seasonal application rate of 225 g a.i./ha. The applications were made at 7-day intervals with the last application occurring approximately 0 days before harvest. No adjuvant was used. Independence of trials was assessed. Residue decline data show that residues of flutianil decreased in strawberries with increasing PHIs. Adequate concurrent storage stability data are available to support the storage intervals of the crop field trials. Samples were analyzed using a validated analytical method.

Сгор	Total Application Rate	PHI	Analvte	Residue Levels (ppm)						
	(g a.i./ha)	(days)		n	LAFT	HAFT	Median	Mean	SDEV	
Strawberries	221–232	0	Flutianil	8	0.025	0.17	0.055	0.067	0.047	
n = number of in	n = number of independent trials I AFT = Lowest Average Field Trial UAFT = Uighest Average Field Trial SDEV = Standard									

number of independent trials. est Average Field Irial, HAF I Deviation

Processed food and feed – Grapes and apples

PMRA# 2962271 (grapes) PMRA# 2962237 (apples)

For grapes, processing studies were conducted using GATTEN at 1125 g a.i./ha (8-fold of maximum seasonal rate). For apples, processing studies were conducted using Flutianil 0.4EC at 898–911 g a.i./ha (fivefold of maximum seasonal rate). Adequate storage stability data are available on diverse crop types to support the storage intervals of the processed food and feed. Samples were analyzed using a validated analytical method.

RAC	Proc Frac	essed etions	HAFT _[RAC] (ppm)	Median Processing Factor of Flutianil	Anticipated Residues of Flutianil (ppm)	
Granas	Ju	ice	0.282	0.7	0.27	
Grapes	Rai	isins	0.383	1.2	0.46	
Applag	Junitar Ju		0.062	0.1	0.01	
Wet F		omace	uce 0.062		0.20	
Confined accumulation in rotational crops – Radish, sorghum and spinach PMRA# 2962212						
Radiolabel Po	osition	MP-label (specific activity: 2.92 Bq/mg) and FP-label (specific activity: 2.87 MBq/mg)				
Treatment						
Test Site		In a greenhouse	e or on concrete pads with plastic rain shields			
Soil Type		Sandy loam				
Treatment		Bare soil was treated at 224 g a.i./ha, and aged for 30, 120 and 365 days.				
Formulation		Emulsifiable cor	ncentrate (EC) form	nulation		

		A	ACN:water (50:50, v/v; 2×) and ACN (1×). Non-extractable residues							
		ir	in some samples were subjected to sequential acid and base							
Extraction solvent(s)		h	ydrolysi	s with 0.1N	HCl, 0.1N N	IaOH, 6N H	Cl, and 6N I	NaOH for 2		
		h	ours und	ler ambient	conditions, a	nd with 6N l	HCl and 6N	NaOH for 2		
		h	ours und	ler reflux.						
				MP-labe	1		FP-label			
Matrices	Matrix			TRR (ppr	n)		TRR (ppm)		
iviati iees	Tritter IA		30-day	120-day	365-day	30-day	120-day	365-day		
			PBI	PBI	PBI	PBI	PBI	PBI		
	Immature ro	oot	0.041	0.034	0.004	0.196	0.184	0.024		
Radish	Immature to	ps	0.015	0.016	0.003	0.425	0.779	0.586		
Radisii	Mature root		0.005	0.003	0.008	0.040	0.030	0.053		
	Mature tops		0.007	0.004	0.004	0.293	0.221	0.335		
Spinach	Immature leaves		0.007	0.015	0.003	0.160	0.363	0.112		
	Mature leav	es	0.010	0.006	0.001	0.452	0.138	0.179		
	Forage		0.007	0.005	0.04	0.572	0.463	0.221		
Sorghum	Grain		0.012	0.006	0.002	0.069	0.046	0.041		
	Stover		0.020	0.015	0.010	0.817	0.990	0.545		
Summary of	f Major Identi	fied	Metabo	lites in Rot	ated Crops					
Plant-Back] (PBI)	Intervals		30 days		120 days		365 days			
Radiolabel I	Position	MP	P-label	FP-label	MP-label	FP-label	MP-label	FP-label		
Metabolites	Identified				Major Me	etabolites				
Immature rac	dish roots	N	lone	None	Flutianil; OC 52376	OC 56635	None	OC 56635		
Immature rac	dish tops	N	lone	OC 56635	None	OC 56635	None	OC 56635		
Mature radish roots		N	lone	OC 56635	None	OC 56635	None	OC 56635		
Mature radish tops		N	lone	OC 56635	None	OC 56635	None	OC 56635		
Immature spinach		N	lone	OC 56635	None	OC 56635	None	OC 56635		
Mature spina	ich	N	lone	OC 56635	None	OC 56635	None	OC 56635		
Sorghum for	age	N	lone	OC 56635	None	OC 56635	None	OC 56635		
Sorghum gra	in	N	lone	OC 56635	None	OC 56635	None	OC 56635		
Sorghum sto	ver	N	lone	OC 56635	None	OC 56635	None	OC 56635		

Proposed met	abolic schen	ne in rotatio	nal crops			
			OF	5-5203		
OK-5203 $(+) = C + C + C + C + C + C + C + C + C + C$						
Residue data	in rotationa	l crops			PMRA# 31	51576
Two trials we	re conducted	during the 2	014-2016	growing season	is in North Ame	rican growing
regions 2 and	10. Flutianil	was applied	5 times to	a primary crop	(cucumbers) at	a rate of 44.8 g
a.1./ha, for a to	otal seasonal	application c	ot 224 g a.i	./ha. Cucumber	rs were removed	trom the plots at
11-30, 93-12	1, and $338-3$	68 days after	treatment	, and any lettov	ver cucumber pla	ant material was
worked into th	ie soll before	secondary c	rops were	planted. No adj	juvants were use	a. Adequate
concurrent sto	rage stability	/ data were s	uomitted to	b support the st	orage intervals of	of the rotational
crop field trial	s. Samples w	vere analyzed	i using a v	andated analyti	cal method.	
Commodity	Application	PRI (davs)		Kesi	uue Leveis (ppm)	
Commonly	Rate	I DI (uays)	n	LAFT	HAFT	Mean
OC 56635	(§ a.i./ IIa)					
		11-30		0.034	0.387	0.211
Radish (top)		93-121	2	0.047	0.482	0.265
	<u> </u>	338-367	_	0.024	0.125	0.075
	224	11-30		< 0.017	0.129	0.073
Radish		93-121	2	< 0.017	0.088	0.053
(root)		338-367		< 0.017	< 0.017	< 0.017
			I			

Latteras		11		< 0.017	< 0.017	< 0.017
Lettuce		93	1	< 0.017	< 0.017	< 0.017
(leal)		338	Ī	< 0.017	< 0.017	< 0.017
Curing al		30	1	< 0.017	< 0.017	< 0.017
Spinach		121		0.018	0.019	0.019
(leal)		367		0.018	0.018	0.018
W/lesst		11–30	2	0.073	0.131	0.102
w neat		93–120 ¹		< 0.017	0.103	0.060
(lolage)		338–368		0.042	0.054	0.048
		11–30		0.142	0.773	0.458
Wheat (hay)		93–120 ¹	2	0.137	1.677	0.907
		33–368		0.073	0.373	0.223
W/lesst		11–30		0.088	0.652	0.370
(straw)		93–120 ¹	2	0.066	0.854	0.460
(suaw)		338–368		0.024	0.783	0.404
W/lesst		11–30		< 0.017	< 0.017	< 0.017
(grain)		93–120 ¹	2	< 0.017	< 0.017	< 0.017
(grain)		338–368	Ī	< 0.017	0.021	0.019
Values based on pe	er-trial averages. Fo	or computation.	values <loc< td=""><td>) are assumed to be</td><td>at the LOO.</td><td></td></loc<>) are assumed to be	at the LOO.	

n = number of independent field trials. ¹ The planting date of wheat in the 120-day PBI plot was not stated; therefore, the nominal PBI of 120 is reported.

Based on the results of the field accumulation study, a plant-back interval of 365 days (12 months) is required for all non-labelled crops.

Table 12	Food residue chemistry	overview of metabolism	studies and risk assessment

Plant studies					
Residue definition for enforcement Primary crops (fruits and cucurbits)	Flutianil				
Residue definition for risk assessment Primary crops (fruits and cucurbits)	Flutianil (cucurbit vegetables) Flutianil + OC 56635 (fruits – cherries, grape, apples, and strawberries)				
Metabolic profile in diverse crops	The profile in diverse crops cannot be determined, because only fruit (apple, grape, and cucumber) and leafy (lettuce) crops were investigated. Metabolism was similar in fruit and leafy crops.				

		Estim % of acceptable	ated risk daily intake (ADI)
	Population	Food Alone	Food and drinking water
	All infants <1 year	0.2	2.5
Basic chronic dietary	Children 1–2 years	0.6	1.5
exposure analysis	Children 3–5 years	0.4	1.1
ADI = 0.8 mg/kg bw/day	Children 6–12 years	0.1	0.7
water concentration = 0.244	Youth 13–19 years	0.1	0.5
ppm	Adults 20–49 years	0.1	0.7
	Adults 50+ years	0.1	0.7
	Females 13-49 years	0.1	0.7
	Total population	0.1	0.7

Table 13Fate and behaviour in the environment

Property	Test substance	Parameter	Value	Transformation products (max. % AR)	Classification	PMRA#*
Abiotic transformatio	n					
Hydrolysis	Flutianil	DT ₅₀ at pH 4, 7, and 9	>365 days	None identified	Persistant	2961747
Phototransformation on soil	Flutianil	DT50	110 days	OC 56635 (10.7) OC 56574 (1.8) OC 53276 (3.3)	Persistent	2961753
Phototransformation in water	Flutianil	DT ₅₀ natural water pH 7	1.1 days 1.0 days	OC 56635 (71.2) OC 53279 (2.8) Unk AP5A (29.5) Unk AP1B (25.7)	Non-persistent	2961749
	Unk AP5A	DT ₅₀ natural water pH 7	3.8 days 4.4 days	N/A	Non-persistent	
	Unk AP1B	DT ₅₀ natural water pH 7	3.8 days 6.0 days	N/A	Non-persistent	
	OC 56635	DT ₅₀ natural water pH 7	61.9 days 71.3 days	N/A	Moderately persistent	
Reaction with hydroxyl radicals in air	Flutianil	Half-life	0.285 days	N/A	Non-persistent in air	2961751
Biotransformation						
Biotransformation in aerobic soil	Flutianil	DT ₅₀	1114–2855 days	OC 56635 (3.9) OC 56574 (3.4) OC 53276 (2.5)	Persistent	2961755
L		90% upper	2410 days	0C 33279 (1.2)		

Property	Test substance	Parameter	Value	Transformation products (max. % AR)	Classification	PMRA#*
		confidence bound on the mean		CO ₂ (1.2)		
Biotransformation in anaerobic soil	Flutianil	DT ₅₀	1460–13 191 days	OC 56635 (2.6) OC 56574 (2.2) OC 53276 (1.2)	Persistent	2961757
		90 th percentile of mean	9512 days	OC 53279 (1.2) CO ₂ (0.9)		
Biotransformation in aerobic water systems	Flutianil	Whole system DT ₅₀ 80 th	236–699 days 579 days	OC 56574 (13.7) OC 53276 (7.4) OC 53279 (3.7) CO ₂ (9.2)	Persistent	2961759 <u>;</u> 2962008
Biotransformation in anaerobic water systems	Flutianil	whole system DT ₅₀	766–2280 days	OC 56574 (6.8) CO ₂ (0.8)	Persistent	2961761
Mobility						
Adsorption / desorption in soil	Flutianil	Kd	384–814 L/kg	N/A	Immobile in soil	2961763
		Koc	11779– 47320 L/kg			
	OC 56635	K _d	No adsorption – 0.0024 L/kg	N/A	Very highly mobile	2961769
		Koc	No adsorption – 1.853 L/kg			
	OC 56574	Kd	26.7–75.4 L/kg	N/A	Slight to low mobility in soil	2961767
		Koc	1278–2090 L/kg			
	OC 53276	K _d	10.48–43.30 L/kg	N/A	Low mobility in soil	2961765
		Koc	821–919 L/kg			
Field studies				1		·
Field dissipation	Flutianil	DT ₅₀ Iowa	312 days	OC 56635 (29.8) OC 56574 (11.4) OC 53276 (14.4)	Persistent Max_depth	2961901
		New York	398 days	00000210(11.1)	detected: Iowa: 15–30 cm New York: 8–15 cm	
					Max. carry-over (% after ~365 d): Iowa – <loq (359<br="">and 451 d) New York - 20.6% after 370 d (34.6% after 460 d)</loq>	

Property	Test substance	Parameter	Value	Transformation products (max. % AR)	Classification	PMRA#*
	OC 56635	DT ₅₀ Iowa	42.2 days	N/A	Moderately persistent	
					Max. depth detected: Iowa: 8–15 cm New York: 8–15 cm	
	OC 53276	DT ₅₀ Iowa	259 days	N/A	Persistent Max. depth detected: Iowa: 0–8 cm New York: 0–8 cm	
Bioconcentration				·		
Bioconcentration	Flutianil	BCF _k (whole body)	345 L/kg (high dose), 380 L/kg (low dose)	N/A	Not expected to bioaccumulate	2961827
		Depuration DT ₅₀	1.87–2.03 days			

Table 13Record of transformation products

Chemical name, code, and structure	Study (PMRA#)	Max %AR (d)	%AR at Study end (study length, d)							
	PARENT									
Parent – flutianil (OK-5203)	Hydrolysis (2961747)	pH 4 101.3 (0) pH 7 99.0 (0) pH 9 97.0 (0)	98.1 (5) 96.7 (5) 96.7 (5)							
S S S S S S S S S S S S S S S S S S S	Soil Phototransformation (2961753)	[MeOPh-U- ¹⁴ C]-flutianil 91.8 (0) [CF ₃ Ph-U- ¹⁴ C]-flutianil 97.4 (0)	69.1 (45) 68.3 (37)							
	Aqueous Phototransformation (2961749)	Natural Water [MeOPh-U- ¹⁴ C]-flutianil 99.8 (0) [CF ₃ Ph-U- ¹⁴ C]-flutianil 94.2 (0)	ND (0) ND (0)							
CAS Name: (2Z)-2-[[2-fluoro-5- (trifluoromethyl)phenyl]thio]-2-[3- (2- methoxyphenyl)-2-		pH 7 Buffer [MeOPh-U- ¹⁴ C]-flutianil 95.4 (0) [CF ₃ Ph-U- ¹⁴ C]-flutianil 95.6 (0)	ND (0) ND (0)							
thiazolidinylidene]acetonitrile IUPAC Name: (Z)-[3-(2-methoxyphenyl)- 1,3-thiazolidin-2-ylidene](α , α , α , 4- tetrafluoro- <i>m</i> -tolylthio)acetonitrile	Aerobic soil (2961755)	California sandy loam [MeOPh-U- ¹⁴ C]-flutianil 94.2 (0) [CF ₃ Ph-U- ¹⁴ C]-flutianil 93.7 (0)	74.5 (365) 75.6 (365)							
		Iowa loam [MeOPh-U- ¹⁴ C]-flutianil 92.7 (0)	83.1 (365)							
		New York loam [MeOPh-U- ¹⁴ C]-flutianil 94.4 (0)	79.1 (365)							

Chemical name, code, and structure	Study (PMRA#)	Max %AR (d)	%AR at Study end (study length, d)
		Georgia sand [MeOPh-U- ¹⁴ C]-flutianil 95.4 (0)	
	Anaerobic soil (2961757)	California sandy loam [MeOPh-U- ¹⁴ C]-flutianil 94.0 (0) [CF ₃ Ph-U- ¹⁴ C]-flutianil 92.4 (0)	85.5 (365) 86.5 (365)
		Iowa loam [MeOPh-U- ¹⁴ C]-flutianil 95.2 (0)	78.8 (365)
		New York loam [MeOPh-U- ¹⁴ C]-flutianil 96.2 (0)	85.6 (365)
		Georgia sand [MeOPh-U- ¹⁴ C]-flutianil 97.1 (0)	
	Aerobic aquatic (2961759)	Florida sand [MeOPh-U- ¹⁴ C]-flutianil 100.6 (0) [CF ₃ Ph-U- ¹⁴ C]-flutianil 99.1 (0)	59.2 (370) 49.1 (370)
		California loam [MeOPh-U- ¹⁴ C]-flutianil 98.2 (0)	53.5 (370) 45.3 (370)
	(2962008)	[CF ₃ Ph-U- ¹⁴ C]-flutianil 98.5 (0) Abbey Lake silt loam [MeOPh-U- ¹⁴ C]-flutianil 93.0 (0)	79.6 (100) 84.9 (100)
		[CF ₃ Ph-U- ¹⁴ C]-flutianil 94.9 (7) Swiss Lake sand [MeOPh-U- ¹⁴ C]-flutianil 93.0	89.0 (100) 88.1 (100)
		(0) [CF₃Ph-U-¹⁴C]-flutianil 95.0 (14)	
	Anaerobic aquatic (2961761)	Florida sand [MeOPh-U- ¹⁴ C]-flutianil 96.1 (0) [CF ₃ Ph-U- ¹⁴ C]-flutianil 98.4 (0)	74.8 (368) 72.1 (368)
		California loam [MeOPh-U- ¹⁴ C]-flutianil 99.2 (3)	69.7 (368) 66.9 (368)
	Field studies (2961901)	New York 29.0 (0.17)	5.2 (460)
	V	Iowa 55.2 (0.17)	< LOQ (451)
	(2961763)	Nottinghamshire loamy sand	11779 47320
Chemical name, code, and structure	Study (PMRA#)	Max %AR (d)	%AR at Study end (study length, d)
---------------------------------------	---	--	---
		Alaska silt loam	
		North Dakota silt loam	22733 34229
		Ushiku loam	
MAJOR (>1	 0%) TRANSFORMA'	TION PRODUCTS	18083
OC 56635	Soil	[MeOPh-U- ¹⁴ C]-flutianil N/A	N/A
F	Phototransformation (2961753)	[CF ₃ Ph-U- ¹⁴ C]-flutianil 10.7 (37)	10.7 (37)
HO ₃ S	Aqueous Phototransformation (2961749)	Natural Water [MeOPh-U- ¹⁴ C]-flutianil N/A [CF ₃ Ph-U- ¹⁴ C]-flutianil 71.2 (7)	N/A 59.5 (30)
		pH 7 Buffer [MeOPh-U- ¹⁴ C]-flutianil N/A [CF ₃ Ph-U- ¹⁴ C]-flutianil 64.6 (18)	N/A 59.1 (30)
F F F IUPAC Name: 2-fluoro-5	Aerobic soil (2961755)	California sandy loam [MeOPh-U- ¹⁴ C]-flutianil 0.3 (365) [CF ₃ Ph-U- ¹⁴ C]-flutianil 3.9	0.3 (365) 3.9 (365)
(trifluoromethyl)benzenesulfonic acid		(365)	N/A
		[MeOPh-U- ¹⁴ C]-flutianil N/A	N/A
		New York loam [MeOPh-U- ¹⁴ C]-flutianil N/A	0 (365)
		Georgia sand [MeOPh-U- ¹⁴ C]-flutianil 0.2 (120)	
	Anaerobic soil (2961757)	California sandy loam [MeOPh-U- ¹⁴ C]-flutianil 0.6 (246) [CF ₃ Ph-U- ¹⁴ C]-flutianil 2.6 (365)	0.5 (365) 2.6 (365)
		Iowa loam	0.9 (365)
		(365)	N/A
		New York loam [MeOPh-U- ¹⁴ C]-flutianil N/A	1.0 (365)
		Georgia sand [MeOPh-U- ¹⁴ C]-flutianil 1.0 (365)	
	Field studies (2961901)	New York 29.8 (61)	<10 (LOQ, 460)
		Iowa 29.3 (10)	<10 (LOO.
			451)
	<i>K</i> _{oc} (2961769)	No adsorption observed.	

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Chemical name, code, and structure	Study (PMRA#)	Max %AR (d)	%AR at Study end (study length, d)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	OC 53276	Soil	IMeOPh-U- ¹⁴ Cl-flutianil 2.8	2.8 (45)
$\frac{(2961753)}{(2752)} = \frac{(2757)}{(2757)} = \frac{(2757) + (1-4^{2}C) - flutianii 3.3 (37)}{(2757) + (1-4^{2}C) - flutianii 3.3 (37)} = \frac{(3757)}{(2757)} = \frac{(2757) + (1-4^{2}C) - flutianii 3.3 (37)}{(2365)} = \frac{(2757)}{(2365)} =$		Phototransformation	(45)	3.3 (37)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S 0 F	(2961753)	$[CF_3Ph-U^{-14}Cl-flutianil 3.3 (37)]$	
$\begin{array}{c c} + + + + + + + + + + + + + + + + + + +$		Aerobic soil	California sandy loam	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N S	(2961755)	[MeOPh-U- ¹⁴ Cl-flutianil 2 5	2 5 (365)
H ₂ C ⁰ (-) CN (-)		(2)01/00)	(365)	2.2(365)
H ₂ C FFF (365) 0.9 (365) IUPAC Name: (Z)-2-[2-fluoro-5- (triffuoromethyl)phenylsulfinyl]-2-[3-(2- methoxyphenyl)thiazolidinylidene jacetonitrile New York loam [MeOPh-U- ¹⁴ C]-flutianil 1.1 (246) 1.6 (365) New York loam [MeOPh-U- ¹⁴ C]-flutianil 1.3 (246) 1.2 (365) 1.2 (365) Anacrobic soil (2961757) Catifornia sandy loam [MeOPh-U- ¹⁴ C]-flutianil 0.6 (246) 0.5 (365) 0.5 (365) IWeOPh-U- ¹⁴ C]-flutianil 0.4 (246) 0.5 (365) 0.3 (365) IWeOPh-U- ¹⁴ C]-flutianil 0.4 (246) 0.3 (365) 0.3 (365) IWeOPh-U- ¹⁴ C]-flutianil 0.4 (246) 0.3 (365) 0.3 (365) IWeOPh-U- ¹⁴ C]-flutianil 0.4 (246) 0.3 (365) 0.7 (365) Georgia sand [MeOPh-U- ¹⁴ C]-flutianil 0.7 (246, 365) 0.7 (365) 0.7 (365) Aerobic aquatic (2961759) Florida sand [MeOPh-U- ¹⁴ C]-flutianil 1.9 (2962008] N/A 1.9 (370) N/A 1.9 (370) Catifornia loam [MeOPh-U- ¹⁴ C]-flutianil 1.7.4 (7) (CF,Ph-U- ¹⁴ C]-flutianil 1.6.7 (100) 1.3 (100) 4.7 (100)			[CF ₃ Ph-U- ¹⁴ Cl-flutianil 2.2	(****)
FFF 0.9 (365) IUPAC Name: (Z)-2:[2:fluoro-5- (rifluoromethyl]phenylsulfayl]-2:[3:(2- methoxyphenyl]thiazolidinylidene]acetonitrile New York Ioam (MeOPh-U- ¹⁴ C]-flutianil 1.1 (246) 1.6 (365) New York Ioam (MeOPh-U- ¹⁴ C]-flutianil 1.3 (246) 1.2 (365) 1.2 (365) Anaerobic soil (2961757) California sandy Ioam (MeOPh-U- ¹⁴ C]-flutianil 0.6 (246) 0.5 (365) Iowa Ioam (MeOPh-U- ¹⁴ C]-flutianil 0.6 (246) 0.5 (365) 0.5 (365) Iowa Ioam (MeOPh-U- ¹⁴ C]-flutianil 0.6 (246) 0.3 (365) 0.7 (365) Iowa Ioam (MeOPh-U- ¹⁴ C]-flutianil 0.4 (246) 0.7 (365) 0.7 (365) Iowa Ioam (MeOPh-U- ¹⁴ C]-flutianil 0.7 (246) 365) 0.7 (365) 0.7 (365) Iowa Ioam (MeOPh-U- ¹⁴ C]-flutianil 0.7 (246) 365) 0.7 (365) 0.7 (365) Iowa Ioam (MeOPh-U- ¹⁴ C]-flutianil 0.7 (246) 365) 0.7 (365) 0.7 (365) Iowa Ioam (MeOPh-U- ¹⁴ C]-flutianil 0.7 (266) 0.7 (365) 0.7 (365) Iowa Ioam (MeOPh-U- ¹⁴ C]-flutianil 1.4 (7) (CF3Ph-U- ¹⁴ C]-flutianil 1.4 (7) N/A 1.9 (370) 1.3 (100) Iowa Ioam (MeOPh-U- ¹⁴ C]-flutianil 4.7 (7) (CF3Ph-U- ¹⁴ C]-flutianil 4.7 (7) (CF3Ph-U- ¹⁴ C]-flutianil 4.7 (7) (CF3Ph-U- ¹⁴ C]-flutianil 5.7 (7) 1.3 (100) Iowis Lake sand (MeOPh-U- ¹⁴ C]-flutianil 5.7 (7)	H ₃ C		(365)	
F Iowa Ioam [McOPh-U- ¹⁴ C]-flutianii 1.1 (246) Iowa Ioam [McOPh-U- ¹⁴ C]-flutianii 1.1 (246) Iowa Ioam [McOPh-U- ¹⁴ C]-flutianii 1.6 Anaerobic soil (2961757) Anaerobic soil (2961757) Gaifornia sandy Ioam [MeOPh-U- ¹⁴ C]-flutianii 1.0 0.5 (365) ICP3Ph-U- ¹⁴ C]-flutianii 1.0 0.5 (365) 0.5 (365) 0.5 (365) ICP3Ph-U- ¹⁴ C]-flutianii 1.0 0.5 (365) 0.5 (365) 0.5 (365) ICP3Ph-U- ¹⁴ C]-flutianii 1.0 0.3 (365) 0.3 (365) 0.3 (365) Iowa Ioam [MeOPh-U- ¹⁴ C]-flutianii 0.4 (246) 0.3 (365) 0.3 (365) 0.3 (365) Iowa Ioam [MeOPh-U- ¹⁴ C]-flutianii 0.4 (246) 0.7 (365) 0.7 (365) 0.7 (365) Georgia sand [MeOPh-U- ¹⁴ C]-flutianii 0.7 (246, 365) 0.7 (365) 0.7 (365) 0.7 (365) Georgia sand [MeOPh-U- ¹⁴ C]-flutianii 0.7 (246, 365) N/A (261759) N/A (261759) N/A (270) N/A (270) Aerobic aquatic (2962008) (2962008) Gaifornia Ioam [MeOPh-U- ¹⁴ C]-flutianii N/A (100) N/A (2.2 (370) 1.3 (100) (3.7 (100) Sviss Lake sand [MeOPh-U- ¹⁴ C]-flutianii 4.7 (100) Sviss Lake sand [MeOPh-U- ¹⁴ C]-flutianii 5.7 (100) 1.3 (100) 3.7 (100) 1.3 (100) 4.7 (100)	F F			0.9 (365)
IUPAC Name: (2)-2-[2-fluoro-5- (trifluoromethylphenylsulfinyl]-2-[3-(2- methoxyphenyl)thiazolidinylidene]acetonitrile [MecPh-U-4C]-flutianil 1.6 (246) 1.6 (365) Rew York Ioam (MeCPh-U-4C]-flutianil 1.3 (246) 1.2 (365) 1.2 (365) Anaerobic soil (2961757) California sandy Ioam (MeCPh-U-4C]-flutianil 0.6 (246) 0.5 (365) Image: California sandy Ioam (MeCPh-U-4C]-flutianil 0.6 (246) 0.5 (365) 0.5 (365) Image: California sandy Ioam (MeCPh-U-4C]-flutianil 0.6 (246) 0.5 (365) 0.5 (365) Image: California sandy Ioam (MeCPh-U-4C]-flutianil 0.4 (246) 0 (365) 0.5 (365) Image: California sandy Ioam (MeCPh-U-4C]-flutianil 0.4 (246) 0 (365) 0.7 (365) Image: California sand (MeCPh-U-4C]-flutianil 0.7 (226) 0.7 (365) 0.7 (365) Image: California Image:	Ť É		Iowa loam	× ,
IUPAC Name: (2)-2:12-thoro-5- (trifluoromethylphenylstillinyl-2:13-2: methoxyphenyl)thiazolidinylidene]acetonitrile (246) 1.6 (365) New York Ioam (McOPh-U- ¹⁴ C]-flutianil 1.6 (365) 1.2 (365) 1.2 (365) Anaerobic soil (2961757) Georgia sand (McOPh-U- ¹⁴ C]-flutianil 1.0 (246) 0.5 (365) IVMCOPh-U- ¹⁴ C]-flutianil 1.0 (246) 0.5 (365) 0.5 (365) Iowa Ioam (MeOPh-U- ¹⁴ C]-flutianil 1.0 (246) 0 (365) 0 (365) Iowa Ioam (MeOPh-U- ¹⁴ C]-flutianil 0.4 (246) 0 (365) 0 (365) Iowa Ioam (MeOPh-U- ¹⁴ C]-flutianil 0.4 (246) 0 (365) 0 (365) Iowa Ioam (MeOPh-U- ¹⁴ C]-flutianil 0.4 (246) 0 (365) 0 (365) Iowa Ioam (MeOPh-U- ¹⁴ C]-flutianil 0.4 (246) 0 (365) 0 (365) Iowa Ioam (MeOPh-U- ¹⁴ C]-flutianil 0.4 (246) 0 (365) 0 (365) Iowa Ioam (MeOPh-U- ¹⁴ C]-flutianil 0.7 (100) 0 (365) 0 (365) Iowa Ioam (MeOPh-U- ¹⁴ C]-flutianil 0.7 (246, 35) 0 (370) 1.9 (370) Iowa Ioam (MeOPh-U- ¹⁴ C]-flutianil 1.9 (370) 1.9 (370) 1.9 (370) Iowa Ioam (MeOPh-U- ¹⁴ C]-flutianil 1.9 (370) 1.3 (100) 1.3 (100) Iowa Ioam (MeOPh-U- ¹⁴ C]-flutianil 4.7 (100) 1.3			[MeOPh-U- ¹⁴ C]-flutianil 1.1	
Anacrobic soil New York loam [MeOPh-U-1*C]-flutianil 1.6 (365) 1.2 (365) Anacrobic soil (2961757) California sandy loam [MeOPh-U-1*C]-flutianil 0.6 (246) 0.5 (365) 0.5 (365) Image: Comparison of the second of the seco	IUPAC Name: (Z)-2-[2-fluoro-5-		(246)	1.6 (365)
methoxyphenyl)thiazolidinylidene]acetonitrile New York Ioam [MeOPh-U- ¹⁴ C]-flutianil 1.6 (365) 1.2 (365) Georgia sand [MeOPh-U- ¹⁴ C]-flutianil 1.3 (246) 1.2 (365) 1.2 (365) Anacrobic soil (2961757) California sandy Ioam [MeOPh-U- ¹⁴ C]-flutianil 0.6 (246) 0.5 (365) IOWA Ioam [MeOPh-U- ¹⁴ C]-flutianil 0.4 (246) 0.3 (355) 0 (365) IOWA Ioam [MeOPh-U- ¹⁴ C]-flutianil 0.4 (246) 0 (365) 0 (365) IOWA Ioam [MeOPh-U- ¹⁴ C]-flutianil 0.4 (246) 0 (365) 0 (365) IOWA Ioam [MeOPh-U- ¹⁴ C]-flutianil 0.4 (246) 0 (365) 0 (365) Acrobic aquatic (2961759) Revolic and [MeOPh-U- ¹⁴ C]-flutianil 0.7 (246, 355) 0 (365) IOWA Ioam [MeOPh-U- ¹⁴ C]-flutianil 1.9 (370) N/A 1.9 (370) (2961759) Florida sand [MeOPh-U- ¹⁴ C]-flutianil 1.9 (370) N/A (2962008) (2962008) California Ioam [MeOPh-U- ¹⁴ C]-flutianil 1.4.2 (370) 1.3 (100) A, 7 (100) Swiss Lake sand [MeOPh-U- ¹⁴ C]-flutianil 6.7 (100) 1.3 (100) 2.3 (100)	(trifluoromethyl)phenylsulfinyl]-2-[3-(2-			
Image:	methoxyphenyl)thiazolidinylidene]acetonitrile		New York loam	
(365) Georgia sand [McOPh-U- ¹⁴ C]-flutianil 1.3 (246) 0.5 (365) Anaerobic soil (2961757) California sandy loam [McOPh-U- ¹⁴ C]-flutianil 0.6 (246) 0.5 (365) Idea and [McOPh-U- ¹⁴ C]-flutianil 0.4 (246) 0.5 (365) 0 (365) Iowa loam [McOPh-U- ¹⁴ C]-flutianil 0.4 (246) 0 (365) 0 (365) New York loam [McOPh-U- ¹⁴ C]-flutianil 0.4 (246) 0 (365) 0 (365) New York loam [McOPh-U- ¹⁴ C]-flutianil 0.9 (120) 0.7 (365) 0 (365) Acrobic aquatic (2961759) Florida sand [McOPh-U- ¹⁴ C]-flutianil 0.7 (246, 363) 0.7 (365) Acrobic aquatic (2961759) California loam [McOPh-U- ¹⁴ C]-flutianil N/A [CF3Ph-U- ¹⁴ C]-flutianil N/A [CF3Ph-U- ¹⁴ C]-flutianil N/A [CF3Ph-U- ¹⁴ C]-flutianil 1.9 (370) N/A 4.2 (370) (2962008) California loam [McOPh-U- ¹⁴ C]-flutianil 7.4 (7) [CF3Ph-U- ¹⁴ C]-flutianil 7.4 (7) [CF3Ph-U- ¹⁴ C]-flutianil 7.4 (7) [CF3Ph-U- ¹⁴ C]-flutianil 7.4 (7) [CF3Ph-U- ¹⁴ C]-flutianil 6.7 (100) 1.3 (100) 4.7 (100)			[MeOPh-U- ¹⁴ C]-flutianil 1.6	1.2 (365)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(365)	
Ceorgia sand (246) California sandy loam (261757) California sandy loam (261757) 0.5 (365) (246) (2961757) McOPh-U- ¹⁴ Cl-flutianil 0.6 (246) 0.5 (365) 0.5 (365) IweOPh-U- ¹⁴ Cl-flutianil 0.4 (246) 0 (365) 0 (365) Iwwa loam [MeOPh-U- ¹⁴ Cl-flutianil 0.4 (246) 0 (365) 0 (365) New York loam [MeOPh-U- ¹⁴ Cl-flutianil 0.9 (120) 0.7 (365) 0.7 (365) Aerobic aquatic (2961759) Georgia sand [MeOPh-U- ¹⁴ Cl-flutianil 0.7 (246, 365) N/A Aerobic aquatic (2961759) Florida sand [MeOPh-U- ¹⁴ Cl-flutianil N/A [CF3Ph-U- ¹⁴ Cl-flutianil 1.9 (370) N/A (2962008) California loam [MeOPh-U- ¹⁴ Cl-flutianil 1.7,4 (70) N/A (2962008) Galifornia loam [MeOPh-U- ¹⁴ Cl-flutianil 7,4 (70) N/A (2962008) Abby Lake sit loam [MeOPh-U- ¹⁴ Cl-flutianil 7,4 (70) N/A (2962008) Galifornia loam [MeOPh-U- ¹⁴ Cl-flutianil 4.7 (100) 1.3 (100) 4.7 (100) Abby Lake sit loam [MeOPh-U- ¹⁴ Cl-flutianil 4.7 (100) 5.3 (100) Swiss Lake sand [MeOPh-U- ¹⁴ Cl-flutianil 6.7 (100) 5.1 (61)				
$\frac{ \mathbf{x} x$			Georgia sand	
Anaerobic soil (2961757) California sandy loam [MeOPh-U- ¹⁴ C]-flutianil 0.6 (246) 0.5 (365) 0.5 (365) Iowa loam [MeOPh-U- ¹⁴ C]-flutianil 0.4 (246) 0 (365) Iowa loam [MeOPh-U- ¹⁴ C]-flutianil 0.4 (246) 0 (365) New York loam [MeOPh-U- ¹⁴ C]-flutianil 0.9 (120) 0.7 (365) Georgia sand [MeOPh-U- ¹⁴ C]-flutianil 0.7 (246, 365) 0.7 (365) Aerobic aquatic (2961759) Florida sand [MeOPh-U- ¹⁴ C]-flutianil 1.9 (370) N/A (2962008) California loam [MeOPh-U- ¹⁴ C]-flutianil 1.9 (370) N/A (2962008) California loam [MeOPh-U- ¹⁴ C]-flutianil 1.7,4 (7) [CF ₃ Ph-U- ¹⁴ C]-flutianil 7,4 (7) [CF ₃ Ph-U- ¹⁴ C]-flutianil 6,7 (100) 1.3 (100) 2.3 (100)			(246)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Angeropic soil	(240) California sandy loam	
$\begin{array}{cccc} (2961057) & [1401 H - 14C] - flutianil 0.0 & [0.5 (365)] \\ (175 Ph - U - ^{14}C] - flutianil 1.0 & [0.5 (365)] \\ (246) & [0.365) & [0.365) & [0.365] \\ 10 wa loam \\ [MeOPh - U - ^{14}C] - flutianil 0.4 & [246] & [$		(2961757)	MeOPh-U-¹⁴Cl-flutianil 0.6	0.5 (365)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		(2)01/3/)	(246)	0.5(365)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			[CF ₃ Ph-U- ¹⁴ C]-flutianil 1.0	0.5 (505)
Image: Constraint of the constraint			(246)	
Iowa loam [McOPh-U-14C]-flutianil 0.4 (246) 0 (365) New York loam [McOPh-U-14C]-flutianil 0.9 (120) 0.7 (365) Aerobic aquatic (2961759) Georgia sand [MeOPh-U-14C]-flutianil 0.7 (246, 365) 0.7 (365) Aerobic aquatic (2961759) Florida sand [MeOPh-U-14C]-flutianil N/A [CF3Ph-U-14C]-flutianil 1.9 (370) N/A 1.9 (370) (2962008) California loam [MeOPh-U-14C]-flutianil N/A (2962008) N/A 1.3 (100) 4.7 (100) (2962008) Swiss Lake silt loam [MeOPh-U-14C]-flutianil 7.4 (7) [CF3Ph-U-14C]-flutianil 7.4 (7) [CF3Ph-U-14C]-flutianil 4.7 (100) 1.3 (100) 4.7 (100) Swiss Lake sand [MeOPh-U-14C]-flutianil 6.7 (100) Swiss Lake sand [MeOPh-U-14C]-flutianil 5.1 (61) 5.1 (61)				0 (365)
$ \begin{bmatrix} MeOPh-U^{-14}C -flutianil 0.4 \\ (246) & 0 (365) \\ New York loam \\ MeOPh-U^{-14}C -flutianil 0.9 \\ (120) & 0.7 (365) \\ \end{bmatrix} $			Iowa loam	
$(246) 0 (365) \\ (246) 0 (365) \\ (120) 0.7 (365) \\ (120) $			[MeOPh-U- ¹⁴ C]-flutianil 0.4	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(246)	0 (365)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			New York loam [MeOPh-U- ¹⁴ C]-flutianil 0.9	0.7 (365)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			(120)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Georgia sand	
Aerobic aquatic Florida sand N/A (2961759) Florida sand N/A (2961759) [MeOPh-U-14C]-flutianil N/A N/A (2962008) California loam N/A (2962008) California loam N/A (2962008) California loam N/A (2962008) California loam N/A (2962008) Abbey Lake silt loam N/A (2962008) 1.3 (100) 1.3 (100) Abbey Lake silt loam 4.7 (100) 1.3 (100) (370) Swiss Lake sand 4.7 (100) 2.3 (100) Swiss Lake sand MeOPh-U-14C]-flutianil 6.7 (100) 2.3 (100) 2.3 (100)			(246, 365)	
$\begin{array}{c} (2961759) \\ (2961759) \\ (2961759) \\ (2962008) \\ (296208) $		Aerobic aquatic	Florida sand	
$\begin{array}{ccc} (2962008) \\ (2962008) \\ (2962008) \\ (2962008) \\ (2962008) \\ (2962008) \\ (2962008) \\ (2962008) \\ (2962008) \\ (2962008) \\ (2962008) \\ (2962008) \\ (2962008) \\ (2962008) \\ (370) \\ (370) \\ (370) \\ (370) \\ (370) \\ (370) \\ (370) \\ (370) \\ (100) \\ (100) \\ (370) \\ (100)$		(2961759)	[MeOPh-U- ¹⁴ C]-flutianil N/A	N/A
$(2962008) \qquad (370) \qquad (1.3 (100) \ $			[CF ₃ Ph-U- ¹⁴ C]-flutianil 1.9	1.9 (370)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(370)	
$\begin{array}{c} \text{(2962008)} \\ \text{(370)} \\ \text$				27/4
$(2962008) \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$			California loam	N/A
(2962008) (2962008) (370) (3			[PricOF II-U- ⁻¹ C]-IIUUAIIII N/A [CE ₂ Ph_II- ¹⁴ C]-flutionil A 2	4.2 (370)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		(2962008)	(370)	
Abbey Lake silt loam 4.7 (100) [MeOPh-U-1 ⁴ C]-flutianil 7.4 (7) 4.7 (100) [CF ₃ Ph-U-1 ⁴ C]-flutianil 4.7 6.7 (100) (100) 2.3 (100) Swiss Lake sand 2.3 (100) [MeOPh-U-1 ⁴ C]-flutianil 6.7 100) [I00] ICF ₃ Ph-U-1 ⁴ C]-flutianil 5.1 (61)		(=>0=0001	()	1.3 (100)
[MeOPh-U-14C]-flutianil 7.4 (7) [CF ₃ Ph-U-14C]-flutianil 4.7 (100) Swiss Lake sand [MeOPh-U-14C]-flutianil 6.7 (100) LCF ₂ Ph-U-14C]-flutianil 5.1 (61)			Abbey Lake silt loam	4.7 (100)
[CF ₃ Ph-U- ¹⁴ C]-flutianil 4.7 6.7 (100) (100) 2.3 (100) Swiss Lake sand [MeOPh-U- ¹⁴ C]-flutianil 6.7 (100) ICF ₂ Ph-U- ¹⁴ C]-flutianil 5.1 (61)			[MeOPh-U- ¹⁴ C]-flutianil 7.4 (7)	
(100) Swiss Lake sand [MeOPh-U- ¹⁴ C]-flutianil 6.7 (100) ICE ₂ Ph-U- ¹⁴ C]-flutianil 5.1 (61)			[CF ₃ Ph-U- ¹⁴ C]-flutianil 4.7	
Swiss Lake sand 2.3 (100) [MeOPh-U- ¹⁴ C]-flutianil 6.7 100) ICE3Pb-U- ¹⁴ Cl-flutianil 5.1 (61) 100			(100)	6.7 (100)
Swiss Lake sand [MeOPh-U- ¹⁴ C]-flutianil 6.7 (100) [CE2Ph-U- ¹⁴ C]-flutianil 5.1 (61)			Service Laboratoria	2.3 (100)
[NIEOFN-U-'*C]-IIUIIANII 0.7 (100) [CF2Ph_II_ ¹⁴ C]-flutianil 5.1 (61)			Swiss Lake sand	
(100) ICF2Ph_II_ ¹⁴ Cl_flutianil 5 1 (61)			[100] [100] [100-**C]-HUTIANII 0.7	
			[CF3Ph-I]- ¹⁴ C]-flutianil 5 1 (61)	

Chemical name, code, and structure	Study (PMRA#)	Max %AR (d)	%AR at Study end (study length, d)
	Field studies	New York	5.1.(1(0))
	(2961901)	8.2 (61)	5.1 (460)
		Iowa 14.4 (0.17)	3.3 (451)
	$K_{\rm oc}$ (2961765)	Derbyshire loam	443 3
	(2)01703)	Nottinghamshire loam	919.4
		Germany silt loam	205.3
OC 56574	Soil	[MeOPh-U- ¹⁴ C]-flutianil 1.6	1.5 (45)
<u>,0</u>	(2961753)	(30) [CF ₃ Ph-U- ¹⁴ C]-flutianil 1.8 (30)	1.7 (37)
S F	Aerobic soil (2961755)	California sandy loam [MeOPh-U- ¹⁴ C]-flutianil 3.0	3.0 (365)
		(305) [CF₃Ph-U-¹⁴C]-flutianil 3.4 (365)	3.4 (303)
			1.6 (365)
F F F		Iowa loam [MeOPh-U- ¹⁴ C]-flutianil 1.6 (365)	2.3 (365)
IUPAC Name: (Z)-2-[2-fluoro-5-			2.0 (000)
(trifluoromethyl)phenylthio]-2-[3-(2- methoxyphenyl)-1-oxo-1,3-thiaolidin-2- ylidene]acetonitrile		New York loam [MeOPh-U- ¹⁴ C]-flutianil 2.3 (365)	2.2 (365)
		Georgia sand [MeOPh-U- ¹⁴ C]-flutianil 2.2 (365)	
	Anaerobic soil (2961757)	California sandy loam [MeOPh-U- ¹⁴ C]-flutianil 0.7	0.7 (365)
		(120, 240, 303) [CF ₃ Ph-U- ¹⁴ C]-flutianil 1.4 (120, 246)	1.1 (365)
		Iowa loam [MeOPh-U- ¹⁴ C]-flutianil 0.8 (30, 246)	0 (365)
		New York loam [MeOPh-U- ¹⁴ C]-flutianil 1.1 (120)	0 (365)
		Georgia sand [MeOPh-U- ¹⁴ C]-flutianil 2.2 (246)	0.9 (365)
	Aerobic aquatic (2961759)	Florida sand [MeOPh-U- ¹⁴ C]-flutianil 9.1 (370) [CF ₃ Ph-U- ¹⁴ C]-flutianil 8.7 (272, 370)	9.1 (370) 8.7 (370)
	(2962008 <u>)</u>	California loam [MeOPh-U- ¹⁴ C]-flutianil 10.7 (370) [CF ₃ Ph-U- ¹⁴ C]-flutianil 13.7	10.7 (370) 10.9 (370)

Chemical name, code, and structure	Study (PMRA#)	Max %AR (d)	%AR at Study end (study length, d)
		(272) Abbey Lake silt loam [MeOPh-U- ¹⁴ C]-flutianil 2.0 (61) [CF ₃ Ph-U- ¹⁴ C]-flutianil 2.2 (30) Swiss Lake sond	0.9 (100) 0.6 (100) 2.1 (100) 2.4 (100)
	Anaerobic aquatic	[MeOPh-U- ¹⁴ C]-flutianil 2.9 (7) [CF ₃ Ph-U- ¹⁴ C]-flutianil 2.4 (100) Florida sand [MeOPh U- ¹⁴ C] flutianil 3.2	0.0 (368)
	(2901/01]	(101) [CF ₃ Ph-U- ¹⁴ C]-flutianil 1.3 (368)	4.3 (368) 5.9 (368)
		California loam [MeOPh-U- ¹⁴ C]-flutianil 5.4 (271) [CF ₃ Ph-U- ¹⁴ C]-flutianil 6.8 (271)	5.9 (368)
	Field studies (2961901)	New York 5.1 (0.17, 0.33) Iowa 11.4 (1)	< LOQ (460) < LOQ (451)
	K _{oc} (2961767)	Derbyshire loam Nottinghamshire loam Germany silt loam	1566 1278
OC 53279	Aqueous Phototransformation (2961749)	Natural Water [MeOPh-U- ¹⁴ C]-flutianil N/A [CF ₃ Ph-U- ¹⁴ C]-flutianil 2.2 (1)	2090 N/A ND (30)
HO N CN H ₃ C CN F F	Aerobic soil (2961755)	PH 7 Buffer [MeOPh-U- ¹⁴ C]-flutianil 2.8 (7) [CF ₃ Ph-U- ¹⁴ C]-flutianil 2.3 (2) California sandy loam [MeOPh-U- ¹⁴ C]-flutianil 0.9	ND (30) ND (30) 0 (365)
F IUPAC Name: (2Z)- {[2-fluoro-5- (trifluoromethyl)phenyl]sulfanyl} [4-hydroxy- 3-		(246) [CF ₃ Ph-U- ¹⁴ C]-flutianil 1.2 (246)	0.9 (365) 0.5 (365)
ylidene]acetonitrile		[MeOPh-U- ¹⁴ C]-flutianil 0.5 (365) New York loam	0.7 (365)
		(365) Georgia sand [MeOPh-U- ¹⁴ C]-flutianil 0.5 (246, 365)	0.5 (505)

Chemical name, code, and structure	Study (PMRA#)	Max %AR (d)	%AR at Study end (study length, d)
	Anaerobic soil (2961757)	California sandy loam [MeOPh-U- ¹⁴ C]-flutianil 0.9 (246) [CF ₃ Ph-U- ¹⁴ C]-flutianil 1.2 (246)	0.8 (365) 0.8 (365)
		Iowa loam [MeOPh-U- ¹⁴ C]-flutianil 0.4 (246)	0 (365) 0 (365)
		New York loam [MeOPh-U- ¹⁴ C]-flutianil 0.7 (246)	0.4 (365)
		Georgia sand [MeOPh-U- ¹⁴ C]-flutianil 0.8 (246)	
	Aerobic aquatic (2962008)	Abbey Lake silt loam [MeOPh-U- ¹⁴ C]-flutianil 0.1 (61) [CF ₃ Ph-U- ¹⁴ C]-flutianil 17.0 (61)	ND (100) 0.3 (100)
		Swiss Lake sand [MeOPh-U- ¹⁴ C]-flutianil 2.8 (100) [CF ₃ Ph-U- ¹⁴ C]-flutianil 3.7 (61)	2.8 (100) 1.9 (100)
Unk AP5A	Aqueous Phototransformation (2961749)	Natural Water [MeOPh-U- ¹⁴ C]-flutianil 24.4 (2) [CF ₃ Ph-U- ¹⁴ C]-flutianil N/A	ND (30) N/A
H _y c ⁻⁰ CN		pH 7 Buffer [MeOPh-U- ¹⁴ C]-flutianil 29.5 (1) [CF3Ph-U- ¹⁴ C]-flutianil N/A	ND (30) N/A
Unk AP1B	Aqueous Phototransformation (2961749)	Natural Water [MeOPh-U- ¹⁴ C]-flutianil N/A [CF ₃ Ph-U- ¹⁴ C]-flutianil 10.3 (1)	N/A ND (30)
		pH 7 Buffer [MeOPh-U- ¹⁴ C]-flutianil N/A [CF ₃ Ph-U- ¹⁴ C]-flutianil 25.7 (2)	N/A ND (30)
MINOR (< 1	0%) TRANSFORMA	FION PRODUCTS	
Unk AP6A	Aqueous Phototransformation (2961749)	Natural Water [MeOPh-U- ¹⁴ C]-flutianil 4.2 (7) [CF ₃ Ph-U- ¹⁴ C]-flutianil N/A	ND (30) N/A
		pH 7 Buffer [MeOPh-U- ¹⁴ C]-flutianil N/A [CF3Ph-U- ¹⁴ C]-flutianil N/A	N/A N/A

Organism	Exposure	Test substance	Endpoint value	Degree of toxicity ^a	PMRA#
Invertebrates	-Y	·	4	·	·
Earthworm,	14d-Acute	Flutianil	$LC_{50} > 1000 mg$	N/A	2962012
Eisenia fetida		(technical	a.i./kg dw soil*		
		grade active			
		ingredient;			
		Purity:			
		99.22% w/w)			
		OC 56635	$LC_{50} > 1000$	N/A	2962014
		(TP; Purity:	mg/kg dw soil*		
		99.9% w/w)	L.G. > 1000		20(2020
		OC 56574	$LC_{50} > 1000$	N/A	2962020
		(1P; Purity:	mg/kg dw son*		
		99.70% W/W)	$I_{C} > 1000$	NI/A	20(2022
		(TP: Purity:	$LC_{50} > 1000$	IN/A	2902022
		99.16% w/w)	mg/kg uw son		
	28d-Chronic	Flutianil	NOAECreproduction	N/A	2962024
		(technical	= 12.5 mg a.i./kg		
		grade active	dw soil		
		ingredient;			
		Purity: 99.3%			
		w/w)	NO ADG 100		
	56d-Chronic	OC 53276	NOAEC = 100	N/A	2962026
		(IP; Purity:	mg/kg dw soil*		
Honovhoo	19h Oral	99.10% W/W)	$ID > 100 u_{\pi}$	Dreatically	20(1950
Anis mallifara	4011-0181	(technical	$LD_{50} > 100 \ \mu g$	r factically	2901830
Apis menijeru -		grade active	a.1./Dee	non-toxic	
ruun		ingredient.			
		Purity:			
		99.22% w/w)			
		GATTEN	LD ₅₀ > 21.7 μg	Practically	2962048
		(end-use	a.i./bee*	non-toxic	
		product;			
		Purity: 4.99%			
,		w/w)			
	10d-Oral	GATTEN	$LD_{50} > 22.1 \ \mu g$	Practically	2961857
		(end-use	a.i./bee*	non-toxic	
		product;			
		Purity: 4./1%			
	18h Contact	W/W)	ID > 100	Drastiaslly	2061850
	4on-Contact	(technical	LD ₅₀ ~ 100 μg	r ractically	2901830
		grade active	a.1./ DCC		
		inoredient.			
		Purity:			
		rurity:			

Table 15Effects on terrestrial organisms

Organism	Exposure	Test substance	Endpoint value	Degree of toxicity ^a	PMRA#
		99.22% w/w)			
		GATTEN	$LD_{50} > 50 \ \mu g$	Practically	2962048
		(end-use	a.i./bee*	non-toxic	
		product;			
		Purity: 4.99%			
		w/w)			
Honey bee,	72h-Oral –	GATTEN	$LD_{50} = 8.19 \ \mu g$	Moderately	2961852
Apis mellifera -	single	(end-use	a.i./larvae	toxic	
Larvae	exposure	product;			
		Purity: 4.71%			
	120h Oral	W/W)	ID = 10.4 us	Madamatalır	20(1954
	12011-Oral –	GATTEN	$LD_{50} = 10.4 \ \mu g$	toxio	2961854
	exposure	nroduct:	a.1./1al vae	loxic	
	exposure	Purity: 4 71%			
		w/w)			
	22d-Brood /	Flutianil	NOED = 44 ug	N/A	2962018
	hive	(technical	a.i./larvae*		2902010
		grade active			
		ingredient;			
		Purity:			
		99.43% w/w)			
Predatory mite,	14d-Contact	GATTEN	$ER_{50} = 950.5 g$	N/A	2962030
Typhlodromus	glass plate	(end-use	a.i./ha		
pyrı		product;			
		Purity: 4. / /%			
Aphid parasitoid	18h Contact	GATTEN	$I P_{rr} = 236.1 \sigma$	N/A	2062028
Aphidius	glass plate	(end-use	1.K50 – 2.50.1 g		2902028
rhonalosinhi	glass plate	product:	a.1./ 11a		
mopulosipili		Purity: 4.77%			
		w/w)			
Springtail,	28d-Chronic	OC 53276	NOECreproduction	N/A	2962032
Folsomia		(TP; Purity:	= 8.00 mg/kg dw		
candida		4.99% w/w)	soil		
Birds					1
Mallard duck,	8d-Dietary	Flutianil	$LD_{50} > 2718 \text{ mg}$	Practically	2961839
Anas		(technical	a.1./kg bw/d*	non-toxic	
platyrnynchos		grade active			
		Purity.			
		99.22% w/w)			
	20w-	Flutianil	NOAEL = 259.9	N/A	2961848
	Reproduction	(technical	mg a.i./kg bw/d*		
		grade active			
		ingredient;			
		Purity:			
		98.77% w/w)			

Organism	Exposure	Test substance	Endpoint value	Degree of toxicity ^a	PMRA#
Bobwhite quail,	Acute-Oral	Flutianil	$LD_{50} > 2250 mg$	Practically	2961834
Colinus		(technical	a.i./kg*	non-toxic	
virginianus		grade active			
		Purity.			
		99.22% w/w)			
	8d-Dietary	Flutianil	LD ₅₀ > 1485 mg	Practically	2961842
		(technical	a.i./kg bw/d*	non-toxic	
		grade active			
		Purity: 98.7%			
		w/w)			
	20w-	Flutianil	NOAEL = 184.6	N/A	2961846
	Reproduction	(technical	mg a.i./kg bw/d*		
		grade active			
		Ingredient;			
		99.22% w/w			
Zebra finch,	Acute-Oral	Flutianil	$LD_{50} > 2000 \text{ mg}$	Practically	2961837
Taeniopygia		(technical	a.i./kg*	non-toxic	
guttata		grade active	_		
		ingredient;			
		Purity: 00.54% w/w)			
Mammals		99.3470 W/W)			
Norway rat,	Acute-Oral	Flutianil	LD ₅₀ > 5000 mg	Practically	2961735
Rattus		(technical	a.i./kg bw*	non-toxic	
norvegicus		grade active			
		Ingredient;			
		Purity: 99%			
	Reproduction	Flutianil	NOAEL = 1286	N/A	2961954
	1	(technical	mg a.i./kg bw/d*		2,01,01
		grade active			
		ingredient;			
		Purity:			
Vascular plants		99.22% W/W)			
Vascular plants,	21d-Seedling	GATTEN	ER ₂₅ > 42.59 g	N/A	2961860
10 species	emergence	(end-use	a.i./ha		
		product;			
		Purity: 4.97%			
	214	W/W)	ED > 42 50 ~	NI/A	2061862
	∠10- Vegetative	(end-use	EK25 > 42.39 g а і /ha	IN/A	2901862
	vigour	product:	a.1./ 11a		
		Purity: 4.97%			
		w/w)			

^aAtkins et al. (1981) for bees and USEPA classification for others, where applicable; *no significant toxic effects in any treatment. Bolded values were carried forward to the risk assessment.

Organism	Exposure	Test substance	Endpoint value	Degree of toxicity ^a	PMRA#
Freshwater species	A	·	····	······	^
Daphnia magna	48h-Acute	Flutianil (technical grade active ingredient; Purity: 99.22% w/w)	EC50 > 0.0065 mg a.i./L*	Non-toxic up to limit of solubility	2961771
		Flutianil (technical grade active ingredient; Purity: 99.38% w/w)	EC ₅₀ > 0.95 mg a.i./L*	Non-toxic up to limit of solubility	2961773
		GATTEN (end-use product; Purity: 4.99 w/w)	EC ₅₀ = 0.044 mg a.i./L	Very highly toxic	2961781
		OC 56635 (TP; Purity: 99.9% w/w)	EC ₅₀ > 96.8 mg/L*	Practically non-toxic	2961775
		OC56574 (TP; Purity: 99.76% w/w)	EC ₅₀ > 4.59 mg/L*	Non-toxic up to limit of solubility	2961777
		OC 53276 (TP; Purity: 99.16% w/w)	EC ₅₀ > 3.35 mg/L*	Non-toxic up to limit of solubility	2961779

Table 16Effects on aquatic organisms

Organism	Exposure	Test substance	Endpoint value	Degree of toxicity ^a	PMRA#
	21d-	Flutianil	NOAEC =	N/A	2961817
	Chronic	(technical	0.00711 mg		
		grade	a.i./L*		
		active			
		ingredient;			
		Purity:			
		99.22%			
		w/w)			20(1010
		OC 56635	$NOAEC \ge 101$	N/A	2961819
		(1P;	mg/L*		
		Purity:			
		99.9%			
Non hiting midgo	284	W/W) Flutionil	NOAEC -	NI/A	2061820
Chironomus	Chronic -	(technical	114 mg a i /kg	1N/A	2901829
rinarius	spiked	grade	114 mg a.n./ kg		
ripur ius	sediment:	active			
	sediment	ingredient;			
		Purity:			
		98.77%			
		w/w)			
Amphipod,	42d-	Flutianil	NOAECreproduction	N/A	2961831
Hyalella azteca	Chronic –	(technical	= 13 mg a.i./kg		
	spiked	grade			
	sediment:	active			
	sediment	ingredient;			
		Purity:			
		99.19%			
	424-	W/W) Flutianil		N/A	2961831
	Chronic –	(technical	= 0.021 mg g i/L	11/21	2701051
	spiked	grade	0.021 mg a.i./L		
	sediment:	active			
	pore water	ingredient;			
	1	Purity:			
		99.19%			
		w/w)			
	42d-	Flutianil	NOAECreproduction	N/A	2961831
	Chronic –	(technical	= 0.0056 mg		
	spiked	grade	a.i./L		
	sediment:	active			
	overlying	ingredient;			
	water	$\frac{\text{Purity:}}{00,100\%}$			
		$\frac{33.1370}{W/W}$			
		w/wj			

Organism	Exposure	Test substance	Endpoint value	Degree of toxicity ^a	PMRA#
Rainbow trout, Oncorhynchus	96h-Acute	Flutianil (technical grade	$LC_{50} > 0.014 \text{ mg}$ a.i./L*	Non-toxic up to limit	2961791
mywss		active ingredient; Purity: 99.22% w/w)	LC ₅₀ > 0.90 mg a.i./L*	Non-toxic up to limit of solubility	2961793
		GATTEN (end-use product; Purity: 4.99% w/w)	LC ₅₀ = 0.0522 mg a.i./L	Very highly toxic	2961809
		OC 56635 (TP; Purity: 99.9% w/w)	LC50 > 102 mg/L*	Practically non-toxic	2961799
		OC56574 (TP; Purity: 99.76% w/w)	LC ₅₀ > 3.33 mg/L*	Non-toxic up to limit of solubility	2961803
		OC 53276 (TP; Purity: 99.16% w/w)	LC50 > 4.14 mg/L*	Non-toxic up to limit of solubility	2961805
	28d- Chronic	OC 56635 (TP; Purity: 99.9% w/w)	NOEC = 99.2 mg/L*	N/A	2962010
Fathead minnow, <i>Pimephales</i> <i>promelas</i>	96h-Acute	Flutianil (technical grade active ingredient; Purity: 99.22% w/w)	LC50 > 0.00522 mg a.i./L*	Non-toxic up to limit of solubility	2961795

Organism	Exposure	Test substance	Endpoint value	Degree of toxicity ^a	PMRA#
		Flutianil (technical grade active ingredient; Purity: 99.43% w/w)	LC ₅₀ > 0.79 mg a.i./L*	Non-toxic up to limit of solubility	2961815
		OC 56635 (TP; Purity: 99.9% w/w)	LC ₅₀ > 102 mg/L*	Practically non-toxic	2961801
	28d- Chronic	Flutianil (technical grade active ingredient; Purity: 98.77% w/w)	NOEC _{growth} = 0.00224 mg a.i./L	N/A	2961823
Common carp, <i>Cyprinus carpio</i>	96h-Acute	Flutianil (technical grade active ingredient; Purity: 99.38% w/w)	LC ₅₀ > 0.87 mg a.i./L*	Non-toxic up to limit of solubility	2961797
		GATTEN (end-use product; Purity: 4.99% w/w)	LC ₅₀ = 0.158 mg a.i./L	Highly toxic	2961811
Freshwater alga, Pseudokirchneriella subcapitata	96h-Acute	Flutianil (technical grade	$EC_{50} > 0.330 \text{ mg}$ a.i./L*	Non-toxic up to limit of solubility	2961867
		active ingredient; Purity: 99.22% w/w)	EC ₅₀ > 0.0137 mg a.i./L NOAEC _{biomass} = 0.0008 mg a.i./L	Non-toxic up to limit of solubility	2961870

Organism	Exposure	Test substance	Endpoint value	Degree of toxicity ^a	PMRA#
		GATTEN (end-use product; Purity: 4.97% w/w)	$EC_{50} > 0.240 \text{ mg}$ a.i./L NOECgrowth rate, yield = 0.00663 mg a.i./L	Non-toxic up to limit of solubility	2961890
		OC 56635 (TP; Purity: 99.9% w/w)	EC ₅₀ > 994 mg/L	Practically non-toxic	2961874
	72h-Acute	OC56574 (TP; Purity: 99.76% w/w)	EC ₅₀ = 2.109 mg/L	Moderately toxic	2961878
		OC 53276 (TP; Purity: 99.76% w/w)	EC ₅₀ > 4.28 mg/L	Non-toxic up to limit of solubility	2961882
Freshwater cyanobacteria, <i>Anabaena flos- aquae</i>	96h-Acute	GATTEN (end-use product; Purity: 4.97% w/w)	EC ₅₀ > 0.217 mg a.i./L*	Non-toxic up to limit of solubility	2961899
Freshwater diatom, <i>Navicula</i> <i>pelliculosa</i>	96h-Acute	GATTEN (end-use product; Purity: 4.97% w/w)	$\begin{array}{l} EC_{50} > 0.240 \text{ mg} \\ a.i./L \\ NOEC_{growth rate,} \\ yield = 0.0724 \text{ mg} \\ a.i./L \end{array}$	Non-toxic up to limit of solubility	2961897
Duckweed, <i>Lemna gibba</i>	7d- Dissolved	GATTEN (end-use product; Purity: 4.97% w/w)	EC ₅₀ > 0.214 mg a.i./L*	Non-toxic up to limit of solubility	2961864

Organism	Exposure	Test substance	Endpoint value	Degree of toxicity ^a	PMRA#
Marine species		<u></u>	<u>.</u>	•	4
Saltwater mysid, Americamysis bahia	96h-Acute	Flutianil (technical grade active ingredient; Purity: 99.0% w/w)	EC ₅₀ > 0.62 mg a.i./L*	Non-toxic up to limit of solubility	2961787
		GATTEN (end-use product; Purity: 4.97% w/w)	EC ₅₀ > 0.057 mg a.i./L*	Non-toxic up to limit of solubility	2961789
	21d- Chronic	Flutianil (technical grade active ingredient; Purity: 99.43% w/w)	NOEC _{growth} = 0.0456 mg a.i./L	N/A	2961821
Eastern oyster, Crassostrea virginica	96h-Acute	Flutianil (technical grade active ingredient; Purity: 99.19% w/w)	EC ₅₀ > 0.019 mg a.i./L*	Non-toxic up to limit of solubility	2961783
		GATTEN (end-use product; Purity: 4.97% w/w)	EC ₅₀ > 0.036 mg a.i./L NOEC _{growth} = 0.014 mg a.i./L	Non-toxic up to limit of solubility	2961785

Organism	Exposure	Test substance	Endpoint value	Degree of toxicity ^a	PMRA#
Amphipod, <i>Leptocheirus</i> <i>plumulosus</i>	28d- Chronic – spiked sediment: sediment	Flutianil (technical grade active ingredient; Purity: 99.43% w/w)	NOAECreproduction = 11 mg a.i./kg	N/A	2962016
Sheepshead minnow, <i>Cyprinodon</i> <i>variegatus</i>	96h-Acute	Flutianil (technical grade active ingredient; Purity: 99.0% w/w)	LC50 > 0.85 mg a.i./L*	Non-toxic up to limit of solubility	2961807
		GATTEN (end-use product; Purity: 4.97% w/w)	LC ₅₀ > 0.077 mg a.i./L*	Non-toxic up to limit of solubility	2961813
	34d- Chronic	Flutianil (technical grade active ingredient; Purity: 99.43% w/w)	NOEC _{growth} = 0.070 mg a.i./L	N/A	2961825
Marine diatom, Skeletonema costatum	96h-Acute	GATTEN (end-use product; Purity: 4.97% w/w)	$E_bC_{50} = 0.132 \text{ mg}$ a.i./L	Highly toxic	2961894

^a USEPA classification, where applicable; *no toxic effects in any treatment. Bolded values were carried forward to the risk assessment.

Table 17Endpoints and uncertainty factors used to establish effects metrics for the
risk assessment

Organism	Exposure	Test substance	Endpoint value	UF applie d ¹	Effect metric	
Terrestrial organi	sms	÷	:		<u>.</u>	*
Invertebrates						
Earthworm, <i>Eisenia fetida</i>	28d- Chronic	Flutianil (technical grade active ingredient; Purity: 99.3% w/w)	NOAEC _{reproduct} ion = 12.5 mg a.i./kg dw soil	1	12.5 mg a.i./kg dw soil	1.0
	56d- Chronic	OC 53276 (TP; Purity: 99.16% w/w)	NOEC = 100 mg/kg dw soil	1	100 mg/kg dw soil	1.0
	48h-Oral 48h- Contact	Flutianil (technical grade active ingredient; Purity: 99.22% w/w)	48h-LD ₅₀ > 100 μg a.i./bee	1	>100 µg a.i./bee	0.4
		GATTEN (E P; Purity: 4.99% w/w)	48h-LD ₅₀ > 21.7 μg a.i./bee	1	>21.7 μg a.i./bee	0.4
Honey bee, <i>Apis mellifera</i>		Flutianil (technical grade active ingredient; Purity: 99.22% w/w)	48h-LC ₅₀ > 100 μg a.i./bee	1	>100 μg a.i./bee	0.4
		GATTEN (end-use product; Purity: 4.99% w/w)	48h-LC ₅₀ > 50 μg a.i./bee	1	>50 μg a.i./bee	0.4
	10d-Oral	GATTEN (end-use product; Purity: 4.71% w/w)	LD ₅₀ > 22.1 µg a.i./bee	1	>22.1 μg a.i./bee	1.0

Organism	Exposure	Exposure Test substance		UF applie d ¹	Effect metric	LOC
	72h-Oral – larva single exposure	GATTEN (end-use product; Purity: 4.71% w/w)	LD ₅₀ = 8.19 µg a.i./larvae	1	8.19 μg a.i./larva e	0.4
	22d-Brood / hive	Flutianil (technical grade active ingredient; Purity: 99.43% w/w)	NOED = 44 µg a.i./larvae	1	44 μg a.i./larva e	1.0
Predatory mite, <i>Typhlodromus</i> <i>pyri</i>	14d- Contact	GATTEN (end-use product; Purity: 4.77% w/w)	ER ₅₀ = 950.5 g a.i./ha	1	950.5 g a.i./ha	2.0
Aphid parasitoid, <i>Aphidius</i> <i>rhopalosiphi</i>	48h- Contact	GATTEN (end-use product; Purity: 4.77% w/w)	LR ₅₀ = 236.1 g a.i./ha	1	236.1 g a.i./ha	2.0
Springtail, Folsomia candida	28d- Chronic	OC 53276 (TP; Purity: 4.99% w/w)		1	8.00 mg/kg dw soil	2.0
Birds						
Bobwhite quail, Colinus virginianus	8d-Dietary	Flutianil (technical grade active ingredient; Purity: 98.7% w/w)	LD ₅₀ > 1485 mg a.i./kg bw/d	10	> 148.5 mg a.i./kg bw/d	1.0
	20w- Reproducti on	Flutianil (technical grade active ingredient; Purity: 99.22% w/w)	NOAEL = 184.6 mg a.i./kg bw/d	1	184.6 mg a.i./kg bw/d	1.0

Organism	Exposure	Test substance	Endpoint value	UF applie d ¹	Effect metric	LOC 2
Zebra finch, Taeniopygia guttata	Acute-Oral	Flutianil (technical grade active ingredient; Purity: 99.54% w/w)	LD ₅₀ > 2000 mg a.i./kg	10	> 200 mg a.i./kg	1.0
Mammals	I		I			
Norway rat, Rattus norvegicus	Acute-Oral	Flutianil (technical grade active ingredient; Purity: 99% w/w)	LD ₅₀ > 5000 mg a.i./kg bw	10	> 500 mg a.i./kg bw	1.0
	Reproducti on	Flutianil (technical grade active ingredient; Purity: 99.22% w/w)	NOAEL = 1286 mg a.i./kg bw/d	1	131 mg a.i./kg bw/d	1.0
Vascular plants						
Vascular plants, 10 species	21d- Seedling emergence	GATTEN (end-use product; Purity: 4.97% w/w)	ER ₂₅ > 42.59 g a.i./ha	1	>42.59 g a.i./ha	1.0
	21d- Vegetative vigour	GATTEN (end-use product; Purity: 4.97% w/w)	ER ₂₅ > 42.59 g a.i./ha	1	>42.59 g a.i./ha	1.0
Freshwater organ	isms					
Invertebrates	ſ	1	1	1	ſ	
Daphnia magna	48h-Acute	Flutianil (technical grade active ingredient; Purity: 99.22% w/w)	EC ₅₀ > 0.0065 mg a.i./L	2*	>0.00325 mg a.i./L	1.0

Organism	Exposure	Test substance	Endpoint value	UF applie d ¹	Effect metric	LOC 2
		GATTEN (end-use product; Purity: 4.99 w/w)	EC ₅₀ = 0.044 mg a.i./L	2	0.022 mg a.i./L	1.0
		OC 56635 (TP; Purity: 99.9% w/w)	$EC_{50} > 96.8$ mg/L	2	>48.4 mg/L	1.0
		OC56574 (TP; Purity: 99.76% w/w)	EC ₅₀ > 4.59 mg/L	2	>2.295 mg/L	1.0
		OC 53276 (TP; Purity: 99.16% w/w)	EC ₅₀ > 3.35 mg/L	2	>1.675 mg/L	1.0
	21d- Chronic	Flutianil (technical grade active ingredient; Purity: 99.22% w/w)	NOEC = 0.00711 mg a.i./L	1	0.00711 mg a.i./L	1.0
		OC 56635 (TP; Purity: 99.9% w/w)	NOAEC = 101 mg/L	1	101 mg/L	1.0
Amphipod, <i>Hyalella azteca</i>	42d- Chronic – spiked sediment: sediment	Flutianil (technical grade active ingredient; Purity: 99.19% w/w)	NOAEC _{reproduct} ion = 13 mg a.i./kg	1	13 mg a.i./kg	1.0
	42d- Chronic – spiked sediment: pore water	Flutianil (technical grade active ingredient; Purity: 99.19% w/w)	NOAEC _{reproduct} ion = 0.021 mg a.i./L	1	0.021 mg a.i./L	1.0

Organism	Exposure	Test substance	Endpoint value	UF applie d ¹	Effect metric	
	42d- Chronic – spiked sediment: overlying water	Flutianil (technical grade active ingredient; Purity: 99.19% w/w)	NOAEC _{reproduct} ion = 0.0056 mg a.i./L	1	0.0056 mg a.i./L	1.0
Fish	1	1	T	1	1	1
Rainbow trout, Oncorhynchus mykiss		GATTEN (end-use product; Purity: 4.99% w/w)	$LC_{50} = 0.0522$ mg a.i./L	10	0.00522 mg a.i./L	1.0
	96h-Acute	OC 56635 (TP; Purity: 99.9% w/w)	LC ₅₀ > 102 mg/L	10	>10.2 mg/L	1.0
		OC56574 (TP; Purity: 99.76% w/w)	LC ₅₀ > 3.33 mg/L	10	>0.333 mg/L	1.0
		OC 53276 (TP; Purity: 99.16% w/w)	LC ₅₀ > 4.14 mg/L	10	>0.414 mg/L	1.0
	28d- Chronic	OC 56635 (TP; Purity: 99.9% w/w)	NOEC = 99.2 mg/L	1	99.2 mg/L	1.0
Fathead minnow, Pimephales promelas	96h-Acute	Flutianil (technical grade active ingredient; Purity: 99.22% w/w)	LC ₅₀ > 0.00522 mg a.i./L	10*	>0.00052 2 mg a.i./L	1.0
	28d- Chronic	Flutianil (technical grade active ingredient; Purity: 98.77% w/w)	NOEC _{growth} = 0.00224 mg a.i./L	1	0.00224 mg a.i./L	1.0

Organism	Exposure	Test substance	Endpoint value	UF applie d ¹	Effect metric	LOC 2
Amphibians		<u></u>	<u></u>	4		
		GATTEN (end-use product; Purity: 4.99% w/w)	$LC_{50} = 0.0522$ mg a.i./L	10	0.00522 mg a.i./L	1.0
	96h-Acute	OC 56635 (TP; Purity: 99.9% w/w)	LC ₅₀ > 102 mg/L	10	>10.2 mg/L	1.0
Rainbow trout, Oncorhynchus mykiss ³	Jon-Acute	OC56574 (TP; Purity: 99.76% w/w)	LC ₅₀ > 3.33 mg/L	10	>0.333 mg/L	1.0
		OC 53276 (TP; Purity: 99.16% w/w)	LC ₅₀ > 4.14 mg/L	10	>0.414 mg/L	1.0
	28d- Chronic	OC 56635 (TP; Purity: 99.9% w/w)	NOEC = 99.2 mg/L	1	99.2 mg/L	1.0
Fathead minnow, <i>Pimephales</i> <i>promelas</i> ³	96h-Acute	Flutianil (technical grade active ingredient; Purity: 99.22% w/w)	LC ₅₀ > 0.00522 mg a.i./L	10*	>0.00052 2 mg a.i./L	1.0
	28d- Chronic	Flutianil (technical grade active ingredient; Purity: 98.77% w/w)	NOEC _{growth} = 0.00224 mg a.i./L	1	0.00224 mg a.i./L	1.0

Organism	Exposure	Test substance	Endpoint value	UF applie d ¹	Effect metric	LOC 2
Plants	1	1	1	1	1	1
	96h-Acute	Flutianil (technical grade active ingredient; Purity: 99.22% w/w)	EC ₅₀ > 0.0137 mg a.i./L	2	>0.00685 mg a.i./L	1.0
Freshwater alga, Pseudokirchnerie		OC 56635 (TP; Purity: 99.9% w/w)	EC ₅₀ > 994 mg/L	2	>497 mg/L	1.0
ila subcapilala	72h-Acute	OC56574 (TP; Purity: 99.76% w/w)	$EC_{50} = 2.109$ mg/L	2	1.0545 mg/L	1.0
		OC 53276 (TP; Purity: 99.76% w/w)	EC ₅₀ > 4.28 mg/L	2	>2.14 mg/L	1.0
Duckweed, Lemna gibba	7d- Dissolved	GATTEN (end-use product; Purity: 4.97% w/w)	EC ₅₀ > 0.214 mg a.i./L	2	>0.107 mg a.i./L	1.0
Marine organisms	5					
Invertebrates	1	1	1	1		
Saltwater mysid, Americamysis bahia	Saltwater mysid, Americamysis bahia		NOEC _{growth} = 0.0456 mg a.i./L	1	0.0456 mg a.i./L	1.0
Eastern oyster, Crassostrea virginica	tern oyster, ssostrea ginica		EC ₅₀ > 0.019 mg a.i./L	2*	>0.0095 mg a.i./L	1.0

Organism	Exposure	Test substance	Endpoint value	UF applie d ¹	Effect metric	LOC 2
		GATTEN (end-use product; Purity: 4.97% w/w)	EC ₅₀ > 0.036 mg a.i./L	2	>0.018 mg a.i./L	1.0
Amphipods, <i>Leptocheirus</i> <i>plumulosus</i>	28d- Chronic – spiked sediment: sediment	Flutianil (technical grade active ingredient; Purity: 99.43% w/w)	NOAEC _{reproduct} ion = 11 mg a.i./kg	1	11 mg a.i./kg	1.0
Fish						
Sheepshead minnow, <i>Cyprinodon</i> variegatus	96h-Acute	Flutianil (technical grade active ingredient; Purity: 99.0% w/w)	LC ₅₀ > 0.85 mg a.i./L	10	>0.085 mg a.i./L	1.0
		GATTEN (end-use product; Purity: 4.97% w/w)	LC ₅₀ > 0.077 mg a.i./L	10*	>0.0077 mg a.i./L	1.0
	34d- Chronic	Flutianil (technical grade active ingredient; Purity: 99.43% w/w)	NOEC _{growth} = 0.070 mg a.i./L	1	0.07 mg a.i./L	1.0
Plants					•	
Marine diatom, Skeletonema costatum	96h-Acute	GATTEN (end-use product; Purity: 4.97% w/w)	$E_bC_{50} = 0.132$ mg a.i./L	2	0.066 mg a.i./L	1.0

 1 UF = uncertainty factor; 2 LOC = Level of Concern; 3 used as a surrogate for amphibians; *UF removed for further characterization.

Organism	Exposure	Test substance	Effect metric	EEC ¹	RQ ²	Risk
Invertebrates			11			
Earthworm, Eisenia fetida	28d- Chronic	Flutianil (technical grade active ingredient; Purity: 99.3% w/w)	NOAEC _{reproduction} = 12.5 mg a.i./kg dw soil	0.077 mg a.i./kg dw soil	0.01	No
	56d- Chronic	OC 53276 (TP; Purity: 99.16% w/w)	NOEC = 100 mg/kg dw soil	0.080 mg/kg dw soil	0.01	No
Honey bee, Apis mellifera	48h-Oral	Flutianil (technical grade active ingredient; Purity: 99.22% w/w)	LD ₅₀ > 100 μg a.i./bee	1.002 μg a.i./bee	<0.01	No
		GATTEN (end-use product; Purity: 4.99% w/w)	LD ₅₀ > 21.7 μg a.i./bee	1.002 µg a.i./bee	< 0.05	No
	48h- Contact	Flutianil (technical grade active ingredient; Purity: 99.22% w/w)	LC ₅₀ > 100 μg a.i./bee	0.084 μg a.i./bee	<0.01	No
		GATTEN (end-use product; Purity: 4.99% w/w)	LC ₅₀ > 50 μg a.i./bee	0.084 μg a.i./bee	<0.01	No

Table 18	Screening level risk	to terrestrial organisms	s other than bird	s and mammals

Organism	Exposure	Test substance	Effect metric	EEC ¹	RQ ²	Risk
	10d-Oral	GATTEN (end-use product; Purity: 4.71% w/w)	LD ₅₀ > 22.1 μg a.i./bee	1.002 µg a.i./bee	<0.05	No
	72h-Oral – larva single exposure	GATTEN (end-use product; Purity: 4.71% w/w)	LD ₅₀ = 8.19 μg a.i./larvae	0.425 μg a.i./larvae	0.05	No
	22d-Brood / hive	Flutianil (technical grade active ingredient; Purity: 99.43% w/w)	NOED = 44 μg a.i./larvae	0.425 μg a.i./larvae	0.01	No
Predatory mite, <i>Typhlodromus</i> <i>pyri</i>	14d- Contact	GATTEN (end-use product; Purity: 4.77% w/w)	ER ₅₀ = 950.5 g a.i./ha	83.01 g a.i./ha	0.09	No
Aphid parasitoid, <i>Aphidius</i> rhopalosiphi	48h- Contact	GATTEN (end-use product; Purity: 4.77% w/w)	LR ₅₀ = 236.1 g a.i./ha	83.01 g a.i./ha	0.35	No
Springtail, Folsomia candida	28d- Chronic	OC 53276 (TP; Purity: 4.99% w/w)	NOEC _{reproduction} = 8.00 mg/kg dw soil	0.080 mg/kg dw soil	0.01	No

Organism	Exposure	Test substance	Effect metric	EEC ¹	RQ ²	Risk
Vascular plant	ts		<u>.</u>			
		GATTEN (end-use product; Purity: 4.97% w/w)		Cucurbits – in field: 174.3 g a.i./ha	<4.09	Yes
				Cucurbits – off-field (groundboom): 19.17 g a.i./ha	<0.45	No
	21d- Seedling emergence		ER ₂₅ > 42.59 g a.i./ha	Cherries and Grape – in field: 139.6 g a.i./ha	<3.28	Yes
Vascular plants, 10 species				Cherries and Grape – off- field (early season airblast): 103.3 g a.i./ha	<2.43	Yes
				Cherries and Grape – off- field (late season airblast): 82.35 g a.i./ha	<1.93	Yes
			ER ₂₅ > 42.59 g a.i./ha	Cucurbits – in field: 83.01 g a.i./ha	<1.95	Yes
		GATTEN (end-use		Cucurbits – off-field (groundboom): 9.13 g a.i./ha	<0.21	No
	21d- Vegetative vigour	product; Purity: 4.97% w/w)		Cherries and Grape – in field: 78.00 g a.i./ha	<1.83	Yes
		w/w)		Cherries and Grape – off- field (early season airblast): 57.70 g a.i./ha	<1.35	Yes

Organism	Exposure	Test substance	Effect metric	EEC ¹	RQ ²	Risk
				Cherries and		
				Grape – off-		
				field (late	~1.00	Vac
				season	<1.00	165
				airblast): 46.01		
				g a.i./ha		

 1 EEC = Estimated Environmental concentration. The soil EEC of 0.077 mg a.i./kg was calculated based on the maximum proposed foliar rate of five applications of 35 g a.i./ha with a 7-day re-treatment interval, accounting for soil degradation using the 90th upper percentile on the mean of aerobic soil representative half-lives of 2410 days and was used for soil dwelling organisms and seedling emergence effects metrics. This concentration was calculated assuming that the product is evenly distributed in the top 0 to 15 cm depth of soil with a bulk density of 1.5 g/cm³.

The foliar EEC of 83.01 g a.i./ha was calculated based on the cumulative maximum application rate accounting for dissipation between applications using the default foliar dissipation half-life of 10 days and was used for foliar dwelling organisms and vegetative vigour effects metrics.

The pollinator EECs were calculated using the single maximum application rate of 35 g a.i./ha as follows:

Estimated contact exposure = $2.4 \ \mu g a.i./bee \times 0.0035 g a.i./ha;$

Estimated dietary exposure $= 98 \ \mu g \ a.i./g \times 0.292 \ g/day \times 0.0035 \ g \ a.i./ha;$ and

Estimated brood exposure = $98 \ \mu g \ a.i./g \times 0.124 \ g/day \times 0.0035 \ g \ a.i./ha.$

The further characterized EECs for off-field exposure to non-target terrestrial plants accounted for a 11% drift factor for applications to cucurbits via groundboom using an ASAE fine spray quality, and a 74 and 59% spray drift factor for applications to cherries and grape via airblast. For the further risk characterization, the application rate for cherries and grape (four \times 35 g a.i./ha with a 7-day re-treatment interval) was modelled.

EECs for transformation products were calculated conservatively assuming 100% of the applied flutianil was instantly transformed into the transformation product on a molecular weight/weight basis.

 ${}^{2}RQ = Risk$ Quotient. The RQ is calculated by dividing the EEC by the effect metric (RQ = EEC/effect metric). The RQ is then compared to the level of concern (LOC = 2.0 for beneficial arthropods, 0.4 for acute exposures to bees, and 1.0 for everything else). If the screening level RQ is below the LOC, the risk is considered acceptable and no further risk characterization is necessary. For groups where the LOC is exceeded (RQ > 1), further characterization of the risk is conducted.

Organism	Toxicity (mg a.i./kg bw/d)	Feeding guild (food item)	EDE (mg a.i./kg bw) ^a	RQ	LOC	LOC Exceeded?		
Small bird (0.02 kg)								
Acute	>200.0	Insectivore	6.76	< 0.03	1	No		
Reproduction	186.2	Insectivore	6.76	0.04	1	No		
Medium sized bi	Medium sized bird (0.1 kg)							
Acute	>200.0	Insectivore	5.27	< 0.03	1	No		
Reproduction	186.2	Insectivore	5.27	0.03	1	No		
Large sized bird	(1 kg)							
Acute	>200.0	Herbivore (short grass)	3.41	< 0.02	1	No		
Reproduction	186.2	Herbivore (short grass)	3.41	0.02	1	No		
Small mammal ((0.015 kg)							
Acute	>5000	Insectivore	3.89	< 0.01	1	No		
Reproduction	131	Insectivore	3.89	< 0.01	1	No		

Table 19Screening level risk to birds and mammals

Organism	Toxicity (mg a.i./kg bw/d)	Feeding guild (food item)	EDE (mg a.i./kg bw) ^a	RQ	LOC	LOC Exceeded?	
Medium sized mammal (0.035 kg)							
Acute	>5000	Herbivore (short grass)	7.54	< 0.02	1	No	
Reproduction	131	Herbivore (short grass)	7.54	0.01	1	No	
Large sized mammal (1 kg)							
Acute	>5000	Herbivore (short grass)	4.03	< 0.01	1	No	
Reproduction	131	Herbivore (short grass)	4.03	< 0.01	1	No	
(1) EDE = Estimated di FIR: Food Ingestion Ra equation was used; for Passerine Equation (bod All birds Equation (bod For mammals, the "all f EEC: Concentration of according to Fletcher et	ietary exposure ate (Nagy, 1987 generic birds w dy weight < or ly weight > 200 mammals" equa pesticide on for t al. (1994). At	is calculated using the following). For generic birds with body weight ith body weight greater than 200 g =200 g): FIR (g dry weight/day) = g): FIR (g dry weight/day) = 0.64 ation was used: FIR (g dry weight/ bod item based on Hoerger and Ker the screening level, relevant food	formula: (FI ght less than g, the "all bin 0.398(bw in l8(bw in g) ⁰ (day) = 0.235 naga (1972) a items represent	R/bw) × EE0 a or equal to 2 ds" equation 1 g) ^{0.850} . 651 50 (bw in g) ^{0.8} and Kenaga (enting the mod	C, where: 200 g, the "p was used: 22 (1973) and m ost conservat	asserine" nodified ive EEC for	

Table 20Screening level risk to aquatic organisms

Organism	Exposure	Test substance	Effect metric	EEC ¹ (mg a.i./L)	RQ ²	LOC exceeded
Freshwater organis	sms	^ 				
Daphnia magna	48h-Acute	Flutianil (technical grade active ingredient; Purity: 99.22% w/w)	¹ / ₂ EC ₅₀ > 0.00325 mg a.i./L	0.022	<6.62	Yes
		GATTEN (end-use product; Purity: 4.99 w/w)	¹ / ₂ EC ₅₀ = 0.022 mg a.i./L	0.022	0.98	No
		OC 56635 (TP; Purity: 99.9% w/w)	¹ / ₂ EC ₅₀ > 48.4 mg/L	0.012	<0.01	No
		OC56574 (TP; Purity: 99.76% w/w)	¹ / ₂ EC ₅₀ > 2.295 mg/L	0.022	<0.01	No
		OC 53276 (TP; Purity: 99.16% w/w)	$^{1/2}$ EC ₅₀ > 1.675 mg/L	0.022	<0.01	No

Organism	Exposure	Test substance	Effect metric	EEC ¹ (mg a.i./L)	RQ ²	LOC exceeded
	21d-Chronic	Flutianil (technical grade active ingredient; Purity: 99.22% w/w)	NOEC = 0.00711 mg a.i./L	0.022	3.03	Yes
		OC 56635 (TP; Purity: 99.9% w/w)	NOAEC = 101 mg/L	0.012	0.01	No
	42d-Chronic – spiked sediment: sediment	Flutianil (technical grade active ingredient; Purity: 99.19% w/w)	NOAECreproduction = 13 mg a.i./kg	0.077	0.01	No
Amphipod, <i>Hyalella azteca</i>	42d-Chronic – spiked sediment: pore water	Flutianil (technical grade active ingredient; Purity: 99.19% w/w)	NOAEC _{reproduction} = 0.021 mg a.i./L	0.022	1.02	Yes
	42d-Chronic – spiked sediment: overlying water	Flutianil (technical grade active ingredient; Purity: 99.19% w/w)	NOAEC _{reproduction} = 0.0056 mg a.i./L	0.022	3.84	Yes
Fish	1	1	1			
		GATTEN (end-use product; Purity: 4.99% w/w)	1/10 LC ₅₀ = 0.00522 mg a.i./L	0.022	4.12	Yes
Rainbow trout, Oncorhynchus	96h-Acute	OC 56635 (TP; Purity: 99.9% w/w)	1/10 LC ₅₀ > 10.2 mg/L	0.012	<0.01	No
inyruss 		OC56574 (TP; Purity: 99.76% w/w)	1/10 LC ₅₀ > 0.333 mg/L	0.022	<0.07	No
		OC 53276 (TP; Purity: 99.16% w/w)	1/10 LC ₅₀ > 0.414 mg/L	0.022	<0.05	No

Organism	Exposure	Test substance	Effect metric	EEC ¹ (mg a.i./L)	RQ ²	LOC exceeded
	28d-Chronic	OC 56635 (TP; Purity: 99.9% w/w)	NOEC = 99.2 mg/L	0.012	0.01	No
Fathead minnow, Pimephales promelas	96h-Acute	Flutianil (technical grade active ingredient; Purity: $99\ 22\%\ w/w$) Flutianil $1/10\ LC_{50} > 0.000522\ mg$ a.i./L		0.022	<41.2	Yes
	28d-Chronic	Flutianil (technical grade active ingredient; Purity: 98.77% w/w)		0.022	8.96	Yes
Amphibians	1	1	1		1	,
		GATTEN (end-use product; Purity: 4.99% w/w)	1/10 LC ₅₀ = 0.00522 mg a.i./L	0.115	21.98	Yes
Rainbow trout,	96h-Acute	OC 56635 (TP; Purity: 99.9% w/w)	1/10 LC ₅₀ > 10.2 mg/L	0.066	<0.01	No
Oncorhynchus mykiss ³		OC56574 (TP; Purity: 99.76% w/w)	1/10 LC ₅₀ > 0.333 mg/L	0.119	<0.34	No
		OC 53276 (TP; Purity: 99.16% w/w)	$LC_{50} > 4.14 \text{ mg/L}$	0.119	<0.29	No
	28d-Chronic	OC 56635 (TP; Purity: 99.9% w/w)	NOEC = 99.2 mg/L	0.066	0.01	No

Organism	Exposure	Test substance	Effect metric	EEC ¹ (mg a.i./L)	RQ ²	LOC exceeded
Fathead minnow, Pimephales promelas ³	96h-Acute	Flutianil (technical grade active $1/10 \text{ LC}_{50} >$ ingredient; $0.00522 \text{ mg a.i./L}$ Purity: 99 22% w/w)		0.115	<220	Yes
	28d-Chronic	Flutianil (technical grade active ingredient; Purity: 98.77% w/w)	NOEC _{growth} = 0.00224 mg a.i./L	0.115	47.8	Yes
Plants						
	96h-Acute	Flutianil (technical grade active ingredient; Purity: 99.22% w/w)	¹ / ₂ EC ₅₀ > 0.00685 mg a.i./L	0.022	<3.14	Yes
Freshwater alga, Pseudokirchneriella subcapitata		OC 56635 (TP; Purity: 99.9% w/w)	$^{1/2}$ EC ₅₀ > 497 mg/L	0.012	<0.01	No
	$72h_{-}\Lambda$ cute	OC56574 (TP; Purity: 99.76% w/w)	$^{1/2}$ EC ₅₀ = 1.0545 mg/L	0.022	0.02	No
	7211-Acute	OC 53276 (TP; Purity: 99.76% w/w)	$\frac{1}{2} EC_{50} > 2.14$ mg/L	0.022	<0.01	No
Duckweed, <i>Lemna gibba</i>	7d-Dissolved	GATTEN (end-use product; Purity: 4.97% w/w)	¹ /2 EC ₅₀ > 0.107 mg a.i./L	0.022	<0.20	No
Marine organisms						
Invertebrates		Elution:1				
Saltwater mysid, Americamysis bahia	21d-Chronic	(technical grade active ingredient; Purity: 99.43% w/w)	NOEC _{growth} = 0.0456 mg a.i./L	0.022	0.47	No

Organism	Exposure	Test substance	Effect metric	EEC ¹ (mg a.i./L)	RQ ²	LOC exceeded
Eastern oyster, <i>Crassostrea</i>	96h-Acute	Flutianil (technical grade active ingredient; Purity: 99.19% w/w)	¹ /2 EC ₅₀ > 0.0095 mg a.i./L	0.022	<2.26	Yes
virginica		GATTEN (end-use product; Purity: 4.97% w/w)	¹ /2 EC ₅₀ > 0.018 mg a.i./L	0.022	<1.20	Yes
Amphipods, Leptocheirus plumulosus	28d-Chronic – spiked sediment: sediment	Flutianil (technical grade active ingredient; Purity: 99.43% w/w)	NOAEC _{reproduction} = 11 mg a.i./kg	0.077	0.01	No
Fish	1					
	96h-Acute	Flutianil (technical grade active ingredient; Purity: 99.0% w/w)	1/10 LC ₅₀ > 0.085 mg a.i./L	0.022	<0.25	No
Sheepshead minnow, <i>Cyprinodon</i> variegatus	Jon Acute	GATTEN (end-use product; Purity: 4.97% w/w)	1/10 LC ₅₀ > 0.0077 mg a.i./L	0.022	<2.79	Yes
	34d-Chronic	Flutianil (technical grade active ingredient; Purity: 99.43% w/w)	NOEC _{growth} = 0.070 mg a.i./L	0.022	0.31	No
Plants						
Marine diatom, Skeletonema costatum	96h-Acute	GATTEN (end-use product; Purity: 4.97% w/w)	$^{1/2}$ E _b C ₅₀ = 0.066 mg a.i./L	0.022	0.33	No

 1 EEC = Estimated Environmental concentration. An EEC of 0.022 mg a.i./L for a waterbody at a depth of 80 cm was used to evaluate risks to all organisms except amphibians, where an EEC of 0.115 mg a.i./L for a waterbody at a depth of 15 cm was used. The sediment and pore water concentrations were conservatively assumed to be equal to the soil and 80 cm water EECs of

0.077 mg a.i./kg and 0.022 mg a.i./L, respectively. EECs for transformation products were calculated conservatively assuming 100% of the applied flutianil was instantly transformed into the transformation product on a molecular weight/weight basis. $^{2}RQ = Risk$ Quotient. The RQ is calculated by dividing the EEC by the effect metric (RQ = EEC/effect metric). The RQ is then compared to the level of concern (LOC = 1.0 for all aquatic organisms). If the screening level RQ is below the LOC, the risk is considered acceptable and no further risk characterization is necessary. For groups where the LOC is exceeded (RQ > 1), further characterization of the risk is conducted.

³used as a surrogate for amphibians.

Organism	Exposure	Test substance	Effect metric	EEC ¹ (mg a.i./L)	RQ ²	Risk
Freshwater organism	ns	-			Ĥ	
Invertebrates	1	I	I		1	1
	48h-Acute	Flutianil (technical grade active ingredient; Purity: 99.22% w/w)	EC ₅₀ > 0.0065 mg a.i./L	Cucurbits – off- field (groundboom): 0.002	<0.36	No
Daphnia magna				Cherries and Grape – off- field (early season airblast): 0.013	<1.97	Yes
				Cherries and Grape – off- field (late season airblast): 0.010	<1.57	Yes
	21d- Chronic	Flutianil (technical grade active ingredient; Purity: 99.22% w/w)	NOEC = 0.00711 mg a.i./L	Cucurbits – off- field (groundboom): 0.002	0.33	No
				Cherries and Grape – off- field (early season airblast): 0.013	1.80	Yes
				Cherries and Grape – off- field (late season airblast): 0.010	1.43	Yes
Amphinod	42d- Chronic –	Flutianil (technical grade active	NOAEC _{reproduction} = 0.021 mg a.i./L	Cucurbits – off- field (groundboom): 0.002	0.11	No
Amphipod, <i>Hyalella azteca</i>	spiked sediment: pore water	ingredient; Purity: 99.19% w/w)		Cherries and Grape – off- field (early season airblast): 0.013	0.61	No

Table 21Refined risk to aquatic organisms from spray drift

Organism	Exposure	Test substance	Effect metric	EEC ¹ (mg a.i./L)	RQ ²	Risk
				Cherries and Grape – off- field (late season airblast): 0.010	0.49	No
	42d- Chronic – spiked sediment: overlying	Flutianil (technical grade active ingredient; Purity: 99.19% w/w)	NOAEC _{reproduction} = 0.0056 mg a.i./L	Cucurbits – off- field (groundboom): 0.002	0.42	No
				Cherries and Grape – off- field (early season airblast): 0.013	2.28	Yes
v	water			Cherries and Grape – off- field (late season airblast): 0.010	1.82	Yes
Fish					-	-
Rainbow trout, Oncorhynchus mykiss	96h-Acute	GATTEN (end-use product; Purity: 4.99% w/w)	1/10 LC ₅₀ = 0.00522 mg a.i./L	Cucurbits – off- field (groundboom): 0.002	0.45	No
				Cherries and Grape – off- field (early season airblast): 0.013	2.45	Yes
				Cherries and Grape – off- field (late season airblast): 0.010	1.95	Yes
Fathead minnow, Pimephales promelas	96h-Acute	Flutianil (technical grade active ingredient; Purity: 99.22% w/w)	LC ₅₀ > 0.00522 mg a.i./L	Cucurbits – off- field (groundboom): 0.002	<0.45	No
				Cherries and Grape – off- field (early season airblast): 0.013	<2.45	Yes
				Cherries and Grape – off- field (late season airblast): 0.010	<1.95	Yes

Organism	Exposure	Test substance	Effect metric	EEC ¹ (mg a.i./L)	RQ ²	Risk
	28d- Chronic	Flutianil (technical grade active ingredient; Purity: 98.77% w/w)	NOEC _{growth} = 0.00224 mg a.i./L	Cucurbits – off- field (groundboom): 0.002	0.99	No
				Cherries and Grape – off- field (early season airblast): 0.013	5.33	Yes
				Cherries and Grape – off- field (late season airblast): 0.010	4.25	Yes
Amphibians		1		1		
Rainbow trout, Oncorhynchus mykiss ³	96h-Acute	GATTEN (end-use product; Purity: 4.99% w/w)	1/10 LC ₅₀ = 0.00522 mg a.i./L	Cucurbits – off- field (groundboom): 0.013	2.42	Yes
				Cherries and Grape – off- field (early season airblast): 0.068	13.1	Yes
				Cherries and Grape – off- field (late season airblast): 0.054	10.4	Yes
Fathead minnow, <i>Pimephales</i> <i>promelas</i> ³	96h-Acute	Flutianil (technical grade active ingredient; Purity: 99.22% w/w)	LC ₅₀ > 0.00522 mg a.i./L	Cucurbits – off- field (groundboom): 0.013	<2.42	Yes
				Cherries and Grape – off- field (early season airblast): 0.068	<13.1	Yes
				Cherries and Grape – off- field (late season airblast): 0.054	<10.4	Yes
	28d- Chronic		NOEC _{growth} = 0.00224 mg a.i./L	Cucurbits – off- field (groundboom): 0.013	5.26	Yes

Organism	Exposure	Test substance	Effect metric	EEC ¹ (mg a.i./L)	RQ ²	Risk
		Flutianil (technical grade active		Cherries and Grape – off- field (early season airblast): 0.068	28.4	Yes
		ingredient; Purity: 98.77% w/w)		Cherries and Grape – off- field (late season airblast): 0.054	22.7	Yes
Plants		1	1	G 1: 00		
Freshwater alga, Pseudokirchneriella subcapitata	96h-Acute	Flutianil (technical grade active ingredient; Purity: 99.22% w/w)	½ EC ₅₀ > 0.00685 mg a.i./L	Cucurbits – off- field (groundboom): 0.002	<0.35	No
				Cherries and Grape – off- field (early season airblast): 0.013	<1.87	Yes
				Cherries and Grape – off- field (late season airblast): 0.010	<1.49	Yes
Marine organisms (b	ased on the s	single highest	application rate)			
Invertebrates	1	1	1		1	
Eastern oyster, Crassostrea virginica	96h-Acute	Flutianil (technical grade active ingredient; Purity: 99.19% w/w)	EC ₅₀ > 0.019 mg a.i./L	Cucurbits – off- field (groundboom): 0.0005	<0.03	No
				Cherries and Grape – off- field (early season airblast): 0.003	<0.17	No
				Cherries and Grape – off- field (late season airblast): 0.003	<0.14	No
			¹ / ₂ EC ₅₀ > 0.018 mg a.i./L	Cucurbits – off- field (groundboom): 0.0005	<0.03	No
Organism	Exposure	Test substance	Effect metric	EEC ¹ (mg a.i./L)	RQ ²	Risk
--	-----------	--	---------------------------------------	--	-----------------	------
		GATTEN (end-use product;		Cherries and Grape – off- field (early season airblast): 0.003	<0.18	No
		Purity: 4.97% w/w)		Cherries and Grape – off- field (late season airblast): 0.003	<0.14	No
Fish	1				1	
				Cucurbits – off- field (groundboom): 0.0005	<0.01	No
Sheepshead minnow, <i>Cyprinodon</i> variegatus	96h-Acute	GATTEN (end-use product; Purity: 4.97%	LC ₅₀ > 0.077 mg a.i./L	Cherries and Grape – off- field (early season airblast): 0.003	< 0.04	No
		w/w)		Cherries and Grape – off- field (late season airblast): 0.003	< 0.03	No

 1 EEC = Estimated Environmental concentration. An EEC of 0.022 mg a.i./L for a waterbody at a depth of 80 cm was used to evaluate risks to all organisms except amphibians, where an EEC of 0.115 mg a.i./L for a waterbody at a depth of 15 cm was used. The pore water concentration was conservatively assumed to be equal to the 80 cm water EEC of 0.022 mg a.i./L. The further characterized EECs for off-field exposure to non-target terrestrial plants accounted for a 11% drift factor for applications to cucurbits via groundboom using an ASAE fine spray quality, and a 74 and 59% spray drift factor for applications to cherries and grape via airblast. For the further risk characterization, the application rate for cherries and grape (four × 35 g a.i./ha with a 7-day re-treatment interval) was modelled.

 2 RQ = Risk Quotient. The RQ is calculated by dividing the EEC by the effect metric (RQ = EEC/effect metric). The RQ is then compared to the level of concern (LOC = 1.0 for all aquatic organisms). If the screening level RQ is below the LOC, the risk is considered acceptable and no further risk characterization is necessary. For groups where the LOC is exceeded (RQ > 1), further characterization of the risk is conducted.

³used as a surrogate for amphibians.

Table 22 Environmental fate parameters used for the ecological water modelling

Parameter	Flutianil	Unit
K _d	451	L/kg
Aerobic aquatic half-life at 20°C	579	d
Anaerobic aquatic half-life at 20°C	1980	d
Aqueous photolysis half-life	1.03	d
Hydrolysis half-life at pH 7	stable	-
Aerobic soil half-life at 20°C	2410	d

	Water denth		Water	Pore water			
Use	(cm)	Peak	24- hour	96- hour	21-day	Peak	21-day
Grapes/Cherry	80	2.3	1.9	1.3	0.90	0.79	0.78
4 × 35 g a.i./ha	15	9.2	3.1	1.4	0.93	-	-
Cucumbers/Pumpkins	80	3.4	2.9	2.3	1.9	1.8	1.8
5 × 35 g a.i./ha	15	11.5	4.3	2.4	1.9	-	-

Table 23EECs (in µg a.i./L) for the ecological risk assessment of Flutianil

Table 24Refined risk to aquatic organisms from runoff

Organism	Exposure	Test substance	Effect metric	EEC ¹ (mg a.i./L)	RQ ²	Risk
Freshwater organism	S					
Invertebrates	I	I	I		1	
		Flutianil (technical	$EC_{12} > 0.0065$	Cucurbits: 0.0029	<0.45	No
Daphnia magna	48h-Acute	ingredient; Purity: 99.22% w/w)	mg a.i./L	Cherries and Grape: 0.0019	<0.29	No
	214	Flutianil (technical	NOEC - 0.00711	Cucurbits: 0.0019	0.27	No
	Chronic	ingredient; Purity: 99.22% w/w)	mg a.i./L	Cherries and Grape: 0.0009	0.13	No
	42d- Chronic – spiked sediment: pore water	Flutianil (technical grade active ingredient; Purity: 99.19% w/w)	NOAECreproduction	Cucurbits: 0.0018	0.09	No
Amphipod, <i>Hyalella azteca</i>			= 0.021 mg a.i./L	Cherries and Grape: 0.00078	0.04	No
			NOAEC _{reproduction} = 0.0056 mg a.i./L	Cucurbits: 0.0029	0.52	No

Organism	Exposure	Test substance	Effect metric	EEC ¹ (mg a.i./L)	RQ ²	Risk
Fich	42d- Chronic – spiked sediment: overlying water	Flutianil (technical grade active ingredient; Purity: 99.19% w/w)		Cherries and Grape: 0.0019	0.34	No
FISN						
Rainbow trout,	96h-Acute	GATTEN (end-use	$1/10 \text{ LC}_{50} > 0.00522 \text{ mg}$	Cucurbits: 0.0029	<0.56	No
Oncorhynchus mykiss	Jon-Acute	product: 4.99% w/w)	a.i./L	Cherries and Grape: 0.0019	<0.36	No
		Flutianil (technical grade active	1/10 LC ₅₀ >	Cucurbits: 0.0029	<0.56	No
Fathead minnow, <i>Pimephales promelas</i>	96h-Acute	ingredient; Purity: 99.22% w/w)	0.000522 mg a.i./L	Cherries and Grape: 0.0019	<0.36	No
	28d- Chronic	Flutianil (technical	$NOEC_{orowth} =$	Cucurbits: 0.0019	0.85	No
		grade active ingredient; Purity: 98.77% w/w)	0.00224 mg a.i./L	Cherries and Grape: 0.0009	0.40	No
Amphibians						
Fathead minnow, Pimephales promelas ³		Flutianil (technical grade active	1/10 LC ₅₀ >	Cucurbits: 0.0043	<0.82	No
	96h-Acute	ingredient; Purity: 99.22% w/w)	0.000522 mg a.i./L	Cherries and Grape: 0.0031	<0.59	No
	28d- Chronic	Flutianil (technical grade active	$\frac{\text{NOEC}_{\text{growth}} = 0.00224 \text{ mg}}{\text{a.i./L}}$	Cucurbits: 0.0019	0.85	No

Organism	Exposure	Test substance	Effect metric	EEC ¹ (mg a.i./L)	RQ ²	Risk
		ingredient; Purity: 98.77% w/w)		Cherries and Grape: 0.00093	0.42	No
Plants					•	I
Freshwater alga,	06h Aquita	Flutianil (technical grade active	$\frac{1}{2} EC_{50} > 0.00685 mg$	Cucurbits: 0.0029	<0.42	No
subcapitata	96h-Acute ingredient; Purity: 99.22% w/w)		a.i./L	Cherries and Grape: 0.0019	<0.28	No
Marine organisms						
Invertebrates	1	1		1	I	1
Eastern oyster,	96h Acute	Flutianil (technical grade active	EC ₅₀ > 0.019 mg	Cucurbits: 0.0029	<0.15	No
Crassostrea virginica	9011-Acute	ingredient; Purity: 99.19% w/w)	a.i./L	Cherries and Grape: 0.0019	<0.10	No

¹ EEC = Estimated Environmental concentration. EECs were estimated via the Pesticide in Water Calculator (PWC) by modelling a 10 ha field adjacent to 1 ha waterbodies of 80 and 15 cm in depth. See Tables 22 and 23 for EECs. ²RQ = Risk Quotient. The RQ is calculated by dividing the EEC by the effect metric (RQ = EEC/effect metric). The RQ is then compared to the level of concern (LOC = 1.0 for all aquatic organisms). If the screening level RQ is below the LOC, the risk is considered acceptable and no further risk characterization is necessary. For groups where the LOC is exceeded (RQ > 1), further characterization of the risk is conducted.

³used as a surrogate for amphibians.

Table 25Toxic substances management policy considerations-comparison to TSMP
Track 1 criteria

TSMP Track 1 criteria	TSMI criter	P Track 1 ion value	Flutianil (Active ingredient) endpoints	OC 56574 (Transformation product) endpoints	OC 56635 (Transformation product) endpoints
CEPA toxic or CEPA toxic equivalent ¹	Yes		Yes	Yes	Yes
Predominantly anthropogenic ²	Yes		Yes	Yes	Yes
Persistence ³ :	Soil	Half-life ≥ 182 days	Yes	No	No

			Flutianil	OC 56574	OC 56635
TSMP Track 1	TSMP	Track 1	(Active	(Transformation	(Transformation
criteria	criteri	on value	ingredient)	product)	product)
			endpoints	endpoints	endpoints
			Laboratory	Laboratory	Laboratory
			studies:	studies: not	studies: not
			DT ₅₀ of	enough data to	enough data to
			1114 to	calculate a DT ₅₀ .	calculate a DT ₅₀ .
			2855 days	Field studies: not	Field studies:
			in aerobic	enough data to	DT ₅₀ of 42.2
			soil and	calculate a DT_{50} .	days.
			1460 to	However, it was	
			13191 d	not detected after	
			days in	91 days.	
			anaerobic		
			SO11.		
			Field		
			Studies: $DT_{\rm ex} = {\rm of } 212$		
			D150 01 512		
	Whole	Half_life	Ves	N/A	N/A
	system	> 365 days	105		
	(water +	<u> </u>	Laboratory	Laboratory	Laboratory
	sediment)		studies:	studies: not	studies: not
			DT ₅₀ of 236	enough data to	enough data to
			to 699 days	calculate a DT ₅₀ .	calculate a DT_{50} .
			in aerobic		
			systems and		
			766 to 2280		
			days in		
			anaerobic		
			systems.		
	Air	Half-life \geq	No	N/A	N/A
		2 days, or			
		evidence of	Estimated		
		iong-range	$a_1 = 1110$ of $a_2 = 0.2$ hours		
		transport	 0.5 flours for reaction 		
		uansport	with		
			hydroxyl		
			radicals		
			(AOPWIN).		
			(
			Flutianil is		
			unlikely to		
			enter the		
			atmosphere		

			Flutianil	OC 56574	OC 56635
TSMP Track 1	TSMP	Track 1	(Active	(Transformation	(Transformation
criteria	criteri	on value	ingredient)	product)	product)
			endpoints	endpoints	endpoints
			based on		
			the vapour		
			pressure		
			(1.530×10^{-1})		
			⁷ Pa at		
			20° C) and		
			Henry's		
			Law		
			Constant		
			(8.259×10^{-1})		
			³ Pa		
			m^{3}/mol).		
Bioaccumulation ⁴	$\log K_{\rm ow} \geq 3$	5	No	Yes	No
			3.1	5248	-0.0016
	$ BCF \ge 500$	0	No	N/A	N/A
			Whole body		
			BCF of 380		
		0	L/kg		
	$ $ BAF \geq 500	0	Not	N/A	N/A
T 1 1 1 T		1 1 .	available		
Is the chemical a T	SMP Track	I substance	No, does	No, does not	No, does not
(all four criteria mi	ust be met)?		not meet	meet all TSMP	meet all TSMP
			all TSMP	Track I criteria.	Track I criteria.
			Track 1		
			criteria.		

¹All pesticides will be considered CEPA-toxic or CEPA toxic equivalent for the purpose of initially assessing a pesticide against the TSMP criteria. Assessment of the CEPA toxicity criteria may be refined if required (in other words, all other TSMP criteria are met).

²The policy considers a substance "predominantly anthropogenic" if, based on expert judgement, its concentration in the environment medium is largely due to human activity, rather than to natural sources or releases.

³If the pesticide and/or the transformation product(s) meet one persistence criterion identified for one media (soil, water, sediment or air) than the criterion for persistence is considered to be met. ⁴Bioaccumulation Factors (BAF) are preferred over Bioconcentration Factors (BCF); in the absence of BAF or BCF data, the octanol-water partition coefficient (log K_{ow}) may be used.).

Table 26List of supported uses

Supported use claims for GATTEN

1. Control of powdery mildew (*Podosphaera clandestina*) on cherries (Crop Subgroup 12-09A) at a rate of 400–690 mL/ha (20.0–35.0 g a.i./ha) when applied to foliage during the fruiting stage using airblast ground equipment. Repeat applications at 7- to 14-day intervals. Within the stated ranges, use a higher rate and shorter interval under conditions that are conducive to high disease pressure. Do not exceed a maximum of 4 applications per year and a maximum of 140 g a.i./ha per year.

2. Control of powdery mildew (*Erysiphe necator*) on grape at a rate of 400–690 mL/ha (20.0–35.0 g a.i./ha) when applied to foliage during the fruiting stage using airblast ground equipment. Repeat applications at 7- to 14-day intervals. Within the stated ranges, use a higher rate and shorter interval under conditions that are conducive to high disease pressure. Do not exceed a maximum of 4 applications per year and a maximum of 140 g a.i./ha per year.

3. Control of powdery mildew (*Sphaerotheca fuliginea* syn. *Podosphaera xanthii*) on cucurbit vegetables (Crop Group 9) at a rate of 400–690 mL/ha (20.0–35.0 g a.i./ha) when applied to foliage during the seedling to the fruiting stage using broadcast ground equipment. Repeat applications at 7- to 14-day intervals. Within the stated ranges, use a higher rate and shorter interval under conditions that are conducive to high disease pressure. Do not exceed a maximum of 5 applications per year and a maximum of 175 g a.i./ha per year.

Appendix II Supplemental maximum residue limit information— International situation and trade implications

Flutianil is an active ingredient that is being registered in Canada for use on cucurbit vegetables (CG 9), cherries (CSG 12-09A), and grape (representative crop of the small fruit vine climbing, except fuzzy kiwifruit (CSG 13-07F)), as well as on imported strawberries (representative crop of the low growing berries (CSG 13-07G)), and apples. The MRLs proposed for flutianil in Canada are the same as corresponding tolerances in the United States.

The American tolerances for flutianil are listed in the <u>Electronic Code of Federal Regulations</u>, 40 CFR Part 180, by pesticide.

Currently, there are no Codex MRLs¹⁰ listed for flutianil in or on any commodity on the Codex Alimentarius <u>Pesticide Index</u> website.

¹⁰ The Codex Alimentarius Commission is an international organization under the auspices of the United Nations that develops international food standards, including MRLs.

References

A. List of studies/Information submitted by registrant

PMRA document number	References
1.0	Chemistry
2961707	2004, Determination of Appearance of OK-5203, DACO: 2.14.1,2.14.2,2.14.3
2961708	2007, OK-5203 Technical: Evaluation of Physico-Chemical Properties, DACO: 2.14.1.2.14.15.2.14.2.2.14.3.830.7000
2961709	2015, JUSTIFICATION Flutianil Technical: Stability to Metals and Metal Ions, DACO: 2 14 13
2961710	2014, Accelerated Storage Stability and Corrosion Characteristics of Flutianil Technical, DACO: 2.14.14.2.16
2961711	2014, Storage Stability and Corrosion Characteristics of Flutianil Technical, DACO: 2.14.14,2.16
2961712	2014, Physical and Chemical Characteristics of Flutianil Technical, DACO: 2.16
2961713	2004, Determination of the IR Absorption Spectrum of OK-5203, DACO: 2.13.2
2961714	2004, Determination of the UV/Vis Absorption Spectra of OK-5203, DACO: 2.14.12
2961715	2007, Ultraviolet-Visible (UV/VIS) Absorption Spectra of OK-5203 Pure, DACO: 2.14.12
2961716	2006, OK-5203 Pure: Determination of Infrared Spectrum, DACO: 2.14.12
2961717	2004, Determination of the Melting and Boiling Temperature of OK-5203 by Differential Scanning Calorimetry, DACO: 2.14.4,2.14.5
2961718	2007, Determination of Boiling Point of OK-5203 Pure, DACO: 2.14.5
2961719	2004, Determination of the Density of OK-5203, DACO: 2.14.6
2961720	2005, Determination of the Partition Coefficient (n-Octanol/Water) of OK-5203 at 3 pH Values, DACO: 2.14.11
2961721	2007, Partition Coefficient (n-Octanol/Water) of OK-5203 Pure, DACO: 2.14.11
2961722	2004, Determination of the Water Solubility of OK-5203 at 3 pH Values, DACO: 2.14.7
2961723	2006, Water Solubility of OK-5203 Pure, DACO: 2.14.7
2961724	2009, Measurement of Water Solubility of OC 53276 by Column Elution Method, DACO: 2.14.7
2961725	2009, Measurement of Water Solubility of OC 56574 by Column Elution Method, DACO: 2.14.7
2961726	2006, Solubility of OK-5203 Pure in Organic Solvents, DACO: 2.14.7,2.14.8
2961727	2010, OK-5203: Evaluation of Vapour Pressure, DACO: 2.14.9
2961728	2010, OC 56574: Evaluation of Vapour Pressure, DACO: 2.14.9
2961729	2008, Determination of Physico-Chemical Properties of OC 56635, DACO: 2.14.9
2961730	2010, OC 53276: Evaluation of Vapour Pressure, DACO: 2.14.9
2962000	2004, Determination of the 1H NMR Spectrum of OK-5203, DACO: 2.13.2
2962001	2004, Determination of the Mass Spectrum of OK-5203, DACO: 2.13.2

2985066	2019, DISSOCIATION CONSTANT JUSTIFICATION STATEMENT, DACO: 2.14.10
3089785	2020, Response to PMRA Letter Dated 12Nov2019 Supporting the Registration of the Following Submissions: Flutianil Technical Submission No. 2019-0595, Flutianil Import Tolerance Submission No. 2019-0598, Gatten - Submission No. 2019-0600, DACO: 2.11.3.2.13.3.2.13.4.2.15
3089786	2020, Flutianil Technical: Description of Materials Used to Produce the Product and Manufacturing Process for Commercial Production, DACO: 2.11.3 CBI
3089787	2019, Analytical Profile of Five Batches of Flutianil Technical, DACO: 2.13.3 CBI
3089788	2020, Preliminary Analysis Flutianil Technical Grade Technical Product 5-Batch Analysis, DACO: 2.13.1.2.13.3.2.13.4 CBI
3089789	2020, Method Validation of Analytical Method Number AM-2001: "Method for the Determination of [CBI removed] in Flutianil Technical Formulation", DACO: 2.13.1,2.13.3,2.13.4
3100247	2020, Response to PMRA Email Dated March 6, 2020 Supporting the Registration of the Following Submissions: Flutianil Technical Submission No. 2019-0595, DACO: 2.12 CBI
2961759	2014, Aerobic Aquatic Sediment Metabolism of [14C]Flutianil, DACO: 8.2.2.3.8.2.3.8.2.3.5.4
2961827	2010. [14C]-OK-5203: Fish Bioconcentration Study, DACO: 8.2.2.4.9.5.6
2961901	2015, Terrestrial Field Dissipation of Residues Following Application of Flutianil to Bare Soil, DACO: 8.2.2.1,8.3.2.2,8.3.2.3
2961915	2007, OK-5203: Validation of an Analytical Method for the Determination of Residues in Drinking Water and Surface Water, DACO: 8.2.2.3
2961920	2015, Independent Laboratory Validation of Analytical Method: "Determination of Flutianil and (OC56635, OC56574, OC53276, and OC53279) Metabolites in Water using LC-MS/MS", DACO: 8.2.2.3,9.5.2.1
2962044	2015, Validation of a Method for the Determination of Flutianil and Metabolites (OC56635, OC56574, OC56574, OC53276, and OC53279) in Surface and Ground Water, DACO: 8.2.2.3
2962250	2015, Flutianil 5EC: Product Identity and Disclosure of Ingredients, Description of Materials Used to Produce the Product, Production/Formulating Process, Discussion of Formation of Impurities, Certified Limits and Submittal of Samples, DACO: 3.1,3.2,3.2,1,3.2,2,3.2,3,3.3,1,3.4,3.4,1,3.4.2 CBI
2962251	2007, Validation of Analytical HPLC Method for the Determination of Active Substance Content in a Formulation Emulsifiable Concentrate (EC) Containing OK-5203, DACO: 3.4.1
2962252	2014, Flutianil 5% EC: Determination of Accelerated Storage Stability and Accelerated Corrosion Characteristics and Physical Chemical Properties, DACO: 3.5.1,3.5.10,3.5.14,3.5.2,3.5.3,3.5.5
2962253	2014, Flutianil 5% EC: Determination of Physico-Chemical Properties, DACO: 3.5,3.5.1,3.5.11,3.5.12,3.5.13,3.5.2,3.5.6,3.5.7,3.5.8,3.5.9
2962254	2014, Corrosion Characteristics of Flutianil 5% EC, DACO: 3.5.14
2962255	2013, Accelerated Corrosion Characteristics of Flutianil 5%EC, DACO: 3.5.14
2962275	2019, GATTEN Product Chemistry Evaluation Identity, Physical and Chemical Properties, Analytical Methods, DACO: 3.1,3.1.1,3.1.2,3.1.3,3.1.4,3.5.4 CBI

2994824	2015, Letter - Confidential Information for Inert Ingredients for Gatten, DACO: 3.2.1 CBI
2994825	2015, Letter - Confidential Information for Inert Ingredients for Gatten, DACO: 3.2.1 CBI
3100241	2020, Response to PMRA Email Dated March 6, 2020 Supporting the Registration of the Following Submissions: Gatten - Submission No. 2019-0600, DACO: 3.2.2
3100242	2020, Formulation Process Description of GATTEN (OK-5203 5EC), DACO: 3.2.2 CBI
2.0	Human and animal health
2961702	2012 Waiver Request 90-Day Dermal for Flutianil Technical DACO: 4.3.4
2961703	2012, Waiver Request 90-Day Inhalation for Flutianil Technical, DACO: 4.3.6.4.3.7
2961731	2008, Acute Oral Toxicity Study of OC 56635 in Rats (Fixed Dose Procedure), DACO: 4.2.1
2961733	2009, Acute Oral Toxicity Study with OC 63421 in Albino Rats, DACO: 4.2.1
2961735	2015, Flutianil Technical: Acute Oral Toxicity - Up-And-Down Procedure in Rats, DACO: 4.2.1
2961737	2015, Flutianil Technical: Acute Dermal Toxicity in Rats, DACO: 4.2.2
2961739	2007, OK-5203 Technical: Acute Inhalation Toxicity Study in the Rat, DACO: 4.2.3
2961741	2006, An Eye Irritation Study of OK-5203 Technical in Rabbits, DACO: 4.2.4
2961743 2961745	2006, A Skin Irritation Study of OK-5203 Technical in Rabbits, DACO: 4.2.5 2006, A Skin Sensitization Study of OK-5203 Technical in Guinea Pigs, DACO:
	4.2.6
2961922	2009, OK-5203 Technical: Repeated Dose 28-Day Oral Toxicity Study in Mice, DACO: 4.3.3
2961924	2009, OK-5203 Technical: Repeated Dose 28-Day Oral Toxicity Study in Rats, DACO: 4.3.3
2961926	2014, OK-5203: Historical Control Data in IET (Rat 28-Day and Rat 90-Day Data), DACO: 4.3.3
2961927	2009, Repeated-Dose (28 Day) Oral Toxicity Study with OC 63421 in Rats, DACO: 4.3.3
2961929	2009, OK-5203 Technical: 90-Day Repeated Dose Oral Toxicity Study in Mice, DACO: 4.3.1
2961931	2014, OK-5203: Historical Control Data in IET (Mouse 90-Day Data and Mouse Carcinogenicity Data), DACO: 4.3.1
2961932	2009, OK-5203 Technical: 90-Day Repeated Dose Oral Toxicity Study in Rats, DACO: 4.3.1
2961934	2006, A 28-Day Repeated Dose Oral Toxicity Study on OK-5203 Technical in Beagle Dogs, DACO: 4.3.8
2961936	2009, A 90-Day Repeated Dose Oral Toxicity Study on OK-5203 Technical in Beagle Dogs, DACO: 4.3.8
2961938	2008, OK-5203 Technical: 28-Day Dermal Administration Toxicity Study in the Rat with a 14-Day Treatment-Free Period, DACO: 4.3.5

2961940	2013, Flutianil Technical: Four-Week Inhalation Toxicity Study in Rats, DACO: 4.3.6.4.3.7
2961942	2005, Oral (Gavage) Dosage-Range Developmental Toxicity Study of OK-5203 Technical in Wistar Hannover GALAS Rats, DACO: 4.5.2
2961944	2006, Oral (Gavage) Developmental Toxicity Study of OK-5203 Technical in Wistar Hannover GALAS Rats, DACO: 4.5.2
2961946	2006, A Dose Range-Finding Prenatal Developmental Toxicity Study of OK-5203 Technical Grade in Rabbits, DACO: 4.5.3
2961948	2006, A Prenatal Developmental Toxicity Study of OK-5203 Technical Grade in Rabbits, DACO: 4.5.3
2961950	2009, Expert Report: A Prenatal Developmental Toxicity Study of OK-5203 Technical Grade in Rabbits, DACO: 4.5.3
2961951	2009, OK-5203 Technical: A Reproduction Toxicity Study in Rats. A Dose Range-Finding Study, DACO: 4.5.1
2961954	2009. OK-5203 Technical: A Reproduction Toxicity Study in Rats. DACO: 4.5.1
2961956	2009, A 52-Week Oral Toxicity Study of OK-5203 Technical in Beagle Dogs, DACO: 4.3.2
2961958	2014, OK: 5203: Historical Control Data at Bozo Research Center Inc. (Beagle Dog Data), DACO: 4.3.2
2961959	2009, OK-5203 Technical: Carcinogenicity Study in Mice, DACO: 4.4.3
2961961	2009, OK-5203 Technical: Combined Chronic Toxicity and Carcinogenicity Study in Rats, DACO: 4.4.4
2961963	2014, OK-5203: Historical Control Data in IET (Rat Chronic/Carcinogenicity and Reproduction Data), DACO: 4.4.4
2961966	2005, OK-5203 Technical: Reverse Mutation in Four Histidine-Requiring Strains of Salmonella typhimurium and One Tryptophan-Requiring Strain of Escherichia coli, DACO: 4.5.4
2961968	2008 Bacterial Reverse Mutation Test of OC 56635 DACO: 4.5.4
2961900	2010 Bacterial Reverse Mutation Test of OC 53276, DACO: 4.5.4
2961970	2005, OK-5203 technical: Mutation Test of OC 55270, DACO. 4.5.4 2005, OK-5203 technical: Mutation at the Thymidine Kinase (TK) Locus of Mouse Lymphoma L5178Y Cells (MLA) Using the Microtitre Fluctuation Technique, DACO: 4.5.5
2961974	2008, In vitro Mammalian Cell Gene Mutation Test of OC 56635 (L5178Y/TK+/- Mouse Lymphoma Assay), DACO: 4.5.5
2961976	2010, In vitro Mammalian Cell Gene Mutation Test of OC 53276 (L5178Y/TK+/- Mouse Lymphoma Assay), DACO: 4.5.5
2961978	2005, OK-5203 Technical: Induction of Chromosome Aberrations in Cultured Human Peripheral Blood Lymphocytes, DACO: 4.5.6
2961980	2010, Micronucleus Test in Bone Marrow Cells of the Mouse with Flutianil Technical, DACO: 4.5.7
2961982	2008. In vivo Micronucleus Test of OC 56635 in Mice. DACO: 4.5.7
2961984	2010. In vivo Micronucleus Test of OC 53276 in Mice. DACO: 4.5.7
2961986	2009. [14C]-OK-5203 - Preliminary Study of Absorption and Excretion in the
2701700	Rat, DACO: 4.5.9
2961989	2009, [14C]-OK-5203 - Absorption, Excretion and Metabolism in the Rat, DACO: 4.5.9

2961991	2012, [14C]-OK-5203: Tissue Distribution and Clearance in the Rat Following Single Dose Administration DACO: 4 5 9
2961993	2012, The Metabolism of [14C]-Flutianil in Intact and Bile Duct Cannulated Rats Following Oral Administration, DACO: 4.5.9
2961996	2019, [14C]-OK-5203: Absorption, Distribution, Metabolism and Excretion in the Rat Following Repeated Dose Administration, DACO: 4.5.9
2961997	2012, Flutianil: 4-Week Dietary Immunotoxicity Study in the Male Rat, DACO: 4.5.15,870.78
2962002	2007, Stability of OK-5203 Technical in Diet for Rodents, DACO: 4.2.9
2962042	2005, Validation of Analytical Method on OK-5203 in Diet, DACO: 4.2.9,4.3.8,4.4.5
2962056	2019, Flutianil Mammalian Toxicology Summary, DACO: 4.1
3205015	2021, Response to PMRA Email Dated 15February2021 Supporting the Registration of the Following Submissions: Flutianil Technical Submission No. 2019-0595, DACO: 4.4.4,4.5.2
3205016	2021, Historical control data on the incidences of hepatic cholangioma in Wistar Hannover rats [BrlHan:WIST@Jcl(GALAS)] from IET carcinogenicity studies, DACO: 4.4.4
3205017	2021, Historical Control - OTSB-0008- FR - Day21- January2004-2006, DACO: 4.5.2
3205018	2021, Historical Control - OTSB-0008-FR - Day21- January2005-2007, DACO: 4.5.2
3205019	2021, Historical Control - OTSB-0008-FR -Day21- January2006-2008, DACO: 4.5.2
3205020	2021, Historical Control - OTSB-0008-FR - Day21- January2007-2009, DACO: 4.5.2
3205021	2021, Historical Control - OTSB-0008-FR -Summary Table, DACO: 4.5.2
2962256	2015, Flutianil 5% EC: Acute Oral Toxicity - Up-And-Down Procedure in Rats, DACO: 4.6.1
2962258	2015, Flutianil 5% EC: Acute Dermal Toxicity in Rats, DACO: 4.2.6
2962260	2014, Flutianil 5% EC: Acute Inhalation (Nose Only) Study in the Rat, DACO: 4.6.3
2962262	2009, Eye Irritation of OK-5203 5%EC in Rabbits, DACO: 4.6.4
2962264	2009. Skin Irritation Study of OK-5203 5%EC in Rabbits, DACO: 4.6.5
2962266	2008, Skin Sensitization Study of OK-5203 5%EC in Guinea Pigs (Buehler Test), DACO: 4.6.6
2962211	2012, Waiver Request for 28-Day Dermal Toxicity Study for Flutianil 5%EC End Use Product, DACO: 4.7
2962273	2016, Dissipation of Dislodgeable Foliar Residues on Tree and Vine Fruit and Vegetable Crop Plants Following Application of Flutianil 5%EC, DACO: 5.9(A)
2961903	2009, [14C]-OK-5203: Metabolism in Grapes, DACO: 6.3
2961905	2009, [14C]-OK-5203: Metabolism in Apple, DACO: 6.3
2961907	2009, [14C]-OK-5203: Metabolism in Apple, DACO: 6.3
2961909	2009, [14C]-OK-5203: Metabolism in Lettuce, DACO: 6.3
3151572	2020, Data Table for Study number: 2554/001: OK-5203: Metabolism in grapes, DACO: 6.3

3151573	2020, Data Table for Study number: 2554/001: OK-5203: Metabolism in grapes, DACO: 6.3
3151574	2020, Data Table for Study number: 2554/001: OK-5203: Metabolism in grapes, DACO: 6.3
3151575	2020, Data Table for Study number: 2554/037: OK-5203: Metabolism in lettuce, DACO: 6.3
2962228	2014, Laboratory Radiovalidation of Methods for the Analysis of Flutianil in Apples, DACO: 7.2.1
2962220	2010, Validation of the Analytical Method DFG S 19 for the Determination of OK-5203 (Flutianil) in Plants using GC-MSD, DACO: 7.2.1
2962230	2015, Evaluation of OC-56635 FDA Multiresidue Method (MRM) Testing in Plants using Analytical Method DFG S 19, DACO: 7.2.1,7.2.2
2962222	2014, Flutianil: Independent Laboratory Validation of Methodology for the Determination of Residues of Flutianil in Plant Matrices, DACO: 7.2.1,7.2.3A
2962224	2014, Laboratory Validation of Methods for the Analysis of Flutianil and the Metabolite OC-56635 in Grapes, Raisins and Juice, DACO: 7.2.1
2962247	2015, Independent Lab Validation of Analytical Method: "Analysis of Flutianil and the Metabolite OC-56635 in Grapes, Raisins and Juice", DACO: 7.2.1
2962214	2006, OK-5203: Validation of an Analytical Method for the Determination of Residues in Grapes, Strawberries, Cucumbers and Apples, DACO: 7.2.1,7.2.2
2962218	2008, Independent Laboratory Validation of a Method (CLE 2554/019-01V) for the Determination of OK-5203 in Grape and Cucumber, DACO: 7.2.1,7.2.3A
2962216	2008, OK-5203: [14C] Radio-Validation of Analytical Method 2554/019-01V for the Extraction and Determination of Residues in Cucumbers and Apples, DACO: 7.2.1.7.2.3B
2962233	2009, OK-5203: Storage Stability of Residues in Field Incurred Grapes and Laboratory Fortified Apples Stored Frozen for Up to 12 Months, DACO: 7.3,8.3.3.2
2962235	2014, Evaluation of the Freezer Storage Stability of Flutianil and the Metabolite OC-56635, DACO: 7.3,8.3.3.2
2962239	2012, Flutianil (V-10118): Magnitude of the Residue on Squash (Summer), DACO: 7.4.1
2962241	2012, Flutianil (V-10118): Magnitude of the Residue on Cucumber, DACO: 7.4.1
2962245	2012, Flutianil: Magnitude of the Residue on Strawberry, DACO: 7.4.1
2962269	2012, Flutianil: Magnitude of the Residue on Cherry, DACO: 7.4.1
2962237	2012, Flutianil: Magnitude of the Residue on Apple, DACO: 7.4.1.7.4.2
2962243	2008, V-10118: Magnitude of the Residue on Cantaloupe, DACO: 7.4.1,7.4.2
2962271	2014, Raw Agricultural Commodity (RAC) and Processed Commodity (PC) Residue Evaluation of Flutianil Applied to Grapes DACO: 7.4.1.7.4.2
2962212	2014, Confined Accumulation of 14C-Flutianil in Rotational Crops in Georgia, DACO: 7.4.3
3151576	2018, Accumulation of Flutianil in Field Rotational Crops in California and Georgia, DACO: 7.4.4

3.0 Environment

2961901	2015, Terrestrial Field Dissipation of Residues Following Application of Flutianil
2061750	to Bare Soll, DACO: 8.2.2.1,8.5.2.2,8.5.2.5
2901739	8.2.2.2.8.2.2.3.8.2.3.5.4
2961915	2007. OK-5203: Validation of an Analytical Method for the Determination of
	Residues in Drinking Water and Surface Water, DACO: 8.2.2.3
2962044	2015. Validation of a Method for the Determination of Flutianil and Metabolites
	(OC56635, OC56574, OC56574, OC53276, and OC53279) in Surface and
	Ground Water, DACO: 8.2.2.3
2961920	2015, Independent Laboratory Validation of Analytical Method: Determination of
	Flutianil and (OC56635, OC56574, OC53276, and OC53279) Metabolites in
	Water using LC-MS/MS, DACO: 8.2.2.3,9.5.2.1
2961827	2010, [14C]-OK-5203: Fish Bioconcentration Study, DACO: 8.2.2.4,9.5.6
2961747	2009, [14C]-OK-5203: Hydrolytic Stability, DACO: 8.2.3.2
2961753	2009, [14C]-OK-5203: Photodegradation on a Soil Surface, DACO: 8.2.3.3.1
2961749	2009, [14C]-OK-5203: Photodegradation and Quantum Yield in Sterile, Aqueous
	Solution, DACO: 8.2.3.3.2
2961751	2010, The Estimation of the Half-Life of Flutianil in the Atmosphere, DACO:
	8.2.3.3.3
2961755	2014, [14C] Flutianil: Aerobic Transformation in Soil, DACO: 8.2.3.4.2
2961757	2014, [14C] Flutianil: Anaerobic Soil Metabolism, DACO: 8.2.3.4.4
2962008	2009, [14C]-OK-5203: Degradation and Retention in Water-Sediment Systems,
	DACO: 8.2.3.5.5,8.2.3.5.6
2961761	2014, Anaerobic Aquatic Sediment Metabolism of [14C]Flutianil, DACO:
	8.2.3.5.6
2961763	2009, [14C]-OK-5203: Adsorption/Desorption in Soil, DACO: 8.2.4.2
2961765	2010, OC 53276: Adsorption/Desorption Study in Three Soils, DACO: 8.2.4.2
2961767	2010, OC 56574: Adsorption/Desorption Study in Three Soils, DACO: 8.2.4.2
2961769	2010, OC 56635: Adsorption/Desorption Study in Three Soils, DACO: 8.2.4.2
2985067	2019, Summary Storage, Disposal and Decontamination (TGAI and EP), DACO:
20(2024	
2962024	2010, OK-5203: Determination of the Effects on Reproduction in the Earthworm E_{i}^{i}
20(202)	Eisenia jetiaa, DACU: 9.2.3
2962026	2011, OC 532/6: Determination of the Effects on Reproduction in the Earthworm
2062012	Elsenia Jeliaa, DACO: 9.2.3
2962012	2008, OK-5205 Technical: Acute Toxicity to the Earthworm <i>Elsenia jettaa</i> ,
2062014	DACU: 9.2.3.1 2010 OC 56625: A outo Tovicity to the Earthwarm Figuria fatida DACO: 0.2.2.1
2902014	2010, OC 50055. Acute Toxicity to the Earthworm Eisenia fetida, DACO: 9.2.3.1 2010, OC 56574: A oute Toxicity to the Earthworm Eisenia fetida, DACO: 9.2.3.1
2902020	2010, OC 50574. Acute Toxicity to the Earthworm Eisenia fetida, DACO: 9.2.3.1 2010, OC 53276: Acute Toxicity to the Earthworm Eisenia fetida, DACO: 9.2.3.1
2902022	2010, OC 55270. Acute Toxicity to the Earthworm Elsenia Jenua, DACO. 5.2.5.1 2000, OK 5203.5% EC: Acute Contact and Oral Toxicity to Honeybees, DACO:
2702040	9 2 4 1
2961850	2009 OK-5203 Technical: Acute Contact and Oral Toxicity to Honeybees
_>01000	DACO: 9.2.4.1,9.2.4.2

2961852	2015, Flutianil 5% EC: Honey Bee (<i>Apis mellifera</i> L.) Larval Toxicity Test (Single Exposure), DACO: 9.2.4.3
2961854	2015, Flutianil Formulation: Honey Bee (<i>Apis mellifera</i> L.) Larval Toxicity Test (Repeated Feeding Exposure), DACO: 9.2.4.3
2962018	2016, Flutianil 22-Day Survival of Honey Bee Larvae, <i>Apis mellifera</i> L., During an In Vitro Exposure, DACO: 9.2.4.3
2961857	2015, Flutianil Formulation: Assessment of Effects on the Adult Honey Bee, <i>Apis</i> <i>mellifera</i> L., in a 10 Day Chronic Feeding Test under Laboratory Conditions Using a Limit Test, DACO: 9.2.4.4
2962028	2019, Flutianil 5EC: Acute Toxicity to <i>Typhlodromus pyri</i> in the Laboratory, DACO: 9.2.5
2962030	2018, Flutianil 5EC: Acute Toxicity to <i>Aphidius rhopalosiphi</i> in the Laboratory, DACO: 9.2.6
2962032	2010, OC 53276: Determination of the Effects on Reproduction of the Collembolan <i>Folsomia candida</i> , DACO: 9.2.7
2961771	2010, OK-5203: Acute Toxicity to Daphnia magna, DACO: 9.3.2
2961775	2009. OC 56635: Acute Toxicity to Danhnia magna, DACO: 9.3.2
2961777	2010 OC 56574: Acute Toxicity to Daphnia magna, DACO: 9.3.2
2961770	2010, OC 53276: Acute Toxicity to Daphnia magna, DACO: 9.3.2
2)01772	2016, OC 55276. Acute Toxicity to Daphila magna, DACO. 7.5.2
2901773	2000, Acute minibilization Test of OK-5205 Technical Orace to Duphnia
00(1501	magna, DACO: 9.3.2
2961781	2007, Acute immobilisation test of Flutianil 5%EC to <i>Daphnia magna</i> , DACO: 9.3.2
2961817	2010, OK-5203: Chronic Effects in <i>Daphnia magna</i> , DACO: 9.3.3
2961819	2010, Daphnia magna, Reproduction Test with OC 56635 (Semi-Static), DACO: 9.3.3
2961829	2010, OK-5203: Sediment-Water <i>Chironomus riparius</i> Toxicity Test using Spiked Sediment, DACO: 9.3.4
2961831	2014, Flutianil - 42-Day Toxicity Test Exposing Freshwater Amphipods (<i>Hyalella azteca</i>) to a Test Substance Applied to Sediment Under Static Renewal Conditions Following EPA Test Methods, DACO: 9.3.4
2961787	2013, Flutianil - Acute Toxicity to Mysids (<i>Americamysis bahia</i>) Under Flow- Through Conditions, Following OCP Draft Guideline 850.1035, DACO: 9.4.2
2961789	2015, Acute Toxicity to Mysids (<i>Americamysis bahia</i>) Under Flow-Through Conditions Using Flutianil 5EC, DACO: 9.4.2
2962016	2016, Flutianil: A Life Cycle Toxicology Test with the Marine Amphipod (<i>Leptocheirus plumulosus</i>) using Spiked Sediment, DACO: 9.4.2
2961783	2013, Flutianil - Acute Toxicity to Eastern Oyster (<i>Crassostrea virginica</i>) Under Flow-Through Conditions, Following OCP Draft Guideline 850.1025, DACO: 9.4.4
2961785	2015, 5% EC Formulation of Flutianil - Acute Toxicity to Eastern Oyster (<i>Crassostrea virginica</i>) Under Flow-Through Conditions, Following OCP Guideline 850.1025, DACO: 9.4.4
2961821	2015, Flutianil: A Flow-through Life-cycle Toxicity Test with the Saltwater Mysid (<i>Americanysis bahia</i>), DACO: 9.4.5
2962010	2010, Rainbow Trout, Juvenile Growth Test - 28 Days with OC 56635 (Semi-Static), DACO: 9.5.2.1

2961791	2009, OK-5203: Acute Toxicity to Oncorhynchus mykiss, DACO: 9.5.2.2
2961795	2010. OK-5203: Acute Toxicity to <i>Pimenhales promelas</i> . DACO: 9.5.2.2
2961799	2009 OC 56635: Acute Toxicity to <i>Oncorhynchus mykiss</i> DACO: 9.5.2.2
2961801	2009, OC 56635: Acute Toxicity to <i>Pimenhales promelas</i> DACO: 9.5.2.2
2961803	2010 OC 56574: Acute Toxicity to Oncorbynchus mykiss DACO: 9.5.2.2
2961805	2010, OC 53276: Acute Toxicity to Oncorhynchus mykiss, DACO: 9.5.2.2
2061807	2010, OC 55270. Actic Toxicity to Oncornynchus myniss, DACO.).5.2.2 2012 Elutionil Acute Toxicity to Shoonshood Minnow (Cupring don yariagatus)
2901807	Under Flow-Through Conditions, Following OCP Draft Guideline 850.1075,
2061912	DACO: 9.5.2.2 2015 59/ EC Ecomovilation of Elutionil A outo Toxicity to Shoonshood Minnow
2901815	(Curring day agrices the) Under Flow Through Conditions, Fallowing OCD Droft
	(<i>Cyprinodon variegalus</i>) Onder Flow-Through Conditions, Following OCF Drait
2061702	Ourdenne 850.1075, DACO: 9.5.2.2
2901795	(Oncorburchus multice) DACO: 0.5.2.2
2061707	(Oncornynchus mykiss), DACO: 9.5.2.2 2006 A sute Texisity Test of OV 5202 T.C. to Comp (Cupring agaptic), DACO:
2901797	9.5.2.2
2961809	2007, Acute Toxicity Test of OK-5203 5%EC to Rainbow Trout (Oncorhynchus
	<i>mykiss</i>), DACO: 9.5.2.2
2961811	2007, Acute Toxicity Test of OK-5203 5%EC to Carp (Cyprinus carpio), DACO:
	9.5.2.2
2961815	2015, Flutianil: A 96-Hour Flow-Through Acute Toxicity Test with the Fathead
	Minnow (Pimphales promelas), DACO: 9.5.2.2
2961823	2010, OK-5203: Fish Early Life Stage Testing Pimephales promelas, DACO:
	9.5.3.1
2961825	2015, Flutianil: An Early Life-Stage Toxicity Test with the Sheepshead Minnow
	(Cyprinodon variegatus), DACO: 9.5.3.1
2961834	2006, OK-5203: An Acute Oral Toxicity Study with the Northern Bobwhite,
	DACO: 9.6.2.1
2961834	2006, OK-5203: An Acute Oral Toxicity Study with the Northern Bobwhite,
	DACO: 9.6.2.1
2961841	2007, Analytical Method Verification for the Determination of OK-5203 in Avian
	Diet, DACO: 9.6.2.1,9.6.2.2,9.6.2.3,9.6.2.4,9.6.2.5
2961837	2013, Flutianil: An Acute Oral Toxicity Study with the Zebra Finch, DACO:
	9.6.2.3
2961842	2011, OK-5203: A Dietary LC50 Study with the Northern Bobwhite, DACO:
	9.6.2.4
2961839	2006, OK-5203: A Dietary LC50 Study with the Mallard, DACO: 9.6.2.5
2961846	2009, A Reproduction Study with the Northern Bobwhite Quail, DACO: 9.6.3.1
2961848	2007, A Reproductive Study with the Mallard, DACO: 9.6.3.2
2961870	2010, OK-5203: Inhibition of Growth to the Alga <i>Pseudokirchneriella</i>
	subcanitata, DACO: 9.8.2.9.8.3
2961874	2009. OC 56635: Inhibition of Growth to the Alga <i>Pseudokirchneriella</i>
	subcanitata, DACO: 9.8.2.9.8.3
2961878	2010, OC 56574: Inhibition of Growth to the Alga <i>Pseudokirchneriella</i>
_/ 010/0	subcanitata, DACO: 9.8.2.9.8.3
2961882	2010, OC 53276: Inhibition of Growth to the Alga <i>Pseudokirchneriella</i>
0100	subcanitata. DACO: 9.8.2.9.8.3
	Sucception, 21200, 710-2,71010

2961867	2007 Growth Inhibition Test of OK-5203 Technical with the Freshwater Green
2901007	Alga, <i>Pseudokirchneriella subcapitata</i> , DACO: 9.8.2.9.8.3
2961886	2007, Growth Inhibition Test of OK-5203 5% EC with the Freshwater Green
	Alga, Pseudokirchneriella subcapitata, DACO: 9.8.2,9.8.3
2961890	2015, Flutianil 5% EC: A 96-Hour Toxicity Test with the Freshwater Alga
	(Pseudokirchneriella subcapitata), DACO: 9.8.2,9.8.3
2961894	2014, Flutianil 5% EC: A 96-Hour Toxicity Test with the Marine Diatom
	(Skeletonema costatum), DACO: 9.8.2,9.8.3
2961897	2014, Flutianil 5% EC: A 96-Hour Toxicity Test with the Freshwater Diatom
	(Navicula pelliculosa), DACO: 9.8.2,9.8.3
2961899	2014, Flutianil 5% EC: A 96-Hour Toxicity Test with the Cyanobacteria
	(Anabaena flos-aquae), DACO: 9.8.2,9.8.3
2961860	2015, Flutianil 5% EC: A Toxicity Test to Determine the Effects on Seedling
	Emergence of Ten species of Plants, DACO: 9.8.4
2961862	2015, Flutianil 5% EC: A Toxicity Test to Determine the Effects on Vegetative
	Vigor of Ten species of Plants, DACO: 9.8.4
2961864	2014, Flutianil 5% EC: A 7-Day Static-Renewal Toxicity Test with the Duckweed
	(Lemna gibba G3), DACO: 9.8.5
4.0	Value
2962278	2005, Efficacy Trial Report for Flutianil on Apple, DACO: 10.2.3.3(D),10.3.2(B)

2702270	2005, Efficiely That Report for Flatamin on Apple, Direct. $10.2.5.5(D)$, $10.5.2(D)$
2962279	2005, Efficacy Trial Reports for Flutianil on Cantaloupe, DACO:
	10.2.3.3(D),10.3.2(B)
2962280	2005, Efficacy Trial Reports for Flutianil on Cherry, DACO:
	10.2.3.3(D),10.3.2(B)
2962284	2004, Evaluation of V-10118 for Control of Foliar Diseases in Pumpkins, DACO:
	10.2.3.3(D),10.3.2(B)
2962285	2005, Evaluation of fungicides for the control of powdery mildew of pumpkin,
	2005., DACO: 10.2.3.3(D),10.3.2(B)
2962286	2007, Evaluation of fungicides for the control of powdery mildew of pumpkin,
	2007, DACO: 10.2.3.3(D),10.3.2(B)
2962287	2004, Evaluation of fungicides for the control of powdery mildew of pumpkin,
	2004, DACO: 10.2.3.3(D),10.3.2(B)
2962288	2005, Efficacy Trial Reports for Flutianil on Grape, DACO:
	10.2.3.3(D),10.3.2(B)
2962289	2004, Efficacy Trial Reports for Flutianil on Summer Squash, DACO:
	10.2.3.3(D),10.3.2(B)
2962292	2004, Experimental fungicides compared to fungicides registered for managing
	powdery mildew of winter squash, 2004., DACO: 10.2.3.3(D),10.3.2(B)
2962293	2005, Experimental fungicides compared to fungicides registered for managing
	powdery mildew of winter squash, 2005., DACO: 10.2.3.3(D),10.3.2(B)
2962294	2004, Evaluation of fungicides and a plant defense booster for the control of
	powdery mildew of winter squash. 2004., DACO: 10.2.3.3(D),10.3.2(B)
2962295	2005, Evaluation of fungicides for the control of powdery mildew on winter
	squash, 2005, DACO: 10.2.3.3(D),10.3.2(B)

B. Additional information considered

i) Published information

1.0 Human and animal health

3227602 USEPA, 1991. Alpha 2u-Globulin: Association with Chemically Induced Renal Toxicity and Neoplasia in the Male Rat. EPA/625/3-91/019F, US Environmental Protection Agency, Washington, DC, DACO: 4.8