

Evaluation Report for Category B, Subcategory 2.1,2.3,2.4,3.1,3.11,3.12 Application

Application Number:	2020-0611
Application:	New End-Use Product: Product Chemistry, Application Rates,
	New Pests, New Site
Product:	Ultim Fungicide
Registration Number:	34127
Active ingredient (a.i.):	Copper (present as copper hydroxide)
PMRA Document Numbe	er : 3224161

Purpose of Application

The purpose of this application was to register a new seed treatment (USC 10) end-use product, Ultim Fungicide, for use against seed rot/pre-emergence damping off, post-emergence damping off, seedling blight and root rot (*Pythium* spp.) on corn (sweet, field and seed), spinach, and pea (dry and succulent).

Chemistry Assessment

Ultim Fungicide is formulated as a wettable powder containing elemental copper present as copper hydroxide at a concentration of 50%. This end-use product has a bulk density of 0.476-0.669 g/mL and pH of 7-9. The required chemistry data for Ultim Fungicide have been provided, reviewed and found to be acceptable.

Health Assessments

In rats, Ultim Fungicide is slightly acutely toxic by the oral route, but of low acute toxicity by the dermal route and moderately acutely toxic by the inhalation route. It is severely irritating to the eyes and mildly irritating to skin in rabbits. Ultim Fungicide is not a potential skin sensitizer in guinea pigs.

Occupational risk to individuals handling Ultim Fungicide is acceptable when the product is used according to label directions. Precautionary, personal protective equipment and directions for use statements on the product label aimed at mitigating user exposure are adequate to protect individuals from any potential risk due to occupational exposure.

Elemental copper (cupric ion) in copper-containing pesticides is not degraded; therefore, there are no degradates or metabolites of concern. There is no concern for dietary exposure and dietary risk from food and drinking water is acceptable.

Environmental Assessment

The PMRA reviewed new pollinator data and conducted a risk assessment for aquatic organisms, birds, mammals, and pollinators for Ultim Fungicide. The review of new pollinator data showed that copper, dosed as copper hydroxide, is practically non-toxic to adult and larval honeybees on an acute basis. The risk assessment found that environmental risks are acceptable when Ultim Fungicide is used according to the label.

Pollinators

A total of five new pollinator studies were submitted for review, addressing adult bee acute contact and oral toxicity, adult bee chronic toxicity, and bee larvae toxicity. The new data was reviewed and used to conduct a pollinator risk assessment according to the <u>Guidance for</u> <u>Assessing Pesticide Risks to Bees</u>.

Ultim Fungicide containing copper hydroxide is not systemic. Therefore, pollinators are not expected to be exposed to residues of Ultim Fungicide in the pollen and nectar of plants grown from treated seed. Pollinators may be exposed to Ultim Fungicide contaminated dust generated from corn seeding equipment. Spinach and peas are planted with different seeding equipment that does not generate dust, thus, pollinators are not expected to be exposed to Ultim Fungicide residues in dust from seed-treated spinach or pea.

A conservative approach was taken to assess the risk to pollinators from dust generated from corn seed planting equipment. A foliar screening level risk assessment was conducted using the Ultim Fungicide corn seed treatment application rate (see Table 1). The screening level risk was not exceeded for acute adult or larval endpoints, or for the chronic larval endpoint. A screening level risk was identified for adult chronic exposure. Since the risk was based on a conservative foliar screen, and chronic dust-off exposure to adult pollinators is expected to be lower than exposure from direct foliar application the chronic risk to adult pollinators from the use of Ultim Fungicide as a seed treatment was determined to be acceptable.

Birds and Mammals

A conservative approach was taken to assess the risk to birds and mammals, as they may consume seeds treated with Ultim Fungicide. Bird and mammal toxicity endpoints used were from the re-evaluations for copper (PRVD2009-04 / RVD2010-05 and PRVD2016-04 / RVD2016-09) or from the US EPA RED (EPA 738-R-06-020; July 2006). The maximum proposed application rate for each seed type was used for the screening level risk assessment (RA).

Risk quotients (RQs) exceed the level of concern (LOC) for acute and chronic risk to all size classes of birds and mammals (Table 2). The potential for exposure to Ultim Fungicide treated seeds is likely much lower as seeds are not the only component of a bird or mammal's diet and not all seeds are equally palatable to all birds and mammals. As well, a small fraction of the applied treated seeds would be available for consumption due to the incorporation of seeds into the soil at planting and subsequent seed germination times (typically 3 to 7 days for corn, pea and spinach seeds in optimal conditions). In addition, the re-evaluation noted that animals repeatedly exposed to sublethal levels of copper may undergo enzymatic adaptation which allows them to cope with greater levels of exposure.

Label guidance, including hazard statements and the requirement to incorporate or clean up any

spilled or exposed seeds, are required to mitigate risk to birds and mammals from the seed treatment use of Ultim Fungicide.

Aquatic Organisms

A conservative approach was taken to assess the risks to aquatic organisms. The toxicity endpoints and risk assessment methods used for this risk assessment were the same as those used by the PMRA during the re-evaluation for copper. During the re-evaluation, the PMRA used the Biotic Ligand Model (BLM) to adjust the most sensitive toxicity values for freshwater invertebrates and fish, thus, a genus mean acute value (GMAV) was used for freshwater invertebrate and fish acute toxicity endpoints. The BLM was not applied to endpoints for freshwater plants and estuarine/marine organisms. The maximum application rate (0.323 kg Cu/ha) resulted in an expected environmental concentration (EEC) of 1.11 µg Cu/L.

RQs slightly exceeded the LOC for freshwater algae and estuarine/marine invertebrates (Table 3). The potential for exposure to Ultim Fungicide is likely much lower due to the conservative assumptions made by the model used to generate the EEC. The assumptions that led to a risk that exceeded the level of concern included:

- Using the minimum reported K_d in sandy soil
- Assuming that copper hydroxide immediately converts to dissolved copper in water
- Modelling assumed runoff to a static pond

However, under realistic field conditions, a higher range of K_d values are available depending on the soil type, copper is highly reactive in water and has a demonstrated affinity for binding to sediment and organic matter, and most water bodies of concern have inflows and outflows that move water in and out of a system. Therefore, the elevated concentrations that lead to a risk would likely not persist on a chronic basis.

Considering the RQs and conservative assumptions underlying the exposure estimates, the risk to aquatic organisms from the use of Ultim Fungicide is acceptable.

Exposure	Endpoint value(s) (µg Cu/bee/day)	Estimated Dose ¹	RQ	LOC exceeded? ²	PMRA#
		(μg Cu/bee/day)			
Adult –	72 hr LD ₅₀ : 16	0.72	0.045	No	<u>3101540</u>
acute oral	96 hr LD ₅₀ : 16				
Adult – acute	72 hr LD ₅₀ : 42	0.06	< 0.01	No	<u>3101539</u>
contact	96 hr LD50: 35				

Table 1. Endpoints and Risk Assessment for Honeybee Exposed to Copper Hydroxide.

Adult –	Survival:	0.72	2.56	Yes	3101542
chronic	NOED: 0.28				
	LOED: 0.46				
	LD ₅₀ : 0.47				
	Survivor weight:				
	NOED: ≥0.68				
	LOED: >0.68				
	ED ₅₀ : >0.68				
Larva – acute	72 hr LD ₅₀ : 30	0.01	0.01	No	<u>3101544</u>
(single					
exposure)					
Larva –	<u>3-8 day larval survival</u> :	0.023	0.023	No	<u>3101542</u>
chronic	NOED: 13				
(repeat	LOED: 24				
exposure)	LD ₅₀ : 35				
	<u>8-22 day pupal</u>				
	<u>survival</u> :				
	NOED: 24				
	LOED: 49				
	LD ₅₀ : 35				
	<u>3-22 day adult</u>				
	emergence:				
	NOED: 13				
	LOED: 24				
	LD ₅₀ : 33				
	Weight at emergence:				
	NOED: ≥49				
	LOED: >49				
	ED ₅₀ : >49				

Most sensitive endpoints used in screening level risk assessment are in **bold**.

¹ Estimated dose = corn application rate [25 g Cu/ha] x adjustment factor. Adjustment factors are 2.4, 28.6, and 12.15 μ g a.i./bee per kg a.i./ha for adult bee contact exposure, adult bee oral exposure, and larval exposure, respectively.

²LOC for bees is set at 0.4 for acute endpoints and 1.0 for chronic endpoints.

Table 2. Endpoints and Risk Assessment for Birds and Mammals Exposed to Copper Complexes

 Converted to Elemental Copper.

Test	European Endpoint European Value		RQs: Peas & Sweet corn			RQs: Spinach		
Species	Exposure	(mg Cu/kg bw/day)	Smal 1	Med	Large	Smal 1	Med.	Large
Birds								
Bobwhite quail	Acute Oral ¹	LD ₅₀ : 98	42.5	33.4	9.7	131	103	30
Bobwhite quail	Chronic ²	NOAEL: 58	7.2	5.6	1.6	22.2	17.4	5.1

Mammals								
Rat	Acute Oral ¹	LD ₅₀ : 114	4.6	4.0	2.2	14.2	12.2	6.7
Mink	Chronic ¹	NOAEL: 11.7	20.3	17.5	9.6	62.8	54.0	29.7

Note a 22% absorption factor was used to adjust acute mammalian RQs as per PRVD2009-04 / RVD2010-05.

¹ Copper dosed as copper sulfate pentahydrate

² Copper dosed as copper oxychloride sulfate

Table 3. Endpoints and Risk Assessment for A	quatic Organisms Ex	posed to Copper Hydroxide.
--	---------------------	----------------------------

Organism	Endpoint	RQ ¹	LOC Exceeded?		
Freshwater organisms					
Invertebrates	GMAV $LC_{50}/2 = 1.80 \ \mu g \ Cu/L$	0.62	No		
(Daphnia magna)	NOEC = $1.11 \ \mu g \ Cu/L$	1.0	No		
Fish	GMAV $LC_{50}/10 = 2.91 \ \mu g \ Cu/L$	0.38	No		
(Salmonids,	NOEC = $9.01 \ \mu g \ Cu/L$	0.12	No		
Onchorynchus)					
Amphibian	GMAV $LC_{50}/10 = 4.75 \ \mu g \ Cu/L$	0.23	No		
(Bufo boreas)	NOEC = 14.7 μ g Cu/L	0.08	No		
Non-vascular plant	$EC_{50}/2 = 1.55 \ \mu g \ Cu/L$	0.71	No		
(Green algae,					
Selenastrum					
capricornutum)					
	NOEC = $0.2 \ \mu g \ Cu/L$	5.55	Yes		
X 7 1 1 4		(0,0	٦T		
Vascular plant	$LC_{50}/2 = 1150 \ \mu g \ Cu/L$	<0.0	No		
(Duckweed, Lemna		1	Ъ.		
minor)	NOEC = $100 \ \mu g \ Cu/L$	0.01	No		
Estuarine/marine orga	nnisms				
Invertebrates	$LC_{50}/2 = 3.25 \ \mu g \ Cu/L$	0.34	No		
(Mussel, Mytilus)	NOEC = $1.01 \ \mu g \ Cu/L$	1.10	Yes		
Fish	$LC_{50}/10 = 1.27 \ \mu g \ Cu/L$	0.87	No		
(Summer flounder,					
Paralichthys dentatus)	NOEC = $3.92 \ \mu g \ Cu/L$	0.28	No		
Plants	$LC_{50}/2 = 125 \ \mu g \ Cu/L$	0.01	No		
(Marine diatom,					
Skeletonema	NOEC = $124 \ \mu g \ Cu/L$	0.01	No		
costatum)					

 1 RQs calculated based on an EEC of 1.11 µg Cu/L, corresponding to the maximum proposed Ultim Fungicide application rate of 323 g Cu/ha.

Value Assessment

To support claims against seed rot/pre-emergence damping off, post-emergence damping off, seedling blight and root rot (*Pythium* spp.) when Ultim Fungicide is applied as a seed treatment on corn, spinach and pea seed, the applicant submitted 10 suitable field efficacy trials conducted

in Wisconsin, Washington, Iowa and South Dakota, USA. When used with a seed coat, Ultim Fungicide was found to control these diseases.

Pythium spp. seed and seedling diseases can cause significant reductions in plant stand, vigour and crop yield. Ultim Fungicide will provide a new fungicidal mode of action with a low potential for the development of fungicide resistance for use against *Pythium* spp. diseases in conventionally- and organically-grown corn, spinach and pea crops.

Conclusion

The Pest Management Regulatory Agency has completed an assessment of the information provided, and has found the information sufficient to support the registration of Ultim Fungicide.

References

A. List of Studies/Information Submitted by Registrant

PMRA

Document	
Number	Reference
3091612	2019, SafeGuard-ST: Acute Oral Toxicity - Up-And-Down Procedure in Rats,
	DACO: 4.6.1
3091613	2019, SafeGuard-ST: Acute Dermal Toxicity in Rats, DACO: 4.6.2
3091614	2019, SafeGuard-ST: Acute Inhalation Toxicity in Rats, DACO: 4.6.3
3091615	2020, SafeGuard-ST: Primary Eye Irritation in Rabbits, DACO: 4.6.4
3091616	2019, SafeGuard-ST: Primary Skin Irritation in Rabbits, DACO: 4.6.5
3091617	2019, SafeGuard-ST: Dermal Sensitiz.ation Test in Guinea Pigs - Buehler Method,
	DACO: 4.6.6
3091618	2020, Exposure (Occupational and/or Bystander) Summary for Ultim Fungicide Seed
	Treatment containing Copper Hydroxide, DACO: 5.2
3091587	2020, Value Summary Tables for Corn, DACO: 10.2.3.1
3091588	2020, Value Summary Tables for Peas, DACO: 10.2.3.1
3091589	2020, Value Summary Tables for Spinach, DACO: 10.2.3.1
3091592	2018, Corn Wisconsin (two trials) 2018 - Part A, DACO: 10.2.3.3(D)
3091593	2018, Spinach Wisconsin (two trials) 2018, DACO: 10.2.3.3(D)
3091594	2018, Field Peas Wisconsin (two trials) 2018 - Part A, DACO: 10.2.3.3(D)
3091595	2018, Corn Wisconsin (two trials) 2018 - Part B, DACO: 10.2.3.3(D)
3091596	2018, Field Pea Wisconsin (two trials) 2018 - Part B, DACO: 10.2.3.3(D)
3091599	2019, ProBio SafeGuard Formulation & Registration Trials - Spinach, DACO:
	10.2.3.3(D)
3091600	2019, ProBio SafeGuard Formulation & Registration Trials - Spinach - Raw Data,
	DACO: 10.2.3.3(D)
3091601	2019, Germains Corn 2019 SD, DACO: 10.2.3.3(D)
3091602	2019, Final Report for Germains Seed Technology Pea Trial in Prosser, WA, DACO:
	10.2.3.3(D)
3091605	2019, Value Summary Tables for Seed Safety Testing Corn Pea and Spinach, DACO:
	10.3.1

1441637	2006, United States Environmental Protection Agency. Reregistration Eligibility
	Decision (RED) for Coppers. EPA 738-R-06-020.
3091606	2020, Additional Product Chemistry for Ultim Fungicide, DACO:
	3.1.1,3.1.2,3.1.3,3.1.4,3.5.4,3.5.5,3.5.8
3091608	2019, Ultim: Product Identity And Composition, Description Of Materials Used To
	Produce The Product, Description of Formulation Process, Explanation of Certified
	Limits, Discussion Of The Formation Of Impurities, and Enforcement Analytical
	Method, DACO: 3.2.1,3.2.2,3.2.3,3.3.1,3.4.1 CBI
3091609	2019, SafeGuard-ST: Physical and Chemical Characteristics: Color, Physical State,
	Odor, pH, and Bulk Density, DACO: 3.5.1,3.5.2,3.5.3,3.5.6,3.5.7
3091610	2019. SafeGuard-ST Physical and Chemical Characteristics: Waivers for
	Flammability, Explodability, Miscibility, Dielectric breakdown voltage, DACO:
	3.5.11.3.5.12,3.5.13,3.5.15
3091611	2019. SafeGuard-ST: Accelerated Storage Stability and Corrosion Characteristics.
	DACO: 3.5.10.3.5.14
3101539	2019. Ultim-ST: Acute Contact Toxicity Test with the Honey Bee (<i>Apis mellifera</i>).
	DACO: 9.2.4.1
3101540	2019. Ultim-ST: Acute Oral Toxicity Test with the Honey Bee (<i>Anis mellifera</i>).
	DACO: 9 2 4 2
3101541	2020 Ultim-ST [·] Honey Bee (<i>Anis mellifera</i>) Larval Toxicity Test Repeated
0101011	Exposure DACO: 9243
3101542	2020 Ultim-ST 10-Day Oral Toxicity Test with the Adult Honey Bee (Anis
5101012	mellifera) DACO: 9.2.4.4
3101544	2020 Illtim_ST: Honey Bee (Anis mallifara) Larval Toxicity Test Single Exposure
5101544	$D\Delta CO \cdot 9.2.4.3$
	DACO. 7.2.T.3

B. Additional Information Considered

Published Information

PMRA	Reference
Document	
Number	
3220327	2013, Carrie E. DeJaco and George O. Batzli, Palatability of plants to small mammals in nonnative grasslands of east-central Illinois. J. Mamm. 94(2):427-435. DACO 9.9
1441637	2006, United States Environmental Protection Agency. Reregistration Eligibility Decision (RED) for Coppers. EPA 738-R-06-020.

ABBREVIATIONS

a.i.	active ingredient
bw	body weight
Cu	copper
EC ₅₀	effective concentration for 50% of test organisms
ED ₅₀	effective dose for 50% of test organisms
EEC	estimated environmental concentration
g	gram(s)
GMAV	genus mean acute value
ha	hectare(s)
hr	hour(s)
kg	kilogram(s)
K _d	solids-water equilibrium partition coefficient
L	liter(s)
LC ₅₀	lethal concentration for 50% of test organisms
LD50	lethal Dose for 50% of test organisms
LOC	level of concern
LOED	lowest observed effective dose
mg	milligram(s)
NOAEL	no observed adverse effect level
NOEC	no observed effect concentration
NOED	no observed effect dose
PMRA	Pest Management Regulatory Agency
PRVD	Proposed Re-evaluation Decision
RED	Reregistration Eligibility Decision
RQ	risk quotient
RVD	Re-evaluation Decision
US EPA	United States Environmental Protection Agency

μg micrograms

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Health Canada, 2021

All rights reserved. No part of this information (publication or product) may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, or stored in a retrieval system, without prior written permission of Health Canada, Ottawa, Ontario K1A 0K9.