

Evaluation Report for Category B, Subcategories 3.12, 3.3 Application

Application Number:	2018-6246
Application:	Changes to Product Labels-New Site or Host
	Changes to Product Labels-Application Number or Frequency
Product:	ORONDIS Ultra Fungicide
Registration Number:	32805
Active ingredients (a.i.):	Oxathiapiprolin, Mandipropamid
PMRA Document Number	: 3063506

Purpose of Application

The purpose of this application was to allow two sequential applications of ORONDIS Ultra Fungicide and to expand use to additional crops.

Chemistry Assessment

A chemistry assessment was not required for this application.

Health Assessments

A toxicological assessment was not required for this application.

The use pattern of ORONDIS Ultra Fungicide is not expected to increase the occupational exposure to oxathiapiprolin and mandipropamid for mixers, loaders, applicators and postapplication workers over the previously registered use of ORONDIS Ultra Fungicide. No health concerns are expected when workers or bystanders if label directions, precautions and restrictions are followed.

No new residue data for mandipropamid or oxathiapiprolin were submitted to support the change in sequential applications and additional crops.

The residue data on file for mandipropamid and oxathiapiprolin are adequate to support the changes to the ORONDIS Ultra Fungicide label. Based on this assessment, exposure to residues of mandipropamid and oxathiapiprolin in/on all the crops treated according to the approved use directions for ORONDIS Ultra Fungicide will not pose an unacceptable health risk to any segment of the population, including infants, children, adults and seniors.

Environmental Assessment

The expanded crop use and two sequential applications of ORONDIS Ultra Fungicide does not pose an increased risk to the environment.

Value Assessment

An increase in the number of successive applications of ORONDIS Ultra Fungicide from one to two was requested for several labeled crop/disease combinations. Review of published scientific and Fungicide Resistance Action Committee reports supported the claim that the increase would not likely increase the likelihood of the development of fungal strains resistant to ORONDIS Ultra Fungicide. The addition of several fruiting vegetable crops were supported for some uses through extrapolation from registered crops.

An increase in the number of successive applications of ORONDIS Ultra Fungicide will provide growers with greater flexibility to manage the potential for resistance development to other active ingredients registered for use on these crops.

Conclusion

The Pest Management Regulatory Agency has completed an assessment of the information provided, and has found it sufficient to support the amendments to the label of ORONDIS Ultra Fungicide.

References

PMRA Document	
Number 2938504	Reference 2017, Orondis Ultra Fungicide - Value Summary, DACO:
	10.1,10.2.3.1,10.3.1,10.3.2,10.5.1,10.5.2,10.5.3,10.5.4
3005417	Moore, M.S., Follas, G.B., Hagerty, G.C., and Beresford, R.M., 2018, Carboxylic Acid Amide (CAA) Fungicide Resistance Prevention Strategy, New Zealand Plant Protection 61:134-136, DACO: 10.6
3005418	Cohen, Y., Rubin, A., and Gotlieb, D., 2007, Activity of carboxylic acid amide (CAA) fungicides against <i>Bremia lactucae</i> , Eur. J. Plant Pathol. 122:169-183, DACO: 10.6
3005419	Springer Science and Business, 2015, Abstracts of presentations at the 36th Congress of the Israeli Phytopathological Society, Phytoparasitica DOI 10.1007/s12600-015-0466-1, DACO: 10.6
3005420	Rubin, A., Gotlieb, D., Gisi, U., and Choen, Y., 2008, Mutagenesis of <i>Phytophthora infestans</i> for Resistance Against Carboxylic Acid Amide and Phenylamide Fungicides, Plant Disease 92(5):675-683, DACO: 10.6
3005421	Ji, P., and Csinos, A.S., 2014, Effect of oxathiapiprolin on asexual life stages of <i>Phytophthora capsici</i> and disease development on vegetables, Ann. Appl. Biol. 166: 229-235, DACO: 10.6
3005422	Cerkauskas, R.F., Ferguson, G., and MacNair, C., 2015, Management of phytophthora blight (<i>Phytophthora capsici</i>) on vegetables in Ontario: some greenhouse and field aspects, Canadian Journal of Plant Pathology 37(3):285-304, DACO: 10.6
3005423	Babadoost, M. and de Souza, J.R., 2018, Chemical Management of <i>Phytophthora capsici</i> Pumpkin in Illinois, Mod Concep Dev Agrono 1(4), DACO: 10.6
3005424	Patel, J.S., Costa de Novaes, M.I. and Zhang, S., 2015, Evaluation of the new compound oxathiapiprolin for control of downy mildew in basil, Plant Health Progress 16(4): 165-172, DACO: 10.6
3005425	Cohen, Y., Rubin, E., Hadad, T., Gotlieb, D., Sierotzki, H. and Gisi, U., 2007, Sensitivity of <i>Phytophthora infestans</i> to mandipropamid and the effect of enforced selection pressure in the field, Plant Pathology 56:836-842, DACO: 10.6
3005426	Jang, H.S., Lee, S.M., Kim, S.B., Kim, J., Knight, S., Park, K.D., McKenzie, D., and Kim, H.T., 2009, Baseline sensitivity to mandipropamid among isolates of <i>Phytophthora capsici</i> causing phytophthora blight on pepper, Plant Pathol. J. 25(4):317-321, DACO: 10.6
3005427	Cohen, Y., 2015, The Novel Oomycide Oxathiapiprolin Inhibits All Stages in the Asexual Life Cycle of <i>Pseudoperonospora cubensis</i> - Causal Agent of Cucurbit Downy Mildew, PLoS ONE 10(10): e0140015. DACO: 10.6
3005428	Jackson, K.L., Yin, J., and Ji, P., 2012, Sensitivity of <i>Phytophthora capsici</i> on Vegetable Crops in Georgia to Mandipropamid, Dimethomorph, and Cyazofamid, Plant Dis. 96:1337-1342, DACO: 10.6

3005429	Lozoya-Saldana, H., Robledo-Esqueda, M.N., Rivas-Valencia, P., Sandoval-Islas,
	S., Colinas y Leon, M.T.B., Nava-Diaz, C., 2017, Sensitivity to fungicides of
	Phytophthora infestans (Mont.) de Bary in Chapingo, Mexico, Rev. Chapingo
	Ser. Hortic vol.23 no.3, DACO: 10.6
3005430	Pang, Z., Shao, J., Chen, L., Lu, X., Hu, J., Qin, Z., and Liu, X., 2013, Resistance
to the Dete	to the Novel Fungicide Pyrimorph in <i>Phytophthora capsici</i> : Risk Assessment and
	Detection of Point Mutations in CesA3 That Confer Resistance, PLoS ONE 8(2):
	e56513, DACO: 10.6
3005431	Lu, X.H., Zhu, S.S., Bi, Y., Liu, X.L., and Hao, J.J., 2010, Baseline Sensitivity
	and Resistance-Risk Assessment of <i>Phytophthora capsici</i> to Iprovalicarb,
	Phytopathology 100:1162-1168, DACO: 10.6
3005432 M A Po	Miao, J., Cal, M., Liu, D.I., Zhang, C., Pang, Z. and Liu, X., 2016, Resistance
	Assessment for Oxathiapiprolin in <i>Phytophthora capsici</i> and the Detection of a
	Point Mutation (G769W) in PcORP1 that Confers Resistance, Front. Microbiol.
	7(615), DACO: 10.6
3005434	Saville, A., Graham, K., Grunwald, N.J., Myers, K., Fry, W.E., Ristaino, J.B.,
	2015, Fungicide sensitivity of U.S. genotypes of <i>Phytophtora infestans</i> to six
	oomycete-targeted compounds. Plant Dis. 99:659-666, DACO: 10.6
	Seidl Johnson, A.C., Jordan, S.A., and Gevens, A.J., 2014, Efficacy of organc and
	conventional fungicides and impact of application timing on control of tomato late
	blight caused by US-22, US-23, and US-24 isolates of Phytophthora infestans,
	Plant Dis. 99:641-647, DACO: 10.6
3005436	Olaya, G., Keinath, A.P., Roberts, P.D. and Tally, A., 2008, Sensitivity of
	Phytophthora capsici isolates to the carboxylic acid amides fungicides
	mandipropamid and dimethomorph, Phytopathology 98: S116,6246 DACO: 10.6

ISSN: 1911-8082

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Health Canada, 2020

All rights reserved. No part of this information (publication or product) may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, or stored in a retrieval system, without prior written permission of Health Canada, Ottawa, Ontario K1A 0K9.