

Evaluation Report for Category B, Subcategory 5.0 Application

Application Number:	2009-2003			
Application:	3.11 - New Pests			
	3.12 - New Host			
Product:	Mesotrione Technical Herbicide			
Registration Number:	27831			
Active ingredients (a.i.):	Mesotrione (MER)			
PMRA Document Number English PDF: 2027120				

Purpose of Application

The purpose of this application was to establish MRLs for mesotrione on/in various imported commodities.

Health Assessments

Residue data for mesotrione in/on asparagus, berries, cereal grains, rhubarb and sugarcane from trials conducted in NAFTA representative regions were submitted to support the establishment of maximum residue limits (MRLs) on asparagus, bushberry subgroup, flaxseed, millet, oats, popcorn grain, rhubarb, sorghum and sugarcane. Residue data on field corn previously reviewed (Regulatory Note: Mesotrione and Callisto 480SC Herbicide, REG2005-02) were re-assessed in the context of the current application for the import MRL on popcorn grain. In addition, processing studies in treated flax, oats and sugar cane were assessed to determine the potential for concentration of residues of mesotrione into processed commodities.

MRL Recommandations

Following an assessment of the available information, Maximum Residue Limits to cover residues of mesotrione in/on the various imported commodities have been established as shown in Table 1.

Commodity	Application Method/ Total Application Rate (g a.e./ha)	PHI (days)	Residues (ppm)		Mean Experimental	Currently Established	Recommend ed MRL
			Min	Max	Processing Factor	MRL	
Asparagus	Pre-emergence, soil surface spray/ 267-280 (representative of US GAP)	8-26	<0.01	<0.01	Processing study not required	None	0.01
Blueberry (representativ e crop of the	Pre-bloom directed spray/ 102-110	32-88	<0.01	<0.01 Processing study not required	Processing study not required	An MRL of 0.01 ppm has been proposed	-
Bush berry Crop Subgroup, Crop Subgroup 13-07B)	Pre-bloom directed spray/ 209-216 (representative of the US GAP)	32-88	<0.01	<0.01		proposed	
Flax, seed	At-planting, soil surface/ 105-106	89- 170	<0.01	<0.01	Residues of mesotrione were <loq (<0.01<br="">ppm) in flax seed and meal treated post- emergence at exaggerated rates.</loq>	None	0.01
	At-planting, soil surface/ 208-211 (representative of US GAP)	89- 170	<0.01	<0.01			
	Post-emergence, over-the-top/105- 107	46- 130	<0.01	<0.01			
Grain sorghum, grain	At-planting, soil surface/ 224 (representative of US GAP)	NA	<0.01	<0.01	Residues of mesotrione were <loq (<0.01<br="">ppm) in sorghum grain and aspirated</loq>	None	0.01

TABLE 1.Summary of Field Trial and Processing Data Used to Establish Maximum
Residue Limit(s) (MRLs)

			Residues (ppm)				
	At-planting, pre- plant incorporated/ 224	NA	<0.01	<0.01			
	Post-emergence, over the top/ 224	69- 111	<0.01	<0.01			
Oat, grain	At-planting, soil surface/ 208-216 (representative of US GAP)	NA	<0.01	<0.01	The processed commodities (hulls, groats, rolled oats, bran and flour) were not analyzed	None	0.01
	Post-emergence, over-the-top/ 103-108 (representative of US GAP)	49-54	<0.01	<0.01	since residues of mesotrione were <loq (<0.01<br="">ppm) in grain treated at exaggerated rates post- emergence</loq>		
Millet, grain	At-planting, soil surface/ 104-110	84- 132	<0.01	<0.01	Processing study not required	None	0.01
	At-planting, soil surface/ 209-218 (representative of US GAP)	84- 132	<0.01	<0.01			
	Post-emergence, over-the-top/ 104-109	61- 113	< 0.01	< 0.01			
Rhubarb petiole/stems	Pre-emergence, soil surface spray/ 202-217 (repsentative of US GAP)	42	<0.01	<0.01	Processing study not required	None	0.01
	Pre-emergence, soil surface spray/ 337-351	42	< 0.01	< 0.01			

			Resi (pp	dues om)																											
Sugarcane	At-planting, soil surface + post- emergence, over,- the-top/ 356-403	114	<0.01	<0.01	The processed commodities (refined sugar and molasses) were not analyzed since residues of mesotrione were <loq (<0.01<br="">ppm) in sugarcane treated at exaggerated rates post- emergence</loq>	The processed commodities (refined sugar and molasses) were not analyzed since	None	0.01																							
	At-planting, soil surface + post- emergence, direct/ 364-390 (representative of US GAP)	100	<0.01	<0.01																											
P ove en P ove en P ove en	Post-emergence, over-the-top + post- emergence direct/ 206-226	100	<0.01	<0.01																											
	Post-emergence, over-the-top + post- emergence direct/ 659	100	<0.01	<0.01																											
	Post-emergence, over-the-top + post- emergence direct/ 1040-1100	100	<0.01	<0.01																											

Chemistry Assessment

A chemistry assessment was not required for this application since mesotrione is already registered in Canada.

Value and Environmental Assessments

Value and Environmental assessments were not required for this application.

Conclusion

Following the review of all available data, MRLs of 0.01 ppm for asparagus, flaxseed, pearl millet, proso millet, oats, popcorn grain, rhubarb, sorghum and sugarcane is recommended to cover residues of mesotrione. Residues of mesotrione at the recommended MRLs will not pose an unacceptable risk to any segment of the population, including infants, children, adults and seniors.

References

1767399	2006, Mesotrione - Magnitude of the Residues in or on Rhubarb, DACO: 7.4.1, 7.4.2
1767403	2005, Mesotrione - Magnitude of the Residues in or on Millet, DACO: 7.4.1, 7 .4.2
1767405	2005, Mesotrione - Magnitude of the Residues in or on Berry, Group 13, DACO: 7.4.1, 7.4.2
1767407	2005, Mesotrione - Magnitude of the Residues in or on Oats, Including Processed Commodities, DACO: 7.4.1, 7.4.2
1767409	2005, Mesotrione - Magnitude of the Residues in or on Flax and Processed Commodities, DACO: 7.4.1, 7.4.2
1767412	2006, Mesotrione - Magnitude of the Residues in or on Asparagus, DACO: 7.4.1, 7.4.2
1767414	2006, Mesotrione - Magnitude of the Residues in or on Sorghum, DACO: 7.4.1, 7.4.2
1767416	2006, Mesotrione - Magnitude of the Residues in or on Sugarcane, DACO: 7.4.1, 7.4.2
1864320	2010, Rationale for Plant Metabolism of Mesotrione and Definition of Residue- Mesotrione Technical Herbicide, DACO: 6.3
1864321	2003, [Cyclohexane-2-14C] Mesotrione: Nature of the Residue in Peanuts – Mesotrione Technical Herbicide, DACO: 6.3
1864322	2003, [Phenyl-U-14C] Mesotrione: Nature of the Residue in Peanuts - Mesotrione Technical Herbicide, DACO: 6.3
1890323	2006, Stability of Mesotrione Residues in Blueberry, Asparagus, Sugarcane and Okra Under Freezer Storage Conditions, DACO: 7.3

ISSN: 1911-8082

Her Majesty the Queen in Right of Canada, represented by the Minister of Public Works and Government Services Canada 2011

All rights reserved. No part of this information (publication or product) may be reproduced or transmitted in any form or by any means, electronic, mechanical photocopying, recording or otherwise, or stored in a retrieval system, without prior written permission of the Minister of Public Works and Government Services Canada, Ottawa, Ontario K1A 0S5.