

Proposed Registration Decision

PRD2018-15

Afidopyropen; Sefina Insecticide; Versys Insecticide

(publié aussi en français)

30 August 2018

This document is published by the Health Canada Pest Management Regulatory Agency. For further information, please contact:

Publications Pest Management Regulatory Agency Health Canada 2720 Riverside Drive A.L. 6607 D Ottawa, Ontario K1A 0K9 Internet: canada.ca/pesticides hc.pmra.publications-arla.sc@canada.ca Facsimile: 613-736-3758 Information Service: 1-800-267-6315 or 613-736-3799 hc.pmra.info-arla.sc@canada.ca

ISSN: 1925-0878 (print) 1925-0886 (online)

Catalogue number: H113-9/2018-15E (print version) H113-9/2018-15E-PDF (PDF version)

© Her Majesty the Queen in Right of Canada, represented by the Minister of Health Canada, 2018

All rights reserved. No part of this information (publication or product) may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, or stored in a retrieval system, without prior written permission of the Minister of Public Works and Government Services Canada, Ottawa, Ontario K1A 0S5.

Table of Contents

Overview	
Proposed Registration Decision for Afidopyropen	. 1
What Does Health Canada Consider When Making a Registration Decision?	. 1
What Is Afidopyropen?	. 2
Health Considerations	
Environmental Considerations	. 4
Value Considerations	. 5
Measures to Minimize Risk	. 5
Next Steps	
Other Information	. 6
Science Evaluation	. 7
1.0 The Active Ingredient, Its Properties and Uses	. 7
1.1 Identity of the Active Ingredient	. 7
1.2 Physical and Chemical Properties of the Active Ingredients and End-Use Product	. 8
1.3 Directions for Use	10
1.4 Mode of Action	10
2.0 Methods of Analysis	
2.1 Methods for Analysis of the Active Ingredient	10
2.2 Method for Formulation Analysis	
2.3 Methods for Residue Analysis	11
3.0 Impact on Human and Animal Health	11
3.1 Toxicology Summary	
3.1.1 <i>Pest Control Products Act</i> (PCPA) Hazard Characterization	
3.2 Acute Reference Dose (ARfD)	
3.3 Acceptable Daily Intake (ADI)	22
3.4 Occupational Risk Assessment	23
3.4.1 Toxicology Reference Values	23
3.4.2 Occupational Exposure and Risk	
3.4.3 Residential Exposure and Risk Assessment	
3.5 Exposure from Drinking Water	
3.5.1 Concentrations in Drinking Water	27
3.6 Food Residues Exposure Assessment	
3.6.1 Residues in Plant and Animal Foodstuffs	29
3.6.2 Dietary Risk Assessment	30
3.6.3 Aggregate Exposure and Risk	
3.6.4 Cumulative Assessment	
3.6.5 Maximum Residue Limits	
4.0 Impact on the Environment	
4.1 Fate and Behaviour in the Environment	32
4.2 Environmental Risk Characterization	
4.2.1 Risks to Terrestrial Organisms	34
4.2.2 Risks to Aquatic Organisms	
5.0 Value	42

6.0 Pest	Control Product Policy Considerations	. 43
6.1 To:	xic Substances Management Policy Considerations	. 43
6.2 For	mulants and Contaminants of Health or Environmental Concern	. 43
7.0 Sum	nary	. 44
	man Health and Safety	
7.2 En	vironmental Risk	. 45
7.3 Va	lue	. 45
	osed Regulatory Decision	
	al Information Being Requested	
	reviations	
Appendix I	Tables and Figures	. 51
Table 1A	•	
Table 1B		
Table 2	Select Afidopyropen Metabolites	
Table 3	Toxicity Profile of Technical Afidopyropen	
Table 4	Toxicity Profile of Metabolites of Afidopyropen	
Table 5	Toxicity Profile of End-use Products Versys Insecticide and Sefina Insecticide	
Table 6	Toxicology Reference Values for Use in Human Health Risk Assessment for	
	Afidopyropen	. 70
Table 7	Toxicology Reference Values for Use in Human Health Risk Assessment for	
	CPCA ^a	. 70
Table 8	Mixer/Loader/Applicator Non-Cancer Exposure Estimates and MOE	
Table 9	Mixer/Loader/Applicator Cancer Exposure Estimates and Risk	
Table 10	Postapplication Non-Cancer Exposure Estimates and Margins of Exposure	
	(MOE)	. 74
Table 11	Postapplication Cancer Exposure Estimates and Risk	
Table 12	Integrated Food Residue Chemistry Summary	
Table 13	Food Residue Chemistry Overview of Metabolism Studies and Risk	
	Assessment	. 84
Table 14	Transformation Products of Afidopyropen Detected in Laboratory Dissipation	
	Studies	. 86
Table 15	Fate and Behaviour of Afidopyropen and Transformation Products in the	
	Environment	. 94
Table 16	Toxicity of Afidopyropen, its Transformation Products and End-use Products to	0
	Non-target Terrestrial Species	
Table 17	Effects of the End-use Product Versys Insecticide on Honey Bees based on Tie	
	(Semi-field/Residue) and Tier III (Field) Studies	
Table 18	Screening Level Risk Assessment of Afidopyropen, its Transformation Product	
	and End-use Products for Non-target Terrestrial Species Other than Birds and	
	Mammals	117
Table 19	Screening Level Risk Assessment of Afidopyropen for Birds and Mammals	
Table 20	Refined Risk To Pollinators Using Field Residues and Laboratory Endpoints.	
Table 21	Further Characterization of the Risk of the End-use Product Sefina Insecticide	
	Non-target Predatory and Parasitic Arthropods Using Results from Extended	
	Laboratory Studies	125
	- · · · · · · · · · · · · · · · · · · ·	

Table 22	Risk Assessment of Afidopyropen for Birds Using Maximum Residues Expected
	Following Multiple Applications on Ornamentals 126
Table 23	Risk Assessment of Afidopyropen for Birds Using Mean Residues Expected
	Following Multiple Applications on Ornamentals 127
Table 24	Toxicity of Afidopyropen, its Transformation Products and End-use Products to
	Non-target Aquatic Species
Table 25	Screening Level Risk Assessment of Afidopyropen for Aquatic Species
Table 26	Risk Quotients for Aquatic Organisms Determined for Drift of Afidopyropen. 134
Table 27	Risk Quotients for Aquatic Organisms Determined for Runoff of
	Afidopyropen
Table 28	Toxic Substances Management Policy Considerations – Comparison to TSMP
	Track 1 Criteria
Appendix II	Supplemental Maximum Residue Limit Information—International Situation and
	Trade Implications
Table 1 C	Comparison of Canadian MRLs and American Tolerances (where different) 138
References	

Overview

Proposed Registration Decision for Afidopyropen

Health Canada's Pest Management Regulatory Agency (PMRA), under the authority of the *Pest Control Products Act* and Regulations, is proposing registration for the sale and use of Inscalis Technical Insecticide, Sefina Insecticide and Versys Insecticide, containing the technical grade active ingredient afidopyropen, to control aphids and whiteflies on various vegetables and tree fruits, soybeans, hazelnuts, and greenhouse and outdoor ornamentals.

An evaluation of the available scientific information found that, under the approved conditions of use, the health and environmental risks and the value of the pest control products are acceptable.

This Overview describes the key points of the evaluation, while the Science Evaluation section provides detailed technical information on the human health, environmental and value assessments of Inscalis Technical Insecticide, Sefina Insecticide and Versys Insecticide.

What Does Health Canada Consider When Making a Registration Decision?

The key objective of the *Pest Control Products Act* is to prevent unacceptable risks to people and the environment from the use of pest control products. Health or environmental risk is considered acceptable¹ if there is reasonable certainty that no harm to human health, future generations or the environment will result from use or exposure to the product under its proposed conditions of registration. The *Pest Control Products Act* also requires that products have value² when used according to the label directions. Conditions of registration may include special precautionary measures on the product label to further reduce risk.

To reach its decisions, the PMRA applies modern, rigorous risk-assessment methods and policies. These methods consider the unique characteristics of sensitive subpopulations in humans (for example, children) as well as organisms in the environment. These methods and policies also consider the nature of the effects observed and the uncertainties when predicting the impact of pesticides. For more information on how the PMRA regulates pesticides, the assessment process and risk-reduction programs, please visit the Pesticides section of Canada.ca.

Before making a final registration decision on afidopyropen, Sefina Insecticide and Versys Insecticide, the PMRA will consider any comments received from the public in response to this consultation document.³ The PMRA will then publish a Registration Decision⁴ on afidopyropen,

¹ "Acceptable risks" as defined by subsection 2(2) of the *Pest Control Products Act*.

² "Value" as defined by subsection 2(1) of the *Pest Control Products Act*: "the product's actual or potential contribution to pest management, taking into account its conditions or proposed conditions of registration, and includes the product's (*a*) efficacy; (*b*) effect on host organisms in connection with which it is intended to be used; and (*c*) health, safety and environmental benefits and social and economic impact."

³ "Consultation statement" as required by subsection 28(2) of the *Pest Control Products Act*.

Sefina Insecticide and Versys Insecticide, which will include the decision, the reasons for it, a summary of comments received on the proposed final registration decision and the PMRA's response to these comments.

For more details on the information presented in this Overview, please refer to the Science Evaluation section of this consultation document.

What Is Afidopyropen?

Afidopyropen affects the nerves of aphids and whiteflies and stops the target insects from feeding on treated plants. It is the active ingredient in two commercial class products, Sefina Insecticide and Versys Insecticide.

Health Considerations

Can Approved Uses of Afidopyropen Affect Human Health?

Sefina Insecticide and Versys Insecticide, containing afidopyropen, are unlikely to affect your health when used according to label directions.

Potential exposure to afidopyropen may occur through the diet (food and water), when handling and applying the end-use products, or through bystander exposure following application. When assessing health risks, two key factors are considered: the levels where no health effects occur and the levels to which people may be exposed. The dose levels used to assess risks are established to protect the most sensitive human population (for example, children and nursing mothers). As such, sex and gender are taken into account in the risk assessment. Only uses for which the exposure is well below levels that cause no effects in animal testing are considered acceptable for registration.

Toxicology studies in laboratory animals describe potential health effects from varying levels of exposure to a chemical and identify the dose where no effects are observed. The health effects noted in animals occur at doses more than 100-times higher (and often much higher) than levels to which humans are normally exposed when pesticide products are used according to label directions.

In laboratory animals, the technical grade active ingredient afidopyropen was of low acute toxicity via the oral, dermal and inhalation routes of exposure. It was not irritating to the eyes or skin, and did not cause an allergic skin reaction.

Sefina Insecticide was of low acute toxicity via the oral and dermal routes of exposure. It was slightly acutely toxic via the inhalation route of exposure and mildly irritating to the skin; consequently, the signal word and hazard statements "POISON" and "CAUTION – SKIN IRRITANT" are required on the product label. Sefina Insecticide was minimally irritating to the eye and did not cause an allergic skin reaction.

⁴ "Decision statement" as required by subsection 28(5) of the *Pest Control Products Act*.

Versys Insecticide was of low acute toxicity via the oral and dermal routes of exposure. It was slightly acutely toxic via the inhalation route of exposure and moderately irritating to the skin; consequently, the signal word and hazard statements "POISON" and "WARNING – SKIN IRRITANT" are required on the product label. Versys Insecticide was minimally irritating to the eye and did not cause an allergic skin reaction.

Registrant-supplied short- and long-term (lifetime) animal toxicity tests, as well as information from the published scientific literature, were assessed for the potential of afidopyropen to cause neurotoxicity, immunotoxicity, chronic toxicity, cancer, reproductive and developmental toxicity, and various other effects. The most sensitive endpoints used for risk assessment included effects on the brain and an alteration in the sex ratio. There was some evidence suggesting that the young animal may be more sensitive to afidopyropen than the adult animals. There was no evidence that afidopyropen damaged genetic material; however, it did cause uterine tumours in rats. The risk assessment protects against the effects noted above, and other potential effects, by ensuring that the level of human exposure is well below the lowest dose level at which these effects occurred in animal tests.

Residues in Water and Food

Dietary risks from food and drinking water are not of health concern.

Aggregate dietary intake estimates (food and drinking water) revealed that all population subgroups, including children 1 to 2 years of age, the subpopulation that would ingest the most afidopyropen relative to body weight, are expected to be exposed to less than 3% of the acceptable daily intake. Based on these estimates, the intermediate chronic dietary risk from afidopyropen is not of health concern for all population subgroups.

Chronic non-cancer exposure to the metabolite cyclopropane carboxylic acid (CPCA) from drinking water was estimated to be less than 1% of the acceptable daily intake for all population subgroups, including females 13 to 49 years of age, which is not of health concern.

The lifetime cancer risk from exposure to afidopyropen in food and drinking water was estimated to be 9×10^{-7} to 2×10^{-6} for the general population, which is below the PMRA's level of concern. The lifetime cancer risk from exposure of CPCA in drinking water was estimated to be 1×10^{-6} for the general population, which is below the PMRA's level of concern.

An acute reference dose was not required for the general population. Acute dietary intake (food plus drinking water) estimates for females 13 to 49 years of age were less than 21% of the acute reference dose, and are not of health concern. The acute exposure of CPCA from drinking water for females 13 to 49 years of age was estimated to be less than 3% of the acute reference dose, which is not of health concern.

When combining the exposure estimates from residues of afidopyropen (food and drinking water) with those of CPCA (drinking water) for all population subgroups, the cumulative exposure assessment does not exceed 1% of the afidopyropen or CPCA cumulative reference values.

Occupational Risks From Handling Sefina Insecticide and Versys Insecticide

Occupational risks are not of concern when Sefina Insecticide and Versys Insecticide are used according to the label directions, which include protective measures.

Farmers and custom applicators who mix, load or apply Sefina Insecticide and Versys Insecticide as well as field workers re-entering freshly treated fields, nurseries and greenhouses can come in direct contact with afidopyropen residues on the skin. Therefore, the labels specify that a long-sleeved shirt, long pants, chemical-resistant gloves, shoes and socks must be worn. Additionally, Versys Insecticide requires that chemical handlers wear coveralls over a long-sleeved shirt and long pants and chemical-resistant headgear for airblast application. The labels also require that workers do not enter treated fields for 12 hours after application. Taking into consideration these label statements, the number of applications and the exposure period for handlers and workers, the risks to these individuals are not a concern.

For bystanders, exposure is expected to be much less than that for workers and is considered negligible. Therefore, health risks to bystanders are not of concern.

Environmental Considerations

What Happens When Afidopyropen Is Introduced Into the Environment?

When afidopyropen is used according to the label directions, the risks to the environment have been determined to be acceptable.

Afidopyropen enters the environment when applied to control insect pests on ornamentals, vegetables, and tree fruit crops. On land, afidopyropen breaks down relatively quickly and its breakdown products are not expected to move through the soil and reach groundwater. In water bodies, afidopyropen and its breakdown products will move to sediments where they may remain over time. Afidopyropen is not expected to be found in the air or to travel long distances from where it was applied. Afidopyropen is not expected to build-up in the tissues of organisms. Afidopyropen is not expected to move inside plants and its residues will remain mostly on the surface of leaves and flowers.

When used according to the label directions, afidopyropen does not present a risk of concern to wild mammals, birds, beneficial insects, earthworms, or terrestrial and aquatic plants. Afidopyropen may pose risks of concern to freshwater and marine invertebrates, freshwater fish, amphibians, and bees; therefore, preventative measures and use restrictions to reduce exposure to animals and insects that are not pests are required.

Value Considerations

What Is the Value of Sefina Insecticide and Versys Insecticide?

Sefina Insecticide controls potato aphid, green peach aphid, sweet potato whitefly and silverleaf whitefly in potato and controls soybean aphid in soybean.

Versys Insecticide controls various aphids and whiteflies in tuberous and corm vegetables, leafy vegetables, brassica head and stem vegetables, fruiting vegetables, cucurbit vegetables, leaf petioles vegetables, pome fruits, stone fruits, hazelnuts, and greenhouse and outdoor ornamentals (except conifers).

Sefina Insecticide and Versys Insecticides are new management tools for control of aphids, which are widespread pests of horticultural crops, and whiteflies, which are prevalent pests in the ornamental greenhouse industry. Both products will aid in resistance management for crops where no other insecticides with the same mode of action are registered, which include hazelnuts, labelled tree fruit crops and most of the vegetable crops.

Measures to Minimize Risk

Labels of registered pesticide products include specific instructions for use. Directions include risk-reduction measures to protect human and environmental health. These directions must be followed by law.

The key risk-reduction measures outlined on the labels of Sefina Insecticide and Versys Insecticide to address the potential risks identified in this assessment are as follows.

Key Risk-Reduction Measures

Human Health

Because there is a concern with users coming into direct contact with afidopyropen on the skin or through inhalation of spray mists, anyone mixing, loading and applying afidopyropen must wear a long-sleeved shirt, long pants, chemical-resistant gloves and shoes plus socks. Additionally, Versys Insecticide requires that all chemical handlers wear coveralls over a long-sleeved shirt and long pants, and chemical-resistant headgear for open cab airblast application. Furthermore, standard label statements to protect against drift during application are present on the label.

Environment

To minimize exposure and reduce risks to bees, aquatic invertebrates, fish and amphibians, use restrictions, vegetative filter strips, spray buffer zones and precautionary label statements are required. Application is restricted to periods when most bees are not actively foraging, for crops that are highly attractive to bees, or when managed bees are used for pollination services.

Next Steps

Before making a final registration decision on afidopyropen, Sefina Insecticide and Versys Insecticide, the PMRA will consider any comments received from the public in response to this consultation document. The PMRA will accept written comments on this proposal up to 45 days from the date of publication of this document. Please note that, to comply with Canada's international trade obligations, consultation on the proposed MRLs will also be conducted internationally via a notification to the World Trade Organization. Please forward all comments to Publications (contact information on the cover page of this document). The PMRA will then publish a Registration Decision, which will include its decision, the reasons for it, a summary of comments received on the proposed final decision and the Agency's response to these comments.

Other Information

When the PMRA makes its registration decision, it will publish a Registration Decision on afidopyropen, Sefina Insecticide and Versys Insecticide (based on the Science Evaluation section of this consultation document). In addition, the test data referenced in this consultation document will be available for public inspection, upon application, in the PMRA's Reading Room (located in Ottawa).

Science Evaluation

Afidopyropen - Inscalis Technical, Sefina and Versys Insecticides

1.0 The Active Ingredient, Its Properties and Uses

1.1 Identity of the Active Ingredient

Active substance	Afidopyropen	
Function	Insecticide	
Chemical name		
of Pure and Applied	[(3 <i>S</i> ,4 <i>R</i> ,4a <i>R</i> ,6 <i>S</i> ,6a <i>S</i> ,12 <i>R</i> ,12a <i>S</i> ,12b <i>S</i>)-3 (cyclopropylcarbonyloxy)-1,2,3,4,4a,5,6,6a,12a,12b- decahydro-6,12-dihydroxy-4,6a,12b-trimethyl-11-oxo-9-(3- pyridyl)-11 <i>H</i> ,12 <i>H</i> -benzo[<i>f</i>]pyrano[4,3- <i>b</i>]chromen-4-yl]methyl cyclopropanecarboxylate	
2. Chemical Abstracts Service (CAS)	[(3 <i>S</i> ,4 <i>R</i> ,4a <i>R</i> ,6 <i>S</i> ,6a <i>S</i> ,12 <i>R</i> ,12a <i>S</i> ,12b <i>S</i>)-3- [(cyclopropylcarbonyl)oxy]-1,3,4,4a,5,6,6a,12,12a,12b- decahydro-6,12-dihydroxy-4,6a,12b-trimethyl-11-oxo-9-(3- pyridinyl)-2 <i>H</i> ,11 <i>H</i> -naphtho[2,1- <i>b</i>]pyrano[3,4- <i>e</i>]pyran-4- yl]methyl cyclopropanecarboxylate	
CAS number	915972-17-7	
Molecular formula	C33H39NO9	
Molecular weight	593.66 g/mol	
Structural formula		

Purity of the active 94.32 % ingredient

1.2 Physical and Chemical Properties of the Active Ingredients and End-Use Product

Property	Result		
Colour and physical state	Fine yellow solid (powder)		
Odour	Odourless		
Melting range	The melting point was determined to be 150°C (technical		
	grade)		
Boiling point or range	Not applicable		
Henry's law constant	2.3×10^{-9} atm·m ³ /mol at 25°C		
Density	1.291–1.305 g/cm ³ at 20°C (pure active)		
Vapour pressure	temperature (°C) vapour pressure (Pa)		
	temperature (°C)vapour pressure (Pa) 25 $<9.9 \times 10^{-6}$		
	50 <1.5 × 10 ⁻⁵		
Ultraviolet (UV)-visible spectrum	conditions $\lambda_{\max}(nm) \log \varepsilon$		
	acidic 231 4.28		
	basic 231 4.33		
	neutral 231 4.32		
	ε (L/mol.cm)		
	Smaller peaks were also observed in all media at ~ 320 nm		
Solubility in water at 20°C	25.1±0.79 mg/L at pH=7.2		
Solubility in organic solvents at 20°C	CSolvent Solubility (g/L) at 20°C		
	n-hexane 0.00766		
	toluene 5.54		
	dichloromethane > 500		
	acetone > 500		
	methanol > 500		
	ethyl acetate > 500		
<i>n</i> -Octanol-water partition coefficient	$\log K_{ow} = 3.45$		
(K_{ow})			
Dissociation constant (pK_a)	No significant dissociation in environmentally relevant pH		
	range of 4–9		
Stability (temperature, metal)	The technical grade active ingredient is stable in the		
	presence of aluminium, aluminium acetate, iron and iron		
	acetate at 25°C and 54°C for 14 days.		

Technical Product – Afidopyropen Technical

End-Use	Product –	Sefina	Insecticide

Property	Result
Colour	Golden yellow
Odour	Odourless
Physical state	Liquid
Formulation type	Emulsifiable concentrate
Guarantee	50.0 g/L
Container material and description	High-density polyethylene (HDPE) jugs or totes.
Density	Density 1.020–1.031 g/cm ³ and relative density 1.0262 –
	1.0271.
pH of 1% dispersion in water	7.27–7.65
Oxidizing or reducing action	The product is considered as a moderate reducing agent.
Storage stability	The product was shown to be stable after storage at 54°C for
	14 days in HDPE commercial containers.
Corrosion characteristics	The product did not have any adverse effects on its
	commercial packaging (HDPE) after storage for 14 days at
	54°C.
Explodability	The product did not react explosively to thermal stress or
	mechanical stress.

End-Use Product – Versys Insecticide

Property	Result
Colour	Golden yellow
Odour	Odourless
Physical state	Liquid
Formulation type	Emulsifiable concentrate
Guarantee	100.0 g/L
Container material and description	High-density polyethylene (HDPE) jugs or totes.
Density	Density $1.017-1.028$ g/cm ³ and the relative density 1.024 .
pH of 1% dispersion in water	6.91
Oxidizing or reducing action	The product is considered as a moderate reducing agent.
Storage stability	The product was shown to be stable after storage at 54°C for 14 days in HDPE commercial containers.
Corrosion characteristics	The product did not have any adverse effects on its commercial packaging (HDPE) after storage for 14 days at 54°C.
Explodability	The product did not react explosively to thermal stress or mechanical stress.

1.3 Directions for Use

Sefina Insecticide can be applied by ground or air as a foliar application to potato and soybean. In potato, 10 g a.i./ha controls potato aphid and green peach aphid and 35–50 g a.i./ha controls sweet potato whitefly and silverleaf whitefly. Four applications are allowed per year with a maximum of 125 g a.i./ha per year. In soybean, 10 g a.i./ha controls soybean aphid. Two applications are allowed per year with a maximum of 20 g a.i./ha per year. Applications may be repeated every 7 days in both crops if monitoring indicates it is necessary.

Versys Insecticide can be applied by ground as a foliar application to various vegetable, tree fruit and nut crops. Application rates for control of listed species of aphids and whiteflies are 10 g a.i./ha and 35--50 g a.i./ha, respectively. Labelled crops are tuberous and corm vegetables (Crop Subgroup 1C), leafy vegetables (Crop Group 4-13), brassica head and stem vegetables (Crop Group 5-13), fruiting vegetables (Crop Group 8-09), cucurbit vegetables (Crop Group 9), pome fruits (Crop Group 11-09), stone fruits (Crop Group 12-09), leaf petioles vegetables (Crop Subgroup 22B), hazelnuts, and greenhouse and outdoor ornamentals (except conifers). Applications may be repeated every 7 days if monitoring indicates it is necessary. Four applications are allowed per year on most listed crops with a maximum of 125 g a.i./ha per year. These use directions are for the majority of crops; consult labelled use directions for exceptions to pome fruits, stone fruits, and ornamentals. Aerial applications are allowed only on tuberous and corm vegetables (Crop Subgroup 1C).

1.4 Mode of Action

Afidopyropen is non-systemic, though locally translaminar, and has contact activity on piercingsucking insects, such as aphids and whiteflies. Thorough and uniform coverage of plant parts is important for the insecticide to be effective. It acts on the nerves and causes immediate cessation of feeding. The Insecticide Resistance Action Committee has classified afidopyropen in Mode of Action (MOA) Group 9D. Pymetrozine (MOA Goup 9B) is the only other active ingredient registered in Canada in MOA Group 9.

2.0 Methods of Analysis

2.1 Methods for Analysis of the Active Ingredient

The methods provided for the analysis of the active ingredient and impurities in the technical product have been validated and assessed to be acceptable for the determinations.

2.2 Method for Formulation Analysis

The method provided for the analysis of the active ingredient in the formulations has been validated and assessed to be acceptable for use as an enforcement analytical method.

2.3 Methods for Residue Analysis

High-performance liquid chromatography methods with tandem mass spectrometric detection (HPLC-MS/MS) were developed and proposed for data generation and enforcement purposes for environmental media. These methods fulfilled the requirements with regards to selectivity, accuracy and precision at the respective method limit of quantitation. Acceptable recoveries (70–120%) were obtained in environmental media. Methods for residue analysis in environmental media are summarized in Appendix I, Table 1A.

HPLC-MS/MS methods (Method D1103/01 in plant matrices and Method 1507/01 in animal matrices) were developed and proposed for data gathering and enforcement purposes for plant and animal matrices. These methods fulfilled the requirements with regards to specificity, accuracy and precision at the respective method limit of quantitation. Acceptable recoveries (70–120%) were obtained in plant and animal matrices. The proposed enforcement methods were successfully validated in plant and animal matrices by an independent laboratory. Adequate extraction efficiencies were demonstrated using radiolabelled samples (soybean leaf, tomato fruit, cabbage outer leaves) analyzed with the enforcement method. Demonstration of extraction efficiency with radiolabelled animal matrices was not provided for the enforcement method; however, extraction solvents used in the method were similar to those used in the livestock metabolism studies. Methods for residue analysis in plant and animal matrices are summarized in Appendix I, Table 1B.

3.0 Impact on Human and Animal Health

3.1 Toxicology Summary

Afidopyropen is a pyripyropene A derivative and represents a novel class of pesticides. The proposed pesticidal MOA for afidopyropen is gate disruption of transient receptor potential vanilloid (TRPV) channel complexes in insect chordotonal stretch receptor organs. In insects, these organs are critical for hearing, balance, and proprioception, among other functions. Although humans lack these organs, there are human homologues of proteins that make up the TRP channels. These channels play an important role in cilia-dependent function.

A detailed review of the toxicology database for afidopyropen was conducted. The database is complete, consisting of the full array of toxicity studies currently required for hazard assessment purposes. Additional studies included repeat-dose dietary toxicity studies in different strains of rats, involving different batches of the test material. A cross-fostering study in rats was also provided, as well as a series of mechanistic studies to support a proposed MOA for uterine tumour formation in rats. In addition, the applicant submitted a position paper that discussed the human relevance of toxicological effects that occurred at dose levels above a proposed kinetically-derived maximum dose (KMD). Finally, acute and repeat-dose oral toxicity studies as well as genotoxicity and toxicokinetic studies were conducted with two metabolites of afidopyropen. The required studies in the afidopyropen database were carried out in accordance with currently accepted international testing protocols and Good Laboratory Practices. The scientific quality of the data is high, and the database is considered adequate to define the majority of the toxic effects that may result from exposure to afidopyropen.

Metabolism and toxicokinetic studies were conducted via the oral route in Wistar and Fischer rats, and included testing with different batches of test material. In these studies, afidopyropen was C^{14} - radiolabelled on either the nicotinic acid portion of the molecule or the pyranone ring. Afidopyropen was rapidly and readily absorbed and widely distributed to tissues following single low- (3 mg/kg bw) and high-dose (300 mg/kg bw) gavage administration. The plasma elimination half-life was 0.5 hours and 2–4 hours, for low- and high-dose groups, respectively. Highest levels of radioactivity were observed in the gastrointestinal (GI) tract, liver, adrenal glands and kidney, at 0.5 hours and 2 hours following low- and high-dose administration, respectively. Very low levels of radioactivity were observed in the brain four days post-dosing. No sex differences were noted in the above parameters.

Radioactivity was readily excreted within 96–120 hours with the majority (up to 86% of administered dose) of radioactivity excreted via the feces and lower amounts (up to 21% of administered dose) excreted via the urine. Approximately half of the radioactivity in feces was attributed to biliary excretion based on the findings from studies with bile-duct cannulated rats from both strains of rats. In female Fischer and Wistar and male Fischer rats, levels of radioactivity in urine increased with dose, whereas those in bile and feces decreased with dose. In these studies, bioavailability was not significantly different between the sexes and was not impacted by the dose level administered. Results suggest that biliary excretion is the predominant route of elimination for afidopyropen.

Plasma kinetics were also examined following 14 days of dietary administration of nonradiolabelled afidopyropen followed by a single gavage administration of C^{14} - radiolabelled afidopyropen. Absorption from the GI tract was rapid, and maximum plasma concentrations were reached by one hour post-dosing for the low- (3 mg/kg bw/day) and mid-dose (15 mg/kg bw/day) groups, and by two hours for the high-dose group (50 mg/kg bw/day). The majority of the excretion occurred via the feces, irrespective of dose level.

Afidopyropen was extensively metabolised in the rat with no significant sex differences identified. Most metabolites were structurally similar to the parent compound, with changes in one or two functional groups, and in some cases, loss of one or two CPCA ester moieties. Following single or repeat dosing of Fischer and Wistar rats with 3 or 300 mg/kg bw/day of C¹⁴-radiolabelled test material, the main metabolites that were identified included M440I001 (urine, feces), M440I002 (urine, feces), M440I008 (feces), M440I017 (bile), M440I019 (bile), M440I034 (feces), M440I054 (urine), M440I058 (feces), and M440I059 (bile). Significant levels of unchanged afidopyropen were detected only in the feces. The proposed metabolic pathway involves hydrolytic loss of one or both CPCA moieties, N-oxidation at the pyridine ring, hydroxylation of one of the methyl groups, and conjugation of hydroxyl groups of the metabolites. The names of metabolites that were further characterized are presented in Appendix I, Table 2.

The applicant submitted a position paper contending that nonlinear kinetics were observed in the database at dose levels greater than 15 mg/kg bw/day in Fischer rats and greater than 30 mg/kg bw/day in Wistar rats. This, it was argued, would lead to a disproportionate increase in plasma concentration of afidopyropen with increasing dose levels. The applicant reasoned that

toxicological effects that occur at dose levels above a KMD would be of questionable human relevance. The available toxicokinetic data did not allow for the establishment of an inflection point when considering the area-under-the-curve (AUC) data, which could have aided in support to the applicant's contention. The limited number of dose levels utilized in most of the toxicokinetic investigations was considered a key limitation in this regard. Moreover, in the few studies utilizing more than two dose levels, the data suggested linear kinetics. It was concluded that the applicant's position regarding non-linear kinetics and the derivation of a KMD could not be supported.

In acute toxicity testing, afidopyropen was of low acute toxicity to rats via the oral, dermal and inhalation routes of exposure, not irritating to the eyes and skin of rabbits, and negative for skin sensitization in guinea pigs using the Maximization test protocol.

Sefina Insecticide and Versys Insecticide were of low acute toxicity via the oral and dermal routes of exposure in rats. They were slightly acutely toxic via the inhalation route of exposure in rats and minimally irritating to the eyes of rabbits. Sefina Insecticide was mildly irritating to rabbit skin, whereas Versys Insecticide was a moderate skin irritant in rabbits. Both end-use products were negative in dermal sensitization testing inthe guinea pig using the Buehler method. Two genotoxicity studies conducted with Versys Insecticide were also available. This end-use product was negative in a bacterial reverse mutation assay using *S. typhimurium* strains and *E. coli*, and in an in vivo micronucleus test in male mice.

Repeat-dose dietary toxicity studies with afidopyropen were available in mice and rats, and capsule administration studies were available in dogs. In these studies, which involved short-term to longer-term testing, the most sensitive species for toxicity appeared to be the dog, followed by the rat and mouse.

In addition to effects on body weight or body weight gain, the liver was a common target tissue following repeated dosing in these three test species. The liver toxicity was evidenced by increased organ weight, fatty change, and hyaline droplet deposition. In the rat and mouse, hepatocytic vacuolation and hypertrophy were also observed, whereas congestion, hemorrhage, and deposits of brown pigment in Kupffer cells were observed in dogs. Pale colour and accentuated lobular pattern, as well as necrosis and enlargement, were additional findings in mouse livers. In the rat, clinical chemistry alterations suggestive of liver inflammation or damage were also noted, as well as discolouration, slight foci of altered cells, and bile duct hyperplasia.

Another target organ of toxicity following repeated dosing with afidopyropen was the heart, with adverse effects most prominent in rats and mice. In the rat, myocardial vacuolation, as well as incidence and severity of necrosis or fibrosis of the heart, were noted at the higher dose levels. Histopathological examinations of the heart were not conducted at lower dose levels; however, increased serum levels of cardiac troponin I, an indicator of myocardial damage, were observed at these dose levels. Troponin levels were only measured in studies conducted with the rat. In the mouse, heart effects were noted in females only, and included vacuolation and fibrosis of heart muscle. In dogs, heart effects were limited to changes in heart weight that occurred at higher dose levels than those producing liver toxicity.

Adverse effects were observed in the brain in both the mouse and dog following repeated dosing with afidopyropen. These effects, in both species, were observed at dose levels that produced adverse effects on the liver and heart. Vacuolation of the cerebrum was noted in dogs and mice; vacuolation of the glial cell gray matter in the spinal cord was also noted in mice. The brain effects observed in the mouse occurred in females only and at dose levels causing death. In the dog, brain effects included vacuolation of the white matter of the medulla oblongata and the pons, as well as a slight to moderate decrease in myelin density of subcortical white matter. A cyst in the cerebellum was observed in one decedent in the dog one-year toxicity study. In rats, effects in the brain were limited to decreased absolute weight noted in one subchronic study, and in the offspring at the higher dose levels in the range-finding reproductive toxicity study and the cross-fostering study.

Effects on several reproductive organs were also observed following repeated dosing with afidopyropen. In the 90-day dog study, at doses that were clearly toxic, effects included atrophy and hypoplasia of the seminiferous tubules, atrophy of the prostate, and decreased sperm counts, as well as decreased testis, epididymal and prostate weights. In mice and rats, effects included decreased testes and epididymal weights, with rats also displaying decreased seminal vesicle, and prostate weights. In mice and rats, ovary and uterine weights were generally decreased, except for the chronic studies in which ovary weight was increased in the mouse and uterine weight was increased in the rat. Atrophy of the uterus and ovary was also observed in a number of subchronic studies conducted in the rat, and atrophy of the ovary was noted in two 28-day rat studies. Effects on reproductive organs were also observed in the dietary reproductive toxicity studies in the rat, discussed further below, as evidenced by decreased testicular sperm count and lymphoid infiltration of the prostate.

There were several other notable effects observed following repeated oral dosing with afidopyropen. In rats, adrenal weight was increased and was accompanied by hypertrophy, discolouration and vacuolation of the adrenal cortex. In subchronic toxicity studies in Fischer and Wistar rats, effects on adrenal weight were noted exclusively in male Fischer rats. In the reproductive and developmental toxicity studies, conducted in Wistar rats, adrenal weight changes were observed in both sexes; the female adrenal weight changes occurred at lower dose levels than that of males. In mice and rats, effects in the spleen were noted and included congestion, apoptosis of lymphoid tissue, extramedullary hematopoiesis, and atrophy, as well as an increase in organ weight. Vacuolation in the urinary bladder, kidney, and glandular stomach was an additional finding in female mice. Additional findings in rats included hematological changes which included decreased red blood cell, hematocrit and hemoglobin levels.

In a 28-day dermal toxicity study in rats, there was no indication of systemic toxicity up to the limit dose of testing. Multifocal hyperkeratosis of the skin was observed in females at the midand high-dose levels. A rationale to waive the requirement for a repeat-dose inhalation toxicity study was submitted. The waiver was supported for the proposed uses on the basis of the low volatility and low acute inhalation toxicity of afidopyropen, as well as the magnitude of the margin of exposure (MOE) obtained for the exposure scenarios when oral endpoints were used in the risk assessment. In an acute neurotoxicity study in rats conducted via oral gavage, decreased motor activity and clinical signs of toxicity were noted at the limit dose on the day of dosing. There was no indication of neurotoxicity in the rat 90-day dietary neurotoxicity study. Although it is acknowledged that there was a lack of confidence in the results from the high-dose groups due to excessive food spillage, it was possible to establish a no observed adverse effect level (NOAEL) in this study on the basis of the body weight findings at the lower dose levels. Throughout the database, there was some indication of potential effects on the nervous system in the rat, mouse, and dog as evidenced by the brain effects noted previously. The most serious effects were observed in the dog however, and as noted above, included vacuolation of nervous tissue, decreased myelin density of white matter and the corpus callosum, and a cerebellar cyst. Overall, the dog was the most sensitive test species for nervous tissue effects since the findings occurred at much lower dose levels than in the mouse and rat. Since the studies in dogs were performed in adult animals, potential effects on neurodevelopment of the young animal exposed to afidopyropen in utero or during early the post-natal period is not known. Given the relative insensitivity of this test species to the nervous system effects of afidopyropen, there is questionable utility in conducting a developmental neurotoxicity (DNT) study in rats. As a result, there is residual uncertainty regarding potential adverse effects on neurodevelopment. Consequently, an additional factor was applied to the point of departure (POD) for effects on nervous tissue in the one-year dog study when that POD was used in the risk assessment.

A 28-day dietary immunotoxicity study conducted in rats dosed with afidopyropen was submitted. Effects on body weight gain, as well as increases in liver and thymus weights were noted. Although the study was considered to be supplemental due to methodological limitations, no evidence of immune dysregulation was noted in this study, or in the afidopyropen database.

Several dietary reproductive toxicity studies with afidopyropen in rats were provided including two one-generation studies. This consisted of a dose-range finding study, and a study comparing results between testing with a high purity batch and the standard test batch of afidopyropen. Two multi-generation reproductive toxicity studies were also included in the database; the second study employed higher dose levels than the first. A supplemental dietary cross-fostering study in rats was also provided. These studies were considered collectively in determining effect levels for the numerous findings that follow.

The systemic toxicity observed in parental animals in these reproductive toxicity studies was generally consistent with findings reported in other repeat-dose dietary studies in rats, and included increased liver and adrenal weights. Although body weights were decreased throughout the database, body weight was increased in dams during lactation in the reproductive toxicity studies despite a decrease in food consumption. In the initial multi-generation reproductive toxicity toxicity study, increased adrenal weight was noted in P and F1 dams at the highest dose level, whereas no adverse effects were noted in males. Adverse effects were noted in males in the second multi-generation reproductive toxicity study, in which the top dose level for both sexes was approximately twice that of the highest dose level in the first study. Effects in males included decreased body weight and body weight gain, increased adrenal weight, and decreases in clinical chemistry parameters. In this second multi-generation reproductive toxicity study, in both mid- and high-dose females, changes in clinical chemistry and hematological parameters were noted in addition to increased adrenal weight. In the high-dose females, adrenal vacuolation

accompanied the adrenal weight changes. Despite the lack of histopathology correlates at the mid-dose level, the increased adrenal weights were considered toxicologically relevant given the consistency of this finding in the database.

Effects on reproductive parameters were observed in several studies. In addition to the weight changes in reproductive organs noted previously, additional findings included decreases in implantation sites, pups born, and litter size, as well as increased lymphoid infiltration of the prostate and observations in dams of "improper nursing of offspring". An altered sex ratio (increased number of males) was observed in all of the reproductive toxicity studies, except the cross-fostering study. When considering the collective results from these studies, the alteration in sex ratio was considered equivocal at doses of 1000 and 1500 ppm due to the inconsistency of the observation at these dose levels. A clear effect on this parameter was noted at 2000 ppm. There was also a decrease in testicular sperm count noted in two of the reproductive toxicity studies, as well as historical control values.

In the reproductive toxicity studies, there was no evidence to suggest sensitivity of the young as effects noted in the offspring occurred at dose levels that were also toxic to the maternal animals. Effects in the young included decreased body weight and body weight gain, as well as decreased thymus and spleen weights. In addition, delayed sexual maturation was observed in both sexes; this finding was observed at a lower dose level in males than in females. A serious effect, increased pup death, was noted at the highest dose levels in the early post-natal period in both studies. Despite some study limitations, results from the supplemental dietary cross-fostering study in rats suggest that in utero exposure was the critical factor leading to pup death.

With respect to developmental toxicity, the database contained a study in rabbits, and two studies in rats, all conducted via oral gavage. In the initial rat study, the study author concluded that there was no clear evidence of overt maternal toxicity at the highest dose level (100 mg/kg bw/day) and conducted a second study with dose levels up to 200 mg/kg bw/day. The PMRA is of the opinion that the change in adrenal weight at the high dose level in the initial study is toxicologically significant, given the consistency of the adrenal findings in the database and the fact that histopathological examination of this organ was not conducted in the developmental toxicity studies. In fetuses, increases in skeletal variations, lumbar (supernumerary) ribs, and metatarsal ossification were observed in this study at the high-dose level. There was also an altered sex ratio at the same dose level, which was considered equivocal. In the second rat developmental toxicity study, clear evidence of effects on maternal animals was observed at the highest dose level and included mortality, as well as decreased body weights and food consumption. At this same dose level, developmental effects included an increased incidence (fetal and litter) of zygomatic bone fused with maxilla and two incidences of a rare malformation, cleft palate, in one litter. At a non-maternally toxic lower dose level, increased incidents of skeletal variations and supernumerary ribs were observed in fetuses, suggesting sensitivity of the young animal.

As noted previously, the heart was a target tissue in the afidopyropen database and the rangefinding developmental toxicity study in rats included weight measurements as well as histopathological examination of the heart. Single incidents of slight myocardial degeneration were observed at the 20 mg/kg bw/day and the 100 mg/kg bw/day dose levels; these were considered equivocal based on the incidence as well as the severity of the response. At higher dose levels in this study, the incidence, as well as the severity grading of this finding, was more pronounced and accompanied by marked maternal toxicity, including death. Although histological examination of the heart was not undertaken in the rat main developmental toxicity studies, the overall maternal NOAEL was considered protective of the heart findings.

In the rabbit developmental toxicity study, clear toxicity to the maternal animal and the fetus was noted at the highest dose level. Effects included a decrease in the number of live fetuses, as well as increases in early resorptions, total litter resorptions and post-implantation loss. A serious effect, an altered sex ratio, was noted at a lower dose level that was not overtly toxic to maternal animals.

Afidopyropen was negative in a genotoxicity testing battery which included bacterial reverse mutation assays in *S. typhimurium* and *E. coli*, an in vitro chromosomal aberration assay in Chinese hamster lung cells, an in vitro forward mutation assay in Chinese hamster ovary cells, and two in vivo micronucleus assays in mice.

There was no evidence of oncogenicity in an 18-month dietary oncogenicity study in mice. Two chronic/oncogenicity studies conducted in Fischer rats were included in the database. These two-year studies were from the same conducting laboratory and were completed consecutively. In the first study, afidopyropen was administered at dose levels up to 1000 ppm (43/51 mg/kg bw/day in males and females, respectively) and the second study included dose levels of 1000, and 3000 ppm (42/50, 128/147 mg/kg bw/day, in males and females respectively). In the first study, there was a non-statistically significant increase in the incidence of uterine adenocarcinoma and combined uterine adenoma/adenocarcinoma at the highest dose levels. The incidences of these findings were statistically significantly increased at both dose levels in the second study. A statistically significant linear trend was observed for these tumour findings in both studies.

The applicant submitted a proposed MOA and a human relevance framework analysis for the rat uterine adenocarcinomas. The proposed MOA involved the following key events: agonism of dopamine receptors, decreased serum prolactin levels, decreased corpus luteum support which would lead to decreased production of progesterone and result in estrogen dominance, altered reproductive senescence in aged rats, endometrial hyperproliferation, and promotion of uterine adenocarcinomas. Mechanistic studies submitted by the applicant in support of the proposed MOA included radioligand binding assays for human recombinant dopamine receptors, tissue bioassays using rabbit ear artery, a 28-day dietary toxicity study conducted in female Fischer rats which measured effects on serum prolactin levels, an estrogen-receptor binding assay, and a 14-day dietary study in Fischer rats to measure CYP1A1 and CYP1B1 enzymatic activity and hepatic and uterine mRNA expression.

Studies were submitted to support the first key event (dopamine agonism), and although afidopyropen and one of the tested metabolites (M440I002) induced a concentration-dependent decrease in the twitch contraction amplitude in the rabbit ear artery studies, providing some evidence of dopamine-like effects, the data were not considered to be robust. The 28-day dietary toxicity study submitted to support the second key event provided some evidence that

afidopyropen may decrease prolactin levels under the conditions tested. No study was submitted to support the third key event of decreased corpus luteum support and decreased progesterone production, nor was there was any evidence to support this key event identified from studies within the toxicology database. To support the key event involving altered reproductive senescence in aged rats, the applicant pointed to a decrease in the incidence of mammary gland duct dilation observed in the second rat chronic/oncogenicity study. However, when the data from both chronic/oncogenicity studies were combined, a dose-dependent trend was not observed and thus the evidence was considered to be insufficient to support this key event. To support the key event of endometrial hyperproliferation, the applicant pointed to an increase in the incidence of endometrial hyperplasia observed at the highest dose level in the second chronic study; however, there was no clear dose response observed when the data from both studies were combined.

Although the proposed MOA is biologically plausible, conflicting evidence has been found in the literature regarding the effects of prolactin on uterine carcinogenicity in rats (PMRA #2832324, 2832325, and 2832326). Other MOAs were explored by the applicant, including a mutagenesis MOA, an estrogen receptor-mediated MOA, and a CYP450-mediated MOA. Mutagenesis was not considered to be a likely MOA since the genotoxicity studies for afidopyropen and one of its metabolites (M440I007) were negative. An estrogen receptor transcriptional activation study was submitted which demonstrated that afidopyropen did not alter estrogen receptor transcriptional activation. A study was also submitted that tested the ability of afidopyropen, and metabolites M440I002 and M440I001, to bind to the estrogen receptor. The results for afidopyropen indicated that the assay could not properly assess the interaction of afidopyropen with the estrogen receptor due to experimental limitations. The results for metabolites M440I002 and M440I001 were negative, indicating that estrogen receptor binding was not altered under the tested conditions. The results did not suggest an estrogen receptor-mediated MOA. In a 14-day dietary study with afidopyropen investigating CYP450 enzyme induction, there were increases in hepatic ethoxyresorufin-O-deethylation (EROD), hepatic microsomal estradiol-2-hydroxylation, hepatic CYP1A1 mRNA, hepatic CYP1B1 mRNA, and uterine CYP1A1 mRNA. Although the results suggest that exposure to afidopyropen may increase CYP1A and CYP1B enzyme activity, there were several limitations in the study, including lack of standardization for stage of estrous cycling, and lack of a positive control. The data from this study were not considered adequate to discount the CYP450-mediated MOA.

Within the context of the MOA discussion, it was acknowledged that there was evidence of endocrine perturbation observed throughout the database including delayed sexual maturation, altered sex ratio, altered sperm parameters, sex organ weight changes, and decreased implantation sites as mentioned previously. The interpretation of these findings, however, was complicated by the dynamic nature of female reproductive hormones and the fact that there was a general lack of hormone measurements in the database. Furthermore, the observed endocrine-related effects are not unique to the proposed MOA. Another confounding issue was the fact that many findings were identified in young adult rats, whereas tumours appeared in aged animals that were likely in reproductive senescence. Overall, the data provided were not considered adequate to support the proposed MOA for uterine adenocarcinoma formation in rats. Consequently, a linear low-dose extrapolation approach for cancer risk assessment was undertaken.

Several studies were available for metabolite M440I007, a dimer of afidopyropen, which is a large molecule of high molecular weight that is not likely to be readily absorbed due to its size. M440I007 was not observed in the rat metabolic cascade. This metabolite was of low acute toxicity following oral dosing in the female rat. It was negative in two bacterial reverse mutation assays in *S. typhimurium* and *E. coli*, an in vitro micronucleus test with human lymphocytes, an in vitro forward mutation assay in mouse lymphoma cells, and an in vivo micronucleus assay in mice. An investigation of the metabolic fate of M440I007 in urine and feces following gavage dosing in the rat, although limited to one male, did not suggest that the metabolite biotransforms to the parent compound. In a supplemental 90-day dietary toxicity study in rats with M440I007, minimal necrosis/fibrosis of the heart as well as extramedullary hematopoiesis of the spleen were observed at considerably higher dose levels than those that produced similar findings with afidopyropen. Overall, although the data were limited, they did not suggest that M440I007 was more toxic than afidopyropen.

Afidopyropen contains two CPCA groups at one end of the molecule, which are reportedly cleaved via simple hydrolysis. CPCA and CPCA-related conjugates are of toxicological concern for humans. CPCA toxicity is due in large part to its ability to conjugate to carnitine and fatty acids. Carnitine plays an essential role in the transfer of long-chain fatty acids into mitochondria. The binding of CPCA to carnitine leads to carnitine deficiency, blockage of mitochondrial oxidation of fatty acids, and ultimately lipid accumulation in the cytosol. This lipid accumulation results in impaired organ/tissue function. Since skeletal muscle, and in particular, cardiac muscle, depend on fatty acid oxidation for most of their energy, these tissues are expected to be most severely affected by carnitine deficiency (PMRA #2832327).

An acute oral toxicity study in female rats with CPCA was available and indicated high acute oral toxicity in contrast to the low acute toxicity of afidopyropen. In addition, in a 90-day toxicity study with CPCA in which rats were dosed via gavage, microscopic findings in the liver and thymus of females and the heart and pancreas of both sexes were observed. The toxicity exhibited in this repeat-dose study occurred in females at a nearly 2-fold lower dose in comparison to the rat 90-day dietary study with afidopyropen.

Although CPCA was not measured directly in the rat toxicokinetic studies, there is evidence to suggest that it is a rat metabolite. Exposure to CPCA was estimated by analyzing for CPCA-carnitine as the latter is more readily detected at low concentrations compared to free CPCA. CPCA-carnitine concentrations were measured in rats after 14 days of dietary administration of non-radiolabelled afidopyropen, followed by a single oral gavage administration of C¹⁴-radiolabelled afidopyropen. CPCA-carnitine reached a maximum plasma concentration one hour post-gavage dosing in the low-dose group, whereas the high-dose group reached maximum plasma concentration eight hours post-dosing. Plasma levels of CPCA-carnitine declined 72 hours post-dosing; however, CPCA-carnitine was not completely eliminated by that time point. A higher terminal half-life and AUC was noted for CPCA-carnitine as compared to afidopyropen.

Toxicokinetic studies that measured levels of metabolites that had lost one or both of the CPCA ester moieties provide further evidence of exposure of rats to CPCA following dosing with

afidopyropen. Plausible evidence of CPCA-induced toxicity was also observed at high dose levels in afidopyropen subchronic and chronic studies in rats, and in studies conducted in mice and dogs. This evidence included vacuolar change in hepatocytes, the myocardium and brain, fibrosis of the heart, and necrosis of the liver. Though not an effect exclusive to carboxylic acid toxicity, the vacuolation observed in the liver is a known consequence of carboxylic acidinduced mitochondrial dysfunction, and the observed heart vacuolation is also characteristic of defective or reduced carnitine uptake.

Cardiomyopathy and myocardial degeneration were selected as common endpoints in order to compare the relative toxicity of CPCA and afidopyropen. An increased incidence and severity of cardiomyopathy compared to controls was observed in both sexes at \geq 30 mg/kg bw/day in the CPCA 90-day gavage toxicity study in Sprague-Dawley rats. In afidopyropen 90-day dietary toxicity studies, the lowest dose level at which these heart findings were observed was 181/361 mg/kg bw/day, in male/ female Fischer rats, respectively. Necrosis/fibrosis of the heart was observed at doses of 171/197 mg/kg bw/day (males and females, respectively) in the supplemental 90-day Wistar rat studies in which histopathology was not conducted for the lowor mid-dose groups. In light of these findings, including the limited toxicology data available for CPCA, it was difficult to directly compare the relative toxicity of afidopyropen and CPCA. This was further confounded by the use of different rat strains and routes of administration in the studies, as well as the lack of histopathology examinations in the lower dose groups in the supplemental afidopyropen studies. That being said, the available data suggest that CPCA and afidopyropen may have a similar mechanism of toxicity; the potency for CPCA, however, appears greater. Therefore, separate toxicology reference values were established for CPCA on the basis of a molecular weight (MW) adjustment factor.

Identification of the metabolites of afidopyropen, as well as results of the toxicology studies conducted on laboratory animals with afidopyropen, its metabolites, and end-use products are summarized in Appendix I, Tables 2, 3, 4 and 5, respectively. The toxicology endpoints for use in the human health risk assessment for afidopyropen are summarized in Appendix I, Table 6, and for CPCA in Appendix I, Table 7.

Incident Reports

Since 26 April 2007, registrants have been required by law to report incidents to the PMRA, including adverse effects to Canadian health or the environment. Afidopyropen is a new active ingredient pending registration for use in Canada and the United States, and as of 2 November 2017, no incident reports were submitted to the PMRA. Once products containing afidopyropen are registered, the PMRA will monitor for incident reports.

3.1.1 Pest Control Products Act (PCPA) Hazard Characterization

For assessing risks from potential residues in food or from products used in or around homes or schools, the *Pest Control Products Act* requires the application of an additional 10-fold factor to threshold effects to take into account completeness of the data with respect to the exposure of, and toxicity to, infants and children, and potential prenatal and postnatal toxicity. A different factor may be determined to be appropriate on the basis of reliable scientific data.

With respect to the completeness of the afidopyropen toxicity database as it pertains to the toxicity to infants and children, the database contains the standard complement of required studies including gavage developmental toxicity studies in rats and rabbits, and dietary multi-generation reproductive toxicity studies in rats. A supplemental dietary cross-fostering study in rats was also submitted.

With respect to potential prenatal and postnatal toxicity, there was evidence of increased sensitivity of the fetuses compared to maternal animals in some of the rat and rabbit developmental toxicity studies. In the first rat study, fetal skeletal variations, increased incidence of lumbar (supernumerary ribs) and metatarsal ossification, as well as a serious effect, altered sex ratio, were observed at 100 mg/kg bw/day in the presence of maternal toxicity (increased adrenal gland weights). In the second rat study, which included higher dose levels, increased incidents of skeletal variations and supernumerary ribs occurred in fetuses at the lowest dose level tested (50 mg/kg bw/day), a dose level that was not toxic to the maternal animal. At the highest dose level in this study (200 mg/kg bw/day), developmental effects included an increased fetal and litter incidence of zygomatic bone fused with maxilla relative to controls, and two incidents of cleft palate in one litter. These serious findings were tempered by the fact that this dose level was maternally toxic, as demonstrated by mortality of one dam, and decreases in body weight, body weight gain and food consumption during gestation. In the rabbit developmental toxicity study, a serious effect, altered sex ratio, was observed in fetuses at 16 mg/kg bw/day in the absence of overt maternal toxicity. The NOAEL for this serious effect (8 mg/kg bw/day) represented the lowest NOAEL in the database. At the highest dose level in this rabbit study (32 mg/kg bw/day), there was a decrease in the number of live fetuses, as well as an increase in the number of dead fetuses, early resorptions, total litter resorptions, and post-implantation loss.

In both multi-generation reproductive toxicity studies, effects noted in the offspring (including decreased body weight and body weight gain, decreased thymus and spleen weight, and delayed sexual maturation in both sexes) occurred at dose levels that were also toxic (adrenal effects) to the maternal animals suggesting that the young animal was not more sensitive to afidopyropen toxicity than the adult animal. At higher dose levels, decreased mean litter size was also observed, as well as pup death and an increased number of pups with reduced nutritional condition. The results of the cross-fostering study suggested that in utero exposure appeared to be a critical factor leading to pup death in the early post-natal period.

Due to the observation of an altered sex ratio, which is considered to be a serious endpoint, at a dose that did not produce overt signs of toxicity in the maternal animal, the full 10-fold PCPA factor was retained for exposure scenarios using the POD from the rabbit developmental toxicity study. Selection of this endpoint provides protection for other serious endpoints of concern in the database including pup deaths and malformations.

Evidence of effects on nervous tissue was noted in the database, with the most serious effects being observed in the dog. These effects included vacuolation of nervous tissue, decreased myelin density of subcortical white matter and the corpus callosum, and a cyst in the cerebellum of one decedent observed in the one-year toxicity study. Overall, the dog was the most sensitive test species for effects on the nervous system. Since the studies in dogs were performed in adult animals, potential effects on neurodevelopment of the young animal exposed in utero or during the early post-natal period is not known. There is questionable utility in conducting a DNT study in rats given the noted relative insensitivity of the rat to the nervous system effects of afidopyropen. As a result, there is residual uncertainty regarding potential adverse effects on neurodevelopment. For exposure scenarios using the POD from the one-year dog study, this residual uncertainty is reflected though a 3-fold PCPA factor to the POD for brain effects in the dog.

For scenarios using a POD based on an effect other than those noted above, the PCPA factor was reduced to 1-fold.

3.2 Acute Reference Dose (ARfD)

General Population

An ARfD for the general population was not established as an effect attributable to a single exposure of afidopyropen was not identified in the database.

Females 13-49 Years of Age

To estimate acute dietary risk for females 13–49 years of age, the gavage developmental toxicity study in rabbits with a developmental NOAEL of 8 mg/kg bw/day was selected for risk assessment. At the lowest observed adverse effect level (LOAEL) of 16 mg/kg bw/day, an altered sex ratio was observed in the absence of overt maternal toxicity. The possibility that this effect was a result of a single exposure could not be ruled out; therefore, this endpoint was considered relevant for an acute risk assessment. Standard uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability were applied. The full PCPA factor of 10-fold was retained for the reasons outlined in the PCPA Hazard Characterization section. The composite assessment factor (CAF) is thus 1000.

The ARfD is calculated according to the following formula:

ARfD (females 13–49 yrs) = $\frac{\text{NOAEL}}{\text{CAF}} = \frac{8 \text{ mg/kg bw/day}}{1000} = 0.008 \text{ mg/kg bw}$

3.3 Acceptable Daily Intake (ADI)

General population

To estimate risk of repeated dietary exposure for the general population, the one-year capsule administration study in dogs with a NOAEL of 8 mg/kg bw/day was selected for risk assessment. At the LOAEL of 20 mg/kg bw/day, effects observed included hyaline droplet deposition in hepatocytes, and vacuolation of white matter and neuropil of the cerebrum. Although a NOAEL of 8 mg/kg bw/day was also established for offspring toxicity in one of the reproductive toxicity studies, this was likely attributable to dose spacing. The overall offspring NOAEL was 27 mg/kg bw/day based on the results of both reproductive toxicity studies.

Standard uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability were applied. As discussed in the PCPA Hazard Characterization section, The PCPA factor was reduced to 3-fold for the reasons outlined in the PCPA Hazard Characterization section. The CAF is thus 300.

The ADI is calculated according to the following formula:

$$ADI = \frac{NOAEL}{CAF} = \frac{8 \text{ mg/kg bw/day}}{300} = 0.03 \text{ mg/kg bw/day}$$

Females 13-49 years of age

To estimate risk of repeated dietary exposure for females 13–49 years of age, the gavage developmental toxicity study in rabbits with a developmental NOAEL of 8 mg/kg bw/day was selected for risk assessment. At the LOAEL of 16 mg/kg bw/day, an altered sex ratio was observed in the absence of overt maternal toxicity. Standard uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability were applied. The full PCPA factor of 10-fold was retained for the reasons outlined in the PCPA Hazard Characterization section. The CAF is thus 1000.

The ADI is calculated according to the following formula:

ADI (females 13–49 years) = $\frac{\text{NOAEL}}{\text{CAF}} = \frac{8 \text{ mg/kg bw/day}}{1000} = 0.008 \text{ mg/kg bw/day}$

3.4 Occupational Risk Assessment

3.4.1 Toxicology Reference Values

Short-, Intermediate-, and Long-term Dermal

For short- and intermediate-term dermal risk assessments, the rabbit developmental NOAEL of 8 mg/kg bw/day was selected. At the LOAEL of 16 mg/kg bw/day, an altered sex ratio was observed in the absence of overt maternal toxicity. The target MOE is 1000, which includes uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability, as well as a 10-fold factor for a serious effect in the absence of overt maternal toxicity. The selection of this study is protective of all populations, including nursing infants and the unborn children of exposed female workers. Although a 28-day dermal toxicity study in rats was available, it was not chosen for endpoint selection since the design of the study does not allow for the assessment of the relevant endpoint of concern, altered sex ratio.

Short-, Intermediate- and Long-term Inhalation

For short- and intermediate-term inhalation risk assessments, the rabbit developmental NOAEL of 8 mg/kg bw/day was selected. At the LOAEL of 16 mg/kg bw/day, an altered sex ratio was

observed in the absence of overt maternal toxicity. The target MOE is 1000, which includes uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability, as well as a 10-fold factor for a serious effect in the absence of overt maternal toxicity. The selection of this study is protective of all populations, including nursing infants and the unborn children of exposed female workers.

Results from an oral study were used as no repeat-dose inhalation toxicity studies were available; furthermore, the design of a repeat-dose inhalation toxicity study would not allow for the assessment of the relevant endpoint of concern, altered sex ratio.

Cumulative Assessment

The *Pest Control Products Act* requires that the PMRA consider the cumulative exposure to pesticides with a common mechanism of toxicity. For the current evaluation, the PMRA did not identify information indicating that afidopyropen shares a common mechanism of toxicity with other pest control products. One of the principal findings in the afidopyropen toxicology database was effects on the heart. This was also observed following toxicity testing with CPCA, a metabolite of afidopyropen. It is acknowledged that CPCA likely contributed to the toxicity observed in the mammalian toxicity studies following dosing with the parent compound, afidopyropen. A comparison of the heart findings in the toxicity studies with afidopyropen and CPCA suggested that CPCA may be more potent, however. Although the key mechanism of action for afidopyropen was not identified, the similarity of the heart findings suggests a similar mechanism of toxicity for these two chemicals. Therefore, there is a requirement for a cumulative risk assessment at this time. The POD selected for cumulative risk assessment are thus based on the heart effects observed with both these chemicals. On the basis of the current use pattern, the cumulative assessment was only conducted for the dietary route of exposure. For afidopyropen, the NOAEL of 18 mg/kg bw/day from the guideline 90-day dietary study in Fischer rats was selected as the POD. For CPCA, the NOAEL of 10 mg/kg bw/day from the 90day gavage study with CPCA in Sprague-Dawley rats was selected as the POD. Standard uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability were applied. The PCPA factor was reduced to 1-fold for the reasons noted in the PCPA Hazard Characterization section. The CAF for the cumulative risk assessment is thus 100fold.

Cancer Assessment

Treatment-related increases in the incidences of uterine adenocarcinoma and uterine adenoma/adenocarcinoma combined were observed in both rat oncogenicity studies. Although the proposed MOA was considered to be biologically plausible, the supporting data were not considered adequate due to inconsistent results and a paucity of data to support certain key events. Therefore, a linear low-dose extrapolation approach for the cancer risk assessment was deemed appropriate. The cancer unit risk (q₁*) for the incidence of uterine adenoma/adenocarcinomas combined in female rats is 1.79×10^{-2} (mg/kg bw/day)⁻¹.

Cyclopropane carboxylic acid (CPCA) Risk Assessment

For the CPCA risk assessment, the afidopyropen reference values were adjusted based on the MW of CPCA. This approach was deemed appropriate since it appeared that both afidopyropen and CPCA have a similar mechanism of toxicity; for example, both produced heart effects in the oral 90-day rat studies. It also takes into consideration other findings in the afidopyropen database; for example, reproductive and developmental toxicity effects and cancer. Data suggest that afidopyropen toxicity is, in part, likely due to CPCA; however, CPCA appears to be more potent. The effects in the 90-day CPCA study were of a greater severity than those observed in the afidopyropen 90-day study. The difference in potency, when comparing effects in the heart, appeared to be between 2- to 7-fold, although there was some uncertainty in this regard since the 90-day studies utilized different methods of administration (diet versus gavage) and animal strains (Wistar versus Sprague-Dawley), and some studies were lacking histopathological examinations at all dose levels. The MW adjustment factor to the afidopyropen reference values was calculated to be 3.5. The uncertainty and PCPA factors applied for the afidopyropen reference values for CPCA can be found in Appendix I, Table 7.

3.4.1.1 Dermal Absorption

A rat in vivo study was submitted. Based on the data presented in the study, a dermal absorption value of 12% was selected for the risk assessment of afidopyropen.

3.4.2 Occupational Exposure and Risk

3.4.2.1 Mixer/Loader/Applicator Exposure and Risk Assessment

Individuals have potential for exposure to afidopyropen during mixing, loading and application. Dermal and inhalation exposure estimates for workers mixing, loading and applying were generated from the Agricultural Handlers Exposure Task Force database and Pesticide Handlers Exposure Database (PHED, v1.1).

Exposure to workers mixing, loading and applying afidopyropen is expected to be of short- to intermediate-term duration and to occur primarily by the dermal and inhalation routes. Exposure estimates were derived for mixers/loaders/applicators applying afidopyropen to soybeans, tuberous and corm vegetables (including potatoes), leafy vegetables, brassica head and stem vegetables, fruiting vegetables, cucurbit vegetables, leaf petiole vegetables, pome fruit, stone fruit, hazelnut trees and greenhouse and outdoor ornamentals. The exposure estimates are based on mixers/loaders/applicators wearing a single layer plus chemical-resistant gloves.

Chemical-specific data for assessing human exposures during pesticide handling activities were not submitted.

Dermal exposure was estimated by coupling the unit exposure values with the amount of product handled per day and the dermal absorption value. Inhalation exposure was estimated by coupling

the unit exposure values with the amount of product handled per day with 100% inhalation absorption. Exposure was normalized to mg/kg bw/day by using 80 kg adult body weight.

For the non-cancer risk assessment, exposure estimates were compared to the toxicological endpoints (NOAELs) to obtain the MOE; the target MOE is 1000 (Appendix I, Table 8).

A cancer risk assessment was conducted for workers mixing, loading and applying afidopyropen. Absorbed daily doses (ADD; equivalent to the exposure estimate for the calculation of non-cancer MOEs) were used as the basis for calculating lifetime average daily dose (LADD) values. LADD values were then calculated by amortizing exposure over the lifetime of the worker. The treatment frequency was assumed to be 30 days per year, with an exposure duration of 40 years. Cancer risk was calculated by multiplying the estimated LADD by a q_1^* ; the target threshold is < 1.0×10^{-5} (Appendix I, Table 9).

3.4.2.2 Exposure and Risk Assessment for Workers Entering Treated Areas

There is potential for exposure to workers re-entering areas treated with Sefina Insecticide and Versys Insecticide to complete tasks such as setting irrigation lines, scouting and hand harvesting. Given the nature of activities performed, exposure should be primarily via the dermal route based on dermal contact with treated foliage. Inhalation exposure is not expected to be of concern as afidopyropen is considered non-volatile with a vapour pressure of $< 9.9 \times 10^{-9}$ kPA (at 25°C), which is less than the North American Free Trade Agreement (NAFTA) criteria for a non-volatile product for outdoor scenarios [1×10^{-4} kPa (7.5×10^{-4} mm Hg) at 20–30° C]. The duration of exposure is considered to be short- to intermediate-term, with the exception of greenhouse uses which are considered long-term.

Dermal exposure to workers entering treated areas is estimated by coupling dislodgeable foliar residue (DFR) values with activity-specific transfer coefficients (TCs). Activity TCs are based on data from the Agricultural Reentry Task Force. Chemical-specific DFR data were submitted for cucurbit vegetables, stone fruits and fruiting vegetables, and used in the postapplication risk assessment. Additionally, the DFR data for stone fruits were used as surrogate data for pome fruit, while the DFR data for fruiting vegetables were used as surrogate data in the risk assessment for brassica head and stem vegetables and bok choy. For all other crops, a default DFR value of 25% of the application rate coupled with 10% daily dissipation of residues were used in the exposure assessment, except for greenhouse ornamentals which used a 2.3% daily dissipation rate of residues.

For the non-cancer risk assessment, exposure estimates were compared to the toxicological endpoint to obtain the MOE; the target MOE is 1000. Only exposures and risks to the activities with the highest TCs are presented as MOEs for these activities exceed the target MOE of 1000 (Appendix I, Table 10).

A cancer risk assessment was conducted for workers entering fields treated with afidopyropen. The ADD was used as the basis for calculating LADD values. The exposure frequency was assumed to be equivalent to 30 days per year for agricultural crops and outdoor ornamentals. As greenhouse activities can occur for extended periods, exposure frequencies for cut flowers and potted flowers were assumed to be 50 days. Career duration of 40 years was assumed for re-entry workers. Cancer risk for workers entering fields and greenhouses treated with afidopyropen was equivalent to or below 1×10^{-5} (Appendix I, Table 11).

3.4.3 Residential Exposure and Risk Assessment

3.4.3.1 Handler and Postapplication Exposure and Risk

Sefina Insecticide and Versys Insecticide are not domestic class products and are not permitted for use in residential settings; therefore, a residential assessment was not required.

3.4.3.2 Cumulative Risk Assessment

A cumulative risk assessment takes into consideration the combined residential (dermal and inhalation) and dietary (food and drinking water) exposures. However, as there are no residential uses permitted for afidopyropen, the cumulative exposure assessment was only conducted for the dietary exposure.

3.4.3.3 Bystander Exposure and Risk

Bystander exposure should be negligible since the potential for drift is expected to be minimal. Application is limited to agricultural crops only when there is low risk of drift to areas of human habitation or activity such as houses, cottages, schools and recreational areas, taking into consideration wind speed, wind direction, temperature inversions, application equipment and sprayer settings.

3.5 Exposure from Drinking Water

3.5.1 Concentrations in Drinking Water

The residue definition (RD) for drinking water includes afidopyropen and 18 structurally-similar transformation products plus the transformation product CPCA. Since CPCA appears to be more potent than afidopyropen and has a separate toxicology reference value, a separate drinking water assessment was required.

There were 18 transformation products included, labelled as M440I0*nn*, where *nn* can be 01, 02, 03, 05, 06, 14, 15, 16, 21, 24, 46, 47, 48, 49, 50, 52, 53, or 57. Since none of the available environmental fate studies assessed all 18 transformation products, estimated environmental concentrations (EECs) were calculated with model inputs using two methods, thereby providing a range of EECs for afidopyropen and all structurally-similar transformation products. In the first method, degradation rates were calculated for afidopyropen and only the structurally-similar transformation products identified in the laboratory studies. In the second calculation method, all extractable residues, including unidentified residues, were included as there was insufficient information to show that these were not structurally-similar to the parent compound, and were greater than 10% of the total radioactivity when considered together. To capture the limitation of the information provided, the PMRA's RD for drinking water was, therefore, defined in two

ways: both with and without considering the unidentified residues. Not including the unidentified residues likely underestimated the EECs, while including the unidentified residues likely overestimated the EECs.

EECs of afidopyropen combined residues, as well as CPCA, were calculated for potential drinking water sources (groundwater and surface water). EECs in groundwater were calculated using the Pesticide in Water Calculator (PWC) model to simulate leaching through a layered soil profile. The concentrations calculated using PWC are average concentrations in the top 1 m of the water table. EECs of afidopyropen in surface water were also calculated using the PWC model, which simulates pesticide runoff from a treated field into an adjacent water body and the fate of a pesticide within that water body. Pesticide concentrations in surface water were estimated in a vulnerable drinking water source, a small reservoir.

A Level 1 drinking water assessment was conducted using conservative assumptions with respect to environmental fate, application rate and timing, and geographic scenario. The Level 1 EEC estimates are expected to allow for future use expansion into other crops at application rate(s) equal to or lower than the modelled rate. Table 3.5.1 below lists the application information and main environmental fate characteristics used in the simulations. Twenty-two initial application dates between April and October were modelled. The model was run for 50 years for surface water simulations and 100 years for groundwater simulations. The largest EECs of all selected runs are reported in Table 3.5.2 below. Level 2 EECs were also generated for the use on vegetable crops, which has the highest registered application rate. Brussels sprouts and potatoes were selected as representative crops for vegetable uses.

Table 3.5.1Major groundwater and surface water model inputs used in the assessment of
afidopyropen. The vertical bar separates values calculated without and with
unidentified residues.

Parameter	Afidopyropen	CPCA ^a	
	combined residues		
Application Information			
Maximum allowable application rate per year	125	(not directly applied to	
(g a.i./ha)		soil)	
Maximum rate each application (g a.i./ha)	50		
Maximum number of applications per year	4		
Minimum interval between applications (days)	7		
Method of application	Ground, airblast, or		
	aerial		
Environmental Fate Characteristics ^b			
Hydrolysis half-life at pH 7 (days)	Stable	Stable	
Photolysis half-life in water (days)	25 136 ^c	Stable	
Adsorption K _d (mL/g)	6.96 ^d	0	
Biotransformation half-life in soil (days)	77 365 ^e	7	
Biotransformation half-life in water (days)	$202 244^{f}$	Stable	
Biotransformation half-life in sediment (days)	618 ^g	Stable	

Parameter	Afidopyropen	CPCA ^a
	combined residues	

Application Information

^a When accounting for the transformation of afidopyropen into CPCA during the modelling of CPCA, half-lives of afidopyropen alone were used (as opposed to combined afidopyropen residues shown in this table): 18 days for soil, 92 days for water and 45.3 days for sediment.

- ^b The temperature associated with the derived endpoints was set to match the temperature of the studies.
- ^c The average of the environmental half-lives in pH 7 buffer from the two aquatic phototransformation studies.

^d The 20th percentile of the six soil K_d values for parent afidopyropen.

- ^e The 90th percentile confidence bound on the mean of four soil half-lives (averaging the two New Jersey and two Lufa 2.2 soils separately prior to taking the percentile).
- ^f The longest whole system representative half-lives from the aerobic aquatic biotransformation study (Ranschgraben).

^g The longest whole system representative half-life from the anaerobic aquatic biotransformation study was used (Goose River) for both scenarios (with and without unidentified residues).

Table 3.5.2Level 1 and 2 EECs of afidopyropen combined residues and of CPCA in
potential sources of drinking water, given applications of 35, 40, and 50 g
a.i./ha at a 7-day interval. The vertical bar separates values calculated
without and with unidentified residues.

Chemical	Groundwater (µg/L)		Surface Water (µg/L)	
	Daily ¹	Yearly ²	Daily ³	Yearly ⁴
Level 1 Afidopyropen + Transformation Products	0.15 3.1	0.15 3.1	5.0 5.3	1.2 1.4
Level 2 Afidopyropen + Transformation Products	0.12 2.8	0.12 2.8	NA	NA
Level 1 CPCA	1.2	1.2	0.41	0.16
Level 2 CPCA	1.04	0.99	NA	NA
 90th percentile of daily average concentrations 90th percentile of 365 day moving average concentrations 90th percentile of the peak concentrations from each year 90th percentile of yearly average concentrations 				

3.6 Food Residues Exposure Assessment

3.6.1 Residues in Plant and Animal Foodstuffs

The residue definition for risk assessment and enforcement in plant products and animal commodities is afidopyropen. The data gathering/enforcement analytical methods are valid for the quantitation of afidopyropen residues in crop and livestock matrices. The residues of afidopyropen are stable in representative matrices from five crop categories (high water, high oil, high protein, high starch and high acid content) for up to 24 months when stored at -20°C. Therefore, afidopyropen residues are considered stable in all frozen crop matrices and processed crop fractions for up to 24 months. The raw agricultural commodities (potatoes and soybeans) were processed, but the processed commodities were not further analyzed due to the lack of quantifiable residues. Afidopyropen residues concentrated in the following human food

processed commodities: sundried tomatoes (4.4), orange peel (1.9), and orange oil (4.6). Quantifiable residues are not expected to occur in livestock matrices when exposed to feed items treated according to the current use pattern. Crop field trials conducted throughout Canada and the United States using end-use products containing afidopyropen at approved rates in or on crop subgroup 1C, crop subgroup 4-13A, crop subgroup 4-13B, crop group 5-13, soybeans, crop group 8-09, crop group 9, crop group 10 revised, crop group 11-09, crop group 12-09, crop group 14-11, crop subgroup 20C revised, and crop subgroup 22B are sufficient to support the proposed maximum residue limits (MRLs).

3.6.2 Dietary Risk Assessment

Acute and chronic (cancer and non-cancer) dietary risk assessments were conducted using the Dietary Exposure Evaluation Model (DEEM-FCID).

3.6.2.1 Chronic Dietary Exposure Results and Characterization

The following criteria were applied to the intermediate chronic non-cancer analysis for afidopyropen: 100% crop treated, residues of all crops based on supervised trial median residue values, anticipated median residues in processed fractions (where available), and anticipated residues for all animal commodities. The intermediate chronic dietary exposure from all supported afidopyropen food uses (alone), for all representative population subgroups, is 0.4% to 1.4% of the ADI, and 2.0% for females 13 to 49 years of age. Aggregate exposure from food and drinking water is considered acceptable. The PMRA estimates that chronic dietary exposure to afidopyropen from food and drinking water is 0.5% to 2% of the ADI for all population subgroups, except females 13 to 49 years of age, for whom the exposure accounted for 3% of the ADI (0.000214 mg/kg bw/day). The highest exposure and risk estimate is for children 1 to 2 years of age at 1.6% (0.000485 mg/kg bw/day) of the ADI.

The refined chronic cancer risk assessment for afidopyropen was conducted with the same criteria used for the chronic non-cancer assessment, including projected percent crop treated. The lifetime cancer risk from exposure to afidopyropen in food and drinking water was estimated to be 9×10^{-7} to 2×10^{-6} for the general population, which is below the PMRA's level of concern.

The chronic non-cancer exposure to CPCA from drinking water is not of health concern. Specifically, a range from 0.2% to 0.9% of the ADI was obtained for all population subgroups, excluding females 13 to 49 years old, for whom the exposure was 1.0% of the ADI.

The lifetime cancer risk from exposure to CPCA in drinking water was estimated to be 1×10^{-6} for the general population, which is below the PMRA's level of concern.

3.6.2.2 Acute Dietary Exposure Results and Characterization

The following assumptions were applied in the intermediate acute analysis for afidopyropen: 100% crop treated, highest average residues in/on crops, anticipated highest residues in processed commodities (where available), and anticipated residues in animal commodities. The intermediate acute dietary exposure (food alone) for all supported afidopyropen food

commodities is estimated to be 20% (0.001585 mg/kg bw/day) of the ARfD for females 13 to 49 years old (95th percentile, deterministic). Aggregate exposure from food and drinking water is considered acceptable: 21% (0.001654 mg/kg bw/day) of the ARfD for females 13 to 49 years old.

The acute exposure to CPCA from drinking water is not of health concern. Specifically, 3% of the ARfD was obtained for females 13 to 49 years old.

3.6.3 Aggregate Exposure and Risk

The aggregate risk for afidopyropen consists of exposure from food and drinking water sources only; there are no residential uses.

3.6.4 Cumulative Assessment

A cumulative risk assessment takes into consideration the combined residential (dermal and inhalation) and dietary (food and drinking water) exposures. However, as there are no residential uses permitted for afidopyropen, the cumulative exposure assessment was only conducted for the dietary exposure. When combining the exposure estimates from residues of afidopyropen (food and drinking water) with those of CPCA (drinking water), the resultant estimates do not exceed 1% of the afidopyropen or CPCA cumulative reference values.

3.6.5 Maximum Residue Limits

The PMRA recommends that the following MRLs be specified for residues of afidopyropen.

Table 3.6-1	Proposed Maximum Residue Limits
--------------------	---------------------------------

Food Commodity	Recommended MRL (ppm)
Brassica leafy greens (CSG4-13B)	5.0
Leaf petioles vegetables (CSG22B)	3.0
Leafy greens (CSG4-13A)	2.0
Cucurbit vegetables (CG9)	0.7
Brassica head and stem vegetable (CG5-13), dried tomatoes	0.5
Citrus oil	0.4
Fruiting vegetables (CG8-09)	0.2
Citrus fruits (CG10 Revised)	0.15
Cottonseeds (CSG20C Revised)	0.08
Stone fruits (CG12-09)	0.03
Pome fruits (CG11-09)	0.02
Tuberous and corm vegetables (CSG1C), tree nuts (CG14-11), dry soybeans, eggs, fat, meat, and meat by-products of cattle, goats, hogs, horses, poultry, and sheep	0.01

Food Commodity	Recommended MRL (ppm)
Milk	0.001

MRLs are proposed for each commodity included in the listed crop groupings in accordance with the Residue Chemistry Crop Groups webpage in the Pesticides and Pest Management section of Health Canada's website.

For additional information on MRLs in terms of the international situation and trade implications, refer to Appendix II.

The nature of the residues in animal and plant matrices, analytical methodologies, field trial data, acute and chronic (non-cancer and cancer) dietary risk estimates are summarized in Appendix I, Tables 1B, 12 and 13.

4.0 Impact on the Environment

4.1 Fate and Behaviour in the Environment

Hydrolysis is not expected to be an important route of dissipation for afidopyropen in the environment. Afidopyropen is effectively stable to hydrolysis at pH 4 and 7, but hydrolyzes gradually at pH 9. Phototransformation is also not expected to be an important route of dissipation for afidopyropen in the environment. Afidopyropen is stable to soil photolysis, and the potential for aqueous photolysis would be minimal based on its propensity to partition to sediment and long half-life in water, making it unavailable to irradiation at the surface of waterbodies. The primary route of dissipation for afidopyropen is biotransformation in terrestrial and aquatic environments.

The transformation pathway consists of three major processes: cleavage of the CPCA esters, oxidation of the alcohols (either present in the parent or formed as a result of ester cleavage), and oxidation of the pyridine ring. In addition, there are several minor transformation pathways, including photodimerization and ring cleavage. These individual processes can occur concurrently to different portions of the molecule while leaving the core ring structure of the molecule intact.

The major transformation products (>10% formed) of afidopyropen in soil and aquatic systems include: M440I001, M440I002, M440I003, M440I024, M440I046, M440I047, M440I057, and nicotinic acid (M440I045). Various minor transformation products were also identified. Only moderate carbon dioxide (CO_2) formation was observed in the aerobic soil biotransformation (up to 28% AR) and aqueous photolysis (up to 20% AR) studies, with the maximum CO_2 formed in all other studies remaining less than 5%. Unextracted residues were formed in large quantities (up to 52% AR) and large amounts of unidentified extractable radioactivity (up to 40% AR) were observed in almost all of the studies.

Based on the structural similarity of most of the transformation products to the core structure of the parent molecule, the transformation products are considered toxicologically equivalent to parent and included in the residue definition. The total unidentified extractable residues are also

included in the residue definition, due to consistency of detection across multiple studies, their potential structural similarity to the parent compound, and were greater than 10% of the total radioactivity when considered together.

Afidopyropen meets three of the eight criteria of Cohen *et al.* (1984) resulting in a non-definitive conclusion regarding leaching; however, the groundwater ubiquity score (GUS) values indicate that parent afidopyropen is a non-leacher. When including all residues, GUS indices encompass the entire range of non-leacher to leacher. Terrestrial field dissipation studies indicate that afidopyropen dissipates rapidly, and no parent or transformation products were detected below 30 cm soil depth, suggesting limited movement to groundwater at the sites evaluated. Overall, taking into consideration results of laboratory studies, assessments using GUS values and criteria of Cohen *et al.* (1984), terrestrial field dissipation studies and conservative water modelling, leaching is not expected to be a significant route of dissipation for afidopyropen and its residues.

The bioaccumulation potential of afidopyropen is low in fish based on a log octanol-water partition coefficient (K_{OW}) of 3.45 and measured bioconcentration factor (BCF) ranging from < 0.43 to 0.74. Afidopyropen is not systemic, but has translaminar movement in plants. As such, afidopyropen applied by foliar spray is expected to mostly remain near leaves and not translocate throughout the plant.

The transformation products of afidopyropen detected in laboratory dissipation studies are summarized in Appendix I, Table 14. The fate and behaviour of afidopyropen and its transformation products in the environment is summarized in Appendix I, Table 15.

4.2 Environmental Risk Characterization

The environmental risk assessment integrates the environmental exposure and ecotoxicology information to estimate the potential for adverse effects on non-target species. This integration is achieved by comparing exposure concentrations with concentrations at which adverse effects occur. Estimated environmental exposure concentrations (EECs) are concentrations of pesticide in various environmental media, such as food, water, soil and air. The EECs are estimated using standard models which take into consideration the application rate(s), chemical properties and environmental fate properties, including the dissipation of the pesticide between applications. Ecotoxicology information includes acute and chronic toxicity data for various organisms or groups of organisms from both terrestrial and aquatic habitats including invertebrates, vertebrates, and plants. Toxicity endpoints used in risk assessments may be adjusted to account for potential differences in species sensitivity as well as varying protection goals (i.e., protection at the community, population, or individual level).

Initially, a screening level risk assessment is performed to identify pesticides and/or specific uses that do not pose a risk to non-target organisms, and to identify those groups of organisms for which there may be a potential risk. The screening level risk assessment uses simple methods, conservative exposure scenarios (e.g., direct application at a maximum cumulative application rate) and sensitive toxicity endpoints. A risk quotient (RQ) is calculated by dividing the exposure estimate by an appropriate toxicity value (RQ=exposure/toxicity), and the risk quotient is then compared to the level of concern (LOC=1 for most species, 0.4 for acute risk to pollinators, and

2 for glass plate studies using the standard beneficial arthropod test species, *Typhlodromus pyri* and *Aphidius rhopalosiphi*). If the screening level risk quotient is below the level of concern, the risk is considered negligible and no further risk characterization is necessary. If the screening level risk quotient is equal to or greater than the level of concern, then a refined risk assessment is performed to further characterize the risk. A refined assessment takes into consideration more realistic exposure scenarios (such as drift to non-target habitats) and might consider different toxicity endpoints. Refinements may include further characterization of risk based on exposure modelling, monitoring data, results from field or mesocosm studies, and probabilistic risk assessment methods. Refinements to the risk assessment may continue until the risk is adequately characterized or no further refinements are possible.

4.2.1 Risks to Terrestrial Organisms

A risk assessment for afidopyropen was conducted for terrestrial organisms. For acute toxicity studies, uncertainty factors of 1/2 and 1/10 the EC₅₀ (LC₅₀) are typically used in modifying the toxicity values for terrestrial invertebrates, birds and mammals when calculating risk quotients. No uncertainty factors are applied to chronic no observed effect concentration (NOEC) endpoints. A summary of terrestrial toxicity data for afidopyropen, its transformation products (M440I002, M440I003, M440I005, and M440I024), and end-use products (Versys Insecticide and Sefina Insecticide) is presented in Appendix I, Table 16. A summary of Tier II and Tier III studies with honey bees is presented in Appendix I, Table 17. The screening level risk assessment for afidopyropen is presented in Appendix I, Table 18 for terrestrial organisms other than birds and mammals, and in Appendix I, Table 19 for birds and mammals.

Earthworms: Afidopyropen was not toxic to earthworms on an acute or chronic basis at concentrations as high as 1000 mg a.i./kg dw soil. Similarly, its transformation products (M440I002, M440I003, M440I005 and M440I024) and Versys Insecticide were not acutely toxic to earthworms at concentrations as high as 1000 mg/kg dw soil. There were treatment-related effects on earthworm mortality and body weight from Sefina Insecticide; however, the LC₅₀ for mortality was still higher than 1000 mg EP/kg dw soil. The risk quotients for earthworms resulting from acute and chronic exposure to afidopyropen do not exceed the level of concern at the screening level. The risk quotient for earthworms resulting from acute and Sefina Insecticide and Sefina Insecticide do not exceed the level of concern at the screening level. The use of afidopyropen is not expected to pose an acute or chronic risk to earthworms.

Other soil-dwelling invertebrates: Chronic exposure to afidopyropen in soil can affect the survival and reproduction of the Collembola, *Folsomia candida*. After 28 days, statistically significant effects on survival and reproduction were observed at a concentration of 277.8 mg a.i./kg dry soil and higher. The risk quotient for Collembola (*Folsomia candida*) resulting from chronic exposure to afidopyropen does not exceed the level of concern at the screening level. The use of afidopyropen is not expected to pose a chronic risk to soil-dwelling invertebrates.

Bees: Afidopyropen, Versys Insecticide and Sefina Insecticide were not considered toxic to honey bees or bumble bees on an acute oral and contact basis, based on mortality endpoints; however, sublethal behavioural effects (such as immobility or impaired locomotion) were

reported in these studies, at times appearing to progress to mortality. Chronic exposure to afidopyropen also resulted in significant sublethal behavioural effects in adult bees at 0.67 μ g a.i./bee (10-d LOAEL, sublethal effects on movement), and significantly reduced emergence of larval bees at 7.81 μ g a.i./larva (22-d lowest observed effect level, LOEL, emergence). Risk quotients were not exceeded for acute oral and contact exposure to adult bees and larvae (considering both lethal and sublethal endpoints), and no risk was identified for contact exposure based on the contact foliage residue study. However, risk quotients for adult bees exceeded the level of concern at the screening (Tier I) level for chronic oral exposure (based on sublethal endpoints), but not for lethal endpoints). Considering available residue data, risk quotients for bees were not exceeded for the refined Tier I assessment from chronic or acute oral exposure during bloom (presented in Appendix I, Table 20).

In addition, the risk to bees was further characterized using a weight-of-evidence approach considering the proposed uses of afidopyropen on crops and their attractiveness to bees, the fate and behaviour of afidopyropen in plants, as well as results from multiple higher tier (semi-field and field) studies on bee colonies.

The proposed uses of afidopyropen on pome fruits, stone fruits, cucurbits, and ornamentals are expected to result in high exposure to bees, because of the high attractiveness of these crops to bees. Moderate or low exposure to bees is expected for uses on Crop Group 9 Fruiting Vegetables, soybean, hazelnuts, and potato and sweet potato. No exposure is expected for uses that are harvested before bloom, which include Crop Group 1 (excluding potato and sweet potato), Crop Group 4 Leafy Vegetables, Crop Group 5 Brassica, and Crop Group 22 Leaf Petioles Vegetables.

Afidopyropen is not systemic in plants. Bees may be foraging on crops only during the bloom period; therefore, only application during bloom is expected to result in oral and/or contact exposure to bees, depending on the timing of application. Based on residue information as well as higher tier semi-field and field studies, evening applications, when most bees are not foraging, is expected to result in lower exposure and effects compared to application when bees are actively foraging.

Semi-field (Tier II) studies

Six studies were conducted under semi-field conditions to assess the potential effects to honey bee colonies following foliar application of Versys Insecticide to blooming *Phacelia tanacetifolia* (five studies) or canola crops (one study). All studies lasted at least 25 days (covering a full brood cycle) following the application of the test item, with one study conducted over a period of approximately two brood cycles (41 days) and another study over three months (93 days) following application. Five studies involved a single application of Versys Insecticide at 50 g a.i./ha (the maximum proposed Canadian single application rate) while bees were actively foraging, and one study involved an application rate at 10 g a.i./ha, both while bees were foraging and in the evening when bees were not foraging. Bees were typically exposed for 7 days, and then moved to another location (without attractive bee forage) for continued monitoring. Hives were observed for sublethal/behavioural effects, and colony and brood development (including mortality of adults and brood). Control colonies were consistently part

of the study design, and residues were collected in many cases in order to establish exposure to the colonies.

Overall, based on all of the data obtained from the semi-field studies, the weight of evidence indicates that application of Versys Insecticide to blooming crops during bee flight at rates up to 50 g a.i./ha will present a low likelihood of adverse colony level effects on honey bees. In the initial hours (up to 72 hours) after application of Versys Insecticide during the day (applied at either 10 or 50 g a.i./ha), effects such as mortality, foraging activity, and behaviour were observed; however, these effects were transient and ultimately had no delayed or long-term impact on colony and brood development. Application at 10 g a.i./ha in the evening did not result in significant effects compared to the control hives. *Field (Tier III) studies*

Two full-field studies were conducted using two formulations, Versys Insecticide and BAS 440 UV I, with the latter being a minor change in the formulation of Versys Insecticide. A single application of 50 g a.i./ha was made to *P. tanacetifolia* at full bloom during active bee flight. For the latter study, residue samples were also taken and analyzed to quantify exposure. One study lasted 25 days (covering a full brood cycle) following the application of the test item whereby the exposure period was 7 days, while the other study was conducted over a period of approximately two brood cycles (43 days), whereby the exposure period was 9 days. Hives were observed for sublethal/behavioural effects, and colony and brood development (including mortality of adults and brood). Control colonies were consistently part of the study design.

Overall, field studies confirm the observations made in the semi-field studies that application of Versys Insecticide to blooming crops during bee flight at a rate of 50 g a.i./ha will present a low likelihood of colony level adverse effects on honey bees. Initialeffects on mortality, foraging activity and behaviour were observed; however, these effects were less pronounced than those observed in the semi-field trials.

Considerations for Mitigation

- There was limited screening level risk. There was only chronic adult oral risk (based on sublethal endpoints). There was no Tier I refined risk identified, considering both lethal and sublethal endpoints and field residues, for acute or chronic adult effects or larvae effects.
- However, there were potential short term effects from applications at the proposed single maximum application rate of 50 g a.i./ha and 10 g a.i./ha, when applied during the day when bees were foraging in semi-field and field studies. The most prominent effects were mortality, and effects on foraging and behaviour; and these effects were transient and did not result in any colony level effects.
- The semi-field and field studies showed that effects on honey bee colonies were transient, and long term colony effects were unlikely. However, because honey bee colonies may have a greater capacity for recovery than other non-*Apis* bees such as bumble bees or solitary bees, there might be a larger effect on non-*Apis* bees.
- Afidopyropen is not systemic in plants. Therefore, only application during bloom is expected to result in oral and contact exposure to bees, depending on the timing of application. Evening

application, when most bees are not foraging, is expected to result in minimal exposure and effects.

In order to mitigate for potential short term effects, when plants are in bloom, application to bee attracting crops will be restricted to evening applications.

Beneficial arthropods: At the screening level, acute exposure on glass plates of the predatory mite, *Typhlodromus pyri*, and the parasitoid wasp, *Aphidius rhopalosiphi*, to Versys Insecticide and Sefina Insecticide resulted in significant effects on survival. The risk quotients for *Typhlodromus pyri* did not exceed the level of concern, but the risk quotients for *Aphidius rhopalosiphi* did exceed the level of concern.

The risk to predatory and parasitic arthropods was further characterized using results from higher tier (extended laboratory and semi-field) toxicity studies with *Aphidius rhopalosiphi* and other terrestrial arthropod species. Risk quotients for higher tier studies with predatory and parasitic arthropods are shown in Appendix I, Table 21.

In extended laboratory/aged residue studies, exposure to fresh residues of Sefina Insecticide on plant leaves affected the survival and fecundity of *Typhlodromus pyri* at 25 g a.i./ha and *Aphidius rhopalosiphi* at 98 g a.i./ha. In extended laboratory/aged residue studies conducted with *Chrysoperla carnea*, no effects on mortality or fecundity were observed. Based on exposure to spray residues of Sefina Insecticide, the risk quotients for survival and reproduction of the parasitic wasp, *Aphidius rhopalosiphi*, and the green lacewing, *Chrysoperla carnea*, did not exceed the level of concern for in-field or off-field exposure. Based on exposure to spray residues of Sefina Insecticide, the risk quotients for survival of the predatory mite, *Typhlodromus pyri*, did not exceed the level of concern for in-field or off-field exposure. The risk quotients for reproductive effects of *Typhlodromus pyri* did not exceed the level of concern for off-field exposure from early season airblast application (RQ=2.8).

Two studies were conducted under semi-field conditions (33 and 36 days) with naturallyoccurring populations of the predatory mite, *Typhlodromus pyri*, which were exposed to Sefina Insecticide twice via spray residues on apple trees at a rate of 50 g a.i./ha. In the 33-day study conducted in Germany, there were no statistically significant decreases in mite population density compared to the control at three of the four assessment time points (1st assessment - 3 days before the 1st application; 3rd assessment - 5 days after the 2nd application; and 4th assessment - 26 days after the 2nd application), with the exception of the 2nd assessment performed at 5 days after the 1st application, where there was a 45% reduction in mite population compared to the control. By study termination, the mite population had recovered and was similar in the treated plots as compared to the control plots. In the 36-day study conducted in Southern France, there were no statistically significant decreases in mite population density at any assessment time point.

Overall conclusions about potential risks to beneficial arthropods

Laboratory studies and semi-field studies indicate that application of Sefina Insecticide to crops at the proposed maximum single application rate of 50 g a.i./ha will present a low likelihood of adverse effects to beneficial arthropods. Initial effects on population density are possible; however, these effects are transient and are unlikely to have long-term impact on beneficial arthropod populations.

All higher tier toxicity studies with terrestrial arthropod species were conducted with Sefina Insecticide. The proposed use pattern for Sefina Insecticide is only for potato and soybean whereas the proposed Versys Insecticide use pattern encompasses a wide range of crops (vegetable, orchard and ornamental). As Sefina Insecticide consistently displays higher formulation toxicity than both the active ingredient alone and the Versys Insecticide formulation, the assessment of risk from Sefina Insecticide to beneficial arthropods is considered transferrable to Versys Insecticide as well.

Birds: Afidopyropen was slightly to moderately toxic to birds by dietary consumption or through oral administration, while Versys Insecticide and Sefina Insecticide were practically non-toxic. Significant reproductive effects were observed in duck and quail studies, with the lowest avian reproductive NOEC being 6.7 mg a.i./kg bw/day. The risk quotients for birds resulting from acute oral exposure to afidopyropen did not exceed the level of concern at the screening level. The screening level risk quotients for birds resulting from reproductive exposure slightly exceeded the level of concern for small sized insectivores. The risk to birds was further characterized considering other feeding guilds, on-field and off-field exposures, and maximum and mean residue levels.

Looking at multiple feeding guilds, risk quotients only slightly exceeded the level of concern for small sized insectivorous birds when considering maximum residue levels on the field (RQs of 1.01 and 1.07; Appendix I, Table 22). The assumption that food items all contain maximum residue levels is conservative; levels will likely vary. Risk quotients calculated using mean residues of afidopyropen did not exceed the level of concern for any feeding guild (Appendix I, Table 23).

Risks from off-field exposure were investigated assuming 74% drift from early season airblast applications. No risk quotient for any feeding guild exceeded the level of concern when considering maximum or mean residues off-field (Appendix I, Tables 22 and 23). It should be noted that the other methods of application proposed for use of afidopyropen involve less spray drift than early season airblast application and consequently would result in even lower off-field risk quotients.

Overall conclusion about potential risks to birds

The two risk quotients above the level of concern were all close to 1.0 and involved only one feeding guild (small sized insectivorous birds) and on-field exposure. No risk quotient exceeded the level of concern when considering maximum residues off-field.

Levels on food items are likely variable and thus assuming that 100% of food items contain maximum residue levels is conservative. No risk quotient exceeded the level of concern when considering mean residues on and off-field. Based on these results, the concern for risks of afidopyropen to birds is low.

Mammals: Afidopyropen, Versys Insecticide and Sefina Insecticide were practically non-toxic to rats, with no observed acute toxicity at the highest dose tested. For chronic effects, the two generation rat reproduction study resulted in a NOAEL of 8.4 mg a.i./kg bw/day due to decreases in pre-weaning pup body weights/pup weight gains. The risk quotients for mammals resulting from acute and reproduction exposure to afidopyropen did not exceed the level of concern at the screening level. The use of afidopyropen is not expected to pose a risk to mammals.

Terrestrial vascular plants: In the seedling emergence study with afidopyropen, tomato was the most sensitive species tested, with a no observed adverse effect rate (NOAER) of 62.5 g a.i./ha for survival. No other species tested exhibited significant effects for emergence, survival, length, or dry weight up to the maximum application rate of 125 g a.i./ha. For the vegetative vigour study, no species tested exhibited significant effects for survival, length, or dry weight up to the maximum application rate of 125 g a.i./ha. For the vegetative vigour study, no species tested exhibited significant effects for survival, length, or dry weight up to the maximum application rate of 125 g a.i./ha. Based on the seedling emergence and vegetative vigour studies, the calculated risk quotients do not exceed the level of concern for infield and off-field exposure. The use of afidopyropen is not expected to pose a risk to non-target terrestrial vascular plants.

4.2.2 Risks to Aquatic Organisms

A risk assessment for afidopyropen, the transformation product, M440I024, and end-use products (Versys Insecticide and Sefina Insecticide) was conducted for freshwater and marine aquatic organisms based on available toxicity data. A summary of aquatic toxicity data is presented in Appendix I, Table 24. For acute toxicity studies, uncertainty factors of 1/2 and 1/10 the EC₅₀ (LC₅₀) are typically used for aquatic plants, invertebrates, and fish species when calculating risk quotients. No uncertainty factors are applied to chronic NOEC endpoints. For groups where the LOC is exceeded (thus, if RQ \geq 1), a refined Tier I assessment is conducted to determine risk resulting from spray drift and runoff separately. Risk quotients for afidopyropen and its transformation products were calculated based on the highest maximum seasonal application rate for all uses. The screening level risk quotients for afidopyropen are summarized in Appendix I, Table 25. The risk quotients for the Tier I refined assessment of afidopyropen are presented in Appendix I, Table 26 (spray drift) and Appendix I, Table 27 (runoff).

Invertebrates: Afidopyropen was moderately toxic to freshwater and marine invertebrates on an acute basis, with the lowest $EC_{50} = 1.43$ mg a.i./L for the marine oyster. Sefina Insecticide and Versys Insecticide were more toxic than the technical grade active ingredient alone, with acute EC_{50} values of 0.09 and 0.12 mg a.i./L, respectively, for *Daphnia magna*. Afidopyropen has a large acute-to-chronic ratio for aquatic invertebrates with chronic NOEC values up to 100 000 times lower than the EC_{50} values.

Several benthic toxicity tests with freshwater and marine invertebrates were conducted with midges (*Chironomus* sp.) and amphipods (*Hyalella azteca* and *Leptocheirus plumulosus*). These tests involve introduction of test substance to the system by spiking the sediment directly and allowing the system to equilibrate with overlying water, or by adding the test substance directly to the overlying water. The former scenario was used to simulate exposure to accumulated pesticide in sediment from runoff and the latter was used to simulate exposure via spray drift. Studies with benthic invertebrates indicate that afidopyropen is substantially less toxic to benthic organisms than free-swimming aquatic invertebrates. Among five acute studies, there were generally no treatment-related effects at the highest concentrations tested, with the exception of one freshwater amphipod study where dry weight was reduced and one marine amphipod study where survival was affected at almost all treatment concentrations. A separate study with the transformation product, M440I024, indicated that it was not acutely toxic to *Chironomus dilutus* at the highest concentration tested. Additionally, for two chronic studies (one with spiked water and another with spiked sediment), no definitive endpoints were established due to a lack of effects at the highest concentration tested.

The screening level risk quotient for acute exposure of *Daphnia magna* to afidopyropen, Versys Insecticide and Sefina Insecticide does not exceed the level of concern at the screening level. The risk quotient for chronic exposure of *Daphnia magna* to afidopyropen exceeds the level of concern (RQ=124.8). The risk quotient for chronic exposure of freshwater invertebrates; *Ceriodaphnia dubia* and *Moina macrocopa* to afidopyropen also exceeds the level of concern (RQs = 84.6 and 18.1, respectively). For marine invertebrates, the risk quotients for acute exposure of the mysid shrimp, *Americamysis bahia* and Eastern oyster, *Crassostrea virginica* to afidopyropen do not exceed the level of concern (RQ=3889) by a significant margin. The chronic risks of afidopyropen to freshwater and marine invertebrates from spray drift and runoff was further characterized.

Refined risk assessment (spray drift and runoff)

For freshwater environments, the refined assessment using more realistic environmental exposure estimates indicates that the level of concern from afidopyropen exposure through spray drift is still exceeded for chronic exposure of freshwater aquatic invertebrates (RQs 13.4–62.8). Further characterization of the chronic risk to marine invertebrates from spray drift was conducted assuming only one spray application since tides and dilution are expected to result in negligible residues at the time of subsequent applications. The level of concern from afidopyropen exposure through spray drift is still exceeded for chronic exposure of marine aquatic invertebrates (RQ=1167). Spray buffer zones will be required to mitigate potential effects of afidopyropen drift on aquatic organisms in adjacent freshwater and marine habitats. The spray buffer zones for afidopyropen will be rate-specific for the product labels and will range from 1–75 m for freshwater and up to 800 m for marine waters.

Considering the more refined EECs, risk quotients for freshwater and marine invertebrates from exposure to afidopyropen through runoff continue to exceed the level of concern. The residue definition for runoff includes afidopyropen and all structurally-similar transformation products

(18 in total), and was defined with and without considering the unidentified residues. Not including the unidentified residues likely underestimates the EECs, while including the unidentified residues likely overestimates the EECs. The runoff EECs for both marine and freshwater exposures are based on the yearly cumulative application rate and are modelling without outflow. For the marine exposure scenario, this is a particularly conservative assessment since the EECs do not account for tides/dilution that would be present in the Canadian marine environment.

The primary runoff risk is for chronic exposure of pelagic invertebrates; however, afidopyropen and its residues partition rapidly to sediment; therefore, chronic exposure would be more likely for benthic (sediment-dwelling) invertebrates. Studies show that afidopyropen is less toxic to benthic invertebrates than pelagic invertebrates. There also appears to be a difference in sensitivity between the sexually reproducing marine invertebrate that was tested and the asexually reproducing freshwater invertebrates that were tested.

In order to mitigate potential exposure of afidopyropen to aquatic and marine invertebrates standard label statements to mitigate runoff into aquatic habitats and a mandatory minimum 10-metre wide vegetative filter strip between the treatment area and the edge of a downslope water body are required on the labels of afidopyropen end-use products.

Fish: Afidopyropen was slightly toxic to freshwater and marine fish on an acute basis, while studies with trout indicated that Sefina Insecticide and Versys Insecticide were highly toxic. In chronic early-life stage studies, effects on fish growth were observed, with the most sensitive NOEC value being 0.0818 mg a.i./L. The risk quotients for freshwater fish resulting from acute and early-life stage exposure to afidopyropen do not exceed the level of concern at the screening level. The risk quotient for freshwater fish resulting from acute exposure to Versys Insecticide and Sefina Insecticide exceed the level of concern at the screening level (RQs=1.6 and 3.6, respectively). The risk quotients for marine fish resulting from acute and chronic exposure to afidopyropen do not exceed the level of concern at the screening level.

The refined risk quotients indicate that the level of concern from acute exposure to Sefina Insecticide and Versys Insecticide through spray drift and runoff are still exceeded for freshwater fish. As refined risk quotients for aquatic invertebrates were greater than those for fish, the resulting spray buffer zones, mandatory vegetative filter strips and precautionary label statements to minimize exposure and reduce risks to aquatic invertebrates are also sufficiently protective of fish.

Amphibians: Using an endpoint from an early-life stage study with fish, along with an EEC for afidopyropen in a 15cm-deep body of water, the risk quotients for amphibians resulting from acute and early-life stage exposure to afidopyropen do not exceed the level of concern at the screening level. The risk quotient for amphibians resulting from acute exposure to Versys Insecticide and Sefina Insecticide exceed the level of concern at the screening level (RQs=8.5 and 19.0, respectively).

As refined risk quotients for aquatic invertebrates were greater than those for fish, the resulting spray buffer zones, mandatory vegetative filter strips and precautionary label statements to minimize exposure and reduce risks to aquatic invertebrates are also sufficiently protective of amphibians.

Algae: Afidopyropen, Sefina Insecticide and Versys Insecticide inhibited the growth rate and yield of freshwater and marine algae, with the most sensitive $IC_{50} = 2.04$ mg a.i./L for the technical grade active, and 0.314 mg a.i./L for the end-use products. The risk quotients for freshwater and marine algae resulting from acute exposure to afidopyropen do not exceed the level of concern at the screening level. The risk quotient for freshwater algae resulting from acute exposure to Versys Insecticide and Sefina Insecticide do not exceed the level of concern at the screening level. The use of afidopyropen is not expected to pose a risk to freshwater and marine algae.

Aquatic vascular plants: Afidopyropen inhibited the growth rate and yield of the aquatic vascular plant, *Lemna gibba*, with a resulting $IC_{50} = 8.74$ mg a.i./L. The risk quotient for aquatic vascular plants resulting from exposure to afidopyropen does not exceed the level of concern at the screening level. The use of afidopyropen is not expected to pose a risk to aquatic vascular plants.

5.0 Value

Pest claims for aphids and whiteflies were supported by efficacy data from 52 field trials and 13 greenhouse trials, and by scientific rationales. Weight of evidence (including crop and pest grouping principles) supported control of listed pests on labelled crops. Extrapolation among pests was possible in many cases because of similarities in pest biology and feeding damage; extrapolation among crops was possible because of similarities in plant architecture and canopy structure.

Active ingredients in several MOA groups are registered for use against aphids and whiteflies on the labelled crops. Afidopyropen is classified in MOA Group 9D. Pymetrozine (MOA Group 9B) is the only other insecticide in MOA Group 9 registered in Canada. Pymetrozine is registered for use on leafy vegetables, potatoes, and greenhouse and outdoor ornamentals. Consequently, afidopyropen will aid in resistance management for hazelnuts, labelled tree fruit crops, and most of the vegetable crops where no Group 9 insecticides are registered.

6.0 Pest Control Product Policy Considerations

6.1 Toxic Substances Management Policy Considerations

The Toxic Substances Management Policy (TSMP) is a federal government policy developed to provide direction on the management of substances of concern that are released into the environment. The TSMP calls for the virtual elimination of Track 1 substances (those that meet all four criteria outlined in the policy, i.e., persistent (in air, soil, water and/or sediment), bio-accumulative, primarily a result of human activity and toxic as defined by the *Canadian Environmental Protection Act*).

During the review process, afidopyropen and its transformation products were assessed in accordance with the PMRA Regulatory Directive DIR99-03⁵ and evaluated against the Track 1 criteria. The PMRA has reached the following conclusions:

• Afidopyropen and its transformation products do not meet all Track 1 criteria, and are not considered Track 1 substances. See Appendix I, Table 28, for comparison with Track 1 criteria.

6.2 Formulants and Contaminants of Health or Environmental Concern

During the review process, contaminants in the technical and formulants and contaminants in the end-use products are compared against the *List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern* maintained in the *Canada Gazette*.⁶ The list is used as described in the PMRA Notice of Intent NOI2005-01⁷ and is based on existing policies and regulations including: DIR99-03; and DIR2006-02⁸, and taking into consideration the Ozone-depleting Substance Regulations, 1998, of the *Canadian Environmental Protection Act* (substances designated under the Montreal Protocol). The PMRA has reached the following conclusions:

• Technical grade afidopyropen and the end-use products, Versys Insecticide and Sefina Insecticide, do not contain any formulants or contaminants of health or environmental concern identified in the *Canada Gazette*.

⁸ DIR2006-02, PMRA Formulants Policy.

⁵ DIR99-03, The Pest Management Regulatory Agency's Strategy for Implementing the Toxic Substances Management Policy

⁶ Canada Gazette, Part II, Volume 139, Number 24, SI/2005-114 (2005-11-30) pages 2641–2643: List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern and in the order amending this list in the Canada Gazette, Part II, Volume 142, Number 13, SI/2008-67 (2008-06-25) pages 1611-1613. Part 1 Formulants of Health or Environmental Concern, Part 2 Formulants of Health or Environmental Concern that are Allergens Known to Cause Anaphylactic-Type Reactions and Part 3 Contaminants of Health or Environmental Concern.

⁷ NOI2005-01, List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern under the New Pest Control Products Act.

The use of formulants in registered pest control products is assessed on an ongoing basis through PMRA formulant initiatives and Regulatory Directive DIR2006-02.

7.0 Summary

7.1 Human Health and Safety

The submitted toxicology database is adequate to identify the majority of the hazards associated with afidopyropen. In short-term and chronic studies on laboratory animals, the targets of toxicity were the liver, heart, adrenal glands, spleen and reproductive organs. There was evidence of carcinogenicity in rats after longer-term dosing, with an increased incidence of uterine adenocarcinoma and uterine adenoma/adenocarcinoma combined. There was evidence of increased sensitivity of the young in developmental toxicity studies, with an altered sex ratio and incidences of skeletal variations and supernumerary ribs observed at dose levels that were not overtly toxic to maternal animals. The evidence provided in an acute and a 90-day neurotoxicity study in rats suggested that afidopyropen was not neurotoxic; however nervous tissue effects were observed in the dog. The risk assessment protects against the toxic effects noted above by ensuring that the level of human exposure is well below the lowest dose at which these effects occurred in animal tests.

Mixer/loader and applicators handling afidopyropen, and workers re-entering treated areas are not expected to be exposed to levels of afidopyropen that will result in an unacceptable risk when afidopyropen is used according to label directions. The personal protective equipment on the product label is long-sleeved shirt, long pants, chemical-resistant gloves, shoes with socks during mixing, loading, application, clean-up and repair. Additionally, on the Versys Insecticide label, coveralls over a long-sleeved shirt and long pants are required for all chemical handlers, while airblast applicators are required to wear chemical-resistant headgear.

The nature of the residues in plants and animals is adequately understood. The residue definition for enforcement is afidopyropen in plant products and in animal matrices. The proposed use of afidopyropen on CSG1C, CSG4-13A, CSG4-13B, CG5-13, soybeans, CG8-09, CG9, CG10R, CG11-09, CG12-09, CG14-11, CSG20C, and CSG22B does not constitute a risk of concern for chronic or acute dietary exposure (food and drinking water) to any segment of the population, including infants, children, adults and seniors. Sufficient crop residue data have been reviewed to recommend MRLs. The PMRA recommends that the following MRLs be specified for residues of afidopyropen.

Food Commodity	Recommended MRL (ppm)
Brassica leafy greens (CSG4-13B)	5.0
Leaf petioles vegetables (CSG22B)	3.0
Leafy greens (CSG4-13A)	2.0
Cucurbit vegetables (CG9)	0.7
Brassica head and stem vegetable (CG5-13), dried tomatoes	0.5

Food Commodity	Recommended MRL (ppm)
Citrus oil	0.4
Fruiting vegetables (CG8-09)	0.2
Citrus fruits (CG10 Revised)	0.15
Cottonseed (CSG20C Revised)	0.08
Stone fruits (CG12-09)	0.03
Pome fruits (CG11-09)	0.02
Tuberous and corm vegetables (CSG1C), tree nuts (CG14-11), dry soybeans, eggs, fat, meat, and meat by-products of cattle, goats, hogs, horses, poultry, and sheep	0.01
Milk	0.001

7.2 Environmental Risk

The use of Sefina Insecticide and Versys Insecticide at the proposed label rates do not pose a risk of concern to wild mammals, birds, beneficial insects, earthworms, or terrestrial and aquatic plants. They may, however, pose a risk to bees, freshwater and marine invertebrates, freshwater fish and amphibians. Risks to these organisms can be mitigated with precautionary label statements, vegetative filter strips, and spray buffer zones to protect sensitive aquatic habitats. Risks to bees can be mitigated by prohibiting application during the day when most bees are foraging for the blooming period of crops that are highly attractive to pollinators, or when managed bees are used for pollination services.

7.3 Value

Value information demonstrated that Sefina Insecticide and Versys Insecticide control various aphids and whiteflies on a wide variety of agricultural and ornamental crops. These products are new management tools for control of aphids, which are widespread pests of horticultural crops, and whiteflies, which are prevalent pests in the ornamental greenhouse industry. Both products will aid in resistance management for crops where no other insecticides with the same mode of action are registered, which include hazelnuts, labelled tree fruit crops, and most of the vegetables.

8.0 Proposed Regulatory Decision

Health Canada's PMRA, under the authority of the *Pest Control Products Act* and Regulations, is proposing registration for the sale and use of Inscalis Technical Insecticide, Sefina Insecticide and Versys Insecticide, containing the technical grade active ingredient afidopyropen, to control aphids and whiteflies on various vegetables and tree fruits, soybeans, hazelnuts, and greenhouse and outdoor ornamentals.

An evaluation of the available scientific information found that, under the approved conditions of use, the health and environmental risks and the value of the pest control products are acceptable.

Additional Information Being Requested

Since this technical product is manufactured only at pilot scale before registration, five-batch data representing commercial-scale production will be required as post-market information after registration.

List of Abbreviations

\bigcirc	female
04 80	
	male
μg	microgram(s)
μL	microlitre(s)
λ	wavelength
¹⁴ C	Carbon-14 radioactive isotope
°C	Celsius
aa	after application
abs	absolute
a.i.	active ingredient
AD	administered dose
ADD	absorbed daily doses
ADI	acceptable daily intake
ADW	activator/deposition agent/water conditioner
ALP	alanine phosphatase
ALT	alanine aminotransferase
AOPWIN	Atmospheric Oxidation Program for Microsoft Windows
AR	applied radioactivity
ARfD	acute reference dose
AST	aspartate aminotransferase
atm	atmosphere
ATPD	area treated per day
AUC	area under the curve
BAF	bioaccumulation factor
BCF	bioconcentration factor
bw	body weight
bwg	bodyweight gain
BUN	blood urea nitrogen
CAF	composite assessment factor
CAS	Chemical Abstracts Service
CEPA	Canadian Environmental Protection Act
CG	crop group
cm	centimetre(s)
C _{max}	maximum serum concentration
CMC	carboxymethyl cellulose
CO_2	carbon dioxide
COC	crop oil concentrate
Conc.	concentrated spray volume
CPCA	cyclopropane carboxylic acid
CSG	crop subgroup
CYP1A1	cytochrome P4501A1
CYP1B1	cytochrome P4501B1
CYP450	cytochrome P450
d	day(s)
DAA	days after application

ЛАТ	davis often treatment
DAT DEEM ECID	days after treatment Dietary Exposure Evaluation Model – Food Commodity Intake Database
DFR	dislodgeable foliar residue
DFOP	double first-order in parallel
DNT	developmental neurotoxicity
DT_{50}	dissipation time 50% (the dose required to observe a 50% decline in
	concentration)
dw	dry weight
EC_{50}	effective concentration on 50% of the population
ED_{50}	effective dose on 50% of the population
EDE	estimated dietary exposure
EEC	estimated environmental concentration
equiv	equivalents
EP	end-use product
ER_{25}	effective rate for 25% of the population
EROD	ethoxyresorufin-O-deethylation
F1	first generation
F2	second generation
fc	food consumption
FIR	food ingestion rate
g	gram(s)
GD	gestation day
GGT	gamma-glutamyltransferase
GI	gastrointestinal
GUS	groundwater ubiquity score
h or hr	hour(s)
ha	hectare(s)
HAFT	highest average field trial
HCT	hematocrit
HDPE:	high-density polyethylene
HEK-293	human embryonic kidney cell line
Hg	mercury
HGB	hemoglobin
HPLC	high performance liquid chromatography
IC_{50}	inhibition concentration on 50% of the population
ILV	independent laboratory validation
IORE	Indeterminate Order Rate Equation
IUPAC	International Union of Pure and Applied Chemistry
IV	intravenous
kg	kilogram(s)
Kg Kd	adsorption quotient
KMD	kinetically-derived maximum dose
KMD K _{oc}	adsorption quotient normalized to organic carbon
$K_{ m oc} K_{ m ow}$	
κ _{ow} L	octanol-water partition coefficient
L LADD	litre(s)
	lifetime average daily dose
LAFT	lowest average field trial

LC	liquid chromatography
LC_{50}	lethal concentration 50%
LD	lactation day
LD_{50}	lethal dose 50%
LOAEL	lowest observed adverse effect level
LOC	level of concern
LOEC	lowest observed effect concentration
LOEL	lowest observed effect level
LOQ	limit of quantitation
LR_{50}	lethal rate 50%
MAS	maximum average score
MCH	mean corpuscular hemoglobin
MCHC	mean corpuscular hemoglobin concentration
	milligram(s)
mg MIS	minimum irritation score
mL	millilitre(s)
MOA	mode of action
MOE	margin of exposure
MRL	maximum residue limit
mRNA	messenger ribonucleic acid
MS MS/MS	mass spectrometry
MS/MS	tandem mass spectrometric detection
MSO	methylated seed oil
MW	molecular weight
N/A, NA	not applicable
N	North
NAFTA	North American Free Trade Agreement
ND	not detected
NER	non-extractable residues
ng	nanogram(s)
NIS	non-ionic surfactant
NMR	nuclear magnetic resonance
NOAEC	no observed adverse effect concentration
NOAEL	no observed adverse effect level
NOAER	no observed adverse effect rate
NOEC	no observed effect concentration
NOED	no observed effect dose
NOEL	no observed effect level
NOER	no observed effect rate
OCSPP	Office of Chemical Safety and Pollution Prevention
OSS	organo-silicone surfactant
Р	parental generation
Pa	Pascal
plC ₅₀	quantitative activity prediction (= $-\log(IC_{50})$ in molar concentration
PBI	plant-back interval
PCPA	Pest Control Products Act
PHED	Pesticide Handlers Exposure Database
	T

PHI	preharvest interval			
p <i>K</i> a	dissociation constant			
PMRA	Pest Management Regulatory Agency			
PND	postnatal day			
POD	point of departure			
ppm	parts per million			
ppt	parts per trillion			
PWC	Pesticide in Water Calculator			
q_1^*	cancer potency factor			
QSAR	quantitative structure activity relationship			
RAC	raw agricultural commodity			
RBC	red blood cell			
RD	residue definition			
RQ	risk quotient			
RT ₂₅	residual time needed to reduce the activity of the test substance and bring bee			
	mortality down to 25%			
rel	relative			
SC	soluble concentrate			
SD	standard deviation			
SFO	single first-order			
t _{1/2}	half-life			
t _R	representative half-life			
TC	transfer coefficient			
TGAI	technical grade active ingredient			
T _{max}	time to maximum concentration			
TRPV	transient receptor potential vanilloid			
TRR	total radioactive residue			
TSMP	Toxic Substances Management Policy			
UER	unidentified extractable residues			
USEPA	United States Environmental Protection Agency			
UV	ultraviolet			
WBC	white blood cell count			
w, wk	week(s)			
wt	weight			
yrs	years			

Appendix I Tables and Figures

Matrix	Method ID	Analyte	Method Type		LOQ	Reference
Soil and	D1308/02	Afidopyropen	HPLC-MS/MS	0.001 ppm	Loamy sand and	PMRA #2627732
sediment		M440I001			Clay loam	PMRA #2627733
		M440I002				
		M440I003				
		M440I005				
		M440I016				
		M440I024				
		M440I057				
Water	D1505/02	Afidopyropen	HPLC-MS/MS	30 ppt	Drinking and	PMRA #2627734
		M440I001			surface water	PMRA #2627735
		M440I002				
		M440I003				
		M440I005				
		M440I016				
		M440I024				
		M440I057				

Table 1A Residue Analysis in Environmental Media

Table 1B Residue Analysis in Plant and Animal Matrices

Data Requirement	Matrix	Analytes	Method ID/Type	Limit of Quantitation (ppm)	Reference (PMRA #)
Enforcement and Data Gathering Method – Livestock Commodities	Muscle, fat, liver, milk (bovine), eggs (poultry) –	Afidopyropen	D1507/01 LC-MS/MS	Livestock tissues (muscle, fat, liver) and poultry eggs: 0.01 ppm; Milk: 0.001 ppm	2627727
ILV of Enforcement Method – Livestock Commodities	Muscle, fat, liver, milk (bovine), eggs (poultry)	Afidopyropen	LC-MS/MS	Livestock tissues (muscle, fat, liver) and poultry eggs: 0.01 ppm; Milk: 0.001 ppm	2627726
Radiovalidation of Methods – Livestock Commodities	Not conducted at this time, however similar solvents to the ones used in the livestock metabolism studies				
Enforcement and Data Gathering Method – Plant Commodities	Cotton seed, dry bean, tomato, orange, rice, potatoes	nato, orange, rice, Afidopyropen LC-MS/MS 0.01 ppm		2627724/ 2627729	
ILV of Enforcement Method – Plant Commodities	Lettuce, orange, dry bean, soybean seed, potatoes	Afidopyropen	D1103/01 LC-MS/MS	0.01 ppm	2627725
Radiovalidation of Method – Plant Commodities	Soybean leaf, Tomato fruits, Cabbage outer leaves	Afidopyropen	D1103/01 LC-MS/MS	0.01 ppm	2627723
Multiresidue Method Testing	Orange, apple, potato, kidney bean, canola	Afidopyropen	D1514/01 LC-MS/MS	0.02 ppm	2627728

Common Name, BASF Reg. No. (Other names)	Chemical Name (IUPAC)
M440I001 (ME5343-T1)	(3S,4R,4aR,6S,6aS,12R,12aS,12bS)-3,6,12-trihydroxy-4-(hydroxymethyl)- 4,6a,12b-trimethyl-9-(pyridin-3-yl)-1,3,4,4a,5,6,6a,12,12a,12b-decahydro- 2H,11H-benzo[f]pyrano[4,3-b]chromen-11-one
M440I002 (ME5343-T2)	[(3S,4R,4aR,6S,6aS,12R,12aS,12bS)-3,6,12-trihydroxy-4,6a,12b-trimethyl-11- oxo-9-(pyridin-3-yl)-1,3,4,4a,5,6,6a,12,12a,12b-decahydro-2H,11H- benzo[f]pyrano[4,3-b]chromen-4-yl]methyl cyclopropanecarboxylate
M440I008 (ME5343-T8)	[(3S,4S\4aR,6S,6aS,12R, 12aS; 12hS)-3,6, 12-trihydroxy-4-hydroxymethyl- 6a,12b-dimethy1-1 1-oxo-9-(pyridin-3-yl)-1,2,3,4,4a,5,6,6a,12a, 12b- decahydro-1 lH, 12H-benzo[f]pyrano[4,3-B]chromen-4-yl]methyl cyclopropanecarboxylate
M440I017 (ME5343-T17)	[(3S,4R,4aR,6S,6aS,12R,12aS,12bS)-3-[(cyclopropylcarbonyl)oxy]-6,12- dihydroxy-4,6a,12b-trimethyl-9-(1-oxidopyridin-3-yl)-11-oxo- 1,3,4,4a,5,6,6a,12,12a,12b-decahydro-2H,11H-benzo[f]pyrano[4,3-b]chromen- 4-yl]methyl cyclopropanecarboxylate
M440I019 (ME5343-T19)	[(3S,4aR,6S,6aS,12R,12aS,12bS)-3,6,12-trihydroxy-4,6a,12b-trimethyl-11- oxo-9-(1-oxo-1lambda~5~-pyridin-3-yl)-1,3,4,4a,5,6,6a,12,12a,12b- decahydro-2H,11H-naphtho[2,1-b]pyrano[3,4-e]pyran-4-yl]methyl cyclopropanecarboxylate
M440I060 (CPCA-carnitine)	O-(cyclopropylcarbonyl) carnitine
M440I061 (CPCA)	Cyclopropane carboxylic acid

Table 3 Toxicity Profile of Technical Afidopyropen

Note: Organ weight effects reflect both absolute organ weights and relative organ to bodyweights unless otherwise noted. Effects above the LOAEL(s) have not been reported in this table for most studies for reasons of brevity.

Study Type/Animal/PMRA #	Study Results
Preliminary absorption,	Single gavage dose administration of 3 and 300 mg/kg bw of [¹⁴ C] afidopyropen
distribution and excretion	(1/sex/group).
study, following single gavage	
doses (low and high)	Excretion: 79–88% of AD excreted in feces, 6–16% of AD excreted in the urine. No
	significant radioactivity was found in expired air (<0.1%). No significant differences
Rat (Fischer)	between sexes, or dose levels.
PMRA #2627738	Distribution: At 96 hr post-dose, the highest residue level in animals administered the low-dose was found in the liver, followed by adrenal glands, heart and kidneys.
	At the high-dose, the highest residue level was found in the liver, followed by heart,
	adrenal glands, and kidneys.
	Metabolism: Metabolites detected at > 5% AD in the feces (low- and high-dose)
	were unchanged afidopyropen, M440I001, M440I002, M440I008 and an
	unidentified metabolite. The only metabolite detected in the urine > 5% AD was
	M440I001 (high-dose only). Profiles of urinary metabolites were similar to those in
	feces, except for the presence of unchanged afidopyropen in the feces.
Absorption, distribution and	Single gavage dose administration of 3 and 300 mg/kg bw [¹⁴ C] afidopyropen
0 0	(4/sex/group).
gavage doses (low and high)	
	Absorption: Calculated as the sum of radioactivity found in the bile, urine and

Study Type/Animal/PMRA #	Study Results
Rat (Fischer)	residual carcass, was determined to be 70 /67% and 71/72% in the low- and high-
PMRA #2627741	doses, respectively (∂/Q). Absorption did not differ significantly between low and high dose.
	Excretion: 73–87% of AD excreted in feces, 5–20% of AD excreted in the urine. Approximately 93–95% AD excreted through the urine and feces within 96 hours following single oral administration of radioactive test material. In the biliary excretion experiment, approximately 92–97% AD was excreted within 48 hours following single oral administration of radioactive test material. In low-dose groups 53–53% AD was excreted in the bile, 13–16% AD was excreted in the urine, and 22–27% AD was excreted in the feces. In high-dose groups, 40–41% AD was excreted in the bile, 30% AD was excreted in the urine and 24–26% AD was excreted in the feces. Results indicate that biliary excretion significantly contributes to elimination of the orally administered test material, and shows that the fecal excretion via biliary excretion is the predominant route of elimination.
	<u>Metabolism</u> : Unchanged afidopyropen was only detected at a significant level in feces (10–39% AD). No significant sex-related differences were noted. Metabolites detected > 5% AD in either urine or feces were M440I001, M440I002, M440I008 and M440I010. In the bile M440I017 was detected as a major metabolite, followed by an unknown metabolite, M440I003 and M440I001. The most notable dose-related difference was in the level of M440I017 measured in the bile (low-dose: 20–32% AD; high-dose: 5–6% AD).
Metabolism, excretion and tissue distribution following single gavage doses (low or high) or repeated gavage doses	Single gavage dose administration of 3 and 300 mg/kg bw of [¹⁴ C] afidopyropen, or repeat gavage dose administration of 300 mg/kg bw/day (non-radiolabelled for 14 days and [¹⁴ C]-radiolabelled afidopyropen on day 15).
(high) Rat (Wistar)	Absorption: Radio-labelled afidopyropen was rapidly absorbed from the GI tract and excreted primarily via the urine and feces. Based on bile excretion experiments, 53–66% of the AD was excreted via the bile and urine, and radioactive residues found in the cage wash and carcass. Absorption after a single dose was similar for both low
PMRA #2627737	and high-dose levels. <u>Excretion</u> : Excretion via the urine and feces was nearly complete within 96–120 hrs after dosing, with more than two thirds of the administered dose being excreted within 48 hr. 72–86% of AD was excreted via the feces within 7 days, and 5–21% AD was excreted via the urine. Excretion was slower in high-dose groups, and % AD excreted via the urine was higher after administration of the high-dose. In urine, portions of most metabolites (% AD) excreted was increased with increasing dose, except for M440I017 in \Im , which was lower after administration of the high dose. After repeated administration (high-dose only), urinary excretion was slightly lower compared to single high dosing. No significant gender-specific differences were observed, based on route and total rate of excretion. Excretion via the bile was almost complete within 12 hrs in low-dose groups (39–46%), and 33–51 hrs in the high-dose groups (53–66%).
	<u>Distribution</u> : Levels of radioactive residues were investigated in liver, kidney and plasma of male and female rats 1 hour and 4 hours post-dose, intervals corresponding to maximum plasma levels (Cmax). Portions of radioactive residues in the liver were higher for the low-dose groups (\mathcal{J} and \mathcal{Q}) and, in the low-dose groups the portion and absolute concentration of radioactive residues in liver, kidney and plasma were higher for the \mathcal{J} animals compared to \mathcal{Q} . <u>Metabolism</u> : Unchanged afidopyropen compound was detected in the urine of animals in low portions (0.017–0.116% AD). The main metabolite in rat urine was

Study Type/Animal/PMRA #	Study Results
	metabolite M440I001, followed by metabolite M440I002. Ten metabolites and one characterized component had lost one cyclopropane carboxylic acid (CPCA) ester moiety and four metabolites had lost both CPCA esters. Slight differences were noted in metabolite patterns for both sexes, and in low versus high-dose groups. The total identified metabolites (including unchanged afidopyropen) in urine accounted for 4–5% AD for single low-dose groups, 18–20% AD for high single dose groups, and for 14–15% AD for repeat high-dose groups.
	Unchanged afidopyropen accounted for 21 –37% AD detected in the feces of low single dose groups, and for 5–10% AD detected in the feces of high single and repeat dose groups. For low-dose groups, the main component was unchanged afidopyropen, followed by M440I001. For high-dose groups and repeat dose groups, metabolite M440I001 was the most abundant component, followed by M440I058. Five metabolites identified in feces had lost one CPCA-ester moiety. Two metabolites and one characterized component had lost both CPCA moieties. The total identified metabolites (including unchanged afidopyropen) in feces accounted for 69–75% AD for the low-dose groups, for 60–64% AD of for the high-dose groups, and for 52–64% AD for the repeat dose groups. Slight differences were noted in metabolite patterns for both sexes.
	Unchanged afidopyropen was detected in the bile of single low ($\stackrel{\circ}{\bigcirc}$ and $\stackrel{\circ}{\bigcirc}$) and single high-dose $\stackrel{\circ}{\bigcirc}$ groups in low portions (0.3–1.4% AD), and was not detectable in the bile of single high-dose $\stackrel{\circ}{\bigcirc}$. In bile samples the main metabolite was M440I017, followed by M440I019 and M440I059. Eight metabolites and one characterized component had lost one CPCA moiety, and six metabolites and one characterized component had both CPCA esters cleaved. The total identified metabolites (including unchanged afidopyropen) in bile accounted for 37–43% AD for low-dose groups and for 28–35% AD for the high-dose groups. Metabolite patterns in bile were similar for both sexes.
Toxicokinetic and tissue	Single gavage dose administration of 3 and 300 mg/kg bw of [¹⁴ C] afidopyropen.
distribution study following single gavage doses (low and high) Rat (Fischer)	1. <u>Pilot toxicokinetic study</u> In low-dose groups whole blood and plasma T_{max} was 0.5–1 hr, and RBC T_{max} was 0.25–0.5 hr. T ½ from whole blood was 2.1–5.0 hr, in plasma was 3.2–4.1 hr, and in RBC was 2.4–3.6 hr. AUC was approximately 1.5 to 2-fold higher in ∂ than Q .
PMRA #2627740	In high-dose groups, whole blood, plasma and RBC T_{max} was 4 hr for each group. T $\frac{1}{2}$ from whole blood was 7.0–7.3 hr, from plasma was 6.0–6.8 hr, and from RBC was 9.6–11.9 hr. AUC was similar for $\stackrel{\circ}{\circ}$ and $\stackrel{\circ}{\circ}$.
	Increases in C_{max} for blood and plasma were slightly less than dose proportional. Increases in C_{max} for RBC were approximately dose proportional. C_{max} was generally similar between \mathcal{J} and \mathcal{Q} . Increases in AUC were greater than dose proportional.
	2. <u>Toxicokinetic study</u> In low-dose groups, mean T_{max} for whole blood, plasma and RBC were 0.5–1.0 hr for \bigcirc and 0.25–0.5 hr for \bigcirc . AUC was approximately 2.2 to 2.6-fold higher in \bigcirc than \bigcirc .
	T ¹ / ₂ from whole blood and 1.0 - 2.5 hr, from plasma was 4.7–4.8 hr and from RBC was 1.2–2.1 hr. In high-dose groups, mean T_{max} whole, plasma and red blood cells were 4.0 h each for \bigcirc and 2.0 hr each for \bigcirc . T ¹ / ₂ from whole blood was 15–16 hr and from plasma was 7.9–10.2 hr, and in RBC was 31.4–43.6 hr. AUC was similar for \bigcirc and \bigcirc . For whole blood, plasma, and RBC, increases in C_{max} and AUC were greater than dose proportional. C_{max} was generally similar between \bigcirc and \bigcirc .

Study Type/Animal/PMRA #	Study Results
	3. <u>Tissue distribution experiment</u> In the low-dose group, T_{max} for most tissues was 0.5 hr. T_{max} for bone marrow and GI tract and contents was 8 hrs. Tissues with mean concentrations at T_{max} that exceeded 0.250 µg-equiv/g were GI tract and contents, liver, adrenals, kidney, lung, pancreas, prostate, bone marrow, mesenteric lymph nodes, parathyroid/thyroid, and heart. The mean percent recovery of AD in tissues and carcass was 64% and 70% (\mathcal{J}/\mathbb{Q}) at 0.5-hr termination time; 66% and 68% (\mathcal{J}/\mathbb{Q}) at 8-hr termination time; and, 0.29% and 0.24% (\mathcal{J}/\mathbb{Q}) at 96-hr termination time. Tissues with the highest percent of administered dose at the 0.5 and 8-hr termination times were GI tract and contents, liver, and residual carcass.
	In the high-dose group, T_{max} for all tissues was 2 hr. Tissues with mean concentrations at T_{max} that exceeded 40 µg-equiv/g were GI tract and contents, liver, adrenals, kidney, urinary bladder (\eth only), pancreas, prostate, uterus, ovaries, spleen (\bigcirc only), pituitary (\bigcirc only), fat, mesenteric lymph nodes, heart, and lung. The mean percent recovery of AD in tissues and carcass was 96% and 104% (\eth/\bigcirc) at 2-hr termination time; 64% and 49% (\eth/\bigcirc) at 24-hr termination time; and, 0.80% and 0.79% (\eth/\bigcirc) at 96-hr termination time. Tissues with the highest percent of AD at the 2- and 24-hr termination times were GI tract and contents, liver, and residual carcass.
Toxicokinetics following	Blood/plasma concentration experiments (administration of [¹⁴ C] afidopyropen
gavage dosing or IV dosing (one dose)	in single gavage doses of 3, 30 or 300 mg/kg bw, or single IV dose of 0.5 mg/kg bw): Low-dose level: AUC was comparable for \bigcirc and \bigcirc and \bigtriangledown and \square and \square . Mid- and high-dose levels: T_{max} was 1 hr in \bigcirc and 8 hr in \bigcirc . At the high dose level, T_{max} was 4 hr for \bigcirc and \bigcirc . IV dose: internal dose is slightly greater in \bigcirc .
Rat (Wistar)	IV dose : internal dose is slightly greater in \bigcirc .
PMRA #2627742 Results also reported in PMRA #2627737	Mass balance/excretion experiments (single gavage dose administration of 3 or 300 mg/kg bw, or repeat gavage dose administration of 300 mg/kg bw/day [non-radiolabelled test material for 14 days and one radiolabelled dose on day 15]): Low, single dose level: total recovery of radioactivity was 92–94% of the AD. Mean total amount of radioactivity excreted in urine was 5.5–5.9% and in feces was 86–87%.
	High, single dose level : total recovery of radioactivity was 94.96 and 96.20 ($\mathcal{J} / \mathcal{Q}$). Mean total amount of radioactivity excreted in urine was 20–21% and in feces was 74–75%.
	High, repeat dosing: slightly lower amounts of radioactivity were excreted in the urine in both \bigcirc and \bigcirc . This indicates that changes in kinetics/metabolism may occur after multiple dosing. Time course evaluations indicate that excretion occurred predominantly within 2 days post-dose.
	Tissue distribution experiments (single gavage dose administration of 3 or 300 <u>mg/kg bw):</u> Low dose level, 1 hr : highest concentrations were found in the GI tract/GI tract contents for \Im and \Im , followed by liver, adrenal glands, kidney, thyroid, pancreas (\Im); ovaries, liver, adrenal glands, pancreas, kidney (\Im). High dose level, 4 hr : highest concentrations were found in the GI tract/GI tract contents for both \Im and \Im , followed by liver, adrenal gland, thyroid, kidney and pancreas (\Im) and adrenal glands, liver, thyroid, pancreas and kidney (\Im). For both dose levels, in both \Im and \Im , radioactive residue concentrations generally

Study Type/Animal/PMRA #	Study Results
	declined in organs and tissues parallel to the radioactive residues in plasma.
	Note for Tissue Distribution experiment: during necropsy, gel-like agglomerations of the test-substance preparation were observed in the stomach of selected animals of the high dose group which were assessed by the study author to be responsible for inconsistent results of plasma levels of this dose group. Therefore,
	1% Cremophor (by weight) was added to the carrier (0.5% CMC in tap water) to guarantee the consistency of the test substance preparation when the experiment was repeated. For this reason, the potential impact of the different carrier on the kinetics
	of radiolabelled afidopyropen could not be determined.
	Excretion via the bile (single gavage dose administration of 3 or 300 mg/kg bw) : Low dose level: within 72 hrs, mean excretion was via the bile was 39–46%. Mean
	total excretion via the urine was $11-17\%$ AD. Based on radioactivity excreted in the bile and urine, and residues in the cage wash and carcass, oral absorption was 57% (3% and 9%).
	Higher mean urine excretion was observed in the low dose group in the bile excretion experiment (17% and 11% versus 5.5% and 5.9% for 3° and 2° ,
	respectively). High dose level : within 72 hr, mean excretion via the bile was 36–41% AD. Mean total excretion via the urine was 15–22% AD. Based on radioactivity excreted in the bile and urine, and residues in the cage wash and carcass, oral absorption was 57–
Absorption, distribution,	60%. Results from repeat dietary dose administration (14 days) of non-radiolabelled
	<u>test material, followed by single gavage dose of [¹⁴C] afidopyropen. Dose levels of 3, 15 and 50 mg/kg bw/day)</u> :
	Plasma kinetics – Total radioactivity : For the afidopyropen, when comparing AUC values of the mid or high-dose to the low-dose, AUC values increase with increasing dose in a non-proportional manner. However, when comparing AUC values of mid- to high-dose, the increase is
	proportional to dose. 3–15 mg/kg bw/day: AUC↑ 13.5-fold 3–50 mg/kg bw/day: AUC↑ 53-fold
	15 – 50 mg/kg bw/day : AUC \uparrow 3.9-fold AUC indicates that exposure to CPCA-carnitine is higher than afidopyropen and metabolites (M440I001 and M440I017).
	Plasma kinetics – afidopyropen and its metabolites: Terminal t _{1/2} , <u>50 mg/kg bw/day dose level</u> : 2.17 hr (afidopyropen); 3.59 (M440I001), 3.78 hr (M440I017); 27.1 hr (CPCA-carnitine; approximation)
	Excretion : After a 72-hr observation period, 0.9, 1.3 and 1.6% of AD was excreted via the urine and 85, 90 and 65% of AD was excreted via the feces from the 3, 15 and 50 mg/kg bw dose groups, respectively.
	Tissue distribution (conducted for 15 and 50 mg/kg bw/day dose groups only; tissues collected and analyzed were blood, plasma, liver and uterus). Time points for sampling were based on the C_{max} values: 1 hr and 1.5 hr for 15 and 50 mg/kg bw, respectively. Direct comparison with plasma kinetic study was not possible as sampling times differed.
	15 mg/kg bw/day: Blood cells: 12.3 ug equiv/g (0.6% AD); Plasma: 3.45 ug equiv/g (0.25%); Uterus: 4.43 ug equiv/g (0.07% AD);

Study Type/Animal/PMRA #	Study Results
	Liver: 42.2 ug equiv /g (8.0% AD) at 1 hr post-dose.
	50 mg/kg bw/day:
	Blood cells: 8.9 ug equiv /g (0.5% AD); Plasma: 8.62 ug equiv/g (0.18%); Uterus:
	12.8 ug equiv/g (0.08% AD);
	Liver: 92.7 ug equiv/g (5.4% AD) in the liver at 1.5 hr post-dose.
	Metabolite profiling (15 and 50 mg/kg bw/day dose groups only):
	Nine individual peaks were observed in urine and in feces. Six urine peaks and four
	feces peaks contained \geq 5% of the radioactivity in at least one of the chromatograms. Eight individual peaks were noted in liver samples, of which 4 peaks contained \geq 5%
	of the total radioactivity.
	Twelve individual peaks were noted in the uterus, of which six contained \geq 5% of the
	radioactivity. A total of 17 peaks were found in different matrices. (Note: only
	M440I001 and M440I017 and afidopyropen were identified.). Afidopyropen was
	identified in feces, liver and uterus.
Acute oral (gavage) (Acute Toxic Class)	Low toxicity.
(Acute Toxic Class)	$LD_{50}(\mathcal{Q}) > 2000 \text{ mg/kg bw}$
Rats (Wistar)	$223_{30}(+)$ · 2000 mg/kg 0 · ·
PMRA #2627763	
Acute dermal	Low toxicity.
Rat (Wistar)	$LD_{50} (c^{/}/c^{)} > 2000 \text{ mg/kg bw}$
PMRA #2627764	
Acute inhalation	Low toxicity.
Rat (Wistar)	$LC_{50}(c^{1}/c^{2}) > 5.48 \text{ mg/L}$
PMRA #2627765	5.48 mg/L: abnormal respiratory sounds (from termination of exposure to 4 hr post-
	exposure) (∂/Q)
Skin irritation	MAS = 0
	MIS = 0 at 1 hr
Rabbit (New Zealand White)	
	Non-irritating.
PMRA #2627766	
Eye irritation	Non-irrigated eyes:
Dahhit (Naw Zaaland White)	MAS = 0 MIS = 7.3 at 1 hr
Rabbit (New Zealand White)	WIIS = 7.5 at 1 III
PMRA #2627767	Irrigated eyes:
	MAS = 0
	MIS = 1.3 at 1 hr
01.1	Non-irritating.
Skin sensitization	Non-sensitizing.
(Maximization test)	
Guinea pigs (Hartley)	
PMRA #2627768	
28-day oral (dietary)	NOAEL not established

Study Type/Animal/PMRA #	Study Results
Mouse (ICR)	Effects at lowest dose tested (49 mg/kg bw/day): \uparrow thyroid wt (\bigcirc).
	Effects at 145 mg/kg bw/day: \uparrow total bilirubin (\eth/\square); \uparrow adrenal wt (\eth).
PMRA #2627769 to #2627778	
	Supplemental
90-day oral (dietary)	NOAEL = 69/83 mg/kg bw/day ($^{?}/^{?}$)
	LOAEL = 285/327 mg/kg bw/day
Mouse (ICR)	
	Effects at LOAEL: \uparrow bilirubin (\mathcal{O}/\mathcal{Q}); \uparrow triglycerides, \uparrow spleen wt (\mathcal{Q}).
PMRA #2627791to #2627801	
28- day oral (dietary)	NOAEL not established
Rat (Fischer)	Effects at 59 mg/kg bw/day: ↑ liver wt (♂).
	Effects at 128 mg/kg bw/day: \uparrow BUN, \uparrow AST, \uparrow liver wt (\bigcirc).
PMRA #2627789	
	Supplemental
90-day oral (dietary)	NOAEL = $18/20 \text{ mg/kg bw/day} (3/2)$
	LOAEL = 61/68 mg/kg bw/day
Rat (Fischer)	
	Effects at the LOAEL: \uparrow rel liver wt (\Im/\Im); \uparrow rel kidney wt, \uparrow urobilinogen (urine)
PMRA #2627790	(\Diamond); ↓ fc, ↑ BUN, ↑ AST, ↑ ALT, ↑ potassium, ↑ abs liver wt, ↑ rel spleen wt, ↓ abs
	heart wt, ↑ thymus wt, vacuolar change (fatty change) of hepatocytes and
	myocardium ($\stackrel{\bigcirc}{+}$).
90-day oral (dietary)	NOAEL not established
Dat (Eisshar)	Effects at lowest does tost d (10/21 ma/les hu/des)) 1 condice transmin I (1 7 at Des
Rat (Fischer)	Effects at lowest dose tested (19/21 mg/kg bw/day): \uparrow cardiac troponin I (1 \circlearrowleft at Day 29, 2 \textdegree at Day 92); \uparrow urine volume (\bigcirc).
PMRA #2627749	Effects at 66/79 mg/kg bw/day: \uparrow cardiac troponin I (at this dose level: 1 \bigcirc Day 29,
F WIKA #2027749	$2 \circ 3$ Day $22 \circ 3$; 12 at Day 29) ($3/2$); \uparrow platelets; \uparrow reticulocytes, \downarrow triglycerides (3);
	\downarrow RBC, \downarrow HGB, \downarrow HCT, \uparrow GGT, \uparrow urea, \uparrow cholesterol, \uparrow potassium, \uparrow liver wt, \uparrow
	thymus wt, \downarrow ovary wt (\updownarrow).
	thymus wi, \downarrow ovary wi (+).
	Supplemental
90-day oral (dietary)	NOAEL not established
Rat (Fischer)	Effects at lowest dose tested (19/20 mg/kg bw/day): ↑ total protein, ↑ albumin, ↑
	globulin, ↑ cholesterol, ↑ cardiac troponin I (2♂ affected at 19 mg/kg bw/day: 2 Day
PMRA #2627746	29, 1 Day 92; 3♂ affected at 181 mg/kg bw/day: 1 day 29, 2 day 92) (♂); ↓ HGB, ↓
	HCT, \uparrow urea, \uparrow GGT (\bigcirc).
	Supplemental
90-day oral (dietary)	NOAEL not established
Dat (Wistor)	Effects at lowest deep tested (20 mg/kg hu/de-), slight + UCD slight + UCT (2)
Rat (Wistar)	Effects at lowest dose tested (20 mg/kg bw/day): slight \downarrow HGB, slight \downarrow HCT (\bigcirc).
DMD A #2627755	Effects at 98 mg/kg bw/day: \uparrow platelets, \downarrow motor activity (\bigcirc).
PMRA #2627755	Supplemental
28-day oral (capsule)	Supplemental NOAEL not established
20-uay orai (capsule)	
Dog (Beagle)	Effects at highest dose tested (90 mg/kg bw/day): vomiting of feed, bw loss, ↑
Dog (Deagle)	kidney wt, white mucosa in small intestine $(3/2)$; \uparrow ALP, \uparrow liver wt (3) ; \downarrow fc (2) .
PMRA #2627779 to #2627788	where (\bigcirc) is the indecise in small intestine (\bigcirc) + j , $[$ ALL, $[$ inverse (\bigcirc) , \downarrow is (\uparrow) .
	Supplemental
00 day arel (aercyla)	
90-day oral (capsule)	NOAEL = 15 mg/kg bw/day (\mathcal{O}/\mathcal{Q})
	LOAEL = 30 mg/kg bw/day

Study Type/Animal/PMRA #	Study Results
Dog (Beagle)	Effects at LOAEL: vomiting of feed, hyaline droplet deposition in hepatocytes
	$(\mathcal{J}/\mathcal{Q})$; hematuria (\mathcal{J}) ; \uparrow BUN, \uparrow albumin (\mathcal{Q}) .
PMRA #2627803 to #2627825	
One-year oral (capsule)	NOAEL = 8 mg/kg bw/day (\Im/\Im)
	LOAEL = 20 mg/kg bw/day
Dog (Beagle)	Effects of LOARIS has to while the line develop the string of the string
PMRA #2627826 to #2627847	Effects at LOAEL: \downarrow neutrophils, hyaline droplet deposition of hepatocytes, \uparrow BUN (\Im/ \wp) ; vacuolation of white matter (1 \Im at this dose level) and neuropil (2 \Im at this dose level) of the cerebrum [slight at this dose level] (\Im) ; vomiting of feed (\wp) .
28-day dermal	NOAEL (systemic toxicity) = 1000 mg/kg bw/day (\Im/\Im) LOAEL: not established
Rat (Wistar)	
	Dermal effects:
PMRA #2627850	≥ 300 mg/kg bw/day: ↑ incidence of multifocal hyperkeratosis of the skin (♀). 1000 mg/kg bw/day: ↑ incidence of multifocal hyperkeratosis of the skin (♂).
Repeat-dose inhalation	The waiver was supported for the proposed uses on the basis of the low volatility
PMRA #2627849	and low acute inhalation toxicity of afidopyropen, as well as the magnitude of the margins of exposure (MOE) obtained for the exposure scenarios when oral endpoints were used in the risk assessment.
One-year chronic (dietary)	NOAEL = $15/18 \text{ mg/kg bw/day} (3/2)$
	LOAEL = 48/56 mg/kg bw/day
Rat (Fischer)	
	Effects at LOAEL = \uparrow platelets, \downarrow triglycerides (\Diamond/\Diamond); \downarrow ALT (\Diamond); \downarrow fc, \uparrow ALP,
PMRA #2627860	slight vacuolar change (lipid deposition) of hepatocytes and myocardium, \downarrow uterine wt (\bigcirc).
One-year chronic (dietary)	NOAEL not established
	$LOAEL = 48/57 \text{ mg/kg bw/day} \left(\frac{3}{2} \right)$
Rat (Fischer)	
PMRA #2627861	Effects at LOAEL: \uparrow platelets, \downarrow triglycerides, \uparrow liver wt, \uparrow spleen wt, \uparrow kidney wt $(\overset{\circ}{\oslash} / \overset{\circ}{\ominus})$; \uparrow ALP, \uparrow adrenal wt, \uparrow thyroid wt, \uparrow testes wt, \uparrow epididymal wt $(\overset{\circ}{\oslash})$; \downarrow fc, \uparrow BUN, \downarrow bilirubin, \downarrow heart wt, \uparrow pituitary wt, \downarrow uterine wt, slight vacuolar change (lipid deposition) of hepatocytes and myocardium (slight to moderate at 161 mg/kg bw/day), \downarrow zymogen granules of pancreas acinar cells ($\overset{\circ}{\ominus}$).
	NOAEL = $13/16 \text{ mg/kw bw/day} \left(\frac{3}{7} \right)$
(dietary)	LOAEL = 43/51 mg/kg bw/day
Rat (Fischer)	Effects at LOAEL: \uparrow kidney wt, \uparrow liver wt, \uparrow adrenal wt (\circlearrowleft); \downarrow fc, \uparrow uterus wt, \uparrow hyperplasia of the bile duct in the liver, \uparrow incidence of uterine adenocarcinoma (\heartsuit).
PMRA #2627863	hyperplasm of the one duct in the river, \uparrow incidence of the incidence and the incidence of the incidence
	Evidence of oncogenicity in \mathcal{Q} based on increased incidence of uterine
	adenocarcinoma and adenoma/carcinoma combined.
	Uterine Adenoma:
	2/50, 1/50, 2/50, 3/50
	Uterine Adenocarcinoma:
	4/50 °, 1/50, 2/50, 10/50
	Combined (adenoma and adenocarcinoma):
	$6/50^{\circ}, 2/50, 4/50, 13/50^{\circ}$
	^a denotes a linear trend, $p < 0.01$
Two-year chronic/oncogenicity	NOAEL not established LOAEL = $42/50 \text{ mg/kg bw/day} (3/2)$
(dietary)	LOALL - 42/50 mg/kg bw/uay (0/7)
Rat (Fischer)	Effects at LOAEL = \uparrow epididymides wt (\Im); \uparrow opacity of unilateral lens, \uparrow rel liver
	wt, \downarrow abs heart wt, \downarrow ovary wt, \uparrow adenocarcinoma in the uterus, \uparrow hyperplasia of bile

Study Type/Animal/PMRA #	t Study Results
PMRA #2627862	ducts in the liver $(\stackrel{\bigcirc}{+})$.
	Evidence of oncogenicity in $\stackrel{\bigcirc}{\downarrow}$ based on increased incidence of uterine
	adenocarcinoma and adenoma/carcinoma combined.
	Uterine Adenoma :
	1/50, 3/50, 4/50 Uterine Adenocarcinoma:
	0/50 ^a , 5/50 [*] , 12/50 ^{**}
	Combined (adenoma and adenocarcinoma):
	1/50 ^a , 8/50, 15/50
	* $p < 0.05$ compared to control
	** p < 0.01 compared to control
	^a denotes a linear trend, $p < 0.01$
18-month (dietary)	NOAEL = 79/76 mg/kg bw/day $(3/2)$
Mouse (ICR)	LOAEL = 445/333 mg/kg bw/day
Wouse (ICK)	Effects at LOAEL: \downarrow bw/bwg, \downarrow fc (wk 1 only \eth) (\eth/\clubsuit); \uparrow centrilobular
PMRA #2627864	hepatocellular hypertrophy, \uparrow secreted material depletion in granular ducts of
	submandibular gland (δ); \uparrow mortality (wks 21–25, 41), prone position, bradypnea, \downarrow
	spontaneous motor activity, \downarrow fe, \uparrow WBC, \uparrow lymphocyte count, \uparrow large unstained cell
	count, ↑ spleen wt, ↑ ovary wt, pale-coloured liver, ↓ hematopoiesis in bone marrow
	(sternum and femur), atrophy of the spleen, fibrosis of cardiac muscle in the heart,
	apoptosis in lymphocytes in the thymus and lymphoid follicle in the lymph nodes
	(cervical and mesenteric), vacuolation of the following: heart cardiac muscle,
	glandular stomach parietal cells, hepatocytes, kidney proximal tubule cells, urinary
	bladder mucosal epithelial cells, neuropil in the cortex and the choroid plexus epithelium in the cerebrum, glial cell in the gray matter in the spinal cord (cervical,
	thoracic and lumbar) (\mathcal{Q}).
	$(101ac)$ and $(1010ac)$ (\pm).
	No evidence of oncogenicity.
One-generation range-finding	NOAELs not established
study (dietary)	
	Parental effects at 132 mg/kg bw/day: \downarrow bw/bwg, \downarrow fc, \uparrow adrenal wt, \uparrow thymus wt, \uparrow
Rat (Wistar)	liver wt (\bigcirc_+) .
	Parental effects at 192 mg/kg bw/day: \downarrow bw/bwg, \downarrow fc, \downarrow abs pituitary wt, dark brown
PMRA #2627875	discolouration of the liver (\eth); \uparrow thyroid wt (\circlearrowright).
	Reproductive effects at 101/132 mg/kg bw/day: \downarrow mean number of implantations, \downarrow
	mean number of pups delivered, \downarrow seminal vesicle and prostate wt (parental).
	Offspring effects at lowest dose tested (15 mg/kg bw/day): ↓ bw (8–13%, PND 4
	and $7 \heartsuit; 9\%$, PND 4 \bigcirc).
	Supplemental
One-generation reproduction	NOAELs not established (one dose group only)
(dietary) testing in high purity	
and standard batches of	Parental effects at 127/131 mg/kg bw/day (high purity batch): \downarrow HGB, \downarrow HCT, \downarrow
afidopyropen	ALP, \downarrow total bilirubin, \uparrow liver wt (∂/\Box); \downarrow fc (premating wk 0–1), \uparrow rel reticulocyte counts. \uparrow WBC, \uparrow abs neutrophil count \uparrow abs lymphosite counts. \downarrow tridycarides \uparrow
Rat (Wistar)	counts, \uparrow WBC, \uparrow abs neutrophil count, \uparrow abs lymphocyte counts, \downarrow triglycerides, \uparrow kidney wt, \uparrow spleen wt, \uparrow thyroid wt, extramedullar hematopoiesis of the liver (\circlearrowleft); \uparrow
ixai (w istai)	bw (LD21), \uparrow bwg (lactation), \downarrow fc, \uparrow platelets, \uparrow adrenal wt, periportal fatty change
	in the liver (\mathcal{Q}).
PMRA #2627876	
PMRA #2627876	
PMRA #2627876	Parental effects at 126/132 mg/kg bw/day (standard batch): ↓ HGB, ↑ rel

Study Type/Animal/PMRA #	Study Results
	rel kidney wt $(\sqrt[3]{})$; \downarrow fc, \downarrow triglycerides, extramedullary hematopoiesis of the liver $(\sqrt[3]{})$; \uparrow bw (pre-mating wks 1–3, LD 21), \uparrow bwg (lactation), \downarrow fc (premating wk 0–1 and lactation), \downarrow HCT, \downarrow MCH, \uparrow abs neutrophil count, \downarrow inorganic phosphate, \uparrow adrenal wt, \uparrow thyroid wt, \uparrow abs kidney wt, enlarged livers, periportal fatty change in the liver (\bigcirc).
	Reproductive effects at 127 mg/kg bw/day (high purity batch): ↓ prostate wt.
	Reproductive effects at 126/132 mg/kg bw/day (standard batch): \downarrow prostate wt, \downarrow spermatid counts in the testes, altered sex ratio ($\uparrow \% $).
	Offspring effects at 131 mg/kg bw/day (high purity batch): \downarrow bw (PND 4 – 21), \downarrow bwg (PND 0–21), \downarrow spleen wt (\Diamond/\Diamond).
	Offspring effects at 132 mg/kg bw/day (standard batch): \uparrow pup deaths (PND 1–4), \downarrow bw (PND 4–21), \downarrow bwg (PND 0–21), \downarrow spleen wt (\Im/\Im); altered sex ratio ($\uparrow \% \Im$) (\Im).
	Supplemental
2-generation reproduction (dietary) Rat (Wistar) PMRA #2627878	Parental \bigcirc NOAEL = 75 mg/kg bw/day Parental \bigcirc NOAEL = 27 mg/kg bw/day Parental \bigcirc NOAEL = 27 mg/kg bw/day Parental \bigcirc LOAEL not established Parental \bigcirc LOAEL = 85 mg/kg bw/day Effects at \bigcirc LOAEL: \uparrow bwg (F1 \bigcirc : 8 of 14 wks), \uparrow abs liver wt P and F1, \uparrow rel liver wt P (\bigcirc); \uparrow bw [P: LD 21; F1: LD 14–21], \uparrow bwg [P: LD 0–21; F1 wks 0–10, LD 0– 21], \downarrow fc P and F1, \uparrow adrenal wt P and F1 (\bigcirc).
	Reproductive NOAEL = 22/27 mg/kg bw/day (\mathcal{O}/\mathcal{Q}) Reproductive LOAEL = 75/85 mg/kg Effects at LOAEL: altered sex ratio ($\uparrow \% \mathcal{O}$ – equivocal), \downarrow prostate wt (F1 parents). Offspring NOAEL = 27 mg/kg bw/day Offspring LOAEL = 85 mg/kg bw/day Effects at LOAEL: \uparrow pup death F1 and F2, \downarrow bw PND21 P and F1, \downarrow spleen wt F1 (\mathcal{O}/\mathcal{Q}); delayed sexual maturation (preputial separation) F1 (\mathcal{O}).
2-generation reproduction	Serious effects in the presence of maternal toxicity. Parental ♂ NOAEL = 39 mg/kg bw/day
(dietary)	Parental \bigcirc NOAEL = 8.4 mg/kg bw/day
Rat (Wistar)	Parental \bigcirc LOAEL = 150 mg/kg bw/day Parental \bigcirc LOAEL = 41 mg/kg bw/day
PMRA #2627877	Effects at \bigcirc LOAEL: \downarrow glucose P, \downarrow total bilirubin P and F1, \downarrow rel basophil counts F1, \uparrow abs lymphocyte count F1 \uparrow adrenal wt P and F1 (\bigcirc). Effects at \bigcirc LOAEL: \downarrow bw/bwg P and F1, \downarrow fc P and F1, \downarrow glucose F1 (\bigcirc / \bigcirc); \downarrow
	glucose P, \downarrow triglycerides P and F1, \downarrow total bilirubin P and F1, \uparrow abs adrenal wt F1, \uparrow rel adrenal wt P and F1 (\Diamond); \uparrow bwg (pre-mating period F1, LD 0– 21 P and F1), \downarrow RBC F1, \downarrow HGB P and F1, \downarrow HCT P and F1, \uparrow abs reticulocyte counts P, \uparrow rel reticulocyte counts P and F1, \uparrow abs lymphocyte count P, \uparrow cholesterol P and F1, \downarrow uterus wt F1, \uparrow adrenal vacuolation P and F1 (\heartsuit).
	Reproductive NOAEL = 39/41 mg/kg bw/day (\mathcal{O}/\mathcal{Q}) Reproductive LOAEL = 150/155 mg/kg bw/day Effects at LOAEL: \downarrow implantation sites F1, \downarrow mean number of pups /dam F1, \downarrow mean litter size (PND 0) F1, "improper nursing of offspring" (P: 3 dams; F1: 6 dams), altered sex ratio ($\uparrow \% \mathcal{O}$) P and F1; \downarrow abs prostate wt P and F1, \downarrow sperm count in the

Study Type/Animal/PMRA #	Study Results
	testes P, \uparrow lymphoid infiltration of the prostate F1 (\Diamond); \downarrow ovary wt P and F1, and \downarrow uterus wt F1 (\Diamond).
	Offspring NOAEL = 8.4 mg/kg bw/day Offspring LOAEL = 41 mg/kg bw/day F1, effects at LOAEL: \downarrow bw (F2: PND 21), \downarrow bwg (F1: PND 14 – 21; F2: PND 14– 21), \downarrow spleen wt F2 (\mathcal{O}/\mathcal{P}); \downarrow thymus wt F2, delayed sexual maturation (preputial separation) F1 (\mathcal{O}); \downarrow thymus wt F1 (\mathcal{P}).
	Effects in the presence of maternal toxicity. NOAELs not established; only 1500 ppm (131/132 mg/kg bw/day) dose level tested
Rat (Wistar)	Parental Effects:
	Group 1[no dosing of parents premating, mating or gestation; dosing of dams during lactation] 131/132 mg/kg bw/day: \uparrow bw (LD 21), \uparrow platelets, \downarrow HGB, \downarrow HCT, \downarrow MCHC, \downarrow rel neutrophil count, \downarrow total bilirubin, \downarrow inorganic phosphate, \uparrow urea, \uparrow cholesterol, \downarrow triglycerides, \uparrow liver wt, enlarged liver and diffuse hepatocellular hypertrophy (2/20) (\bigcirc).
	Group 2 [dosing of parents premating, mating, gestation and lactation] 131/132 mg/kg bw/day: \downarrow fc (\eth : premating wk 1; \heartsuit : premating, GD 0–14), \downarrow HGB, \downarrow HCT, \downarrow neutrophil counts, \uparrow rel lymphocyte counts, \downarrow total bilirubin, \downarrow inorganic phosphate, \downarrow triglycerides, \uparrow liver wt (\eth/\diamondsuit); \uparrow platelets, \uparrow rel reticulocyte counts, \downarrow monocyte counts, \uparrow kidney wt, \uparrow spleen wt (\eth); \downarrow bwg (GD 0–7), \uparrow bw (LD 21), \downarrow MCHC, \uparrow abs lymphocyte counts, \uparrow urea, \uparrow cholesterol, \uparrow GGT (\heartsuit).
	Group 3 [dosing of parents premating, mating and gestation; delivery of pups via C-section] 131/132 mg/kg bw/day: \downarrow fc (\circlearrowleft : premating wk 1; \heartsuit : premating, GD 0–14) ($\circlearrowright/\diamondsuit$); \downarrow bwg (GD 0–7) (\heartsuit).
	Reproductive Effects: Group 4 [prenatal exposure, born via C-section; no post-natal dosing]: ↑ pup death (PND 0).
	Offspring Effects: Group 1, 132 mg/kg bw/day [pups exposed only during postnatal period]: \downarrow bw (PND 7–21), \downarrow bwg (PND 1–21), \downarrow spleen wt, \downarrow abs heart wt (\eth/\diamondsuit); \downarrow abs brain wt, \downarrow thymus wt (\eth); \downarrow abs thymus wt (\heartsuit).
	Group 2, 132 mg/kg bw/day [pups exposed only during postnatal period]: \downarrow bw (PND 7–21), \downarrow bwg (PND 1–21), \downarrow spleen wt, \downarrow abs heart wt (\mathcal{O}/\mathcal{Q}); \downarrow thymus wt (\mathcal{O}); \downarrow abs thymus wt (\mathcal{Q}).
	Group 4, 132 mg/kg bw/day [pups exposed only during prenatal period, delivered via C-section]: ↑ pup death (PND 1–4).
	Supplemental
	NOAELs not established
Rabbit (Japanese White)	Maternal LOAEL = 30 mg/kg bw/day Effects at LOAEL: ↓ bw (slight at this dose, 4–6%, GD 24–28), ↓ bwg (overall), ↓ fc, ↑ post-implantation loss.
PMRA #2627912	Developmental LOAEL = 30 mg/kg bw/day

Study Type/Animal/PMRA #	Study Results
	Effects at LOAEL: slight \uparrow in fetal deaths (on fetal basis only) and post-implantation
	loss.
Developmental toxicity	Maternal NOAEL = 8 mg/kg bw/day
(gavage)	Maternal LOAEL = 16 mg/kg bw/day
	Effect at LOAEL: altered sex ratio ($\uparrow \% \circ$)
Rabbit (Japanese White)	
	Developmental NOAEL = 8 mg/kg bw/day
	Developmental LOAEL = 16 mg/kg bw/day
	Effect at LOAEL: altered sex ratio ($\uparrow \% \circ$)
PMRA #2627897 to #2627911	Effects at 32 mg/kg bw/day: ↓ live fetuses, ↑ dead fetuses and early resorptions, ↑
	total litter resorptions, ↑ post-implantation loss.
	Evidence of developmental toxicity in the absence of overt maternal toxicity.
Range-finding developmental	NOAELs not established
toxicity (gavage)	
	Effects at 20 and 100 mg/kg bw/day: single incidents of myocardial degeneration at
Rat (Wistar)	both dose levels (equivocal).
	Maternal effects at 500 mg/kg bw/day: mortality (GD 16–18 at 500 mg/kg bw/day;
	GD 10–17 at 1000 mg/kg bw/day), vaginal hemorrhage, bradypnea, hypothermia, ↓
PMRA #2627880	locomotor activity, soiling of perigenital/perioral fur, \downarrow bw, \downarrow bwg, \downarrow fc, \downarrow gravid
	uterine wt, atrophy of the thymus and spleen (observed grossly), jejunum and
	glandular stomach mucosa discolouration (multifocal dark red/black patches),
	adrenal gland hypertrophy (observed grossly), hepatocellular hypertrophy, periportal
	fatty change in the liver, myocardial degeneration $[0/1/1/4/6]$, \downarrow live fetuses and
	litters, \uparrow resorptions and post-implantation loss.
	Developmental offects at 500 mg/kg hw/devy live fetuges, litters and vishility
	Developmental effects at 500 mg/kg bw/day: 1 live fetuses, litters and viability
	index, ↑ resorptions and post-implantation loss.
Developmental toxicity	Maternal NOAEL = 30 mg/kg bw/day
(gavage)	Maternal LOAEL = 100 mg/kg bw/day
Dat (Wiston)	Effects at LOAEL: \uparrow adrenal weight, altered sex ratio ($\uparrow \% \circ$; equivocal).
Rat (Wistar)	Developmental NOAFI 20 mg/kg km/dev
	Developmental NOAEL = 30 mg/kg bw/day
	Developmental LOAEL = 100 mg/kg bw/day
DMD A #2(27882	Effects at LOAEL: \uparrow incidence of fetuses with skeletal variations, \uparrow fetal and litter
PMRA #2627882	incidence of lumbar (supernumerary) ribs, \uparrow metatarsal ossification, altered sex ratio ($\uparrow \% \ensuremath{\circ}$; equivocal).
	$(\% \circ, equivocal).$
	Evidence of developmental toxicity in the presence of maternal toxicity.
Developmental	Maternal NOAEL = 100 mg/kg bw/day
toxicity(gavage)	Maternal LOAEL = 200 mg/kg bw/day
(Suruge)	Effects at LOAEL: mortality (1 $\stackrel{\circ}{\downarrow}$, GD 19), \downarrow bw (GD 9 only), bwg (GD 6–9 only)
Rat (Wistar)	and fc (GD 6-15).
	Developmental NOAEL not established
	LOAEL = 50 mg/kg bw/day: \uparrow fetal incidence of skeletal variations and
PMRA #2627884 to #2627896	supernumerary ribs
	200 mg/kg bw/day: ↑ fetal and litter incidence of zygomatic bone fused with
	maxilla, cleft palate [2 (1) versus 0 in controls and none reported in historical control
	data]
	Evidence of developmental toxicity in the absence of maternal toxicity.

Study Type/Animal/PMRA #	Study Results
Acute oral neurotoxicity	NOAEL = 700 mg/kg bw $(3/2)$
(gavage)	LOAEL = 2000 mg/kg bw
Rat (Wistar)	Effects at LOAEL: \downarrow motor activity (individual intervals and cumulative total motor activity, day 0) (\Diamond/\Diamond); slight \uparrow bwg, slight tremors (1 \wp , day 0), hypothermia (2 \wp ,
PMRA #2627916	day 0) (\bigcirc).
90-day neurotoxicity(dietary)	NOAEL = 73/92 mg/kg bw/day (∂/Q) LOAEL = 396 mg/kg bw/day
Rat (Wistar)	Effects at LOAEL: ↓ bw/bwg (♂).
PMRA #2627917	Study LOAEL: Excessive food spillage occurred; compound intake was based on a limited number of values. The calculated dietary consumption at this dose level is likely an overestimate based on other rat dietary studies in the database.
28- day immunotoxicity study	NOAEL = 69 mg/kg bw/day
in \mathcal{P} (dietary)	LOAEL = 278 mg/kg bw/day Effects at LOAEL: \downarrow bwg, \uparrow rel liver wt, slight \uparrow thymus wt (\bigcirc).
Rat (Wistar)	
PMRA #2627744	Study limitations: Unable to measure actual compound intake due to excessive food spillage. Historical control data for food consumption were used to estimate the compound intake for the top two dose groups (69 and 278 mg/kg bw/day).
	Supplemental
Bacterial reverse mutation	Negative in <i>S. typhimurium</i> strains (TA100, TA1535, TA98, and TA1537) and <i>E.</i>
assay	<i>coli</i> (WP2 uvrA) strains in the absence and presence of metabolic activation.
PMRA #2627851	
Bacterial reverse mutation assay	Negative in <i>S. typhimurium</i> strains (TA100, TA1535, TA98, and TA1537) and <i>E. coli</i> (WP2 uvrA) strains in the absence and presence of metabolic activation.
PMRA #2627852	
Bacterial reverse mutation	Negative in S. typhimurium strains (TA100, TA1535, TA98, and TA1537) and E.
assay	<i>coli</i> (WP2 uvrA) strains in the absence and presence of metabolic activation.
PMRA #2627853	
Bacterial reverse mutation	Negative in S. typhimurium strains (TA100, TA1535, TA98, and TA1537) and E.
assay	coli (WP2 uvrA) strains in the absence and presence of metabolic activation.
PMRA #2627854	
In vitro chromosomal aberration assay	Negative in Chinese hamster lung cells.
PMRA #2627855	
In vitro forward mutation assay in mammalian cells	Negative in Chinese hamster ovary cells.
PMRA #2627856	
In vivo micronucleus assay (gavage)	Negative, only ♂ tested.
Mouse (NMRI)	1400 and 2000 mg/kg bw/day: partially closed eyes, ruffled fur, slightly reduced spontaneous activity (\Im).
PMRA #2627859	spontaneous activity (U).

Study Type/Animal/PMRA #	Study Results
In vivo micronucleus assay	Negative.
(gavage)	
	Pre-test (∂/φ) :
Mouse (NMRI)	1500 and 2000 mg/kg bw: death of 1 \mathcal{Q} / group.
PMRA #2627858	Main test (only $eightsymbol{d}$ tested):
	≥ 1000 mg/kg bw: abdominal posture, partially closed eyes, ruffled fur, reduced
	spontaneous activity, tumbling (δ).
	\geq 1500 mg/kg bw: hunched posture, apathy, rapid breathing/dyspnea (\circlearrowleft).
In vivo micronucleus assay	Negative.
(gavage)	
Mouse (ICR)	
PMRA #2627857	
Special Study	197.2 mg/kg bw/day: \downarrow bw (days 5 and 8), \downarrow bwg, \downarrow fc, \uparrow liver wt, \downarrow uterus wt, \uparrow
	hepatic EROD, \uparrow hepatic microsomal estradiol-2-hydroxylation, \uparrow hepatic CYP1A1
14-day study investigating CYP1A1 and CYP1B1	mRNA, \uparrow hepatic CYP1B1 mRNA, \uparrow uterine CYP1A1 mRNA (\bigcirc).
induction in \mathcal{Q} (dietary)	CYP1B1 mRNA not altered in uterine tissue.
	e i i ibi matar not anored in dternie dissue.
Rat (Fischer)	Supplemental
PMRA #2627750	
Special Study	Negative for estrogen receptor transcriptional activation in stably transfected hERa-
-	HeLa-9903 (human cervical cancer cells) when tested up to insoluble concentrations
Estrogen receptor	based on the assay scoring criteria.
transcriptional activation assay	
PMRA #2627753	Supplemental
Special Study	Using uterine cytosol from ovariectomized \bigcirc Sprague-Dawley rats, afidopyropen
Speerar Study	was classified as equivocal based on the assay scoring criteria. Metabolites
Estrogen receptor binding	M440I002 and M440I001 were classified as non-interacting based on the assay
assay	scoring criteria.
PMRA #2627754	Supplemental
Special Study	Binding assays indicated that the test compounds (afidopyropen, M440I001,
Speerar Study	M440I002, M440I003 and M440I017) did not show inhibition of the dopamine
Effects on dopamine	transporter (isolated from human recombinant Chinese hamster ovary cells).
transporter, receptor, uptake	
and bioassay (in vitro)	Cellular and nuclear receptor functional assays indicated that the test compounds did
DMD A #2627749	not have an agonist or antagonist effect on the dopamine D1 receptor.
PMRA #2627748	Enzyme uptake assays indicated that the test compounds did not inhibit dopamine
	uptake.
	In the rabbit splenic artery tissue bioassays, test compounds did not show an agonist
	or antagonist effect on the dopamine D1 receptor.
	In the rabbit ear artery tissue bioassays, afidopyropen and M4401002 induced $a\downarrow$
	twitch contraction amplitude that was not blocked with sulpiride, indicating an agonist-like effect on the dopamine D2 receptor.
	Supplemental
L	puppononai

Study Type/Animal/PMRA #	Study Results
Special Study	The test compounds (afidopyropen and M440I002) did not show inhibition of the dopamine D2S and the D2L receptors (isolated from human recombinant HEK-293
Binding assays for dopamine D2S and D2L receptors	cells).
PMRA #2627751	Supplemental
Special Study	The test compounds (afidopyropen and M440I002) induced a↓twitch contraction amplitude in a rabbit ear artery indicating an agonist-like effect of the dopamine D2
Tissue bioassay for dopamine D2 receptor	receptor.
PMRA #2627752	Supplemental
Special Study	NOAEL = $18 \text{ mg/kg bw/day} (\mathcal{Q})$
28-day toxicity study to determine treatment-related effects on prolactin levels in ♀ (dietary)	LOAEL = 81 mg/kg bw/day Effects at LOAEL: \uparrow bw/bwg, \uparrow fc, \downarrow prolactin in metestrus (day 24), \downarrow prolactin in proestrus, \downarrow prolactin in metestrus (day 28, after stimulation), \uparrow abs liver wt, \downarrow rel pituitary wt.
Rat (Fischer) PMRA #2627756	Effects at 368 mg/kg bw/day: ↓ number of estrous cycles, ↑ length of estrous cycles, ↓ prolactin in proestrus, ↑ liver wt, ↓ adrenal wt, ↓ovary wt, ↓ pituitary wt, ↓ uterus wt, diffuse atrophy of ovaries, uterus, cervix, and vagina, vagina mucification.
	While in metestrus, ↑ in serum prolactin levels, following stimulation with metoclopramide, were smaller in rats dosed with afidopyropen than in control rats. This result was also observed in rats treated with bromocriptine mesylate.
	Note: cycle length of control animals was atypically longer than normal.
	Supplemental
Special Study	The molecular structures of afidopyropen and its metabolites M440I001, M440I002, M440I003 and M440I017 were submitted to in-silico activity prediction models
Activity prediction modelling	(QSAR) of the human dopamine D2 receptor and dopamine transporter. High
for the dopamine D2 receptor and dopamine transporter (in	inhibition values were predicted regarding the dopamine receptor for the metabolites (except M440I017) and afidopyropen, although these predictions were labelled as
silico)	borderline due to the high level of uncertainty. Inhibition of the dopamine transporter seemed unlikely given the rather low activity (plC $_{50}$ predictions) for this
PMRA #2627757	target.
1 11111 112021131	Supplemental

Table 4 Toxicity Profile of Metabolites of Afidopyropen

Note: Organ weight effects reflect both absolute organ weights and relative organ to bodyweights unless otherwise noted. Effects above the LOAEL(s) have not been reported in this table for most studies for reasons of brevity.

Study Type / Animal / PMRA #	Study Results	
Metabolite M440I007 (dimer)		
Metabolic fate of M440I007- identification of metabolites in urine and feces, single (high, gavage) dose Rat (Fischer)	M440I007and a trace of unchanged afidopyropen were detected in the fecal extracts from the treated animal (n = 1 3). The peak area count for the dose formulation was approximately 17,000 and 136–144 for M440I007and afidopyropen, respectively. The relative signal strength could not be used to calculate precise ratios but in comparing relative signal area for M440I007 and afidopyropen, presence of afidopyropen appeared to be lower in the fecal extract than in the dose formulation. No other metabolites were detected. No detectable test substance or metabolites were noted in the urine of the treated animal.	
PMRA #2627739	M440I007was excreted only through feces (although contribution of the biliary excretion could not be excluded) without extensive transformation to M440I001, M440I002, or M440I003, and its absorption rate or bioavailability is assumed to be very low. Therefore, there was no positive evidence to prove that M440I007 biotransforms to afidopyropen. Afidopyropen was present in the dosing solution as an impurity at levels greater than those seen in the feces, indicating that afidopyropen was not produced though metabolism of the dimer.	
Acute (gavage)	Low toxicity.	
(Acute Toxic Class)	$LD_{50} > 2000 \text{ mg/kg bw}$	
Rat (Wistar)		
PMRA #2627918		
90-day oral (dietary)	NOAEL = $277/317 \text{ mg/kg bw/day} (3/2)$	
Rat (Wistar)	LOAEL = 708/797 mg/kg bw/day Effects at LOAEL: \uparrow thymus wt (\eth/ \updownarrow) ; necrosis/fibrosis (minimal) of the heart (\eth) ; \uparrow total bilirubin, extramedullary hematopoiesis of the spleen (\diamondsuit) .	
PMRA #2627921	Supplemental	
Bacterial reverse mutation assay	Negative in <i>S. typhimurium</i> strains (TA100, TA1535, TA98 and TA1537) and <i>E. coli</i> (WP2 uvrA) strains in the absence and presence of metabolic activation.	
PMRA #2627919		
Bacterial reverse mutation assay	Negative in <i>S. typhimurium</i> strains (TA100, TA1535, TA98 and TA1537) and <i>E. coli</i> (WP2 uvrA) strains in the absence and presence of metabolic activation.	
PMRA #2627920		
In vivo micronucleus assay (gavage)	Negative. Only ♂ tested.	
Mouse (NMRI)		
PMRA #2627924		

Study Type / Animal / PMRA #	Study Results
In vitro micronucleus test in human lymphocytes	Negative.
PMRA #2627922	
In vitro forward mutation assay in mouse lymphoma L5178T cells	Negative.
PMRA #2627923	
CPCA (cyclopropane c	carboxylic acid)
Acute oral (gavage) (Acute Toxic Class)	High toxicity.
Rat (Wistar)	$300 < LD_{50} < 500 \text{ mg/kg bw}$
PMRA #2737900	
90-day (gavage)	NOAEL = 10 mg/kg bw/day (\Im/\Im) LOAEL = 30 mg/kg bw/day
Rat	Effects at LOAEL:
(Sprague- Dawley)	more areas of myocyte degeneration/necrosis with a mononuclear inflammatory cell infiltrate), \downarrow zymogen within acinar cells of the pancreas (∂/Q); \downarrow globulin, \downarrow total protein
PMRA #2635785 and #2635786	(\Im) ; \uparrow AST, \uparrow total bile acids, \uparrow BUN, \uparrow inorganic phosphorus, \downarrow cholesterol, \uparrow liver wt, \uparrow kidney wt, discolouration of the liver, myocardial vacuolation, \uparrow periportal fatty change in the liver, \uparrow mononuclear cell infiltrate in the liver, lymphoid necrosis of the thymus, (\Im).

Table 5 Toxicity Profile of End-use Products Versys Insecticide and Sefina Insecticide

Study Type/Animal/PMRA #	Study Results
Versys Insecticide	
Acute oral (gavage)	Low toxicity.
(Acute Toxic Class)	
	$LD_{50}(Q) > 2000 \text{ mg/kg bw}$
Rat (Wistar)	
PMRA #2627543	
Acute dermal	Low toxicity.
Rat (Wistar)	$LD_{50}(3/2) > 5000 \text{ mg/kg bw}$
PMRA #2627544	
Acute inhalation	Slight toxicity.
Rat (Wistar)	$0.6 < LC_{50} < 1.13 \text{ mg/L} (c^{/2})$
(wistar)	$0.0 < LC_{50} < 1.15 \text{ mg/L}(07+)$
PMRA #2627545	
Skin irritation	Moderately irritating.
Rabbit (New Zealand White)	MAS = 3.7
	MIS = 4 at 24 hr
PMRA #2627546	

Study Results
Minimally irritating.
initially initiality.
MAS = 1.3
MIS = 6 at 1 hr
Non-sensitizing.
Negative in S. typhimurium strains (TA100, TA1535, TA98 and TA1537) and E.
coli (WP2 uvrA) strains in the absence and presence of metabolic activation.
Negative, only \circ tested.
1000 and 2000 mg/kg bw: piloerection (3).

Study Type/Animal/PMRA #	Study Results
Sefina Insecticide	
Acute oral gavage	Low toxicity.
(Acute Toxic Class)	
Rat (Wistar)	$LD_{50}(Q) > 2000 \text{ mg/kg bw}$
PMRA #2627087	
Acute dermal	Low toxicity.
Rat (Wistar)	$LD_{50}(\mathcal{O}/\mathcal{Q}) > 5000 \text{ mg/kg bw}$
PMRA #2627088	
Acute inhalation	Slight toxicity.
Rat (Wistar)	$0.55 < LC_{50} < 1.22 \text{ mg/L}$
PMRA #2627089	
Skin irritation	Mildly irritating.
Rabbit (New Zealand White)	MAS = 2.7
Rubble (110 w Zoulund White)	MIS = 3 at 24 hr
PMRA #2627090	
Eye irritation	Minimally irritating.
Rabbit (New Zealand White)	MAS = 2.2 MIS = 7.3 at 1 hr
PMRA #2627091	

Study Type/Animal/PMRA #	Study Results
Skin sensitization	Non-sensitizing.
(Buehler)	
Guinea Pig (Dunkin-Hartley)	
PMRA #2627092	

Table 6Toxicology Reference Values for Use in Human Health Risk Assessment for
Afidopyropen

Exposure Scenario	Study	Point of Departure and Endpoint	CAF or Target MOE ¹	
Acute dietary general population	mg/kg bw (that is, close to a lin for the general population.	ad been considered; however, since the stud hit dose) it was not considered necessary to e		
Acute dietary females 13–49 years of age	study in the rabbit	NOAEL = 8 mg/kg bw/day, based on an altered fetal sex ratio.	1000	
Repeated dietary general population	ARfD = 0.008 mg/kg bw One-year dietary toxicity study in the dog	NOAEL = 8 mg/kg bw/day, based on pathological changes in the brain observed in males.	300	
Repeated dietary females 13–49 years of age	ADI = 0.03 mg/kg bw/day Gavage developmental toxicity study in the rabbit	NOAEL = 8 mg/kg bw/day, based on an altered fetal sex ratio.	1000	
Short-, intermediate- and long-term dermal ²		NOAEL = 8 mg/kg bw/day, based on an altered fetal sex ratio.	1000	
Short-, intermediate-, Gavage developmental toxicity		NOAEL = 8 mg/kg bw/day, based on an altered fetal sex ratio.	1000	
toxicity/oncogenicity study in		1.79×10^{-2} (mg/kg bw/day) ⁻¹ , based on the combined incidence of uterine adenoma/ adenocarcinoma.	N/A	

¹ CAF (composite assessment factor) refers to a total of uncertainty and PCPA factors for dietary assessments; MOE refers to a target MOE for occupational assessments

 2 Since an oral NOAEL was selected, a dermal absorption factor (12%) was used in a route-to-route extrapolation.

³ Since an oral NOAEL was selected, an inhalation absorption factor of 100% (default value) was used in route-to- route extrapolation.

Table 7Toxicology Reference Values for Use in Human Health Risk Assessment for
CPCA^a

Exposure Scenario	Study	Point of Departure and Endpoint	CAF or					
			Target MOE ¹					
Acute dietary	The acute neurotoxicity study h	he acute neurotoxicity study had been considered; however, since the study $NOAEL = 700$						
general population	mg/kg bw (that is, close to a lim	hit dose) it was not considered necessary to est	ablish an ARfD					
	for the general population.	or the general population.						
	ARfD not required	ARfD not required						
Acute dietary females	Gavage developmental toxicity	MW-adjusted NOAEL = 2.3 mg/kg bw/day,	1000					
13-49 years of age	study in the rabbit	based on an altered fetal sex ratio.						

Exposure Scenario	Study	Point of Departure and Endpoint	CAF or Target MOE ¹	
	ARfD = 0.002 mg/kg bw			
Repeated dietary general population	One-year dietary toxicity study in the dog	MW-adjusted NOAEL = 2.3 mg/kg bw/day, based on pathological changes in the brain observed in males.	300	
	ADI = 0.008 mg/kg bw/day			
Repeated dietary females 13–49 years of age	Gavage developmental toxicity study in the rabbit	MW-adjusted NOAEL = 2.3 mg/kg bw/day, based on an altered fetal sex ratio.	1000	
	ADI = 0.002 mg/kg bw/day	·		
Short-, intermediate-, long-term dermal ²	Gavage developmental toxicity study in the rabbit	MW-adjusted NOAEL = 2.3 mg/kg bw/day, based on an altered fetal sex ratio.	1000	
Short-, intermediate-, Gavage developmental toxicity long-term inhalation ³ study in the rabbit		MW-adjusted NOAEL = 2.3 mg/kg bw/day, based on an altered fetal sex ratio.	1000	
toxicity/oncogenicity study in rats		MW-adjusted $q_1^* = 6.3 \times 10^{-2}$ (mg/kg bw/day) ⁻¹ , based on the combined incidence of uterine adenoma/ adenocarcinoma.	N/A	

^aNOAELs from afidopyropen studies were adjusted using a molecular weight (MW) factor of 3.5.

The MW adjustment factor is calculated based on the molecular weight of both CPCA (86 g/mol) and afidopyropen (593.7 g/mol), and the number of CPCA molecules per molecule of afidopyropen (2 CPCA / molecule of afidopyropen). Using a NOAEL of 8 mg/kg bw/day, the MW adjustment factor is calculated as follows:

[(NOAEL × MW of CPCA)/ MW of afidopyropen] × 2 CPCA/mol

= $[(8 \times 86 \text{ g/mol})/593.7 \text{ g/mol}] \times 2 \text{ CPCA/mol}$

= 2.3 mg/kg bw/day of CPCA

Thus 8 mg/kg bw/day for afidopyropen would be equivalent to 2.3 mg/kg bw/day of CPCA and the MW adjustment factor to the afidopyropen toxicology reference values would be 3.5 fold.

The q₁* value was calculated as follows: $(1.79 \times 10^{-2}) \times 3.5$

¹ CAF (composite assessment factor) refers to a total of uncertainty and PCPA factors for dietary assessments; MOE refers to a target MOE for occupational assessments.

² Since an oral NOAEL was selected, a dermal absorption factor (12%) was used in a route-to-route extrapolation.

³ Since an oral NOAEL was selected, an inhalation absorption factor of 100% (default value) was used in a route-to- route extrapolation.

Table 8	Mixer/Loader/Applicator Non-Cancer Exposure Estimates and MOE
---------	---

Сгор	Application Method	Total Unit Exposure (μg/kg ai handled)	Rate (kg a.i./ha)	Area Treated per Day (ha/day)	Exposure Estimate (mg a.i./kg bw/day)‡	MOE¶ (Target = 1000)
Sefina Insecticide						
	Open Mix/Load	7.65		400	0.0003825	20915
	Aerial	0.33009		400	1.65E-05	484716
	Open Mix/Load + Groundboom, Custom App ¹	12.378	0.01	360	0.00055701	14362
	Open Mix/Load	7.65		400	0.0019125	4183
	Aerial	0.33009		400	8.25E-05	96943
	Open Mix/Load + Groundboom, Custom App ¹	12.378	0.05	360	0.00278505	2872

Сгор	Application Method	Total Unit Exposure (µg/kg ai handled)	Rate (kg a.i./ha)	Area Treated per Day (ha/day)	Exposure Estimate (mg a.i./kg bw/day)‡	MOE¶ (Target = 1000)
Versys Insecticide				-		
Tuberous and	Open Mix/Load	7.65		400	0.0019125	4183
Corm Vegetables	Aerial	0.33009		400	8.25225E-05	96943
(including potatoes)	Open Mix/Load + Groundboom, Custom App ¹	12.378	0.05	360	0.00278505	2872
Leafy Vegetables	Open Mix/Load + Groundboom	12.378	0.05	26	0.000201143	39773
Brassica Head and Stem Vegetables	Open Mix/Load + Groundboom	12.378	0.05	26	0.000201143	39773
Fruiting Vegetables	Open Mix/Load + Groundboom	12.378	0.05	26	0.000201143	39773
Cucurbit Vegetables	Open Mix/Load + Groundboom	12.378	0.05	26	0.000201143	39773
Leaf Petiole Vegetables	Open Mix/Load + Groundboom	12.378	0.05	26	0.000201143	39773
Pome Fruit	Open Mix/Load + Airblast	469.05	0.01	20	0.001172615	6822
Stone Fruit	Open Mix/Load + Airblast	469.05	0.01	20	0.001172615	6822
Hazelnut Trees	Open Mix/Load + Airblast	469.05	0.01	20	0.001172615	6822
C l	Mechanically Pressurized Handgun	821.26	0.00005 kg a.i./L ²	3800 L/day	0.00195049	4102
Greenhouse and Outdoor	Manually Pressurized Handwand	158.40	0.00005 kg a.i./L ²	150 L/day	1.48504E-05	538706
	Backpack	715.60	0.0005 kg a.i./L ²	150 L/day	6.70877E-05	119247

‡Exposure Estimate = ((Dermal Unit Exposure × Dermal Absorption Value + Inhalation Unit Exposure) × ATPD × Rate)/(80 kg $bw \times 1000 \; \mu g/mg)$

¶Based on NOAEL = 8 mg/kg bw/day, target MOE = 1000

¹Groundboom Farmer Application is expected to be covered by Groundboom Custom Application based on lower area treated per day 2 Maximum Application Rate (kg a.i./L) = (Application Rate (0.5 L/ha)/dilution rate (1000 L/ha) × 100 g a.i./L (guarantee) ×

0.001 kg/g

Mixer/Loader/Applicator Cancer Exposure Estimates and Risk Table 9

Сгор	Application Method	Total Unit Exposure (µg/kg ai handled)	Rate (kg a.i./ha)	Area Treated per Day (ha/day)	Absorbed Daily Dose‡ (mg/kg bw/day)	Lifetime Average Daily Dose† (mg/kg bw/day)	Cancer Risk¶
Sefina Insecti	cide						
	Open Mix/Load	7.65		318	0.000304088	1.28E-05	2.29E-07
	Aerial	0.33009		318	1.31E-05	5.53E-07	9.90E-09
Soybean	Open Mix/Load + Groundboom, Custom App ¹	12.378	0.01	240	0.00037134	1.56E-05	2.80E-07
Potato	Open Mix/Load	7.65	0.05	318	0.001520438	6.41E-05	1.15E-06

Сгор	Application Method	Total Unit Exposure (µg/kg ai handled)	Rate (kg a.i./ha)	Area Treated per Day (ha/day)	Absorbed Daily Dose‡ (mg/kg bw/day)	Lifetime Average Daily Dose† (mg/kg bw/day)	Cancer Risk¶
	Aerial	0.33009		318	6.56E-05	2.77E-06	4.95E-08
	Open Mix/Load + Groundboom, Custom App ¹	12.378		240	0.0018567	7.83E-05	1.40E-06
Versys Insect	icide	•		•			
Tuberous	Open Mix/Load	7.65		318	0.001520438	6.41E-05	1.15E-06
and Corm	Aerial	0.33009		318	6.56E-05	2.77E-06	4.95E-08
Vegetables (including potatoes)	Open Mix/Load + Groundboom, Custom App ¹	12.378	0.05	240	0.001857	7.83E-05	1.40E-06
Leafy Vegetable	Open Mix/Load + Groundboom	12.378	0.05	12	0.000092835	3.91E-06	7.00E-08
Brassica Head and Stem Vegetables	Open Mix/Load + Groundboom	12.378	0.05	12	0.000092835	3.91E-06	7.00E-08
Fruiting Vegetables	Open Mix/Load + Groundboom	12.378	0.05	12	0.000092835	3.91E-06	7.00E-08
Cucurbit Vegetables	Open Mix/Load + Groundboom	12.378	0.05	12	0.000092835	3.91E-06	7.00E-08
Leaf Petiole Vegetables	Open Mix/Load + Groundboom	12.378	0.05	12	0.000092835	3.91E-06	7.00E-08
Pome Fruit	Open Mix/Load + Airblast	469.05	0.01	7	0.000410415	1.73E-05	3.10E-07
Stone Fruit	Open Mix/Load + Airblast	469.05	0.01	7	0.000410415	1.73E-05	3.10E-07
Hazelnut Trees	Open Mix/Load + Airblast	469.05	0.01	7	0.000410415	1.73E-05	3.10E-07
Greenhouse	Mechanically Pressurized Handgun	821.26	0.00005 kg a.i./L ²	3800 L/day	0.00195	8.22E-05	1.47E-06
and Outdoor Ornamental s	Manually Pressurized Handwand	158.40	0.00005 kg a.i./L ²	150 L/day	1.49E-05	6.26E-07	1.12E-08
	Backpack	715.60	0.00005 kg a.i./L ²	150 L/day	6.71E-05	2.83E-06	5.06E-08

 \pm Absorbed Daily Dose = ((Dermal Unit Exposure × Dermal Absorption Value + Inhalation Unit Exposure) × ATPD × Rate)/(80 kg bw x 1000 µg/mg)

†Lifetime Absorbed Dose = (Absorbed Daily Dose × Treatment Days/Year [30] × Working Duration [40 years])/(365days/year × Life Expectancy [78 years])

¶Based on a cancer endpoint of $1.79 \times 10^{-2} \text{ (mg/kg bw/day)}^{-1}$

¹Groundboom Farmer Application is expected to be covered by Groundboom Custom Application based on lower area treated

per day 2 Maximum Application Rate (kg a.i./L) = (Application Rate (0.5 L/ha)/dilution rate (1000 L/ha) × 100 g a.i./L (guarantee) × 0.001 kg/g

Table 10 Postapplication Non-Cancer Exposure Estimates and Margins of Exposure (MOE)

Сгор	Peak DFR (µg/cm²)*	Activity	Transfer Coefficient (cm ² /hr)	Exposure (mg a.i./kg bw/day) ‡	MOE¶ (Target = 1000)	REI¢ (hours)
Sefina Insecticide		·	·	·	·	
Soybeans	0.0370	Scouting	1100	0.000488	16399	12
Potato	0.2271^{+}	Irrigation	1750	0.0048	1678	12
Versys Insecticide						
Tuberous & Corm Vegetables (including potatoes)	0.2271^{\dagger}	Irrigation	1750	0.0048	1678	12
Leafy Vegetables	0.2271	Irrigation	1750	0.0048	1678	12
Bok Choy	0.0654°	Weeding	4400	0.0035	2317	12
Brassica Head & Stem Vegetables	0.0654 ^φ	Hand Harvest	5150	0.0040	1979	12
Fruiting Vegetables	0.0654^{ϕ}	Irrigation	1750	0.0014	5825	12
Cucurbit Vegetables	0.0750 ^φ	Irrigation	1750	0.0016	5079	12
Leaf Petiole Vegetables	0.2271	Irrigation	1750	0.0048	1678	12
Stone Fruit	0.0310 ^{\$\$\$}	Thinning	3000	0.0011	7168	12
Pome Fruit	0.0310 ^φ	Thinning	3000	0.0011	7168	12
Hazelnut Trees	0.0370	Scouting	580	0.0003	31101	12
Greenhouse Ornamentals <i>potted</i> <i>flowers</i>	0.6057	All activities	230	0.0017	4786	12
Greenhouse Ornamentals <i>cut</i> <i>flowers</i> (0.05 kg a.i./ha – 1 app. max) ¹	reenhouse rnamentals <i>cut</i> <i>wers</i> (0.05 kg <i>i./ha</i> – 1 app. Hand Harvest/ Disbudding/ Pruning 4000		0.0060	1333	12	
Greenhouse Ornamentals <i>cut</i> <i>flowers</i> (0.035 kg a.i./ha – 2 app. max) ¹	0.1618	Hand Harvest/ Disbudding/ Pruning	4000	0.0078	1030	12
Greenhouse Ornamentals <i>cut</i> <i>flowers</i> (0.01 kg a.i./ha – 35 app.) ¹	0.1658	Hand Harvest/ Disbudding/ Pruning	4000	0.0080	1005	12
Outdoor Ornamentals	0.2389	Irrigation	1750	0.0050	1594	12

[†]Peak DFR calculated using 4 applications at maximum application rate (0.05 kg a.i./ha), however, the maximum seasonal application rate is 0.125 kg a.i./ha (not expected to underestimate exposure)

* Calculated using the default 25% deposition on the day of application and 10% dissipation per day (2.3% dissipation per day for greenhouse ornamentals)

φ Calculated using chemical-specific DFR data

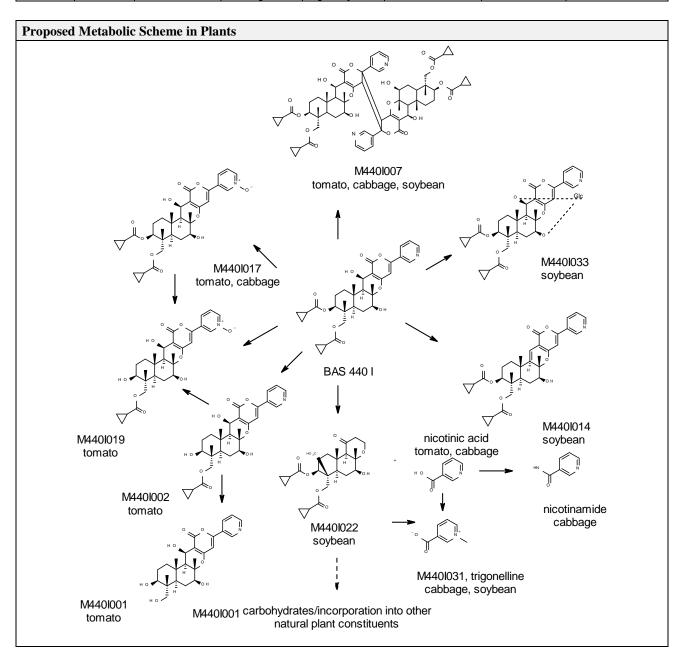
 $\ddagger \text{Exposure} = (\text{Peak DFR } [\mu g/\text{cm}^2] \times \text{TC } [\text{cm}^2/\text{hr}] \times 8 \text{ hours} \times 12\% \text{ dermal absorption})/(80 \text{ kg bw} \times 1000 \ \mu g/\text{mg})$

¶ Based on a NOAEL of 8 mg/kg bw/day, target MOE = 1000 (see Table 3)

♦ Minimum REI is 12 hours to allow residues to dry

¹Based on the specific use pattern for greenhouse cut flowers, postapplication exposure and risk was calculated for each application rate based on the maximum yearly amount of product allowable.

Сгор	Activity Scenario	Absorbed Daily Dose‡ (mg/kg bw/day	Activity Days Per Year	Working Duration	Life Expectancy	Lifetime Average Daily Dose† (mg/kg bw/day)	Cancer Risk¶
Sefina Insecticide			<u>.</u>				
Soybeans	Scouting	0.000488	30	40	78	2.05622E-05	3.68E-07
Potatoes	Irrigation	0.0048	30	40	78	0.000200981	3.60E-06
Versys Insecticide							
Tuberous & Corm Vegetables (including potatoes)	Irrigation	0.0048	30	40	78	0.000200981	3.60E-06
Leafy Vegetables	Irrigation	0.0048	30	40	78	0.000200981	3.60E-06
Leafy Vegetables - Bok Choy	Weeding	0.0035	30	40	78	0.000145548	2.60E-06
Brassica Head & Stem Vegetables	Hand Harvest	0.0040	30	40	78	0.000170357	3.05E-06
Fruiting Vegetables	Irrigation	0.0014	30	40	78	5.78883E-05	1.04E-06
Cucurbits	Irrigation	0.0016	30	40	78	6.63857E-05	1.19E-06
Leaf Petiole Vegetables	Irrigation	0.0048	30	40	78	0.000200981	3.60E-06
Stone Fruit	Thinning	0.0011	30	40	78	4.7039E-05	8.42E-07
Pome Fruit	Thinning	0.0011	30	40	78	4.7039E-05	8.42E-07
Hazelnut	Scouting	0.0003	30	40	78	1.08419E-05	1.94E-07
GH Ornamentals potted flowers	All activities except irrigation	0.0017	50	40	78	0.000117433	2.10E-06
GH Ornamentals <i>cut</i> <i>flowers</i> (0.05 kg a.i./ha - 1 app. max)	Hand Harvest/Disbudding/Pruning	0.0060	50	40	78	0.000421496	7.54E-06
GH Ornamentals <i>cut</i> <i>flowers</i> (0.035 kg a.i./ha - 2 app. max)	Hand Harvest/Disbudding/Pruning	0.0078	50	40	78	0.000545747	9.77E-06
GH Ornamentals <i>cut</i> <i>flowers</i> (0.01 kg a.i./ha - 35 app. max)	Hand Harvest/Disbudding/Pruning	0.0080	50	40	78	0.000558971	1.00E-05
Outdoor Ornamentals	Irrigation	0.0050	30	40	78	0.000211499	3.78E-06


Table 11 Postapplication Cancer Exposure Estimates and Risk

Absorbed Daily Dose = ((Dermal Unit Exposure × Dermal Absorption Value + Inhalation Unit Exposure) × ATPD × Rate)/(80 kg bw × 1000 µg/mg)+Lifetime Absorbed Dose = (Absorbed Daily Dose × Treatment Days/Year × Working Duration [40 years])/(365days/year × Life Expectancy [78 years]) $Based on a cancer endpoint of <math>1.79 \times 10^{-2} (mg/kg bw/day)^{-1}$

Table 12	Integrated Food	l Residue	Chemistry	Summary
----------	------------------------	-----------	-----------	---------

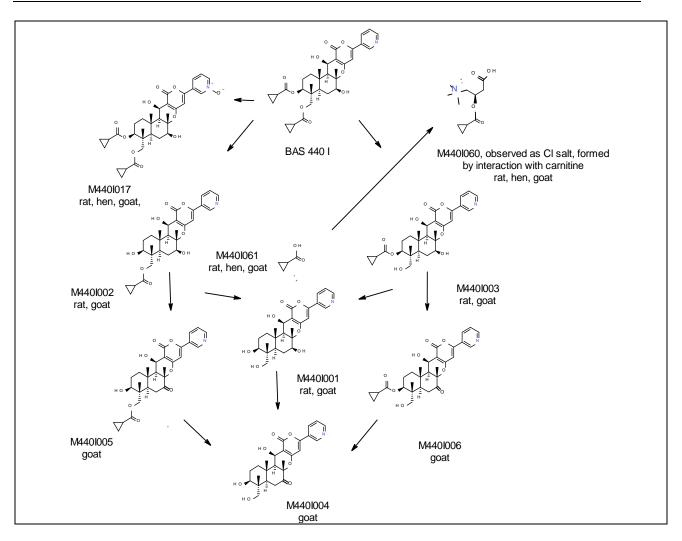
NATURI Soybean	E OF THE	RESIDUE IN I	PLANTS – Toi	nato, Cabbage	· · · · · · · · · · · · · · · · · · ·	A #2627930, 26 934, 2627936, 26	27933, 527938, 2627939	
where pla soybean p and CPC two folian the chron	nts were m plants using A- ¹⁴ C). Tre r applicatio natographic	naintained outside g a 10% water dis atments involved ns. Storage stabil	e in a netted pol spersible granul l one at-transpla lity of the samp ded, post-extrac	lytunnel. Afidop ar product with ant soil applicat les was demons ction solids (PE		ied to tomato, ca bels (NCA- ¹⁴ C, <u>1</u> ate-season foliar vsis of samples a	bbage, and byranone-4- ¹⁴ C,	
Crop			Radio	olabels	Rate (g a.i./ha/sease)	PHI (days)	
Tomato				A]- ¹⁴ C ne-4]- ¹⁴ C	707 125		7; 14 1	
Cabbage			[NC] [Pyrano	A]- ¹⁴ C ne-4]- ¹⁴ C	1140 125		7; 14 1	
Soybean			[Pyrano	A]- ¹⁴ C ne-4]- ¹⁴ C A]- ¹⁴ C	125 125 125		14 14 14	
Radiolabe	els			A]- ¹⁴ C	[Pyranone-4]-	¹⁴ C [CPCA]- ¹⁴ C	
Crop		Fraction	[1,0]		Overall TRRs (p		, .	
crop		Leaves	43-P	HI=14 d	2.3	,pm)	-	
Tomato		Fruits	0.34 -	PHI=7 d PHI=14 d	0.05		-	
Cabbage		Whole	1.5 – PHI=7 d 1.1 – PHI=14 d				-	
Cubbuge		Outer leaves	-		1.7		-	
		Inner leaves	-		0.4		-	
		Leaves	16.8		20.1		5.0	
Sauhaan		Seeds	0.4		0.2		0.01	
Soybean		Hulls	1.5		1.6		2.6	
		Rest of plant	0).4	0.3	0.2	2 (green pods)	
Metabolit Identified		M	ajor Metabolites 10% of the TRRs)			Minor Metabolit <10% of the TRI	es	
Radiolabe	el Position	[NCA- ¹⁴ C]	[Pyranone-4- ¹⁴ C]	[CPCA- ¹⁴ C]	[NCA- ¹⁴ C]	[Pyranone-4- ¹⁴ C]	[CPCA- ¹⁴ C]	
Tomato	Leaves	Afidopyropen M440I007	Afidopyropen	-	-	M440I001, M440I019, M440I002, M440I017, M440I020	-	
Tomato	Fruits	Afidopyropen M440I007: PHI=7d Afidopyropen: PHI=14d	Afidopyropen M440I007	-	M440I045	M440I020	-	
Whole cabbage	-	Afidopyropen M440I007 (PHI=7d); None (PHI=14d)	Afidopyropen M4401007 (Outer leaves and inner leaves); Sugars (inner leaves)	-	Nicotinamide, Nicotinic acid (PHI = 7d, 14d); Afidopyropen M440I007, (PHI = 14d)	M440I017, M440I020 (Outer leaves and inner leaves); Sugars (outer leaves)	-	
Soybean	Leaves	Afidopyropen M440I007	Afidopyropen M440I007	Afidopyropen	Trigonelline, M440I033, M440I014	M440I033, sugars, M440I022	M440I033, M440I014, M440I007	
	Seeds	Trigonelline	Sugars	M440I007	-	Afidopyropen, M440I007	-	

Hulls	Afidopyropen M440I007	Afidopyropen M440I007	Afidopyropen M440I007	-	Sugars	M440I014
Rest of plant	M440I007	Afidopyropen M440I007 Sugars	Afidopyropen M440I007 (green pods)	Afidopyropen	-	-

CONFINED ACCUMULATION IN ROTATIONAL CROPS

PMRA #2627963, 2627964, 2627965 The metabolism of ¹⁴C-Afidopyropen in confined rotational crops was investigated in three separate studies following spray application of a radiolabelled test item to bare sandy loam soil. Three different radiolabels were used for these studies, which included [NCA-¹⁴C]- and [Pyranone-4-¹⁴C] positions along with the carbonyl labelled on both cyclopropane carboxylic acid groups [CPCA-¹⁴C]. For all studies, aging of soil and cultivation of the crops were conducted in a glass-roofed vegetation hall, in phytotrons. Most of the radioactivity in immature/mature spinach and wheat (forage, hay, straw and grain) was characterized with a large fraction remaining as unextractable. Sequential solubilization procedures of the PES in wheat matrices after solvent extraction (Pyranone-¹⁴C) was achieved with β -glucosidase and hesperidinase, macerozyme and cellulase, tyrosinase and laccase and amylase and amyloglucosidase, pepsin and pancreatin in order to fully characterize the residues. Due to low levels of radioactivity, solvent

	[Pyranone- ¹⁴ C]	[NCA- ¹⁴ C]	[NCA- ¹⁴ C]	[CPCA- ¹⁴ C]				
Study	1	1	2	3				
Rate (g a.i./ha)	125 for spinach, wheat and radish	125 for spinach, wheat and radish	20 for winter wheat	20 for wheat; 125 for spinach and radish				
PBI (days)	31, 122, 364	29, 119, 365	30, 61, 90	31, 90: spinach, radish 30, 61: wheat				
Major metabolites	None	None	None	None				
Minor metabolites	None	M440I003 (Wheat straw at 31d PBI)	None	None				
Proposed Metabolic Scheme of ¹⁴ C-BAS 440 I in Rotational Crops $ \begin{array}{c} & & & \\ & & & \\ $								


NATURE OF THE RESIDUE IN LAYING HEN	PMRA #2627941
Ten laying hens were dosed orally once daily via gelatin capsule with [CPCA- ¹⁴ C] at 12	2 ppm for 14 consecutive days.
Samples of excreta were collected daily, and eggs twice daily. The hens were sacrificed	d approximately 10 hours after
administration of the final dose. Edible tissues (liver, kidney, composite fat and muscle)	, GI tract and contents, excreta
and cage wash were collected post-mortem. Approximately 98% of the total dose admini	stered was recovered, of which
most was in the excreta. Overall TRRs in whole eggs reached a maximum of 0.275 p	pm by day 7 after dosing, and
were on average 0.225 ppm in the pooled sample (day 10-13).	

Matrices	[CPCA- ¹⁴ C]-Afidopyropen				
Matrices	Overall TRRs (ppm)	% of Administered Dose			
Excreta	-	93.4			
Cage Wash	-	1.9			
Pooled Egg Yolk (Day 10- 13)	0.368	0.2			
Pooled Egg White (Day 10- 13)	0.138	0.4			
Partly Formed Eggs	-	0.1			
Liver	0.409	0.1			
Kidney	-	0.1			
Fat	0.101	< 0.1			
Muscle	0.046	< 0.1			
GI Tract & Contents	-	1.5			

Total Administered Dose	-	97.9		
Metabolites identified	Major Metabolites (> 10% of the TRRs)	Minor Metabolites (< 10% of the TRRs)		
Liver	Afidopyropen; M440I017	M440I061 (CPCA)		
Muscle	Afidopyropen; M440I060 (CPCA-carnitine)	None		
Fat	Afidopyropen	None		
Egg white	Afidopyropen	M440I017		
Egg yolk	Afidopyropen	None		
Excreta	Afidopyropen; M440I017	None		
NATURE OF THE RESIDUE IN LACTATING GOAT PMRA # 2627940, 2627942				

A lactating goat was dosed orally once daily via gelatin capsule with [pyranone-4-¹⁴C] at an average of 17 ppm, for 7 consecutive days, and another lactating goat was dosed with [CPCA-¹⁴C; 2.70 MBq/mg] at 12 ppm feed for 9 consecutive days. Samples of excreta were collected daily and milk twice daily. The goats were sacrificed 8–10 hours after administration of the final dose. Edible tissues (composite fat and muscle, liver, and kidneys), gastrointestinal tract and contents, excreta, and bile were collected post-mortem. The overall TRRs in whole milk reached a plateau of 0.006 ppm on day 5–6 after dosing for the [pyranone-4-¹⁴C]-, and 0.33 ppm at day 7–8 after dosing for the [CPCA-¹⁴C]- afidopyropen. Samples were analyzed within 6 months of sampling.

	[Pyranone-4- ¹⁴ C]]-Afidopyropen	[CPCA- ¹⁴ C]-Afidopyropen		
Matrices	Overall TRRs (ppm) 70 of Hummistered Overall TRRs (ppm) Dose Overall TRRs (ppm)		% of Administered Dose		
Urine	0.292	2.5	-	13.2	
Feces	5.012	66.5	-	49.9	
Cage wash	-	1.4	-	2.3	
Blood and plasma	-	-	-	<0.1	
Bile	3.223	-	-	0.1	
Whole Milk	0.005	< 0.1	0.237	1.9	
Cream	-	-	2.007	-	
Kidneys	0.037	< 0.1	0.480	0.1	
Liver	0.193	0.1	0.207	0.2	
GI tract and contents	-	20.7	-	10.1	
Composite muscle	0.008	-	0.311	0.5	
Composite fat	0.005	-	0.009	<0.1	
Total administered dose	-	91	-	78	
Metabolites identified	Major Me (>10% of t		Minor Metabolites (<10% of the TRRs)		
Radiolabel position	[Pyranone-4- ¹⁴ C]	[CPCA- ¹⁴ C]	[Pyranone-4- ¹⁴ C]	[CPCA- ¹⁴ C]	
Whole Milk	M440I001; M440I005	None	Afidopyropen; M440I003; M440I006	None	
Cream	-	None	-	M440I061 (CPCA)	
Liver	Afidopyropen; M440I001	Afidopyropen; M440I003; M440I061 (CPCA)	M440I002; M440I003; M440I004	M440I060 (CPCA-carnitine); M440I002 M440I017	
Kidney	Afidopyropen; M440I001; M440I003	M440I061(CPCA)	None	M440I060 (CPCA-carnitine); M440I003	
Composite Muscle	Afidopyropen; M440I001; M440I003	M440I060 (CPCA- carnitine)	M440I006	M440I061(CPCA); M440I003	
Composite Fat	Afidopyropen	Not analyzed as TRRs	M440I001; M440I003; M440I006	Not analyzed as TRRs < 0.01	

Storage Stability in Plant MatricesPMRA #2715858						
This study will cover the maximum storage intervals observed in the relevant crop field trials (8–16 months). Afidopyropen residues were demonstrated to be stable in the five crop commodity categories (high-water, high-starch, high-protein, high-oil, and high-acid) for 24 months at -20°C.						
Tested Matrices	An	alytes	Tested Intervals (month	s) °C	Category	
Barley grain					High-starch	
Lettuce					High-water	
Navy bean			0, 1, 3, 4, 6, 9, 12, 16, 18, and 24		High-protein	
Orange	Afido	pyropen		-20	High-acid	
Soybean seed					High-oil	
Soybean oil					High-oil	
Soybean hay					Other	
Storage Stability i	n Animal 🛛	Matrices			PMRA #2627929	
Matrices		Storage interval for matrices in animal feeding study (months)		Interval of demonstrated freezer storage stability dat (months)		
Whole milk		2.3		3.3		
Liver, kidney		4.0		3.2		
Muscle			4.0	3.0		

Fat			4.4 2.6-2.8						
	tability data show								
	changes having					results woul	d be expecte	ed during the	additional
storage time	incurred (0.8 to 1	1.6 months) during	g the feeding	g study.				
Crop Field 7	Frials with Afide	opyropen							
Crop field tri	als were conduct	ted in Nort	h Ame	rica (2013–	2015) with	a variety of	crops using	either a 50	g a.i./L or 100
	rsible concentration								
	sed for all foliar								
	ray volumes for								
	ng an adequate								
	e storage interva								
	e with OCSPP 1								
	sessed for each th increasing PH		uive cr	op from th	e various c	crop groups	. Residues	ог андоруго	pen generaliy
	d corm vegetab							RA #262794	
GAP: 4 applie and a 7-day P	cations (ground o HI	or aerial) of	f 10 to 5	50 g a.i./ha/a	pplication f	or a total of	125 g a.i./ha	season with	RTI of 7 days
and a 7-day 1	Total					Afidopyrope	n Residues (ppm)	
Сгор	Application Rate [g a.i./ha]	PHI (days)	n	Max.	LAFT	HAFT	Median	Mean	SD
Potato, tuber	119–126	6–7	19	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	N/A
Leafy greens	s: CSG4-13A						PMI	RA #262794	4
GAP: 4 applic PHI.	cations (ground) o	of 10 to 50 g	g a.i./ha	/application	for a total o	f 125 g a.i./h	a/season wit	h RTI of 7 da	ys and a 0-day
Head lettuce, with wrapper leaves	117–125	0	8	0.287	0.014	0.278	0.164	0.149	0.079
Head lettuce, without wrapper leaves	117–125	0	8	0.275	< 0.010	0.272	0.020	0.051	0.090
Leaf lettuce	117–124	0	8	0.969	0.042	0.944	0.496	0.482	0.312
Spinach	117–124	0	8	1.168	0.042	1.074	0.629	0.651	0.337
Brassica leaf	y greens: CSG4	-13B					PMR	A #2627946	
GAP: 4 applic PHI.	cations (ground) o	of 10 to 50 g	g a.i./ha	/application	for a total o	f 125 g a.i./h	a/season wit	h RTI of 7 da	ys and a 0-day
Mustard green	s 117–124	0	8	3.137	< 0.010	2.733	1.196	1.315	0.825
	d and stem vege						RA #262794		
GAP: 4 applic PHI.	cations (ground) o	of 10 to 50 g	g a.i./ha	/application	for a total o	of 125 g a.i./h	a/season wit	h RTI of 7 da	nys and a 0-day
Broccoli	119–121	0	10	0.235	0.043	0.205	0.104	0.112	0.054
Cabbage, with wrapper leaves		0	10	0.294	< 0.010	0.276	0.042	0.091	0.101
Cabbage, without wrapp leaves	er 117–124	0	10	0.028	< 0.010	0.024	0.010	0.013	0.006
Dry Soybear	ıs					PMF	RA #262795	0	
GAP: 2 applic day PHI.	cations (ground a	nd aerial) o	f 10 g a	.i./ha/applic	ation for a t	otal of 20 g a	.i./ha/season	with RTI of	7 days and a 7

Soybean, forage		6–8	20	0.075	0.017	0.070	0.034	0.039	0.018
Soybean, hay	19–21	6–8	20	0.229	0.045	0.206	0.117	0.121	0.053
Soybean, seed	18–21	6–8	20	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	N/A
Fruting veget	ables: CG8-09							PMRA #	2627943
GAP: 4 applica PHI.	ations (ground) o	of 10 to !	50 g a.i./ha	application fo	or a total of	125 g a.i./ha	a/season wit	th RTI of 7	days and a 0-day
Bell pepper	120-130	0	7	0.057	< 0.010	0.046	0.022	0.023	0.012
Non-bell pepper	r 120–122	0	3	0.061	0.046	0.059	0.055	0.053	0.007
Tomato	116–129	0	19	0.103	< 0.010	0.097	0.019	0.029	0.025
Cucurbit veg	etables: CG9							PMRA #2	627945
GAP: 4 applica PHI.	ations (ground) o	of 10 to 5	50 g a.i./ha	application fo	or a total of	125 g a.i./ha	a/season wit	th RTI of 7	days and a 0-da
Cucumber	118–122	0	9	0.443	0.0530	0.406	0.112	0.162	0.120
Cantaloupe	117–123	0	8	0.0255	< 0.010	0.0231	0.018	0.017	0.005
Squash, summe	r 119–123	0	5	0.0383	< 0.010	0.0334	0.018	0.020	0.010
Squash, winter	119–127	0	5	0.0375	< 0.010	0.0367	0.011	0.018	0.012
Pome fruits:	CG11-09							PMRA #2	627948
GAP: 4 applica	ations (ground) o	f 10 g a	.i./ha/appli	cation for a to	tal of 40 g a	.i./ha/seasor	with RTI	of 7 days an	d a 7-day PHI.
A 1	49-51 (Conc.)	6–7	14	0.011	< 0.010	0.011	0.010	0.010	0.001
Apple	49-51 (Dilute)	6–7	14	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	N/A
D	48-51 (Conc.)	7	8	0.015	< 0.010	0.014	0.010	0.011	0.001
Pear	48-51 (Dilute)	7	8	0.013	< 0.010	0.012	0.010	0.010	0.001
Stone fruits:	CG12-09					PM	RA #26279	947	
GAP: 2 applica	ations (ground) o	f 10 g a	.i./ha/appli	cation for a to	tal of 20 g a	.i./ha/seasor	with RTI	of 7 days an	d a 7-day PHI.
Cherry	19-21 (Conc.)	7	8	0.017	< 0.010	0.014	0.010	0.011	0.001
Cheffy	19-21 (Dilute)	7	8	0.021	< 0.010	0.021	0.010	0.012	0.004
Peach	20-21 (Conc.)	7	13	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	N/A
	20-21 (Dilute)	7	13	0.012	< 0.010	0.011	0.010	0.010	0.001
Plum	20-21 (Conc.)	7	10	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	N/A
	20–21 (Dilute)	7	10	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	N/A
Tree nuts: CO		, .	1) 840	• // • •		1 600		A #262795	
GAP: 2 applica day PHI.	ations (ground an	id aeria	1) of 10 g a	.i./ha/applicat	ion for a tot	tai of 20 g a.	1./ha/season	with RTI (or 7 days and a 7
Almond	20 (Conc.)	7	5	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	N/A
nutmeat	20 (Dilute)	7	5	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	N/A
Almond	20 (Conc.)	7	5	0.060	0.019	0.058	0.025	0.030	0.016
hulls	20 (Dilute)	7	5	0.057	0.016	0.056	0.039	0.036	0.015
Pecan nutmeat	20 (Conc.) 20 (Dilute)	6–8 6–8	5	< 0.010 < 0.010	< 0.010 < 0.010	< 0.010	< 0.010	< 0.010	N/A N/A
Pistachio	20 (Dilute) 20 (Conc.)	0-8 7	3	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	N/A N/A
nutmeat	20 (Conc.) 20 (Dilute)	7	3	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	N/A N/A
	CG10 Revised		5	. 0.010	. 0.010	. 0.010	PMRA #	1	1.771
GAP: Foliar	applications (g	round		l) of 10 to 5	0 g a.i./ha	/applicatio			g a.i./ha/seaso

	Total	PHI			Afidopyropen Residues (ppm)						
Сгор	Application Rate [g ai/ha]	(dave)	n	Max.	Min.	HAFT	Median	Mean	SD		
	122–128 (Conc.)	0	6	0.062	< 0.010	0.062	0.025	0.031	0.022		
Grapefruit	122–128 (Dilute)	0	6	0.041	< 0.010	0.041	0.026	0.025	0.012		
	123–128 (Conc.)	0	8	0.070	< 0.010	0.070	0.025	0.033	0.025		
Lemon	123–128 (Dilute)	0	8	0.055	< 0.010	0.055	0.038	0.032	0.016		
	122–128 (Conc.)	0	12	0.069	< 0.010	0.069	0.049	0.045	0.021		
Orange	122–128 (Dilute)	0	12	0.072	< 0.010	0.072	0.043	0.044	0.020		
Cottonseeds	CSG20C Rev	ised					PMRA #	2627112			
	applications (gro		erial) of (10 to 50 g	a.i./ha/applicati	ion for a to			with RTI of 7		
days and a 7-d		, una una u	(111) 01	10 10 20 5	uni, nu, uppneuti	1011 101 u 10	un or rac g	uni, nu, seuson			
	Total	РНІ			At	fidopyrope	n Residues (ppm)			
Сгор	Application Rate [g ai/ha]	(dave)	n	Max.	LAFT	HAFT	Median	Mean	SD		
Cottonseed	119–124	6–8	12	0.061	< 0.010	0.059	0.010	0.018	0.015		
Cotton, gin byproducts	120–121	6–7	3	0.650	0.460	0.600	0.540	0.530	0.073		
Leaf petioles	vegetables: C	SG22B					PMRA #	2627944			
GAP: 4 applic PHI.	cations (ground)	of 10 to 50) g a.i./ha/	/applicatio	n for a total of i	125 g a.i./ha	a/season wit	h RTI of 7 da	ys and a 0-day		
Celery	117-125	0	7	1.894	0.027	1.275	0.283	0.434	0.446		
Residue Data	a in Rotational	Crops					PMRA #2	2627966			
confined accu plant-back in	waive the field imulation in rot terval is approp	ational cro	ops studie	es for all n							
Processing s during the n recoveries w various proc residue defin	ood and Feed tudies were con agnitude of the vere conducted essed commod ition for enforce in the processe Ls.	e residue to validat ities. Resu cement and	trials, wh e the and lts of the l risk asso	nile simula alytical m e metaboli essment pr	ating commerc ethod for afid ite M4401007 urposes. The pr	ial practice opyropen a are not pre roposed M	es as closed and the me esented her RLs are add	ly as possible tabolite M44 ein as it is n equate to cov	e. Concurrent 401007 in the ot part of the er residues of		
Raw Agricult Commodity	ural I	Processed (Commodi	ty P	rocessing Facto	or		PMRA #	ŧ		
Potatoes		Chips, granu tarch, crispa		, fi	LOQ in RAC; practions not furth nalyzed			2627958			
Tomatoes	I	uice Paste Purée			< 0.1 0.6 0.2		_	2627959			
Soybeans	S C r s	Sundried tor Crude oil; fl niso; pollar auce; meal; Aspirated gr	our; hulls; d; soy mill tofu	k; soy fi ai	4.4 LOQ in RAC; p ractions not furth nalyzed > 12.5	ner]	2627962			
		uice	un nacht	110	14.J		1				

	Marmalade			< 0.1			
Apples	Sauce, fruit syrup, dried apples	, juice, and		< 0.5		2627961	
Plums	Purée, dried prune juice	es, and	1.0			2627960	
Cottonseed	Refined oil			0.14		2627110	
LIVESTOCK FEEDIN	G – Dairy cattle				PMRA #262	7957	
ppm, 4.61 ppm and 15.34 hours after the last dose. A sacrificed 3, 7, and 14 day	ppm in the feeds depuration study s after withdrawal	for 29 conse was conduct of the dose.	ecutive days ted using the Residues of	. Anima 2 15.34 p afidopy	ls were sacrific opm dosing gro ropen were les	gun at dose levels of 1.54 ced approximately 18 to 23 up and selected animals were s than LOQ in milk and tissues declined to < LOQ by day 7.	
Commodity	Feeding Level (ppm)	Highest R Afidop	Residues of byropen bm)	MBD (ppm) Beef/Dairy		Anticipated Residues at MBD (ppm)**	
Whole milk*			nalyzed		J	< 0.001	
Fat			0.01			< 0.01	
Liver	1.54		019	0.00	003/0.00006	< 0.01	
Kidney		< 0	0.01			< 0.01	
Muscle		< 0	0.01			< 0.01	
*At 4.61 and 15.34 ppm fee **Given the low dietary bur						iilk.	
**Given the low dietary burden, anticipated residues are reported as less than LOQ in tissues and milk. LIVESTOCK FEEDING – Laying hens PMRA #2627956							
LIVESTOCK FEEDIN	G – Laying hens				PMRA #2	627956	
LIVESTOCK FEEDING A request to waive the fer metabolism study was use	eding study in pou				low dietary bu	rden. Therefore, the hen	
A request to waive the fe	eding study in pou	anticipated Afidopyro			low dietary bu	rden. Therefore, the hen	
A request to waive the fermetabolism study was use Commodity Egg Yolk	eding study in pou ed to estimate the s Feeding Level	anticipated Afidopyro (pr 0.3	residues in t pen TRRs pm) 355		low dietary bu ant poultry ma MBD	rden. Therefore, the hen trices. Anticipated Residue at MBD (ppm)* < 0.01	
A request to waive the fermetabolism study was use Commodity Egg Yolk Egg White	eding study in pou ed to estimate the : Feeding Level (ppm)	anticipated Afidopyro (pr 0.3 0.1	residues in t ppen TRRs pm) 355 125	he relev	low dietary bu ant poultry ma MBD (ppm)	rden. Therefore, the hen trices. Anticipated Residue at MBD (ppm)* < 0.01 < 0.01	
A request to waive the fermetabolism study was use Commodity Egg Yolk Egg White Fat	eding study in pou ed to estimate the s Feeding Level	Afidopyro (pr 0.3 0.1 0.1	residues in t open TRRs om) 3555 125 097	he relev	low dietary bu ant poultry ma MBD	rden. Therefore, the hen trices. Anticipated Residue at MBD (ppm)* < 0.01 < 0.01 < 0.01	
A request to waive the fermetabolism study was use Commodity Egg Yolk Egg White	eding study in pou ed to estimate the : Feeding Level (ppm)	anticipated Afidopyro (pr 0.3 0.1 0.0 0.2 0.2	residues in t ppen TRRs pm) 355 125	he relev	low dietary bu ant poultry ma MBD (ppm)	rden. Therefore, the hen trices. Anticipated Residue at MBD (ppm)* < 0.01 < 0.01	

Table 13 Food Residue Chemistry Overview of Metabolism Studies and Risk Assessment

PLANT STUDIE	PLANT STUDIES								
RESIDUE DEFINITION FOR ENFORCEMENT AND RISK ASSESSMENT									
• Primary crops (tomato, cabbage, soybean)	Afidopyropen								
Rotational crops (spinach, wheat, radish)									
METABOLIC PROFILE IN DIVERSE CROPS	The profile in diverse crops is similar.								
ANIMAL STUDI	ES								
RESIDUE DEFINITION FOR ENFORCEMENT AND RISK ASSESSMENT • Ruminant and Poultry	Afidopyropen								
METABOLIC PROFILE IN ANIMALS (goat, hen, rat)	The profile in animals is similar.								
FAT SOLUBLE RESIDUE	Yes								
RESIDUE DEFINITION FOR RISK ASSESSMENT	Afidopyropen + transformation products (identified and unidentified)								
Drinking water	CPCA								

DIETARY RISK FROM FOOD AND WATE	R		
A	AFIDOPYROPEN		
	POPULATION	% of ACCEP	ATED RISK TABLE DAILY KE (ADI)
Intermediate chronic non-cancer dietary		Food Alone	Food and Water
exposure analysis	All infants < 1 year	0.6	1.3
ADI = 0.03 mg/kg bw/day for general	Children 1–2 years	1.4	1.6
population	Children 3–5 years	1.0	1.2
ADI = 0.008 mg/kg bw/day for females 13-49	Children 6–12 years	0.6	0.8
Estimated chronic drinking water	Males 13–19 years	0.4	0.5
concentration = 0.0028 ppm	Males 20–49 years	0.5	0.7
	Adults 50–99 years	0.6	0.8
	Females 13–49 years	2.0	2.7
Intermediate acute dietary exposure analysis, 95 th percentile ARfD = 0.008 mg/kg bw	POPULATION	% of ACUTE R	ATED RISK EFERENCE DOSE RfD)
Estimated acute drinking water		Food Alone	Food and Water
concentration = 0.0028 ppm	Females 13–49 years	20	21
Refined cancer dietary exposure analysis $q_1^* = 0.0179 \text{ (mg/kg bw/day)}^{-1}$ Estimated chronic drinking water concentration = 0.00012-0.0028 ppm	Total population	9×10^{-7}	9×10^{-7} to 2×10^{-6}
	СРСА		
	POPULATION SUBGROUPS	% of ACCE	ATED RISK PTABLE DAILY AKE (ADI)
Intermediate chronic non-cancer dietary		Drin	king Water
exposure analysis	All Infants		0.9
ADI = 0.008 mg/kg bw/day for general	Children 1–2 years old		0.3
population	Children 3–-5 years old		0.3
ADI = 0.002 mg/kg bw/day for females 13-49	Children 6–12 years old	1	0.2
Estimated chronic drinking water	Male 13–19 years old		0.2
concentration = 0.00099 ppm	Male 20+ years old		0.2
	Adults 50–99 years old		0.2
	Females 13-49 years old	1	1.0
Cancer dietary exposure analysis $q_1^* = 0.063 \text{ (mg/kg bw/day)}^{-1}$ Estimated chronic drinking water concentration = 0.00099 ppm	Total Population	1	l – 10 ⁻⁶

Intermediate acute dietary exposure analysis, 95 th percentile ARfD = 0.002 mg/kg bw Estimated acute drinking water concentration = 0.00104 ppm		POPULATION SUBGROUP		ESTIMATED RISK % of ACUTE REFERENCE DOSE (ARfD) Drinking Water		
		Females 13–49 yea		3		
	Cui	mulative Assessment	t			
Population Subgroup	Afidopyropen (Food and Water) Exposure Estimates	CPCA (Water) Exposure Estimates	Total Exposure	%AfidopyropenNOAELe(18 mg/kgbw/day; CAF100)	%CPCA NOAEL (10 mg/kg bw/day; CAF 100)	
Male 13-19 years old	0.000108	0.000013	0.000121	0.067	0.121	
Male 20+ years old	0.000144	0.000019	0.000163	0.091	0.163	
All Infants	0.000191	0.000075	0.000266	0.148	0.266	
Children 1–2 years old	0.000407	0.000028	0.000435	0.242	0.435	
Children 3–5 years old	0.000308	0.000022	0.00033	0.183	0.330	
Children 6–12 years old	0.000185	0.000017	0.000202	0.112	0.202	
Adults 50–99 years old	0.000182	0.000019	0.000201	0.112	0.201	
Females 13-49 years old	0.000159	0.000020	0.000179	0.099	0.179	

Table 14 Transformation Products of Afidopyropen Detected in Laboratory Dissipation Studies

Compound		Study	Maximum %AR (sampling interval in days)	Final %AR (sampling interval in days)		
Afidopyropen dimer	Hydrolysis		NA			
(M440I007, ME5343-T7)		PMRA	pH 7 Buffer	2.4 (4)	1.8 (8)	
Formula: C ₆₆ H ₇₈ N ₂ O ₁₈	Aqueous	#2627711	pH 8.39 River Water	5.4 (1)	0.8 (8)	
MW: 1187.3 g/mol	photolysis	PMRA	pH 7 Buffer	5.75 (1)	3.07 (14)	
		#2627713	pH 7.4 River Water	3.48 (4)	1.75 (14)	
•	Soil photolys	sis	ND			
	Aerobic aqua	atic	NA			
	Anaerobic ad	quatic	NA			
ÖH	Aerobic PMRA #2627967			ND		
	soil	PMRA #2627969		ND		
	Anaerobic so	bil		NA		
M440I001 (ME5343-T1)			pH 9, 10°C	0.9 (7)	0.4 (30)	
Formula: C ₂₅ H ₃₁ NO ₇	Hydrolysis	PMRA	pH 9, 25°C	3.7 (30)	3.7 (30)	
MW: 457.5 g/mol		#2627709	pH 9, 50°C	46.9 (30)	46.9 (30)	
	Aqueous	PMRA #2627711		N	A	
	photolysis	PMRA #2627713		N	D	
	Soil	PMRA	Sterile Irradiated	N	D	
	photolysis	#2627973	Sterile Dark	ND		

Compound		Stu	dy	Maximum %AR (sampling interval in days)	Final %AR (sampling interval in days)
CN N			Nonsterile Irradiated		D
			Nonsterile Dark	3.1 (15)	3.1 (15)
,OH	Aerobic aquatic			N	
	Anaerobic PMRA		Goose River	15.3 (100)	15.3 (100)
	aquatic	#2627998	Golden Lake	40.4 (100)	40.4 (100)
HO'' H	Aerobic soil		PMRA# 2627967	N	D
ОН	Aerobic son		PMRA# 2627969	N	D
<u> </u>			California	10.8 (73)	7.0 (134)
	Anaerobic	PMRA	New Jersey	14.9 (134)	14.9 (134)
	soil	#2627971	Lufa 5M	23.4 (150)	23.4 (150)
			Lufa 2.2	35.2 (134)	35.2 (134)
M440I002 (ME5343-T2)		PMRA	pH 9, 10°C	1.5 (30)	1.5 (30)
Formula: C ₂₉ H ₃₅ NO ₈	Hydrolysis	#2627709	рН 9, 25°С	8.2 (30)	8.2 (30)
MW: 525.6 g/mol			рН 9, 50°С	13.6 (6)	5.6 (30)
	Aqueous	PMRA # 26277		N	
	photolysis	PMRA	pH 7 Buffer	0.6 (10)	ND
,,,oH		#2627713	pH 7.4 River Water	1.79 (10)	0.85 (14)
	~		Sterile Irradiated		D
	Soil	PMRA	Sterile Dark	2.4 (15)	2.4 (15)
	photolysis	#2627973	Nonsterile Irradiated	2.3 (7)	2.1 (15)
			Nonsterile Dark	8.3 (10)	6.9 (15)
	Aerobic	PMRA	Berghäuser Altrhein	5.8 (56)	5.1 (100)
	aquatic	#2627996	Ranschgraben	2.9 (14)	1.6 (100)
	Anaerobic aquatic	PMRA #2627998	Goose River Golden Lake	14.6 (59)	13.3 (100)
	aquatic	#2027998 PMRA	New Jersey Soil	15.8 (30) 8.2 (15)	8.6 (100) 1.2 (120)
	Aerobic	#2627967	Lufa 2.2 Soil	11.2 (7)	2.0 (121)
	soil	PMRA #2627969	Lufa 5M Soil	10.2 (10)	3.8 (121)
	3011		Metz Soil	8.6 (2)	0.4 (120)
		112021909	California	18.4 (14)	1.4 (134)
	Anaerobic	PMRA	New Jersey	11.2 (21)	6.2 (134)
	soil	#2627971	Lufa 5M	16.9 (59)	12.5 (150)
			Lufa 2.2	10.1 (15)	3.6 (134)
M440I003 (ME5343-T3)	1		pH 9, 10°C	ND	ND
Formula: C ₂₉ H ₃₅ NO ₈	Hydrolysis	PMRA	pH 9, 25°C	2.1 (30)	2.1 (30)
MW: 525.6 g/mol		#2627709	pH 9, 50°C	3.7 (6)	1.6 (30)
	A	PMRA #26277	11	N	A
N	Aqueous	PMRA	pH 7 Buffer	2.47 (4)	1.77 (14)
	photolysis	#2627713	pH 7.4 River Water	3.58 (14)	3.58 (14)
U - U -			Sterile Irradiated	1.4 (15)	1.4 (15)
	Soil	PMRA	Sterile Dark	12.1 (15)	12.1 (15)
	photolysis	#2627973	Nonsterile Irradiated	2.7 (7)	2.5 (15)
С СН С			Nonsterile Dark	13.4 (10)	12.8 (15)
	Aerobic	PMRA	Berghäuser Altrhein	3.0 (56)	2.6 (100)
	aquatic	#2627996	Ranschgraben	6.4 (78)	5.7 (100)
	Anaerobic	PMRA	Goose River	5.5 (77)	4.8 (100)
	aquatic	#2627998	Golden Lake	5.7 (30)	1.7 (100)
	Aerobic	PMRA	New Jersey Soil	14.0 (15)	3.4 (120)
	soil	#2627967	Lufa 2.2 Soil	7.7 (7)	1.0 (121)

Compound		Stu	Maximum %AR (sampling interval in days)	Final %AR (sampling interval in days)		
		PMRA	Lufa 5M Soil	7.5 (14)	3.2 (121)	
		#2627969	Metz Soil		D	
		112021909	California	4.1 (7)	2.0 (134)	
	Anaerobic	PMRA	New Jersey	15.2 (21)	4.0 (134)	
	soil	#2627971	Lufa 5M	10.4 (59)	4.8 (150)	
	3011		Lufa 2.2	12.0 (15)	2.4 (134)	
M440I004 (ME5343-T4)	Hydrolysis		Luia 2.2		[A	
Formula: C ₂₅ H ₂₉ NO ₇		d soil photolysis			A A	
MW: 455.5 g/mol	Aqueous and Aerobic aqu				D	
	Anaerobic aqu				D D	
	Anaerobic a				D D	
HO	Anaerobic s				D	
		011				
M440I005 (ME5343-T5)	Hydrolysis		NA			
Formula: C ₂₉ H ₃₅ NO ₈	Aqueous ph	otolysis	NA			
MW: 523.6 g/mol			Sterile Irradiated	ND		
Ν	Soil	PMRA	Sterile Dark	ND		
	photolysis	#2627973	Nonsterile Irradiated		D	
			Nonsterile Dark	2.9 (15)	2.9 (15)	
U _ U OH	Aerobic	PMRA	Berghäuser Altrhein	5.6 (78)	5.0 (100)	
	aquatic	#2627996	Ranschgraben	4.4 (56)	2.4 (100)	
OT THE OH	Anaerobic a	*		ND		
	Aerobic	PMRA #26279		ND		
, Č	soil	PMRA #26279	69	ND		
	Anaerobic s	oil	ND			
M440I006 (ME5343-T6)	Hydrolysis		N	A		
Formula: C ₂₉ H ₃₅ NO ₈	Aqueous ph				A	
MW: 523.6 g/mol	Soil photoly				D	
N	Aerobic	PMRA	Berghäuser Altrhein	0.3 (100)	0.3 (100)	
[^{^*}]	aquatic	#2627996	Ranschgraben	0.1 (100)	0.1 (100)	
	Anaerobic a				D	
Ц С ПОН	Aerobic	PMRA #26279			D	
	soil	PMRA #26279	69	N	D	
	Anaerobic s	oil	N	ND		
M440I014	Hydrolysis			ſΑ		
Formula: C ₃₃ H ₃₇ NO ₈		d soil photolysis			[A	
MW: 575.7 g/mol	Aerobic aqu				A	
	Anaerobic a	quatic		N	A	
	Aarabia	PMRA	New Jersey Soil	5.4 (7)	4.4 (120)	
	Aerobic	#2627967	Lufa 2.2 Soil	0.4 (10)	0.1 (121)	
	soil	PMRA #26279	69	N	A	
	Anaerobic s	oil		N	A	

Compound		Stud	Maximum %AR (sampling interval in days)	Final %AR (sampling interval in days)		
M440I015	Hydrolysis			N	A	
Formula: C ₃₃ H ₃₇ NO ₉	Aqueous an	d soil photolysis		N	A	
MW: 591.7 g/mol	Aerobic aqu	atic		N	A	
	Anaerobic a			N	A	
O N	A	PMRA	New Jersey Soil	8.9 (10)	6.0 (120)	
	Aerobic	#2627967	Lufa 2.2 Soil	2.8 (1)	0.4 (121)	
	soil	PMRA #262796	59	N	A	
	Anaerobic s	oil	NA			
M440I016	Hydrolysis			NA		
Formula: C ₂₉ H ₃₅ NO ₉	Aqueous ph	otolysis		N	A	
MW: 541.6 g/mol	· ·		Sterile Irradiated	ND		
	Soil photolysis	PMRA #2627973	Sterile Dark	N	D	
O H			Nonsterile Irradiated	N	D	
			Nonsterile Dark	8.5 (15)	8.5 (15)	
U UN UN	Aerobic aqu	atic	NA			
Å I Å I Å	Anaerobic a	quatic		NA		
	Assahia	PMRA	New Jersey Soil	8.0 (57)	4.7 (120)	
HO''' H	Aerobic soil	#2627967	Lufa 2.2 Soil	2.5 (15)	1.0 (121)	
ОН	SOII	PMRA #262796	59	NA		
	Anaerobic s	oil	NA			
M440I021	Hydrolysis			N	A	
Formula: C ₂₉ H ₃₅ NO ₉	Aqueous and	d soil photolysis		N	A	
MW: 541.6 g/mol	Aerobic aqu			N	A	
Og Ny	Anaerobic a	<u>^</u>			A	
	Aerobic	PMRA	New Jersey Soil	5.6 (88)	3.0 (120)	
ОН	soil	#2627967	Lufa 2.2 Soil	3.8 (10)	1.4 (121)	
	3011	PMRA #262796	59	N	A	
	Anaerobic s	oil	NA			
M440I024	Hydrolysis			N	A	
Formula: C ₃₃ H ₃₉ NO ₁₀	Aqueous ph	otolysis		N	A	
MW: 609.7 g/mol			Sterile Irradiated	N	D	
	Soil	PMRA	Sterile Dark	N	D	
	photolysis	#2627973	Nonsterile Irradiated	1.8 (10)	1.2 (15)	
		112021713	Nonsterile Dark	8.4 (10)	8.3 (15)	
	Aerobic	PMRA	Berghäuser Altrhein	4.4 (100)	4.4 (100)	
	aquatic	#2627996	Ranschgraben	9.8 (78)	10.9 (100)	

Compound		Study	ÿ	Maximum %AR (sampling interval in days)	Final %AR (sampling interval in days)	
	Anaerobic a	quatic			A	
		PMRA	New Jersey Soil	12.1 (31)	2.8 (120)	
	Aerobic	#2627967	Lufa 2.2 Soil	6.2 (7)	2.1 (121)	
	soil	PMRA #2627969			A	
	Anaerobic so		NA			
Nicotinic Acid (M440I045)			pH 9, 10°C	ND	ND	
CAS#: 59-67-6	Hydrolysis	PMRA #2627709 PMRA	pH 9, 25°C	ND	ND	
Formula: $C_6H_5NO_2$	Trydrorysis		*	22.0 (30)	22.0 (30)	
MW: 123.1 g/mol			pH 9, 50°C			
0	Aqueous		pH 7 Buffer	5.7 (8)	5.7 (8)	
	photolysis	#2627711	pH 8.39 River Water	21.5 (6)	20.4 (8)	
I Ĭ		PMRA #2627713	5		A	
ОН	Soil photoly				D	
	Aerobic aqu				A	
N ²	Anaerobic a				D	
	Aerobic	PMRA #2627967	N	A		
	soil	PMRA #2627969	ND			
	Anaerobic s	oil		ND		
M440I046	Hydrolysis			NA		
Formula: C ₂₅ H ₂₉ NO ₇		d soil photolysis		NA		
MW: 455.5 g/mol	Aerobic aqu			NA		
6	Anaerobic a		NA			
^N ∧	Aerobic soil		NA			
	Actobic soli		California	16.6 (105)	13.5 (134)	
С. С.			New Jersey	11.8 (105)	8.8 (134)	
			Lufa 5M	11.8 (105)	12.3 (150)	
	Anaerobic soil	PMRA #2627971	Lufa 2.2	6.4 (44)	4.9 (134)	
M440I047	Hydrolysis			N	A	
Formula: C ₂₄ H ₂₇ NO ₆		l soil photolysis			A	
MW: 425.5 g/mol	Aerobic aqu			N	A	
	Anaerobic a			N	A	
	Aerobic soil				A	
			California	16.0 (105)	17.0 (134)	
Г Г. он			New Jersey	8.4 (105)	4.2 (134)	
	Anaerobic	PMRA	Lufa 5M	6.9 (150)	6.9 (150)	
	soil	#2627971	Lufa 2.2	3.2 (29)	1.3 (134)	
M440I048	Hydrolysis			N	A	
Formula: C ₂₅ H ₂₉ NO ₇		d soil photolysis			A	
MW: 455.5 g/mol	Aerobic aqu				A	
L C	Anaerobic a				A	
		PMRA #2627967	7		Ā	
	Aerobic	PMRA	Lufa 5M Soil	2.2 (62)	1.6 (121)	
	soil	#2627969	Metz Soil		A	
	Anorahica		MULL SUI			
	Anaerobic se	011		I N	A	

Compound		Study			Final %AR (sampling interval in days)
or isomer M440I049	Understand			N	A
	Hydrolysis	1 1 . 1 1			
Formula: $C_{24}H_{27}NO_6$		d soil photolysis			A
MW: 425.5 g/mol	Aerobic aqu				A
-N-	Anaerobic a				A
	Aerobic	PMRA #262796			A
1 The	soil	PMRA	Lufa 5M Soil		A
	5011	#2627969	Metz Soil	7.2 (29)	2.4 (120)
or isomer, mixture with M440I053	Anaerobic s	Anaerobic soil			Ά
M440I050	Hydrolysis			NA	
Formula: C ₂₄ H ₂₅ NO ₇		d soil photolysis		N	A
MW: 441.5 g/mol	Aerobic aqu			NA	
e	Anaerobic a				A
	Anaerooic aquatic PMRA #2627967				A
	Aerobic	PMRA	Lufa 5M Soil		A
I I I O	soil	#2627969	Metz Soil	8.0 (29)	3.6 (120)
+ unidentified contaminant	Anaerobic s	oil			Ά.
M440I051	Hydrolysis			N	A
Formula: C ₂₄ H ₂₅ NO ₇	Aqueous an	d soil photolysis			A
MW: 439.5 g/mol	Aerobic aqu	atic		N	A
	Anaerobic a				A
	Aerobic soil				A
	Anaerobic s				Ā
M440I052	Hydrolysis			N	A
Formula: C ₁₉ H ₁₉ NO ₆		d soil photolysis			A
MW: 357.4 g/mol	Aerobic aqu				A
	Anaerobic aqu				A
	Anaerobic a				
	Aerobic	PMRA #262796			A
	soil	PMRA	Lufa 5M Soil		A
		#2627969	Metz Soil	3.9 (62)	3.3 (120)

Compound		Stud	ly	Maximum %AR (sampling interval in days)	Final %AR (sampling interval in days)	
ор но ог isomer	Anaerobic s	Anaerobic soil			NA	
M440I053	Hydrolysis			N	A	
Formula: C ₂₄ H ₂₅ NO ₆		d soil photolysis		N	A	
MW: 423.5 g/mol	Aerobic aqu				A	
2	Anaerobic a				Ā	
E ^N		PMRA #262790	57		A	
	Aerobic	PMRA	Lufa 5M Soil	N	A	
	soil	#2627969	Metz Soil	7.2 (29)	2.4 (120)	
or isomer, mixture with M440I049	Anaerobic soil			NA		
M440I057	Hydrolysis			NA		
Formula: C ₂₉ H ₃₃ NO ₈		d soil photolysis		NA		
MW: 523.6 g/mol	Aerobic aqu			NA NA		
-N -	Anaerobic aquatic					
		PMRA	New Jersey Soil	1.6 (15)	0.3 (120)	
	Aerobic	#2627967	Lufa 2.2 Soil	4.4 (10)	1.2 (121)	
, OH	soil	PMRA	Lufa 5M Soil	5.3 (14)	2.6 (121)	
		#2627969	Metz Soil	36.6 (7)	4.7 (120)	
			California	37.2 (29)	10.6 (134)	
	Anaerobic	PMRA	New Jersey Lufa 5M	5.8 (44) 3.8 (32)	0.8 (134)	
	soil	#2627971			1.2 (150)	
ů v		Lufa 2.2		0.5 (14)	ND (134)	
Cyclopropane carboxylic acid (CPCA, M440I061) CAS#: 1759-53-1 Formula: C ₄ H ₆ O ₂	the molecule		y studies on the parent comp d). An aerobic soil biotransfo urized below.			
MW: 86.1 g/mol	Aerobic soil	PMRA #262797	77	Applied directly	13.6 (28)	
Carbon dioxide	Hydrolysis	l		N	A	
Formula: CO ₂		PMRA	pH 7 Buffer	-	0.5 (8)	
MW: 44.0 g/mol	Aqueous	#2627711	pH 8.39 River Water	-	0.8 (8)	
CAS#: 124-38-9	photolysis	PMRA	pH 7 Buffer	-	19.36 (14)	
		#2627713	pH 7.4 River Water	-	19.02 (14)	
			Sterile Irradiated	-	1.9 (15)	
	Soil	PMRA	Sterile Dark	-	0.2 (15)	
	photolysis	#2627973	Nonsterile Irradiated	-	1.3 (15)	
		12021713	Nonsterile Dark	_	1.1 (15)	

Compound		Stu	dy	Maximum %AR (sampling interval in days)	Final %AR (sampling interval in days)
	Aerobic	PMRA	Berghäuser Altrhein	-	5.1 (100)
	aquatic	#2627996	Ranschgraben	-	1.2 (100)
	Anaerobic	PMRA	Goose River	-	0.4 (100)
	aquatic	#2627998	Golden Lake	-	0.5 (100)
		PMRA	New Jersey Soil	-	6.9 (120)
	Aerobic	#2627967	Lufa 2.2 Soil	-	11.9 (120)
	soil	PMRA	Lufa 5M Soil	-	17.8 (121)
		#2627969	Metz Soil	-	28.1 (120)
			California	-	1.2 (134)
	Anaerobic	PMRA	New Jersey	-	2.6 (134)
	soil	#2627971	Lufa 5M	-	1.6 (150)
			Lufa 2.2	-	0.8 (134)
Non-extractable Residues	Hydrolysis			N	A
(NER)	Aqueous pho	otolysis		N	A
			Sterile Irradiated	11.4 (15)	11.4 (15)
	Soil	PMRA	Sterile Dark	9.2 (15)	9.2 (15)
	photolysis	#2627973	Nonsterile Irradiated	12.6 (15)	12.6 (15)
			Nonsterile Dark	21.8 (15)	21.8 (15)
	Aerobic	PMRA	Berghäuser Altrhein	25.1 (100)	25.1 (100)
	aquatic	#2627996	Ranschgraben	22.0 (100)	22.0 (100)
	Anaerobic	PMRA	Goose River	38.8 (100)	38.8 (100)
	aquatic	#2627998	Golden Lake	30.2 (100)	30.2 (100)
	Aerobic soil	PMRA	New Jersey Soil	51.0 (120)	51.0 (120)
		#2627967	Lufa 2.2 Soil	45.0 (120)	45.0 (120)
		PMRA	Lufa 5M Soil	29.9 (120)	29.9 (120)
		#2627969	Metz Soil	27.8 (120)	27.8 (120)
		PMRA #2627971	California	17.9 (120)	17.9 (120)
	Anaerobic		New Jersey	52.0 (120)	52.0 (120)
	soil		Lufa 5M	20.8 (121)	20.8 (121)
			Lufa 2.2	31.1 (120)	31.1 (120)
Total Unidentified		PMRA	pH 9, 10°C	0.5 (30)	0.5 (30)
Extractable Residues (UER)	Hydrolysis	#2627709	рН 9, 25°С	2.3 (15)	1.2 (30)
			pH 9, 50°C	10.5 (20)	9.2 (30)
		PMRA	pH 7 Buffer	24.3 (8)	24.3 (8)
	Aqueous	#2627711	pH 8.39 River Water	33.0 (8)	33.0 (8)
	photolysis	PMRA	pH 7 Buffer	21.44 (14)	21.44 (14)
		#2627713	pH 7.4 River Water	38.56 (14)	38.56 (14)
			Sterile Irradiated	7.9 (15)	7.9 (15)
	Soil	PMRA	Sterile Dark	4.1 (15)	4.1 (15)
	photolysis	#2627973	Nonsterile Irradiated	6.6 (7)	6.4 (15)
			Nonsterile Dark	11.2 (10)	8.5 (15)
	Aerobic	PMRA	Berghäuser Altrhein	11.3 (78)	9.0 (100)
	aquatic	#2627996	Ranschgraben	6.5 (100)	6.5 (100)
	Anaerobic	PMRA	Goose River	2.8 (14)	1.0 (100)
	aquatic	#2627998	Golden Lake	11.2 (100)	<u>11.2 (100)</u>
		PMRA	New Jersey Soil	24.6 (120)	24.6 (120)
	Aerobic	#2627967	Lufa 2.2 Soil	29.8 (59)	28.8 (120)
	soil	PMRA	Lufa 5M Soil	21.5 (30)	<u>16.2 (121)</u>
		#2627969	Metz Soil	25.7 (29)	15.2 (120)

Compound		Study			Final %AR (sampling interval in days)
			California	25.2 (59)	13.0 (120)
	Anaerobic	PMRA	New Jersey	16.0 (59)	6.1 (120)
	soil	#2627971	Lufa 5M	6.4 (7)	4.2 (121)
			Lufa 2.2	8.1 (7)	6.0 (120)

AR – applied radioactivity

NA – not analysed (either no reference standard used or minor non-volatile compounds which were not identified) ND – not detected

Bolded when appearing at >10%AR

Table 15Fate and Behaviour of Afidopyropen and Transformation Products in the
Environment

Study type	Test material / test system	Value	Transformation products	Comments	PMRA #
Abiotic transfo	ormation				
Hydrolysis	Afidopyropen [NCA- ¹⁴ C]- labelled pH 4, 7 and 9 at 10, 25 and 50°C	pH 4 and 7: stable to hydrolysis pH 9, 10°C: $DT_{50} = 1259$ days (SFO) pH 9, 25°C: $DT_{50} = 134$ days (SFO) pH 9, 50°C: $DT_{50} = 8.2$ days (SFO)	Major: M440I001, M440I002, nicotinic acid (M440I045) Minor: M440I001, M440I002, M440I003	Hydrolysis is not expected to be an important route of dissipation for afidopyropen in the environment.	2627709
Phototransfor- mation on soil	Afidopyropen [pyranone- ¹⁴ C]- labelled and [pyranone-6- ¹⁴ C, pyridine- 2,6- ¹⁴ C]- labelled	Sterile irradiated: half-life = 44 days Sterile dark: half-life = 41 days Nonsterile irradiated: half- life = 42 days Nonsterile dark: half-life = 10 days * Phototransformation half- life not applicable due to control $t_{1/2} \le$ irradiated $t_{1/2}$	Major: M440I003 Minor: M440I001, M440I002, M440I003, M440I005, M440I016, M440I024	Phototransforma- tion in soil is not expected to be an important route of dissipation for afidopyropen in the environment.	2627973
Phototransfor- mation in water	Afidopyropen [NCA- ¹⁴ C]- labelled pH 7 buffer and pH 8.39 natural river water	$\frac{\text{pH 7 buffer:}}{\text{DT}_{50} = 32.1 \text{ days (SFO} - \text{parent)}$ $\text{DT}_{50} = 230 \text{ days (SFO} - \text{combined residues)}$ $\frac{\text{pH 8.39 river water:}}{\text{DT}_{50} = 12.9 \text{ days (SFO} - \text{parent)}$ $\text{DT}_{50} = 43 \text{ days (SFO} - \text{parent)}$	Major: nicotinic acid (M440I045) Minor: M440I007, CO ₂ *The majority of transformation products were not characterized	Phototransforma- tion in water is not expected to be an important route of dissipation for afidopyropen in the environment.	2627711

Study type	Test material / test system	Value	Transformation products	Comments	PMRA #
		combined residues)	(total UER up to		
			34% AR)		
	Afidopyropen	<u>pH 7 buffer:</u> DT ₅₀ = 17.4 days (SFO –	Major: CO ₂		2627713
	[pyranone- ¹⁴ C]-	parent)	Minor:		
	labelled	$DT_{50} = 43.0 \text{ days} (SFO - 1)$	M440I002,		
	pH 7 buffer and	combined residues)	M440I003, M440I007		
	pH 7.4 natural	pH 7.4 river water:	1014401007		
	river water	$DT_{50} = 10.5 \text{ days (SFO} -$	* The majority of		
		parent)	transformation		
		DT ₅₀ = 51.4 days (SFO –	products were not		
		combined residues)	characterized		
			(total UER up to		
Phototransfor-	A fidonumonon is n	et avpacted to be velatile und	40% AR)	ad on yonour progura	Honmy's
mation in air		ot expected to be volatile und Atmospheric Oxidation Progra			
un		coducts of afidopyropen are no			
		of volatile organics in soil biot			
	air is not required	•			
Biotransforma		1	1	Γ	
Biotransfor-	Afidopyropen	Parent	Major:	Parent	2627967
mation in	[pyranone- ¹⁴ C]-	New Jersey loam: $DT_{1} = 12.4 \text{ days} (IOPE)$	M4401002,	afidopyropen is	
aerobic soil	labelled and	$DT_{50} = 12.4 \text{ days (IORE)}$ $t_{R} = 25.9 \text{ days}$	M440I003 , M440I024 , CO ₂	non-persistent, while its combined	
	[pyranone-6-	$t_{\rm R} = 25.9$ duys	1111101024, 002	residues are	
	¹⁴ C, pyridine-	New Jersey silt loam:	Minor:	moderately	
	2,6- ¹⁴ C]-	$DT_{50} = 5.6$ days (IORE)	M440I014,	persistent.	
	labelled	$t_{\rm R} = 15.6$ days	M440I015,		
	afidopyropen		M440I016,	Biotransformation	
	4 soils: New	Lufa 2.2 loamy sand: $DT_{50} = 7.4$ days (IORE)	M440I021, M440I057	in aerobic soil is an important route of	
	Jersey loam,	$t_{\rm R} = 33.7 \text{ days}$ (IORE)	1114401037	dissipation for	
	New Jersey silt	$t_{\rm K} = 55.7$ duys	NERs were up to	afidopyropen.	
	loam, Lufa 2.2	Lufa 2.2 sandy loam:	51% AR and total	15 1	
	loamy sand	$DT_{50} = 7.4 \text{ days (IORE)}$	UERs were up to		
	(Germany),	$t_R = 25.5 \text{ days}$	30% AR.		
	Lufa 2.2 sandy loam (Germany)	Combined residues	NOTE: Bolded		
	Ioani (Germany)	New Jersey loam:	transformation		
	Study duration:	$DT_{50} = 97.5 \text{ days (SFO)}$	products were		
	120 days		included in the		
	-	New Jersey silt loam:	residue		
		$DT_{50} = 77.4 \text{ days (DFOP)}$	definition.		
		$t_R = 113 \text{ days}$			
		Lufa 2.2 loamy sand:			
		$DT_{50} = 64.7 \text{ days (IORE)}$			
		$t_{\rm R} = 375 \text{ days}$			
		Lufa 2.2 sandy loam:			
		$DT_{50} = 85.1 \text{ days (IORE)}$ $t_{R} = 626 \text{ days}$			

Study type	Test material /	Value	Transformation	Comments	PMRA #
	test systemAfidopyropen[pyranone-6- ¹⁴ C, pyridine-2,6- ¹⁴ C]-labelledafidopyropen2 soils: Lufa 5Msandy loam(Germany) andMetz loamysand(California)Study duration:120 days	$\label{eq:parent_loss} \hline \frac{Parent}{Lufa 5M sandy loam:} \\ DT_{50} = 20.5 \ days \ (IORE) \\ t_R = 52.5 \ days \\ \hline Metz \ loamy \ sand: \\ DT_{50} = 2.8 \ days \ (IORE) \\ t_R = 5.2 \ days \\ \hline \frac{Combined \ residues}{Lufa 5M \ sandy \ loam:} \\ DT_{50} = 90 \ days \ (SFO) \\ \hline Metz \ loamy \ sand: \\ DT_{50} = 61.5 \ days \ (IORE) \\ t_R = 113 \ days \\ \hline \hline \hline \end{tabular}$	productsMajor:M440I002,M440I057, CO2Minor:M440I03,M440I048,M440I048,M440I050,M440I052,M440I053NERs were up to 30% AR and totalUERs were up to 24% AR.NOTE: Bolded transformation 	Parent afidopyropen is non-persistent to slightly persistent, while its combined residues are moderately persistent. Biotransformation in aerobic soil is an important route of dissipation for afidopyropen.	# 2627969
	Cyclopropane carboxylic acid (CPCA – a transformation product of afidopyropen) [carboxyl- ¹⁴ C]-labelled CPCA 4 soils: California, Indiana, North Carolina, and New Jersey Study duration: 28-31 days	California: $DT_{50} = 1.46$ days (IORE) $t_R = 2.9$ days Indiana: $DT_{50} = <0.01$ days (IORE) $t_R = 0.7$ days North Carolina: $DT_{50} = 9.81$ days (SFO) New Jersey: $DT_{50} = <0.01$ days (IORE) $t_R = 0.283$ days	N/A	CPCA produced substantial volatile residues as CO ₂ (up to 42% AR) and non- extractable residues (up to 80% AR). Non- extractable residues were shown to be truly bound through use of multiple extractions including solvents with a wide range of dielectric properties.	2627977
Biotransfor- mation in anaerobic soil	Afidopyropen [pyranone- ¹⁴ C]- labelled and [pyranone-6- ¹⁴ C, pyridine- 2,6- ¹⁴ C]- labelled afidopyropen 4 soils: New Jersey silt loam,	$\label{eq:parent} \begin{array}{l} \underline{Parent} \\ New Jersey silt loam: \\ DT_{50} = 26.3 \ days \ (DFOP) \\ t_R = 67.6 \ days \end{array}$	Major: M440I001, M440I002, M440I003, M440I046, M440I047, M440I057 Minor: CO ₂ NERs were up to 55% AR and total	Parent afidopyropen is slightly to moderately persistent, while its combined residues are persistent. Biotransformation in anaerobic soil is not an important route of dissipation	2627971

Study type	Test material /	Value	Transformation	Comments	PMRA
	test system		products		#
	California	Lufa 5M sandy loam:	UERs were up to	for afidopyropen.	
	loamy sand,	$DT_{50} = 60.9 \text{ days} (DFOP)$	23% AR.		
	Lufa 2.2 loamy	$t_R = 78.4 \text{ days}$			
	sand		NOTE: Bolded		
	(Germany), and	Combined residues	transformation		
	Lufa 5M sandy	New Jersey silt loam:	products were		
	loam (Germany)	$DT_{50} = 186 \text{ days (IORE)}$	included in the		
		$t_{\rm R} = 1400 \text{ days}$	residue		
	Study duration:		definition.		
	120 days	California loamy sand:			
		$DT_{50} = 295 \text{ days (SFO)}$			
		Lufa 2.2 loamy sand:			
		$DT_{50} = 1009 \text{ days (DFOP)}$			
		$t_R = 1470 \text{ days}$			
		Lufa 5M sandy loam:			
		$DT_{50} = 633 \text{ days} (SFO)$			
Biotransfor-	Afidopyropen	Parent	Major:	Parent	2627996
mation in		Berghäuser Altrhein:	M440I024	afidopyropen is	
aerobic water	[pyranone-14C]-	$DT_{50} = 76.2 \text{ days (DFOP)}$		moderately	
systems	labelled and	$t_R = 91.6 \text{ days}$	Minor:	persistent, while its	
	[pyranone-6-		M440I002,	combined residues	
	¹⁴ C, pyridine-	Ranschgraben:	M440I003,	are persistent.	
	2,6- ¹⁴ C]-	$DT_{50} = 102 \text{ days (DFOP)}$	M440I005,		
	labelled	$t_R = 205 \text{ days}$	M440I006, CO ₂	Biotransforma-tion	
				in aerobic water	
	2 test systems:	Combined residues	NERs were up to	systems is an	
	Berghäuser	Berghäuser Altrhein:	25% AR and total	important route of	
	Altrhein and	$DT_{50} = 197 \text{ days (SFO)}$	UERs were up to	dissipation for	
	Ranschgraben		12% AR.	afidopyropen.	
	(Germany)	Ranschgraben:			
		$DT_{50} = 244 \text{ days (SFO)}$	NOTE: Bolded		
	Study duration:		transformation		
	100 days	*All values are for the	products were		
	-	whole system	included in the		
			residue		
			definition.		
Biotransfor-	Afidopyropen	Parent	Major:	Parent	2627998
mation in		Golden Lake:	M440I001,	afidopyropen is	
anaerobic	[pyranone-14C]-	$DT_{50} = 31.8 \text{ days (IORE)}$	M440I002	slightly persistent,	
water systems	labelled and	$t_R = 41.5 \text{ days}$		while its combined	
	[pyranone-6-		Minor:	residues are	
	¹⁴ C, pyridine-	Goose River:	M440I003 , CO ₂	moderately	
	2,6- ¹⁴ C]-	$DT_{50} = 45.3 \text{ days (SFO)}$		persistent to	
	labelled		NERs were up to	persistent.	
		Combined residues	40% AR and total		
	2 test systems:	Golden Lake:	UERs were up to	Biotransformation	
	Golden Lake	$DT_{50} = 230 \text{ days} (DFOP)$	13% AR.	in anaerobic water	
	and Goose	$t_{\rm R} = 259 \text{ days}$		systems is an	
	River (North	-	NOTE: Bolded	important route of	
	Dakota)	Goose River:	transformation	dissipation for	
	Dakota)				
	Dakota)	$DT_{50} = 135 \text{ days (IORE)}$	products were	afidopyropen.	

Study type	Test material / test system	Value	Transformation products	Comments	PMRA #
	100 days		residue definition.		
Mobility		·			•
Adsorption / desorption in soil	Afidopyropen [pyranone- ¹⁴ C]- labelled afidopyropen	K _{OC} ranging from 548.45 to 2693.72	N/A	Afidopyropen is classified as having a slight to low potential for mobility in soil.	2627982
	Values obtained in 4 American and 2 European soils: California, Indiana, Louisiana, New Jersey, Lufa 5M, and Lufa 2.2.				
	M440I001 [pyranone- ¹⁴ C]- labelled	K _{OC} ranging from 261.93 to 7452.97	N/A	M440I001 is classified as immobile to having a medium potential for mobility in soil.	2627984
	Values obtained in 5 American and 1 European soil: California, Indiana, Louisiana, New Jersey, North Carolina, and Lufa 5M.				
	M440I002 [pyranone- ¹⁴ C]- labelled	K _{OC} ranging from 450.69 to 5353.13	N/A	M440I002 is classified as immobile to having a medium potential for mobility in soil.	2627986
Values obtained in 5 American and 1 European soil: California, Indiana, Louisiana, New Jersey, North Carolina, and					
	Lufa 5M. M440I003 [pyranone- ¹⁴ C]- labelled	K _{OC} ranging from 495.43 to 2356.54	N/A	M440I003 is classified as having a slight to medium potential for mobility in soil.	2627988
	Values obtained in 5 American				

Study type	Test material / test system	Value	Transformation products	Comments	PMRA #
	and 1 European		products		π
	soil: California,				
	Indiana,				
	Louisiana, New				
	Jersey, North				
	Carolina, and				
	Lufa 5M.				
	M440I005	K _{OC} ranging from 431.41 to 20618.30	N/A	M440I005 is classified as	2627992
	[pyranone- ¹⁴ C]- labelled	10 20010.30		immobile to having a medium potential for mobility in soil.	
	Values obtained				
	in 5 American				
	and 1 European				
	soil: California,				
	Indiana,				
	Louisiana, New				
	Jersey, North				
	Carolina, and				
	Lufa 5M.	XX	27/4		
	M440I024	K _{OC} ranging from 506.72	N/A	M440I024 is	2627990
	n ·	to 3289.35		classified as having	
	[bis-			a slight to low	
	(cyclopropane			potential for	
	carboxylic acid-			mobility in soil.	
	carbonyl- ¹⁴ C)]- labelled				
	Values obtained				
	in 5 American				
	and 1 European				
	soil: California,				
	Indiana,				
	Louisiana, New				
	Jersey, North				
	Carolina, and				
	Lufa 5M.				
Soil leaching		study with afidopyropen was su			
Volatilization		not expected to be volatile und			2627690
		10 ⁻⁶ Pa at 25°C) and Henry's l			
		(v1.92) results indicate that af			
		ject to long-range transport. A			
		a half-life of 0.055 days due to			
		a half-life of 0.004 days due to			
		roducts of afidopyropen are no			
	conditions based	on low detection of volatile org	ganics in soil biotrans	stormation studies.	
Field studies	×			A (* 1	0.000000
Field	Versys end-use	Parent	Major:	Afidopyropen is	2627979
dissipation	product	New York:	M440I002	unlikely to	
	formulation	DT ₅₀ : 2.04 days (IORE)		accumulate in soil	
	(9.7%)	t _R : 16.3 days	Minor:	and carry over to	
	afidopyropen)	Louisiana:	M440I001,	the next growing	
		DT ₅₀ : 1.49 days (DFOP)	M440I003,	season.	

Study type	Test material /	Value	Transformation	Comments	PMRA
Study type	test system	, muc	products		#
	Five bare	t _R : 22.6 days	M440I016,		
	ground sites	Florida:	M440I024,	At the sites tested,	
	(ecoregion) in	DT ₅₀ : 6.51 days (IORE)	M440I057	neither	
	New York (8.1),	t _R : 17.6 days		afidopyropen nor it	
	Louisiana (8.3),	Washington:	NOTE: Bolded	residues appeared	
	Florida (8.5),	DT ₅₀ : 7.9 days (IORE)	transformation	to be inherently	
	Washington	t _R : 17 days	products were	susceptible to	
	(10.1), and	California:	included in the	leaching.	
	California	DT ₅₀ : 1.66 days (IORE)	residue		
	(11.1)	t _R : 12.6 days	definition.		
		[Average DT ₅₀ of 3.92			
		days. t _R 90 th percentile			
		upper confidence bound on			
		the mean of 19.7 days.]			
		Combined residues			
		New York:			
		DT ₅₀ : 3.82 days (DFOP)			
		$t_{\rm R}$: 18.6 days			
		Louisiana:			
		DT ₅₀ : 2.75 days (DFOP)			
		$t_{\rm R}$: 61.3 days			
		Florida:			
		DT ₅₀ : 10 days (IORE)			
		t _R : 35.2 days			
		Washington: DT ₅₀ : 20.6 days (DFOP)			
		$t_{\rm R}$: 31.9 days			
		California:			
		DT ₅₀ : 1.85 days (DFOP)			
		$t_{\rm R}$: 28.1 days			
		Average DT of 7.8 days			
		[Average DT_{50} of 7.8 days.			
		t _R 90 th percentile upper confidence bound on the			
		mean of 46.0 days.]			
		Mean residues of			
		afidopyropen and its			
		transformation products			
		were not detected in soil			
		below the 15-30 cm soil			
		depth at any of the five			
A quatie f 11	No occupie Collar	locations.	non mor schooler 1	nd nono is use in t	
Aquatic field dissipation	No aquatic field d	issipation study with afidopyro	open was submitted a	ina none is required.	
	ion / bioaccumulati	ion			
Bioconcentra-	Afidopyropen	BCF calculated at each	There is some	Afidopyropen does	2628039
tion in fish	PJ10Pon	measurement time point	uncertainty with	not readily	
	Flow-through	ranged from <0.43 to 0.74	the estimate since	bioconcentrate in	
	bioconcentratio		the test substance	fish tissue under	
	n study	$BCF_{ss} = 0.059$	was not	the conditions of	
			radiolabelled,	the study.	

Study type	Test material /	Value	Transformation	Comments	PMRA
	test system		products		#
	Carp (Cyprinus		transformation		
	carpio), were		products were not		
	exposed to		measured, and the		
	afidopyropen at		study design did		
	nominal		not include a		
	concentrations		depuration		
	of 0.018 and		period.		
	0.18 mg a.i./L		-		
	for an uptake				
	period of 28				
	days.				

 $SFO-single\ first-order;\ DFOP-double\ first-order\ in\ parallel;\ IORE-indeterminate\ order\ rate\ equation$

UER - unidentified extractable residues

NER - non-extractable residues

 $AR-applied\ radioactivity$

Table 16Toxicity of Afidopyropen, its Transformation Products and End-use Products to
Non-target Terrestrial Species

Organism	Exposure	Test substance	Endpoint value	Degree of toxicity ¹	PMRA #
Invertebrates					
Earthworm, Eisenia fetida	14d-Acute	Afidopyropen (TGAI, purity 94.54%)	LC/EC ₅₀ > 945 mg a.i./kg dw soil NOAEC = 945 mg a.i./kg dw soil	N/A	2628083
	14-d Acute	M440I002 (purity 92.5%)	$LC/EC_{50} > 925 \text{ mg a.i./kg dw soil}$ NOAEC = 925 mg a.i./kg dw soil	N/A	2628085
	14-d Acute	M440I003 (purity 98.6%)	$LC/EC_{50} > 986 \text{ mg a.i./kg dw soil}$ NOAEC = 986 mg a.i./kg dw soil	N/A	2628089
	14-d Acute	M440I005 (purity 98.6%)	$LC/EC_{50} > 909 \text{ mg a.i./kg dw soil}$ NOAEC = 909 mg a.i./kg dw soil	N/A	2628087
	14-d Acute	M440I024 (purity 98.6%)	$LC/EC_{50} > 913 \text{ mg a.i./kg dw soil}$ NOAEC = 913 mg a.i./kg dw soil	N/A	2628091
	14-d Acute	EP, Versys (9.6% a.i.)	$LC/EC_{50} > 97.8 \text{ mg a.i./kg dw soil}$ $LC/EC_{50} > 97.8 \text{ mg a.i./kg dw soil} (or$ $> 1000 \text{ mg EP/kg dw soil})$ $NOAEC = 97.8 \text{ mg a.i./kg dw soil} (or$ $> 1000 \text{ mg EP/kg dw soil})$	N/A	2627523
	14-d Acute	EP, Sefina (4.8% a.i.)	$LC_{50} > 48.9 \text{ mg a.i./kg dw soil (or > 1000 mg EP/kg dw soil)}$ NOAEC < 3.1 mg a.i./kg dw soil (or 62.5 mg EP/kg dw soil) – due to significant inhibitions in percent body weight change at all treatment levels relative to the negative control, a definitive NOAEC could not be determined.	N/A	2627078

28093 28025 28076
28076
28076
28076
28076
28076
28076
20070
27486
22

Organism	Exposure	Test substance	Endpoint value	Degree of toxicity ¹	PMRA #
			$ \begin{array}{l} \mu g \ a.i./bee \\ NOEL (sublethal endpoints) = < 4.3 \\ \mu g \ a.i./bee \\ LOEL (sublethal endpoints) = 4.3 \\ \mu g \\ a.i./bee \end{array} $		
			Pronounced sublethal behavioural effects (affected coordination and moribund behaviour) occurred at all doses at all assessment time points. Overall, as mortality increased in later assessments, fewer bees were described as showing sublethal effects, suggesting that sublethal effects progressed to mortality.		
	48-h Oral, adults	EP, Sefina (4.8% a.i.)	48-h LD ₅₀ 20.8 μ g a.i./bee 48-h ED ₅₀ and NOEL based on sublethal endpoints estimated by PMRA reviewer as < 6.3 μ g a.i./bee. LOEL (sublethal endpoints) = 6.3 μ g a.i./bee	Practically non-toxic	2627063
			Pronounced sublethal behavioural effects (impaired locomotion and moribund behaviour) occurred at all doses at all assessment time points. Overall, as mortality increased in later assessments, fewer bees were described as showing sublethal effects, suggesting that sublethal effects progressed to mortality.		
	48-h Contact, adults	EP, Sefina (4.8% a.i.)	48-h LD ₅₀ 20.3 μ g a.i./bee 48-h ED ₅₀ and NOEL estimated by PMRA reviewer as < 6.3 μ g a.i./bee. LOEL (sublethal endpoints) = 6.3 μ g a.i./bee	Practically non-toxic	
			Pronounced sublethal behavioural effects (impaired locomotion and moribund behaviour) occurred at all doses at all assessment time points. Overall, as mortality increased in later assessments, fewer bees were described as showing sublethal effects, suggesting that sublethal effects progressed to mortality.		
	96-h Oral, larva	EP, Versys (9.7% a.i.)	96-h $LD_{50} = 37.57 \ \mu g \ a.i./larva$ Of the remaining larvae, sublethal effects reportedly occurred in 0.0, 11.6, 3.7 and 33.3% of larvae at 96 h, respectively, in the 11.97, 23.93,	Practically non-toxic	2627501

Organism	Exposure	Test	Endpoint value	Degree of	PMRA #
		substance	47.86 and 95.63 μg	toxicity ¹	
			afidopyropen/larva treatment groups.		
			The ED_{50} (based on live larvae at the		
			end of the test) would be > 95.63 μ g		
			a.i./larva.		
			Sublethal effects (reduced food		
			consumption and reduced larval size) noted.		
		CF	IRONIC LABORATORY STUDIES		
	10-d	Afidopyropen	$10-d LD_{50} = > 73.31 \ \mu g \ a.i./bee$	N/A	2627485
	Chronic,	(TGAI, purity	(mortality)		
	adults	94.54%)	$[10-d LC_{50} = > 1883 \ \mu g \ a.i./kg \ diet]$		
			10-d NOAEL = 73.31 µg a.i./bee		
			(mortality) [10-d NOAEC = $1883 \mu g a.i./kg diet$]		
			$[10-4 \text{ NOALC} - 1005 \mu\text{g} \text{ a.i./kg ulct}]$		
			10 -d NOAEL = $0.29 \ \mu g \ a.i./bee$		
			(sublethal effects)		
			$[10-d \text{ NOAEC} = 8 \ \mu \text{g a.i./kg diet}]$		
			10-d LOAEL = 0.67 µg a.i./bee		
			(sublethal effects)		
			$[10-d \text{ LOAEC} = 18 \mu\text{g a.i./kg diet}]$		
			$10-d ED_{50} = 5.55 \ \mu g a.i./bee$		
			$[10-d \text{ EC}_{50} = 142.15 \ \mu\text{g a.i./kg diet}]$ (behavioural abnormalities such as		
			uncoordinated movement).		
			uncoordinated movement).		
			The occurrence of sublethal effects in		
			test item treatment groups exhibited a		
			dose response, with $> 85\%$ of		
			honeybees in the three highest test		
			item treatment levels (13.65, 30.00, and 73.31 μ g a.i./bee) exhibiting		
			impaired coordination, immobility, or		
			moribund behaviour. Although >		
			85% of the bees exhibited sublethal		
			effects in the three highest treatment		
			groups, mortality at the conclusion of		
			the study in these treatment groups 400% respectively		
	22-d	EP, Versys	was 6.7, 5.0, and 0.0%, respectively. 22-d NOAEL = 4.04 μg a.i./larva	N/A	2627503
	Chronic,	(9.7% a.i.)	[22-d NOAEL = 4.04 µg a.i./latva]	11/21	2021303
	larva	(2.1.,0)	diet]		
			_		
			22-d LOAEL = 7.81 µg a.i./larva		
			[22-d LOAEL = 50.97 mg a.i./kg		
			diet]		

Organism	Exposure	Test substance	Endpoint value	Degree of toxicity ¹	PMRA #
			22-d ED ₅₀ = 7.56 μ g a.i./larva [22-d EC ₅₀ = 49.30 mg a.i./kg diet]		
			Endpoints based on effects on adult emergence rate.		
		ТОХ	ICITY OF RESIDUES ON FOLIAGE	2	
	24-h foliar residue test. Alfalfa was treated at 50.0 g a.i./ha and plants were then placed outdoors to weather.	EP, Versys (9.7% a.i.)	Resulting afidopyropen foliar residue levels on alfalfa weathered for 0, 3, 8, and 24 hours, respectively, were 2.89, 1.42, 1.15, and 1.56 mg a.i./kg. Honeybee mortality 24 hours after exposure to the treated foliage was 6.0, 6.7, and 8.7%, respectively, for foliage weathered for 3, 8, and 24 hours. While in most treatment groups no sublethal behavioural effects were reported, in the test item treatment group that was allowed to weather for 24 hours, 2.0% of surviving bees were reported to be lying on their backs, and 1.3% of surviving bees displayed symptoms of lethargy.	N/A	2627488
			The time required for weathered residues to cause mortality to 25% of the bees (i.e., the RT_{25} value) was < .3h for adult honeybees under the conditions tested.		
Bumblebee, Bombus terrestris L.	96-h Oral, adults	Afidopyropen (TGAI, purity 94.54%)	96-h $LD_{50} > 93.7 \ \mu g a.i./bee$ At 4 hours in the acute oral toxicity test, 0, 93, 73, 75, 50 and 90% of bees exposed to 0, 6.09, 13, 25, 50 and 93.7 $\mu g/bee$, respectively, exhibited reduced co- ordination/sublethal effects. At 96 hours, 0, 3, 70, 77, 100 and 100% of bumble bees exhibited effects. Therefore, the lowest dose appeared transient.	Practically non-toxic	2628079
			NOEL (sublethal effects)(4 hours) = < 6.09 µg a.i./bee LOEL (sublethal effects)(4 hours) = 6.09 µg a.i./bee NOEL (sublethal effects)(96 hours) = 6.09 µg a.i./bee		
			LOEL (sublethal effects)(96 hours) = 13 µg a.i./bee Pronounced sublethal behavioural effects (affected coordination,		

Organism	Exposure	Test	Endpoint value	Degree of	PMRA #
		substance	apathetic, and moribund behaviour)	toxicity ¹	
			occurred at all doses at all assessment		
			time points. While data suggest that		
			for lower doses sublethal effects were		
			somewhat transient, at higher doses		
			sublethal effects appeared to be		
			persistent throughout the study.		
	96-h	Afidopyropen	96-h LD ₅₀ > 100 μ g a.i./bee	Practically	
	Contact,	(TGAI, purity		non-toxic	
	adults	94.54%)	At 96 hours in the acute contact		
			toxicity test, 0, 33, 83, 77, 100 and		
			97% of bumble bees exposed to 0,		
			6.25, 12.5, 25, 50 and 100 μg/bee,		
			respectively, showed reduced co-		
			ordination.		
			NOEC (sublethal effects) = $< 6.25 \ \mu g$		
			a.i./bee		
			LOEC (sublethal effects) = $6.25 \mu g$		
			a.i./bee		
			ED50 = between 6.25 and 12.5		
			μg/bee.		
			Pronounced sublethal behavioural		
			effects (affected coordination,		
			apathetic, and moribund behaviour)		
			occurred at all doses at all assessment		
			time points. While data suggest that		
			for lower doses sublethal effects were		
			somewhat transient, at higher doses		
			sublethal effects appeared to be		
			persistent throughout the study.		
Predatory	7-d Contact,	EP, Versys	LR ₅₀ > 156 g a.i./ha or 1592 mL	N/A	2627518
arthropod, <i>Typhlodromus</i>	glass plates	(9.7% a.i.)	EP/ha (mortality)		
pyri			A high percentage of mites (6–37%		
r J			in the treatment groups) were trapped		
			or escaped. Although this does not		
			necessarily correlate to toxicity, it		
			may be indicative of test substance		
			avoidance.		
	7-d Contact,	EP, Sefina	$LR_{50} = 76$ g a.i./ha or 1540 mL EP/ha	N/A	2627068
	glass plates	(4.9% a.i.)	(mortality)		2627074
	14-d Contact	EP, Sefina	$LR_{50} = 141$ g a.i./ha or 2870 mL	N/A	2627074
	Contact,	(4.9% a.i.)	EP/ha (mortality)		
	spray residue on		NOAER = 25 g a.i./ha or 500 mL		
	bean leaves		EP/ha (based on number of		
			eggs/female)		
	33-d Semi-	EP, Sefina	NOAER < 49 g a.i./ha or < 0.999 mL	N/A	2627076
	field, spray	(4.9% a.i.)	EP/ha (based on statistically		
	residues on		significant reduction (45%) in mite		
	apple trees		population density 5 days after the		
			first application)		

Organism	Exposure	Test substance	Endpoint value	Degree of toxicity ¹	PMRA #
	2				
	applications,		Mite density was similar between the		
	7 days apart		control and treated plots 5 days after		
	of 50 g		second application and at study		
	a.i./ha		termination (26 days after second		
			application).		
	36-d Semi-	EP, Sefina	NOAER = 49 g a.i./ha or 0.992 mL	N/A	2627077
	field, spray	(4.9% a.i.)	EP/ha (based on mite population		
	residues on apple trees		density)		
	apple nees		There were no statistically significant		
	2		decreases in mite population density		
	applications,		at any assessment time point.		
	7 days apart		at any assessment time point.		
	of 50 g				
	a.i./ha				
Parasitic	48-h	EP, Versys	$LR_{50} = 81.5 \text{ g a.i./ha or } 831 \text{ mL}$	N/A	2627521
arthropod,	Contact,	(9.6% a.i.)	EP/ha (mortality)		
Aphidius	glass plates	. ,			
rhopalosiphi	48-h	EP, Sefina	LR ₅₀ = 12.3 g a.i./ha or 252 mL	N/A	2627066
	Contact,	(4.9% a.i.)	EP/ha (mortality)		
	glass plates				
			Sublethal effects (still walking, but		
			showing signs of uncoordinated		
			movement) were observed in all		
			treatment groups and were generally		
			dose-responsive, progressing towards		
	12.1		mortality.		2627072
	13-d	EP, Sefina	$LR_{50} > 147$ g a.i./ha or > 3000 mL	N/A	2627072
	Contact,	(4.9% a.i.)	EP/ha (mortality)		
	spray residue on		NOAER < 12 g a.i./ha or < 250 mL		
	barley		EP/ha (based on effects on settling		
	seedlings		behaviour in all treatment groups)		
	securings		benaviour in an treatment groups)		
			NOAER = $98 \text{ g a.i./ha or } 2000 \text{ mL}$		
			EP/ha (based on number of		
			mummies/female)		
Green	37-d	EP, Sefina	LR ₅₀ > 150 g a.i./ha or > 3000 mL	N/A	2627070
lacewing,	Contact,	(4.9% a.i.)	EP/ha		
Chrysoperla	spray				
carnea	residue on		NOAER = 150 g a.i./ha or 3000 mL		
	bean leaves		EP/ha		
Birds Zahas finah	14 .1	A.C. 1	LD 241 - 1 1	Mada 1	2622004
Zebra finch,	14-d Acute oral	Afidopyropen	$LD_{50} = 341 \text{ mg a.i./kg bw}$	Moderately	2628004
Taeniopygia auttata		(TGAI, purity 94.54%)	Sublethal effects (lethargy, loss of	toxic	
guttata		J7.J770J	coordination, narcosis, prostration,		
			dyspnea) were observed in all but the		
			two lowest treatment groups and		
			were generally dose-responsive,		
			progressing towards mortality.		
		1 6 1		01: 1.41	2628000
Bobwhite	14-d Acute	Afidopyropen	$LD_{50} = 783 \text{ mg a.i./kg bw}$	Slightly	2628000

Organism	Exposure	Test substance	Endpoint value	Degree of toxicity ¹	PMRA #
virginianus		95.74%)	Sublethal effects (diarrhea, lethargy, convulsions) were observed in all but the lowest treatment group and were generally dose-responsive, progressing towards mortality.		
	14-d Acute oral	EP, Versys (9.6% a.i.)	LD ₅₀ /ED ₅₀ > 188 mg a.i./kg bw (equivalent to > 1962 mg EP/kg bw) No treatment-related effects on mortality, growth (body weight) or	Moderately toxic	2627477
	14-d Acute oral	EP, Sefina (4.7% a.i.)	food consumption. $LD_{50}/ED_{50} > 93.6 \text{ mg a.i./kg bw}$ (equivalent to > 1992 mg EP/kg bw)No treatment-related effects on mortality, growth (body weight) or fred ensumption	Moderately toxic	2627054
21	5-d Dietary	Afidopyropen (TGAI, purity 99.9%)	food consumption. $LC_{50} = 532$ mg a.i./kg diet $LD_{50} = 70.9$ mg a.i./kg bw/day LC_{50}/LD_{50} based on mortality. Noapparent treatment-related sublethalbehavioural effects, effects on growth(body weight) or food consumption.	Moderately toxic	2628006
	21-w reproduction	Afidopyropen (TGAI, purity 94.54%)	NOAEC = 79.6 mg a.i./kg diet NOAEL = 6.7 mg a.i./kg bw/day	N/A	2628010
Mallard duck, Anas platyrhynchos	14-d Acute oral	Afidopyropen (TGAI, purity 94.54%)	No mortality, effects on growth (body weight), or substantive sublethal behavioural effects in any treatment group. Due to the occurrence of regurgitation in test organisms, a NOAEL of 989 mg a.i./kg bw was established.	N/A	2628002
	14-d Acute oral	EP, Sefina (4.7% a.i.)	LD ₅₀ /ED ₅₀ > 90 mg a.i./kg bw (equivalent to > 1914 mg EP/kg bw) No treatment-related effects on mortality, growth (body weight) or food consumption.	Moderately toxic	2627056
	5-d Dietary	Afidopyropen (TGAI, purity 99.9%)	Mortality: LC50: $> 5044 \text{ mg a.i./kg diet}$ LD50: $> 284 \text{ mg a.i./kg bw/day}$ Body weight change: EC50: 1902 mg a.i./kg diet ED50: 254.7 mg a.i./kg bw/dayFood consumption change: EC50: 3690 mg a.i./kg diet ED50: 278.4 mg a.i./kg bw/dayNo treatment-related sublethal behavioural effects.	Slightly toxic	2628008

Organism	Exposure	Test substance	Endpoint value	Degree of toxicity ¹	PMRA #
	21-w reproduction	Afidopyropen (TGAI, purity 97.3%)	NOAEC = 161.0 mg a.i./kg diet NOAEL = 21.2 mg a.i./kg bw/day	N/A	2628012
Mammals					
Rat (Wistar)	Acute oral	Afidopyropen (TGAI, purity 95.74%)	LD ₅₀ > 2000 mg a.i./kg bw	Practically non-toxic	2627763
		EP, Versys (9.6% a.i.)	LD ₅₀ > 2000 mg/kg bw (>192 mg a.i./ha)	Practically non-toxic	2627543
		EP, Sefina (4.98% a.i.)	LD ₅₀ > 2000 mg/kg bw (>99.6 mg a.i./ha)	Practically non-toxic	2627087
	2-Generation reproduction	Afidopyropen (TGAI, purity 95.74%)	NOAEC = 100 ppm (8.4 mg a.i./kg bw/day)	N/A	2627877
			Based on toxicity in the F1 and F2 offspring (decreased pre-weaning pup body weights/pup weight gains) observed at the next higher dose.		
			NOAEC = 300 ppm (27 mg a.i./kg bw/day)	N/A	2627878
			Based on increased adrenal weight in parental females; and, pup death, decreased body weight and delayed		
			sexual maturation in offspring.		
Vascular plant	ts				
Monocot and dicot crop species (onion, ryegrass, wheat, corn, sugarbeet, oilseed rape, cabbage, soybean, lettuce and tomato)	21-d Seedling emergence	EP, Versys (9.7% a.i.)	LOAER = 125 g a.i./ha (based on 29% reduction in tomato seedling survival at the highest treatment concentration) $ER_{25} > 125$ g a.i./ha for all species tested	N/A	2627529
Monocot and dicot crop species (onion, ryegrass, wheat, corn, sugarbeet, oilseed rape, cabbage, soybean, lettuce and tomato)	21-d Vegetative vigour	EP, Versys (9.7% a.i.)	NOAER = 125 g a.i./ha for all species tested ER ₂₅ > 125 g a.i./ha for all species tested	N/A	2627531

¹ Atkins *et al.*(1981) for bees and USEPA classification for others, where applicable

Table 17Effects of the End-use Product Versys Insecticide on Honey Bees based on Tier
II (Semi-field/Residue) and Tier III (Field) Studies

Study design	Results	PMRA #
	RESIDUE STUDIES ¹	
EP, Versys Insecticide (9.7%	Mean residues at 0 DAA (days after application):	2627490
a.i.)	<u>Flowers:</u> 4.43 ± 0.63 mg/kg (Parent); 0.36 ± 0.035 mg/kg (M4401007)	
11-day semi-field test to	<u>Nectar:</u> 0.052 ± 0.068 mg/kg (Parent); <0.01 mg/kg (M4401007)	
determine residues in flowers,	<u>Pollen:</u> 0.26 ± 0.12 mg/kg (Parent); 0.061 ± 0.034 mg/kg	
pollen and nectar.	(M4401007)	
Samples of honey bee-	Maximum residues at 0 DAA:	
collected pollen (pollen traps),	Flowers: 4.97 mg/kg (Parent); 0.40 mg/kg (M4401007)	
nectar (honey stomach)	<u>Nectar:</u> 0.13 mg/kg (Parent); 0.013 mg/kg (M4401007)	
collected from forager bees and canola flowers were taken	Pollen: 0.40 mg/kg (Parent); 0.10 mg/kg (M4401007)	
4 times and pollen directly	Mean residues at 3 DAA:	
from flowers once until end of	Flowers: $0.11 \pm 0.015 \text{ mg/kg}$ (Parent); $0.020 \pm 0.0049 \text{ mg/kg}$	
flowering.	(M4401007)	
e	<u>Nectar:</u> < 0.01 (Parent and M4401007)	
Canola was treated once using a backpack boom-sprayer at	<u>Pollen:</u> 0.023 ± 0.007 mg/kg (Parent); < 0.01 mg/kg (M4401007)	
50 g a.i./ha during bloom at a	Maximum residues at 3 DAA:	
site in North Carolina, United	Flowers: 0.13 mg/kg (Parent); 0.023 mg/kg (M4401007)	
States.	Nectar: < 0.01 mg/kg (Parent); < 0.01 mg/kg (M4401007)	
	Pollen: 0.031 mg/kg (Parent); 0.018 mg/kg (M4401007)	
NOTE: canola is not included		
in the Canadian use pattern	Mean residues at 7 DAA : <u>Flowers:</u> 0.013 ± 0.0021 mg/kg (Parent); < 0.01 mg/kg (M4401007)	
	<u>Provense</u> 0.013 ± 0.0021 mg/kg (Parent), < 0.01 mg/kg (M4401007) <u>Nectar:</u> < 0.01 (Parent and M4401007)	
	<u>Pollen:</u> $0.027 \pm 0.0091 \text{ mg/kg}$ (Parent); < 0.01 mg/kg (M4401007)	
	Maximum residues at 7 DAA:	
	<u>Flowers:</u> 0.015 mg/kg (Parent); < 0.01 mg/kg (M4401007)	
	<u>Nectar:</u> < 0.01 mg/kg (Parent); < 0.01 mg/kg (M4401007) B_{2} (M4401007)	
	Pollen: 0.037 mg/kg (Parent); < 0.01 mg/kg (M4401007)	
	Mean residues at 10 DAA were < 0.01 (Parent and M4401007) in	
	flowers, nectar and pollen.	
	Weights of pollen samples from treated plots at 0 and 3 DAA were	
	77–78% lower than controls; however, by 7 and 10 DAA, pollen	
	sample weights from treated plots had increased by 38 and 36%,	
	respectively, relative to controls. These data suggest that bee pollen	
	foraging activity may have been affected in afidopyropen-treated	
	plots from 0 through 3 DAA; however, after this period, bee pollen	
	foraging activity may have increased in the treated group relative to controls. Based on sample sizes of nectar, nectar foraging activity did	
	not appear to be affected.	
EP, Versys Insecticide (9.7%	Mean residues at 0 DAA:	2627492
a.i.)	<u>Flowers:</u> 0.773 ± 0.413 mg/kg (Parent); 0.031 ± 0.011 mg/kg	
	(M4401007)	
6-day field test to determine	<u>Leaves:</u> 1.64 ± 0.416 mg/kg (Parent); 0.250 ± 0.046 mg/kg	
residues in nectar, pollen	(M4401007)	
(from flowers), flowers and	<u>Nectar:</u> 0.017 ± 0.004 mg/kg (Parent); <0.01 mg/kg (M4401007)	

Study design	Results	PMRA #
leaves.	Pollen: 2.28 ± 0.343 mg/kg (Parent); 0.040 ± 0.011 mg/kg	
	(M4401007)	
Citrus was treated once using		
a tractor-mounted airblast	Maximum residues at 0 DAA:	
sprayer at 50 g a.i./ha during	Flowers: 1.25 mg/kg (Parent); 0.043 mg/kg (M4401007)	
bloom at a site in Florida,	<u>Leaves:</u> 2.12 mg/kg (Parent); 0.28 mg/kg (M4401007)	
USA.	<u>Nectar:</u> 0.022 mg/kg (Parent); < 0.01 mg/kg (M4401007)	
NOTE: Citrus is not included	Pollen: 2.66 mg/kg (Parent); 0.046 mg/kg (M4401007)	
in the Canadian use pattern.	Mean residues at 3 DAA:	
in the Canadian use pattern.	Flowers: $0.092 \pm 0.019 \text{ mg/kg}$ (Parent); $0.030 \text{ mg/kg} \pm 0.003 \text{ mg/kg}$	
	(M4401007)	
	<u>Leaves:</u> $0.58 \pm 0.185 \text{ mg/kg}$ (Parent); $0.27 \pm 0.02 \text{ mg/kg}$ (M4401007)	
	$\frac{1}{\text{Nectar:}} < 0.01 \text{ (Parent and M4401007)}$	
	Pollen: $0.073 \pm 0.020 \text{ mg/kg}$ (Parent); $0.024 \pm 0.005 \text{mg/kg}$	
	(M4401007)	
	Maximum residues at 3 DAA:	
	Flowers: 0.11 mg/kg (Parent); 0.033 mg/kg (M4401007)	
	Leaves: 0.79 mg/kg (Parent); 0.29 mg/kg (M4401007)	
	<u>Nectar:</u> < 0.01 mg/kg (Parent); < 0.01 mg/kg (M4401007)	
	Pollen: 0.096 mg/kg (Parent); 0.029 mg/kg (M4401007)	
	Mean residues at 5 DAA:	
	<u>Flowers:</u> $0.026 \pm 0.003 \text{ mg/kg}$ (Parent); < 0.01 mg/kg (M4401007)	
	<u>Leaves:</u> 0.143 ± 0.012 mg/kg (Parent); 0.07 ± 0.006 mg/kg	
	(M4401007)	
	<u>Nectar:</u> < 0.01 (Parent and M4401007)	
	Pollen: 0.038 ± 0.011 mg/kg (Parent); < 0.01 mg/kg (M4401007)	
	Maximum residues at 5 DAA:	
	Flowers: 0.029 mg/kg (Parent); 0.011 mg/kg (M4401007)	
	Leaves: 2.12 mg/kg (Parent); 0.28 mg/kg (M4401007)	
	<u>Nectar:</u> < 0.01 mg/kg (Parent); < 0.01 mg/kg (M4401007)	
	Pollen: 0.049 mg/kg (Parent); 0.01 mg/kg (M4401007)	0.007.401
EP, Versys Insecticide (9.7%	Mean residues (maximum values) at 0 DAA: Leaves: 1.93 ± 0.250 (2.13) mg/kg (Parent); 4.55 ± 0.588 (5.10)	2627491
a.i.)	<u>Leaves:</u> 1.95 ± 0.250 (2.15) mg/kg (Parent); 4.55 ± 0.588 (5.10) mg/kg (M4401007)	
5-day semi-field test to	<u>Flowers:</u> 1.417 \pm 0.237 (1.67) mg/kg (Parent); 2.07 \pm 0.399 (2.41)	
determine residues in leaves,	$\frac{11000152}{mg/kg}$ (M4401007)	
flowers and pollen (collected	Pollen: Not available	
by bumble bees).		
. ,	Mean residues (maximum values) at 1 DAA:	
Tomato was treated once	<u>Leaves:</u> 0.843 ± 0.225 (1.06) mg/kg (Parent); 1.52 ± 0.246 (1.78)	
using a backpack sprayer at	mg/kg (M4401007)	
50 g a.i./ha during bloom at a	<u>Flowers:</u> 0.837 ± 0.275 (1.01) mg/kg (Parent); 1.187 ± 0.373 (1.49)	
site in Kansas, United States.	mg/kg (M4401007)	
	<u>Pollen:</u> 0.067 ± 0.015 (0.08) mg/kg (Parent); 0.107 ± 0.021 (0.13)	
	mg/kg (M4401007)	
	Mean residues (maximum values) at 2 DAA:	
	<u>Leaves:</u> 0.523 ± 0.136 (0.63) mg/kg (Parent); 0.670 ± 0.178 (0.81)	
	mg/kg (M4401007)	
	<u>Flowers:</u> $0.467 \pm 0.071 (0.53) \text{ mg/kg}$ (Parent); $0.633 \pm 0.166 (0.81)$	
	mg/kg (M4401007)	

Study design	Results	PMRA #
	Pollen: $0.173 \pm 0.031 (0.20) \text{ mg/kg}$ (Parent); $0.353 \pm 0.090 (0.41)$	
	mg/kg (M4401007)	
	Mean residues (maximum values) at 4 DAA:	
	<u>Leaves:</u> $0.263 \pm 0.067 (0.34) \text{ mg/kg}$ (Parent); $0.390 \pm 0.070 (0.47)$	
	mg/kg (M4401007)	
	<u>Flowers:</u> 0.270 ± 0.026 (0.30) mg/kg (Parent); 0.260 ± 0.044 (0.31)	
	mg/kg (M4401007)	
	<u>Pollen:</u> 0.177 \pm 0.059 (0.22) mg/kg (Parent); 0.213 \pm 0.075 (0.29)	
	mg/kg (M4401007)	
	In general, residues of both parent and M440I007 in leaves and	
	flowers declined by $> 80\%$ from 0–4 DAA; residues of M440I007	
	ranged from 1.3 to 2.4-fold higher than those of the parent. In pollen	
	though, afidopyropen residues increased by 2.6-fold from 1–4DAA;	
	residues of M440I007were 1.2 to 2-fold higher than the parent from	
	1–4DAA. Since residues in pollen were not measured on 0DAA, it is	
	unknown whether afidopyropen and M440I007 may have been	
	higher on the day of application.	
	SEMI-FIELD STUDIES	
EP, Versys Insecticide (9.7%	Afidopyropen treatment resulted in significantly lower foraging	2627508
a.i.)	activity during the exposure period relative to the control.	2021300
a.i.)	Afidopyropen treatment also resulted in significantly lower adult	
27 day sami field study		
27-day semi-field study	worker bee mortality during the exposure and monitoring periods;	
(Germany) to determine	however, this effect is not considered adverse. Mean mortality of	
effects on honeybee colonies.	pupae was significantly higher in afidopyropen- and fenoxycarb	
Trans 1 and 108	(reference substance) treated tunnels during the monitoring period.	
Tunnel area: 108 m ² .	There were no significant differences in brood development indices	
	for afidopyropen-treated colonies, but during the exposure and	
Exposure period: 8 days	monitoring periods the mean brood index and brood compensation	
01	index for fenoxycarb-treated colonies were significantly lower. While	
Observation period: 27 days	no sublethal behavioural effects were reported in control tunnels,	
G 1 : 0554 205	afidopyropen treatments resulted in "coordination problems" for	
Colony size: 8574 ± 297	roughly 60 forager bees hours (DAA 00a and DAA 1) after	
bees/colony	applications were made.	
Replicates: 4	Based on statistically significant effects on foraging activity and	
	reduced pupal survival, the NOAEL is < 50 g a.i./ha.	
Phacelia tanacetifolia in full		
bloom were exposed by foliar	NOTE: Study results should be interpreted with caution due to the	
application from a ground-	following issues: adverse weather conditions (high rainfall and	
boom sprayer to 50 g a.i./ha,	temperatures); higher mortality of honeybees in all colonies during	
while bees were actively	the pre-application period (ranging from 71.9 in the control to 75.1 in	
foraging.	the afidopyropen treatment hives); lack of analytical verification of	
-	treatment levels; etc.	
Hives were covered during		
treatment to protect them		
from direct spray.		
EP, Versys Insecticide (9.7%	There were no adverse effects of afidopyropen treatment on	2627505
a.i.)	honeybee mortality, colony development, colony strength or brood	
···· · /	development (brood index, brood compensation index, or brood	
	termination rate). Afidopyropen treatments did however exhibit	
26 Day semi-field study		
26 Day semi-field study (Germany) to determine		
26 Day semi-field study (Germany) to determine effects on honeybee colonies.	significant adverse effects on foraging activity during the exposure phase of the study and sublethal behavioural effects (signs of	

Study design	Results	PMRA #
Tunnel area: 108 m ² crop area	visitations, and impaired coordination) for roughly 200 bees hours	
	after applications were made, and roughly 100 bees up to 1 DAT. By	
Exposure period: 7 days	the conclusion of the study however, there were no significant	
	adverse effects on any of the endpoints measured in afidopyropen-	
Observation period: 26 days	treated colonies relative to negative control colonies. In contrast,	
1	compared to the control and the test item group, significant adverse	
Colony size: 8,813 ± 526	effects were observed in the fenoxycarb-treated groups (reference	
bees/colony	toxicant) for a number of endpoints, indicating the suitability of the	
,	test system to detect effects on honeybee brood development and	
Replicates: 4	colony strength.	
Phacelia tanacetifolia in full	Based on statistically significant effects on foraging activity, the	
bloom were exposed by foliar	NOAEL is < 50 g a.i./ha.	
application from a hand-held		
boom sprayer to 50 g a.i./ha,	NOTE: As treatment levels were not analytically verified in the study	
while bees were actively	and due to possible effects of weather the day after applications, there	
foraging.	is uncertainty regarding actual afidopyropen exposure levels.	
BB.	is an exposure regarding actual and oppropon exposure revers.	
Hives were covered during		
treatment to protect them		
from direct spray.		
nom unoet spruy.		
Note: Food supplies were		
supplemented 14 DAT with		
Nektapoll® (commercial		
pollen substitute/fructose		
potter substitute/fructose		
(commercial sucrose paste).	There were a large offerste of off demonstration to other	2(27500
EP, Versys Insecticide (9.7%	There were no adverse effects of afidopyropen treatment on	2627509
a.i.)	honeybee pupae mortality, colony strength, condition or food. While	
	there was increased adult worker bee mortality following	
41-day semi-field study	afidopyropen applications, and decreased foraging activity during the	
(Germany) to determine	test item exposure phase of the study, at the conclusion of the study	
effects on honeybee colonies.	there were no significant differences in juvenile survival, or colony	
	strength and condition in afidopyropen-treated colonies relative to	
Tunnel area: 108 m ² crop area	control colonies. Therefore, the increased mortality in adult bees and	
	decreased foraging activity following application of afidopyropen	
Exposure period: 7 days	appear to be transient effects.	
Observation period: 41 days		
	Afidopyropen treatments did however exhibit significant adverse	
Colony size: 7627 ± 544	effects on overall mean adult bee mortality and foraging activity	
bees/colony	(during the exposure phase). Afidopyropen treatments also resulted in	
	sublethal behavioural effects (loss of coordination and lethargic	
Replicates: 4	behaviour) after application in roughly 50 bees/tunnel. One to four	
	DAT the study author reported that "few" bees (in each tunnel) were	
Phacelia tanacetifolia in full	observed to fall from flowers while foraging. Significant adverse	
bloom were exposed by foliar	effects were observed in the dimethoate-treated groups (reference	
application from a hand-held	toxicant) for a number of endpoints, indicating the suitability of the	
boom sprayer to 50 g a.i./ha,	test system to detect effects on honeybee brood development and	
while bees were actively	colony strength.	
foraging.		
	Based on statistically significant effects on adult bee mortality and	
TT' 1 1 '	foraging activity, the NOAEL is < 50 g a.i./ha.	
Hives were covered during	101 aging activity, the NOAEL is < 50 g a.i./iia.	

Study design	Results	PMRA #
from direct spray.	NOTE: As treatment levels were not analytically verified in the	
Note: Food supplies were	study, and due to possible effects of weather the day after	
reportedly supplemented 33	applications, there is uncertainty regarding actual afidopyropen	
DAT with 500 g Nektapoll (a	exposure levels.	
commercially available	•	
protein/fructose [patty]		
supplement) and 2500 g		
Apifonda (sucrose paste).		
EP, Versys Insecticide (9.7%	Following daytime or evening applications, there were no adverse	2627507
a.i.)	effects on adult mortality, or pupae during the study.	
93-day semi-field study	Daytime afidopyropen applications resulted in adverse effects on	
(Germany) to determine	foraging activity (during the exposure phase) and brood development	
effects on honeybee colonies.	(throughout the study).	
Tunnel area: 93.5 m ² crop	The mean brood index and brood compensation index were	
area	significantly different (i.e., lower by 35–38 and 29–44%,	
Exposure period: 7 days	respectively) in colonies that received a daytime application of afidopyropen relative to control colonies, and the mean brood	
Exposure period. 7 days	termination rate was significantly different (i.e., higher by 130–	
Observation period: 93 days	169%, respectively) in colonies that received a daytime application of	
Colony size: 0802 ± 220	afidopyropen relative to control colonies. Overall effects from	
Colony size: 9802 ± 239	evening applications of afidopyropen were similar to effects from	
bees/colony	daytime applications, though of slightly lower magnitude (i.e., lower	
Replicates: 4	brood index and brood compensation index, and higher brood termination rate) but these effects were not significantly different	
Replicates: 4	from those in control colonies.	
Phacelia tanacetifolia in full		
bloom were exposed by foliar	Daytime afidopyropen treatments also resulted in sublethal	
application from a portable	behavioural effects within 30 minutes of application: 10–30 bees in	
plot sprayer to 10 g a.i./ha,	each tunnel were motionless, showed reduced ability to respond to	
during the day to correspond	stimulation, fell off of crop plants, exhibited impaired locomotion	
with active bee flight and	and cramping.	
during the evening to avoid		
bee flight.	Evening applications of afidopyropen did not result in any sublethal	
	effects to bees. Overall, afidopyropen applications during the evening	
	when bees were not actively foraging had relatively minimal adverse	
	effects on honeybee colonies.	
	Significant adverse effects were observed in the fenoxycarb- and	
	dimethoate-treated groups (reference toxicant) for a number of	
	endpoints, indicating the suitability of the test system to detect effects	
	on honeybee brood development and colony strength.	
	Based on statistically significant effects on foraging activity and	
	brood development the NOAEL is < 10 g a.i./ha for applications	
	during active bee flight.	
	NOTE: As treatment levels were not analytically verified in the	
	study, and due to possible effects of weather the day after	
	applications, there is uncertainty regarding actual afidopyropen	
	exposure levels.	
EP, Versys Insecticide (9.7%	Although mean bee mortality in afidopyropen-treated tunnels was	2627510
a.i.)	significantly higher than the negative controls at 1, 2 and 4 DAA	
	during the exposure phase of the study and at 15 DAA during the	

Study design	Results	PMRA #
27-day semi-field study	monitoring phase, the effect was transient and overall colony strength	
(Germany) to determine	in terms of total number of adult bees appeared to surpass control	
effects on honeybee colonies.	performance by the end of the monitoring phase. When considered as	
	a combined average across the exposure phase of the study (0–7	
Tunnel area: 127 m ² crop area	DAA), there was no statistical difference in mean (\pm std dev) bee mortality between afidopyropen-treated tunnels (21.7 \pm 5.8) compared	
Exposure period: 7 days	to the negative control (16.4 ± 8.2) . Apart from a slight reduction of foraging activity immediately after application of the test item, no	
Observation period: 27 days Colony size: Several bee	long-term afidopyropen-related adverse effects were observed relative to the negative control. Overall, adult and honeybee brood	
hives were not in the range of approx.	development in the afidopyropen treatment group was similar to the negative control.	
6000–10 000 bees at the	Paged on statistically significant offects on mortality the NOAEL is	
beginning of the study. The 3 smallest hives had 2990	Based on statistically significant effects on mortality the NOAEL is < 50 g a.i./ha	
bees (Cd), 4485		
(R1a) and 4940 (Tc) bees. The strongest hive had 7930 bees (R1c). average strength within the treatments was	NOTE: As treatment levels were not analytically verified in the study, and due to possible effects of weather days after applications, there is uncertainty regarding actual afidopyropen exposure levels.	
very similar (5444, 5379, 6673, 6695 bees/colony in C, T, R1 and R2)		
Replicates: 4		
Flowering oilseed rape were exposed by foliar application from a portable boom sprayer to 50 g a.i./ha, while bees were actively foraging.		
Hives were covered during treatment to protect them from direct spray.		
EP, Versys Insecticide (9.7%	Afidopyropen treatment resulted in significant adverse effects on	2627517
a.i.)	adult worker bee mortality, foraging activity, and colony strength resulting in a NOAEL of < 50 g a.i./ha. However effects were limited	
36-day semi-field study (Germany) to determine	to the first few days of after application.	
effects on honeybee colonies.	Sublethal effects 1–-2 hours after application were also noted where approx. 50 bees in each tunnel were reported to exhibit impaired	
Tunnel area: 93.5 m ² crop	locomotion, and in a few cases moribund behaviour. These same	
area	sublethal effects were reported to have occurred in several bees per	
Exposure period: 7 days	colony through the end of 2 DAT; additionally, over the same time span the study author reported that foraging bees exhibited uncoordinated movements on treated flowers, and fell down to the	
Observation period: 26 days	ground. Adverse treatment effects occurred primarily in the first	
Colony size: 6834–7988	several days of the exposure phase of the study, after which by almost all measures afidopyropen-treated colonies were roughly	
bees/colony	similar to negative control colonies.	
Replicates: 4	NOTE: As treatment levels were not analytically verified in the study, and due to possible effects of weather days after applications,	

Study design	Results	PMRA #
Phacelia tanacetifolia in full	there is uncertainty regarding actual afidopyropen exposure levels.	
bloom were exposed by foliar	Study data from fenoxycarb-treated colonies were highly variable,	
application from a hand-held	thus there is additional uncertainty as to how consistent applications	
boom sprayer to 50 g a.i./ha,	of the afidopyropen and fenoxycarb items were across tunnels.	
while bees were actively	However, residue monitoring during the study provides some	
foraging.	evidence that bees were appropriately exposed to afidopyropen.	
Hives were covered during		
treatment to protect them		
from direct spray.		
nom uncer spray.	FULL-FIELD STUDIES	
BAS 440 OV I (EP, 9.9% a.i.)	Adult bee mortality, total numbers of adults and brood (eggs, larvae,	2627496
	pupae and males), and food reserves were similar between negative	2027190
25 Day full-field study	control and afidopyropen groups.	
(Germany) to determine	control and andopyropen groups.	
effects on honeybee colonies.	A fiden wron on treatment resulted in a statistically significant but	
encets on noneybee colomes.	Afidopyropen treatment resulted in a statistically significant but transient decrease in bee foraging activity on the day of treatment;	
Field size: 13 000 m ² for the	however, foraging activity during the remainder of the study was	
	similar to and/or exceeded that of the negative control. After	
control and approx. 6000 m ² for the treatment.	application on the day of treatment (0aa DAT), approximately 100	
	bees in the afidopyropen-treated dead bee trap were reported as	
European pariod 7 days		
Exposure period: 7 days	having coordination problems; however, the bees were noted as not	
	showing conspicuous behaviour at the assessment after bee flight was	
Observation period: 25 days	observed.	
Colony size: 12 545 ± 2 785	Based on the decrease in adult bee foraging activity, the NOAEC is <	
bees/colony in the control and	50 g a.i./ha; however, this effect did not appear to have any long-term	
11814 ± 1421 bees/colony in	impact on the colony under the conditions tested.	
the test item group		
	NOTE: There is uncertainty regarding exposure given that treatment	
Replicates: 4 bee colonies	solutions were not verified analytically, residue data were not	
1	collected, and use of a reference toxicant was not suitable.	
<i>Phacelia tanacetifolia</i> in full		
bloom were exposed by foliar		
application from an		
agricultural boom sprayer to		
50 g a.i./ha, while bees were		
actively foraging.		
Hives were covered during		
treatment to protect them		
from direct spray.		
EP, Versys (9.8% a.i.)	Afidopyropen treatment resulted in significant adverse effects on	2627498
Li, voisys (2.070 a.l.)	adult worker bee mortality and foraging activity, resulting in a	2021470
13 Day full field study	NOAEL of < 50 g a.i./ha. Sublethal behavioural effects on the day of	
43 Day full-field study		
(Germany) to determine	application were also noted, wherein approximately 200 bees were	
effects on honeybee colonies.	reported as falling from flowers during foraging or inactivity;	
	however, no additional behavioural effects in honeybees in the	
Field size: 13 000 m ² for the	afidopyropen colonies were noted for the remainder of the	
control and approx. 6,000 m ²	assessment period.	
for the treatment.		
	Adverse effects on worker bee mortality and foraging activity	
Exposure period: 9 days	occurred primarily on the day of applications (0 DAT) and on 1	
	DAT, and by the conclusion of the 43-day study afidopyropen-treated	

Study design	Results	PMRA #
Observation period: 43 days	colonies were by all measures similar to or exceeded performance of	
	the negative control colonies.	
Colony size: 15 083 ± 555		
adult bees/colony	NOTE: Treatment levels were not analytically verified, use of a	
-	reference toxicant was not suitable, and due to possible effects of	
Replicates: 7 bee colonies	weather prior to and immediately following applications, there is	
	some uncertainty regarding actual afidopyropen exposure levels.	
Phacelia tanacetifolia in full	However, residue data provide some evidence that bees were exposed	
bloom were exposed by foliar	to afidopyropen in the afidopyropen treatment group.	
application from an portable		
plot sprayer to 50 g a.i./ha,		
while bees were actively		
foraging.		
Hives were covered during		
treatment to protect them		
from direct spray.		

DAA - days after application

¹ Note that all means are followed by \pm one standard error (SE).

Table 18Screening Level Risk Assessment of Afidopyropen, its Transformation Products
and End-use Products for Non-target Terrestrial Species Other than Birds and
Mammals

Organism	Exposure	Endpoint value	EEC ¹	RQ	Level of Concern ²
Invertebrates					
Earthworm	Acute – a.i.	$LC_{50}/2: > 472.5$	0.055 mg a.i./kg	< 0.1	Not exceeded
		mg a.i./kg soil	soil		
	Acute –	$LC_{50}/2: > 462.5$	0.055 mg a.i./kg	< 0.1	Not exceeded
	M440I002	mg a.i./kg soil	soil		
	Acute –	$LC_{50}/2: > 493$	0.055 mg a.i./kg	< 0.1	Not exceeded
	M440I003	mg a.i./kg soil	soil		
	Acute –	$LC_{50}/2: > 454.5$	0.055 mg a.i./kg	< 0.1	Not exceeded
	M440I005	mg a.i./kg soil	soil		
	Acute –	$LC_{50}/2: > 456.5$	0.055 mg a.i./kg	< 0.1	Not exceeded
	M440I024	mg a.i./kg soil	soil		
	Acute – Versys	$LC_{50}/2: > 48.9$	0.055 mg a.i./kg	< 0.1	Not exceeded
	Insecticide	mg a.i./kg soil	soil		
	Acute – Sefina	$LC_{50}/2: > 24.45$	0.055 mg a.i./kg	< 0.1	Not exceeded
	Insecticide	mg a.i./kg soil	soil		
	Reproduction -	NOEC: > 473	0.055 mg a.i./kg	< 0.1	Not exceeded
	a.i.	mg a.i./kg soil	soil		
Collembola,	Reproduction -	NOEC: 154.3	0.055 mg a.i./kg	< 0.1	Not exceeded
Folsomia	a.i.	mg a.i./kg soil	soil		
candida					
Honey bee, Apis	Acute oral,	LD_{50} : > 100 µg	1.45 µg a.i./bee	< 0.014 (LD ₅₀)	Not exceeded
mellifera	adults – a.i.	a.i./bee			
				0.094 (ED ₅₀	
		48-h ED ₅₀ : 15.3		sublethal)	
		µg a.i./bee			
				> 0.35 (NOEL	
		48-h NOEL: <		sublethal)	
		4.1 µg a.i./bee			

Organism	Exposure	Endpoint value	EEC ¹	RQ	Level of Concern ²
	Acute oral,	LD_{50} : > 49.8 µg	1.45 µg a.i./bee	< 0.029 (LD ₅₀)	Not exceeded
	adults – Versys	a.i./bee		0.000	
	Insecticide	06 h ED		$< 0.029 (ED_{50}$	
		96-h ED ₅₀ : > 49.8 μg a.i./bee		sublethal)	
		49.0 μg a.i./ θee		> 0.22 (NOEL	
		96-h NOEL: <		sublethal)	
		6.6 µg a.i./bee			
	Acute oral,	LD ₅₀ : 20.8 µg	1.45 µg a.i./bee	0.07 (LD ₅₀)	Not exceeded
	adults – Sefina	a.i./bee		> 0.22 (ED	
	Insecticide	48-h ED ₅₀ and		> 0.23 (ED ₅₀ sublethal)	
		NOEL: $< 6.3 \mu g$		sublethal)	
		a.i./bee.		> 0.23 (NOEL	
				sublethal)	
	Acute contact,	LD_{50} : > 200 µg	0.12 µg a.i./bee	< 0.0006 (LD ₅₀)	Not exceeded
	adults – a.i.	a.i./bee		> 0.015 (ED	
		48-h ED ₅₀ and		$> 0.015 (ED_{50}$ sublethal)	
		NOAEL: < 8.2		sublethal)	
		µg a.i./bee		> 0.015 (NOEL	
				sublethal)	
	Acute contact,	LD ₅₀ : 49.4 µg	0.12 µg a.i./bee	0.0024 (LD ₅₀)	Not exceeded
	adults – Versys Insecticide	a.i./bee		0.012 (ED	
	Insecticide	96-h ED ₅₀ : 9.4		0.013 (ED ₅₀ sublethal)	
		μg a.i./bee		subtethal	
				> 0.028 (NOEL	
		96-h NOEL: <		sublethal)	
		4.3 μg a.i./bee	0.12 /	0.00((ID))	
	Acute contact, adults – Sefina	LD ₅₀ : 20.3 µg a.i./bee	0.12 µg a.i./bee	0.006 (LD ₅₀)	Not exceeded
	Insecticide	u.i./ 000		> 0.019 (ED ₅₀	
		48-h ED50 and		sublethal)	
		NOEL: < 6.3 µg			
		a.i./bee		> 0.019 (NOEL	
	Acute oral,	LD ₅₀ : 37.57 µg	0.6 μg a.i./larva	sublethal) 0.016 (LD ₅₀)	Not exceeded
	larvae – Versys	a.i./bee	0.0 µg a.i./ 1ai va	$0.010 (LD_{50})$	
	Insecticide			< 0.006 (ED ₅₀	
		96-h ED ₅₀ : >		sublethal)	
		95.63 μg			
	Change in a set	a.i./larva.	1 45		Emonal - J.C
	Chronic oral, adults – a.i.	10-d NOAEL (mortality):	1.45 µg a.i./bee	0.02 (NOEL- mortality)	Exceeded for sublethal effects
	uuuu u.i.	73.31 µg a.i./bee		mortanty)	subienal encets
				5.0 (NOEL	
		10-d NOEL		sublethal effects)	
		(sublethal			
		effects): 0.29 µg a.i./bee		2.2 (LOEL sublethal effects)	
		a.1./ UCC		subjetital effects)	
		10-d LOAEL			
		(sublethal			

Organism	Exposure	Endpoint value	EEC ¹	RQ	Level of Concern ²
		effects): 0.67 µg a.i./bee			
	Chronic oral, larvae – Versys Insecticide	NOED: 4.04 µg a.i./bee	0.6 μg a.i./larva	0.15	Not exceeded
Predatory mite, Typhlodromus	Contact, glass plates – Versys	LR ₅₀ : > 156 g a.i./ha	In-field: 87.89 g a.i./ha	0.6	Not exceeded
pyri	Însecticide		Off-field: 65.04 g a.i./ha	0.4	Not exceeded
	Contact, glass plates – Sefina	LR ₅₀ : 76 g a.i./ha	In-field: 87.89 g a.i./ha	1.2	Not exceeded
	Însecticide		Off-field: 65.04 g a.i./ha	0.9	Not exceeded
Parasitoid wasp, Aphidius	Contact, glass plates – Versys	LR ₅₀ : 81.5 g a.i./ha	In-field: 87.89 g a.i./ha	1.1	Not exceeded
rhopalosiphi	Insecticide		Off-field: 65.04 g a.i./ha	0.8	Not exceeded
	Contact, glass plates – Sefina	LR ₅₀ : 12.3 g a.i./ha	In-field: 87.89 g a.i./ha	7.1	Exceeded
	Insecticide		Off-field: 65.04 g a.i./ha	5.3	Exceeded
Vascular plants					
Vascular plant	Seedling emergence	ER ₂₅ : > 125 g a.i./ha	In-field: 123.55 g a.i./ha	1.0	Not exceeded
		LOER: 125 g a.i./ha	Off-field: 90.93 g a.i./ha	0.7	Not exceeded
	Vegetative vigour	ER ₂₅ : > 125 g a.i./ha	87.89 g a.i./ha	< 0.7	Not exceeded

¹ Estimated environmental concentrations (EECs) at the screening level were determined using maximum exposure scenarios for afidopyropen to achieve the proposed yearly cumulative rate of 125 g a.i./ha. Off-field EECs were determined based on 74% drift from early season airblast application.

Note: Contact exposure = application rate (kg a.i./ha) × adjustment factor (2.4 μ g a.i./bee per kg a.i./ha); adult oral exposure = application rate (kg a.i./ha) × adjustment factor (29 μ g a.i./bee per kg a.i./ha); brood exposure = application rate (kg a.i./ha) x adjustment factor (12.15 μ g a.i./bee per kg a.i./ha).

² Level of concern = 1 for most species; 0.4 for acute risk to pollinators; 1 for chronic risk to pollinators; and 2 for glass plate studies using the standard beneficial arthropod test species.

Note: Acute LOC for bees is set at 0.4; Chronic LOC for bees is set at 1.0.

Table 19 Screening Level Risk Assessment of Afidopyropen for Birds and Mammals

	Toxicity (mg a.i./kg bw/d)	Food Guild (food item)	EDE (mg a.i./kg bw) ¹	RQ	Level of Concern ²
Small Bird (0.0	02 kg)				
Acute	> 9.00	Insectivore	7.15	< 0.79	Not exceeded
Reproduction	6.70	Insectivore	7.15	1.07	Exceeded
Medium Sized	Bird (0.1 kg)				
Acute	> 9.00	Insectivore	5.58	< 0.62	Not exceeded
Reproduction	6.70	Insectivore	5.58	0.83	Not exceeded
Large Sized Bi	rd (1 kg)				
Acute	> 9.00	Herbivore (short grass)	3.61	< 0.40	Not exceeded
Reproduction	6.70	Herbivore (short grass)	3.61	0.54	Not exceeded

	Toxicity (mg	Food Guild (food item)	EDE	RQ	Level of				
	a.i./kg bw/d)		(mg a.i./kg bw) ¹		Concern ²				
Small Mamma	l (0.015 kg)								
Acute	> 9.96	Insectivore	4.11	0.41	Not exceeded				
Reproduction	8.4	Insectivore	4.11	0.49	Not exceeded				
Medium Sized	Medium Sized Mammal (0.035 kg)								
Acute	> 9.96	Herbivore (short grass)	7.98	0.80	Not exceeded				
Reproduction	8.4	Herbivore (short grass)	7.98	0.95	Not exceeded				
Large Sized Ma	Large Sized Mammal (1 kg)								
Acute	> 9.96	Herbivore (short grass)	4.26	0.43	Not exceeded				
Reproduction	8.4	Herbivore (short grass)	4.26	0.51	Not exceeded				

¹ EDE = Estimated dietary exposure; is calculated using the following formula: (FIR/BW) \times EEC, where: FIR: Food Ingestion Rate (Nagy, 1987).

For generic birds with body weight less than or equal to 200 g, the "passerine" equation was used; for generic birds with body weight greater than 200 g, the "all birds" equation was used:

Passerine Equation (body weight < or = 200 g): FIR (g dry weight/day) = 0.398 (BW in g)^{0.850}

All birds Equation (body weight > 200 g): FIR (g dry weight/day) = 0.648 (BW in g)^{0.651}.

For mammals, the "all mammals" equation was used: FIR (g dry weight/day) = 0.235(BW in g) $^{0.822}$ BW: Generic Body Weight

EEC: Concentration of pesticide on food item based on Hoerger and Kenaga (1972) and Kenaga (1973) and modified according to Fletcher *et al.* (1994). At the screening level, relevant food items representing the most conservative EEC for each feeding guild are used.

² Level of concern = 1 for birds and mammals

Sampled Crop	EEC - m residuo (pj	e value		cute RQ exc (0.4)? (RQ)		residu	• mean e value ob)		Chronic R(DC (1.0)? (R		Risk Character-	Residue Data is Related to Proposed Crop
	Pollen	Nectar	Nectar forager	Nurse bees	Bee larvae	Pollen	Nectar	Nectar forager	Nurse bees	Bee larvae	ization	Group
Canola Applied at 1×50 g a.i./ha, during- bloom under <u>semi-field</u> conditions. Samples of honey bee-collected pollen (pollen traps), nectar (honey stomach) collected from forager bees and canola flowers were taken 4 times and pollen directly from flowers once until end of flowering. Flowers generally had higher residues than pollen and nectar. Residues of M440I007 were lower than parent.	Day 0 400 pollen from bees (HB)	Day 0 130 nectar from bees (HB)	No (0.00) Most sensitive lethal endpoint No (>0.01) Most sensitive sublethal endpoint	No (0.00) Most sensitive lethal endpoint No (>0.00) Most sensitive sublethal endpoint	No (0.00) Most sensitive lethal endpoint No (0.00) Most sensitive sublethal endpoint	Day 0 260 pollen from bees (HB)	Day 0 52 nectar from bees (HB)	No (0.00) Most sensitive lethal endpoint No (>0.05) Most sensitive sublethal endpoint	No (0.00) Most sensitive lethal endpoint No (>0.03) Most sensitive sublethal endpoint	No (0.00) Most sensitive lethal endpoint No (0.00) Most sensitive sublethal endpoint	No risk based on lethal or sublethal effects. Residues were most conservative (on first day of application) and toxicity endpoints were the most sensitive.	Canola is not a proposed crop, but can be considered for other bee attracting crops. The application rates for crops with pollinator exposure potential include: -cucurbits and outdoor ornamentals at 125 g a.i./ha -pome fruit at 40 g a.i./ha, and -stone fruit at 20 g a.i./ha Therefore, the canola study, based on rate, is conservative for stone fruit, similar to pome fruit and may under- estimate residues in cucurbit crops. The canola study may be most representative of perennial crops.
Citrus Applied at 1×50 g a.i./ha, during- bloom <u>under field</u> <u>conditions</u> . Samples of pollen and nectar were collected from plants. Other matrices	Day 0 2660 pollen from plants	Day 0 22 nectar from plants	No (0.00) Most sensitive lethal endpoint No (>0.01) Most	No (0.00) Most sensitive lethal endpoint No (>0.00) Most	No (0.00) Most sensitive lethal endpoint No (0.00) Most	Day 0 2280 pollen from plants	Day 0 17 nectar from plants+	No (0.00) Most sensitive lethal endpoint No (>0.02) Most	No (0.00) Most sensitive lethal endpoint No (>0.08) Most	No (0.00) Most sensitive lethal endpoint No (0.00) Most	No risk based on lethal or sublethal effects. Residues were most conservative (on first day of	Citrus is not a crop grown in Canada, but can be considered for other bee attracting crops, particularly orchard crops such as pome fruit or stone fruit. The application rates for crops with pollinator exposure potential

Table 20 Refined Risk To Pollinators Using Field Residues and Laboratory Endpoints

Sampled Crop	EEC - m residu (pj	e value		cute RQ exc (0.4)? (RQ)		residu	• mean e value pb)		Chronic R(DC (1.0)? (R		Risk Character-	Residue Data is Related to Proposed Crop
	Pollen	Nectar	Nectar forager	Nurse bees	Bee larvae	Pollen	Nectar	Nectar forager	Nurse bees	Bee larvae	ization	Group
were also sampled (whole flowers and leaves, pollen residues were the highest). The residues are assumed to be from plants, although the study also indicates samples were taken from forager bees. Residues of M440I007 were lower than parent.			sensitive sublethal endpoint	sensitive sublethal endpoint	sensitive sublethal endpoint			sensitive sublethal endpoint	sensitive sublethal endpoint	sensitive sublethal endpoint	application) and toxicity endpoints were the most sensitive.	include: -cucurbits and outdoor ornamentals at 125 g a.i./ha -pome fruit at 40 g a.i./ha, and -stone fruit at 20 g a.i./ha Therefore, the citrus study, based on rate, is conservative for stone fruit, similar to pome fruit and may underest- imate residues in cucurbit crops. The citrus study may be most representative of orchard crops.
Tomato Applied at 1 × 50 g a.i./ha, during- bloom <u>under field</u> <u>conditions</u> . Samples of pollen were collected from bumble bees. Other matrices were also sampled (whole flowers and leaves). Residues of M440I007 were higher than parent in some cases. *total residues is the sum of both actives, and	Day 0 1.42 Whole flower (no pollen collect- ed) <u>Day 1</u> 0.067 Pollen collect	N/A	Day 0 No (0.00) Most sensitive lethal endpoint No (>0.00) Most sensitive sublethal endpoint Day 1 No (0.00) Most sensitive	Day 0 No (0.00) Most sensitive lethal endpoint No (>0.00) Most sensitive sublethal endpoint Day 1 No (0.00) Most sensitive	Day 0 No (0.00) Most sensitive lethal endpoint No (0.00) Most sensitive sublethal endpoint Day 1 No (0.00) Most sensitive	Day 0 1.67 Whole flower (no pollen collect- ed) <u>Day 1</u> 0.08 Pollen collect-	N/A	Day 0 No (0.00) Most sensitive lethal endpoint No (>0.00) Most sensitive sublethal endpoint Day 1 No (0.00) Most sensitive	Day 0 No (0.00) Most sensitive lethal endpoint No (>0.00) Most sensitive sublethal endpoint Day 1 No (0.00) Most sensitive	Day 0 No (0.00) Most sensitive lethal endpoint No (0.00) Most sensitive sublethal endpoint Day 1 No (0.00) Most sensitive	No risk based on lethal or sublethal effects. Residues were most conservative (on first day of application) and toxicity endpoints were the most sensitive.	Tomato is a proposed crop group and can be considered for other bee attracting crops.

Sampled Crop	residu	EEC - maximum residue value (ppb)		cute RQ exe (0.4)? (RQ)		residu	EEC - mean residue value (ppb)		Did the Chronic RQ exceed LOC (1.0)? (RQ)			Residue Data is Related to Proposed Crop
	Pollen	Nectar	Nectar forager	Nurse bees	Bee larvae	Pollen	Nectar	Nectar forager	Nurse bees	Bee larvae	ization	Group
toxicity of the transformation	ed by bees		lethal endpoint	lethal endpoint	lethal endpoint	ed by bees		lethal endpoint	lethal endpoint	lethal endpoint		
product is assumed to be equal to the	(BB)		No (>0.00)	No (>0.00)	No (0.00)	(BB)		No (>0.00)	No (>0.00)	No (0.00)		
parent.			Most sensitive	Most sensitive	Most sensitive			Most sensitive	Most sensitive	Most sensitive		
			sublethal endpoint	sublethal endpoint	sublethal endpoint			sublethal endpoint	sublethal endpoint	sublethal endpoint		
	<u>Total</u> residue		<u>Total</u> residue	<u>Total</u> residue	<u>Total</u> residue	<u>Total</u> residue		<u>Total</u> residue	<u>Total</u> residue	<u>Total</u> residue		
	<u>Day 0</u> 3.5		<u>Day 0</u> No	<u>Day 0</u> No	<u>Day 0</u> No	<u>Day 0</u> 4.08		<u>Day 0</u> No	<u>Day 0</u> No	<u>Day 0</u> No		
	Whole		(0.00) <i>Most</i>	(0.00) <i>Most</i>	(0.00) <i>Most</i>	Whole		(0.00) <i>Most</i>	(0.00) <i>Most</i>	(0.00) <i>Most</i>		
	(no pollen		sensitive lethal	sensitive lethal endpoint	sensitive lethal	flower (no pollen		sensitive lethal endpoint	sensitive lethal endpoint	sensitive lethal		
	collect- ed)		endpoint	enapoini	endpoint	collect- ed)		епаротт	епарот	endpoint		
			No (>0.00)	No (>0.01)	No (0.00)			No (>0.00)	No (>0.14)	No (0.00)		
			Most sensitive	Most sensitive	Most sensitive			Most sensitive	Most sensitive	Most sensitive		
			sublethal endpoint	sublethal endpoint	sublethal endpoint			sublethal endpoint	sublethal endpoint	sublethal endpoint		

NOTES: To derive an **acute EEC value** for use in the refined acute oral risk assessment, the *maximum* residue values in pollen and nectar were selected from relevant residue trials. The maximum value was considered the most relevant for the acute risk assessment as there was considerable spatial and temporal variability in the available residue data. To derive a **chronic EEC value** for use in the refined chronic oral risk assessment, the *highest daily mean* residue values in pollen and nectar were selected from relevant residue trials. The highest daily mean was considered the most relevant for the chronic risk assessment as bees in the Tier I chronic studies are typically exposed to afidopyropen over a prolonged period of time (3–4 days for larvae and 10 days for adults).

Acute and chronic risk estimates were calculated for each crop selected for use in the risk assessment by comparing the residue with the toxicity endpoint. The **estimated daily dose value** for relevant bee castes is based on the refined acute or chronic EEC values and the most conservative estimated food consumption rates for adult bees (i.e., 292 mg/day nectar and 0.041 mg/day pollen for worker bees foraging for nectar (nectar foragers); 140 mg/day nectar and 9.6 mg/day pollen for nurse bees consuming pollen and nectar) and mature bee larvae (i.e., 120 mg/day nectar and 3.6 mg/day pollen). The relative importance of each caste of bee in maintaining hive health was not a factor in the choice of food consumption rates, as adverse effects on any of the castes could potentially affect the hive. The **acute estimated daily dose value** is calculated by adding the daily nectar dose [(nectar consumption rate (mg/day) × maximum nectar residue (μ g/kg)/1.0 × 10⁶)] with the daily pollen dose [(pollen consumption rate (mg/day) × maximum pollen residue (μ g/kg)/1.0 × 10⁶)]. The **chronic estimated daily dose value** is calculated the same way except using the highest daily mean residues in nectar and pollen.

Sampled Crop	residu	naximum e value pb)	Did the Acute RQ exceed LOC (0.4)? (RQ)		residu	EEC - mean residue value (ppb)		Did the Chronic RQ exceed LOC (1.0)? (RQ)		Risk Character-	Residue Data is Related to Proposed Crop	
	Pollen	Nectar	Nectar forager	Nurse bees	Bee larvae	Pollen	Nectar	Nectar forager	Nurse bees	Bee larvae	ization	Group

Acute and chronic risk quotients (RQ) were also calculated in accordance with the Guidance for Assessing Pesticide Risks to Bees for each bee caste by dividing the estimated daily dose by the corresponding Tier I toxicity endpoint. The RQ value is compared to the corresponding LOC value for either acute (0.4) or chronic (1.0) risk. If one or more of the RQ values exceeds the LOC, risk to honey bee colonies cannot be excluded and a higher tiered risk assessment may be warranted.

Lethal endpoints:

adult acute oral LD₅₀ = 20.8 μ g a.i./bee for TGAI; bee larvae acute LD₅₀ = 37.57 μ g a.i./larva/day adult chronic oral NOEC = 73.31 μ g a.i./bee for TGAI; bee larvae NOEL: 4.04 μ g a.i./larva/day **Sublethal endpoints:**

adult acute oral $ED_{50} = \langle 4.1 \ \mu g \ a.i./bee$ for TGAI; bee larvae acute $LD_{50} = 37.57 \ \mu g \ a.i./larva/day$ adult chronic oral NOEC = 0.29 $\mu g \ a.i./bee$ for TGAI; bee larvae NOEL: 4.04 $\mu g \ a.i./larva/day$

Table 21Further Characterization of the Risk of the End-use Product Sefina Insecticide
to Non-target Predatory and Parasitic Arthropods Using Results from Extended
Laboratory Studies

Organism	Exposure	Endpoint Value	EEC ¹	RQ	Level of Concern ¹	
Predatory	Extended laboratory	LR ₅₀ : 141	In-field (87.89 g a.i./ha \times 0.8 foliar	0.5	Not	
arthropod,	(14-d Contact; spray	g a.i./ha	deposition factor): 70.31 g a.i./ha		exceeded	
Typhlodromus	residue on bean	-	Off-field (87.89 g a.i./ha \times 74% drift ²	< 0.1	Not	
pyri	leaves)		$\times 0.1$ vegetation distribution factor):		exceeded	
			6.5 g a.i./ha			
	Sefina Insecticide		Off-field (87.89 g a.i./ha \times 6% drift ³	< 0.1	Not	
			$\times 0.1$ vegetation distribution factor):		exceeded	
			0.53 g a.i./ha			
		NOER:	In-field (87.89 g a.i./ha \times 0.8 foliar	2.8	Exceeded	
		25 g	deposition factor): 70.31 g a.i./ha			
		a.i./ha	Off-field (87.89 g a.i./ha \times 74% drift ²	0.3	Not	
			\times 0.1 vegetation distribution factor):		exceeded	
			6.5 g a.i./ha			
			Off-field (87.89 g a.i./ha \times 6% drift ³	< 0.1	Not	
			\times 0.1 vegetation distribution factor):		exceeded	
			0.53 g a.i./ha			
Parasitoid	Extended laboratory	LR ₅₀ : >	In-field (87.89 g a.i./ha \times 0.8 foliar	< 0.5	Not	
arthropod,	(13-d Contact; spray	147 g	deposition factor): 70.31 g a.i./ha		exceeded	
Aphidius	residue on bean	a.i./ha	Off-field (87.89 g a.i./ha \times 74% drift ²	< 0.1	Not	
rhopalosiphi	leaves)		\times 0.1 vegetation distribution factor):		exceeded	
			6.5 g a.i./ha	0.1		
	Sefina Insecticide		Off-field (87.89 g a.i./ha \times 6% drift ³	< 0.1	Not	
			\times 0.1 vegetation distribution factor):		exceeded	
		NOED	0.53 g a.i./ha	0.7		
		NOER:	In-field (87.89 g a.i./ha \times 0.8 foliar	0.7	Not	
		98 g	deposition factor): 70.31 g a.i./ha	.0.1	exceeded	
		a.i./ha	Off-field (87.89 g a.i./ha \times 74% drift ²	< 0.1	Not	
			\times 0.1 vegetation distribution factor):		exceeded	
			6.5 g a.i./ha	< 0.1	Nat	
			Off-field (87.89 g a.i./ha \times 6% drift ³	< 0.1	Not exceeded	
			\times 0.1 vegetation distribution factor): 0.53 g a.i./ha		exceeded	
Green	Extended laboratory	LR ₅₀ : >	In-field (87.89 g a.i./ha \times 0.8 foliar	< 0.5	Not	
lacewing,	(37-d Contact; spray	150 g	deposition factor): 70.31 g a.i./ha	< 0.5	exceeded	
Chrysoperla	residue on bean	a.i./ha	Off-field (87.89 g a.i./ha \times 74% drift ²	< 0.1	Not	
carnea	leaves)	u.1./11a	$\times 0.1$ vegetation distribution factor):	< 0.1	exceeded	
curneu	100000	NOER:	6.5 g a.i./ha		CALLULU	
	Sefina Insecticide	150 g	Off-field (87.89 g a.i./ha \times 6% drift ³	< 0.1	Not	
	Serina miseenerae	a.i./ha	$\times 0.1$ vegetation distribution factor):	< 0.1	exceeded	
			0.53 g a.i./ha		executed	

¹ Level of concern = 1

² 74% drift from early season airblast application.

³ 6% drift from field sprayer application using minimum spray droplet size of 'medium'. This method of application with lower drift serves to bracket the risk from drift using all application methods.

Table 22Risk Assessment of Afidopyropen for Birds Using Maximum Residues Expected
Following Multiple Applications on Ornamentals

	Toxicity		On-fi	eld	Off Fie	eld ²
	(mg a.i./kg bw/d)	Food Guild (food item)	EDE (mg a.i./kg bw) ¹	RQ	EDE (mg a.i./kg bw) ¹	RQ
Small Bird (0.0		<u>.</u>	<u>_</u>		<u> </u>	
Acute	> 9.00	Insectivore	7.15	0.8	5.29	0.6
Acute	> 9.00	Granivore (grain and seeds)	1.11	0.1	0.82	0.1
	> 9.00	Frugivore (fruit)	2.21	0.2	1.64	0.2
Diotomy	7.09	Insectivore	7.15	1.01	5.29	0.2
Dietary	7.09	Granivore (grain and seeds)	1.11	0.2	0.82	0.1
	7.09	Frugivore (fruit)	2.21	0.3	1.64	0.1
Denne dreetien	6.70	Insectivore	7.15	1.07	5.29	0.2
Reproduction	6.70	Granivore (grain and seeds)	1.11	0.2	0.82	0.0
	6.70	Frugivore (fruit)	2.21	0.3	1.64	0.1
Medium Sized			2.21	0.5	1.04	0.2
	> 9.00	Insectivore	5.58	0.6	4.13	0.5
Acute	> 9.00	Granivore (grain and seeds)	0.86	0.0	0.64	0.1
	> 9.00	Frugivore (fruit)	1.73	0.2	1.28	0.1
Dietary	7.09	Insectivore	5.58	0.8	4.13	0.6
Dietary	7.09	Granivore (grain and seeds)	0.86	0.0	0.64	0.0
	7.09	Frugivore (fruit)	1.73	0.2	1.28	0.1
Reproduction	6.70	Insectivore	5.58	0.2	4.13	0.2
Reproduction	6.70	Granivore (grain and seeds)	0.86	0.0	0.64	0.0
	6.70	Frugivore (fruit)	1.73	0.3	1.28	0.2
Large Sized Bi						
-	> 9.00	Insectivore	1.63	0.2	1.21	0.1
Acute	> 9.00	Granivore (grain and seeds)	0.25	0.0	0.19	0.0
	> 9.00	Frugivore (fruit)	0.50	0.1	0.37	0.0
	> 9.00	Herbivore (short grass)	3.61	0.4	2.67	0.3
	> 9.00	Herbivore (long grass)	2.20	0.2	1.63	0.2
	> 9.00	Herbivore (Broadleaf plants)	3.34	0.4	2.47	0.3
D :	7.09	Insectivore	1.63	0.2	1.21	0.2
Dietary	7.09	Granivore (grain and seeds)	0.25	0.0	0.19	0.0
	7.09	Frugivore (fruit)	0.50	0.1	0.37	0.1
	7.09	Herbivore (short grass)	3.61	0.5	2.67	0.4
	7.09	Herbivore (long grass)	2.20	0.3	1.63	0.2
	7.09	Herbivore (Broadleaf plants)	3.34	0.5	2.47	0.3
Poproduction	6.70	Insectivore	1.63	0.2	1.21	0.2
Reproduction	6.70	Granivore (grain and seeds)	0.25	0.0	0.19	0.0
	6.70	Frugivore (fruit)	0.50	0.1	0.37	0.1
	6.70	Herbivore (short grass)	3.61	0.5	2.67	0.4
	6.70	Herbivore (long grass)	2.20	0.3	1.63	0.2
	6.70	Herbivore (Broadleaf plants)	3.34	0.5	2.47	0.4

¹ EDE = Estimated dietary exposure; is calculated using the following formula: (FIR/BW) \times EEC, where:

FIR: Food Ingestion Rate (Nagy, 1987). For generic birds with body weight less than or equal to 200 g, the "passerine" equation was used; for generic birds with body weight greater than 200 g, the "all birds" equation was used:

Passerine Equation (body weight < or = 200 g): FIR (g dry weight/day) = 0.398(BW in g) $^{0.850}$ All birds Equation (body weight > 200 g): FIR (g dry weight/day) = 0.648(BW in g) $^{0.651}$ BW: Generic Body Weight

EEC: Concentration of pesticide on food item based on Hoerger and Kenaga (1972) and Kenaga (1973) and modified according to Fletcher *et al.* (1994). At the screening level, relevant food items representing the most conservative EEC for each feeding guild are used.

² Off-field drift calculated assuming 74% drift resulting from an early season airblast application.

Table 23Risk Assessment of Afidopyropen for Birds Using Mean Residues Expected
Following Multiple Applications on Ornamentals

	Toxicity		On-fie	ld	Off Fie	ld ²
	(mg a.i./kg bw/d) Food Guild (food item)		EDE (mg a.i./kg bw) ¹	RQ	EDE (mg a.i./kg bw) ¹	RQ
Small Bird (0.	02 kg)		<u> </u>		<u> </u>	
Acute > 9.00		Insectivore	4.94	0.55	3.66	0.41
	> 9.00	Granivore (grain and seeds)	0.53	0.06	0.39	0.04
	> 9.00	Frugivore (fruit)	1.06	0.12	0.78	0.09
Dietary	7.09	Insectivore	4.94	0.70	3.66	0.52
Dietary	7.09	Granivore (grain and seeds)	0.53	0.07	0.39	0.06
	7.09	Frugivore (fruit)	1.06	0.15	0.78	0.11
Reproduction	6.70	Insectivore	4.94	0.74	3.66	0.55
in production	6.70	Granivore (grain and seeds)	0.53	0.08	0.39	0.06
	6.70	Frugivore (fruit)	1.06	0.16	0.78	0.12
Medium Sized	Bird (0.1 kg)					
Acute	> 9.00	Insectivore	3.85	0.43	2.85	0.32
Tieute	> 9.00	Granivore (grain and seeds)	0.41	0.05	0.30	0.03
	> 9.00	Frugivore (fruit)	0.82	0.09	0.61	0.07
Dietary	7.09	Insectivore	3.85	0.54	2.85	0.40
	7.09	Granivore (grain and seeds)	0.41	0.06	0.30	0.04
	7.09	Frugivore (fruit)	0.82	0.12	0.61	0.09
Reproduction	6.70	Insectivore	3.85	0.58	2.85	0.43
	6.70	Granivore (grain and seeds)	0.41	0.06	0.30	0.05
	6.70	Frugivore (fruit)	0.82	0.12	0.61	0.09
Large Sized Bi		I	1			
Acute	> 9.00	Insectivore	1.13	0.13	0.83	0.09
Tieute	> 9.00	Granivore (grain and seeds)	1.13	0.13	0.09	0.01
	> 9.00	Frugivore (fruit)	0.24	0.03	0.18	0.02
	> 9.00	Herbivore (short grass)	1.28	0.14	0.95	0.11
	> 9.00	Herbivore (long grass)	0.72	0.08	0.53	0.06
	> 9.00	Herbivore (Broadleaf plants)	1.10	0.12	0.82	0.09
Dietary	7.09	Insectivore	1.13	0.16	0.83	0.12
	7.09	Granivore (grain and seeds)	1.13	0.16	0.09	0.01
	7.09	Frugivore (fruit)	0.24	0.03	0.18	0.03

	Torrigity		On-field		Off Fie	eld ²
	Toxicity (mg a.i./kg bw/d)	Food Guild (food item)	EDE (mg a.i./kg bw) ¹	RQ	EDE (mg a.i./kg bw) ¹	RQ
	7.09	Herbivore (short grass)	1.28	0.18	0.95	0.13
	7.09	Herbivore (long grass)	0.72	0.10	0.53	0.08
	7.09	Herbivore (Broadleaf plants)	1.10	0.16	0.82	0.12
Reproduction	6.70	Insectivore	1.13	0.17	0.83	0.12
Reproduction	6.70	Granivore (grain and seeds)	1.13	0.17	0.09	0.01
	6.70	Frugivore (fruit)	0.24	0.04	0.18	0.03
	6.70	Herbivore (short grass)	1.28	0.19	0.95	0.14
	6.70	Herbivore (long grass)	0.72	0.11	0.53	0.08
	6.70	Herbivore (Broadleaf plants)	1.10	0.16	0.82	0.12

 1 EDE = Estimated dietary exposure; is calculated using the following formula: (FIR/BW) × EEC, where: FIR: Food Ingestion Rate (Nagy, 1987). For generic birds with body weight less than or equal to 200 g, the "passerine" equation was used; for generic birds with body weight greater than 200 g, the "all birds" equation was used:

Passerine Equation (body weight < or = 200 g): FIR (g dry weight/day) = $0.398(BW \text{ in g})^{0.850}$ All birds Equation (body weight > 200 g): FIR (g dry weight/day) = $0.648(BW \text{ in g})^{0.651}$

BW: Generic Body Weight

EEC: Concentration of pesticide on food item based on Hoerger and Kenaga (1972) and Kenaga (1973) and modified according to Fletcher *et al.* (1994). At the screening level, relevant food items representing the most conservative EEC for each feeding guild are used.

² Off-field drift calculated assuming 74% drift resulting from an early season airblast application.

Table 24Toxicity of Afidopyropen, its Transformation Products and End-use Products to
Non-target Aquatic Species

Organism	Exposure	Test substance	Endpoint value	Degree of toxicity ¹	PMRA #
Freshwater sp	ecies				
Daphnia magna	48-h Acute	Afidopyropen (TGAI, 95.74%)	EC ₅₀ = 8.89 mg a.i./L (immobilization) Sublethal effects were observed in 100% of daphnids in all treatment	Moderately toxic	2628041
	48-h Acute	EP, Sefina Insecticide (4.8% a.i.)	groups 48 hours after exposure. EC ₅₀ = 0.09 mg a.i./L (immobilization)	Very highly toxic	2627059
	48-h Acute	EP, Versys Insecticide (9.7% a.i.)	EC ₅₀ = 0.12 mg a.i./L (immobilization)	Highly toxic	2627480
	21-d Chronic	Afidopyropen (TGAI, purity 94.54%)	NOAEC = 123.0 ng a.i./L (adult body weight)	N/A	2628043
Ceriodaphnia dubia	7-d Chronic	Afidopyropen (TGAI, purity 94.54%)	NOAEC = 181.5 ng a.i./L (reproductive endpoints) 50% mortality in the highest treatment group, NOAEC for parental survival = 404.5 ng a.i./L	N/A	2628049
Moina	10-d	Afidopyropen	NOAEC = 849.3 ng a.i./L (no	N/A	2628047

Organism	Exposure	Test substance	Endpoint value	Degree of toxicity ¹	PMRA #
macrocopa	Chronic	(TGAI, purity 94.54%)	treatment-related effects at highest concentration tested)		
Amphipod, Hyalella azteca	10-d Acute, spiked sediment	Afidopyropen (TGAI, purity 94.54%)	Pore water: NOAEC = 29.9 μ g a.i./L LOAEC = 59.0 μ g a.i./L IC ₅₀ > 280 μ g a.i./L Endpoints based on treatment-related	N/A	2628061
			reductions in dry weight.		
Midge, Chironomus dilutus	10-d Acute, spiked sediment	Afidopyropen (TGAI, purity 94.54%)	Pore water: NOAEC = $265 \ \mu g \ a.i./L$ LOAEC > $265 \ \mu g \ a.i./L$ IC ₅₀ > $265 \ \mu g \ a.i./L$ No treatment-related effects at highest concentration tested.	N/A	2628063
	10-d Acute, spiked sediment	M440I024, purity 91.3%	Pore water: NOAEC = 6.34 mg a.i./L LOAEC > 6.34 mg a.i./L LC ₅₀ /IC ₅₀ > 6.34 mg a.i./L No treatment-related effects at highest concentration tested.	N/A	2628067
	40-d Chronic, spiked sediment	Afidopyropen (TGAI, purity 94.54%)	Pore water: NOAEC = $0.161 \ \mu g \ a.i./L$ LOAEC > $0.161 \ \mu g \ a.i./L$ EC ₅₀ > $0.161 \ \mu g \ a.i./L$ No treatment-related effects at highest concentration tested.	N/A	2628071
Midge, Chironomus riparius	25-d Chronic, spiked water	Afidopyropen (TGAI, purity 94.54%)	Pore water: NOAEC = $3.00 \ \mu g \ a.i./L$ LOAEC > $3.00 \ \mu g \ a.i./L$ EC ₅₀ > $3.00 \ \mu g \ a.i./L$ Overlying water: NOAEC = $22.01 \ \mu g \ a.i./L$ LOAEC > $22.01 \ \mu g \ a.i./L$ EC ₅₀ > $22.01 \ \mu g \ a.i./L$ No treatment-related effects at highest concentration tested.	N/A	2628051
Rainbow trout, Oncorhynchus mykiss	96-h Acute, static- renewal	Afidopyropen (TGAI, purity 94.54%)	$LC_{50} = 19.98$ mg a.i./L Sublethal behavioural effects were observed at only the two highest test concentrations (lethargy and loss of coordination).	Slightly toxic	2628027
	96-h Acute, static- renewal	EP, Sefina Insecticide (4.8% a.i.)	$LC_{50} = 0.043$ mg a.i./L (equivalent to 0.893 mg EP/L) Sublethal behavioural effects were observed in all but the lowest concentration tested (loss of	Very highly toxic	2627057

Organism	Exposure	Test substance	Endpoint value	Degree of toxicity ¹	PMRA #
			equilibrium, erratic swimming and		
			abnormal opercular flap movement).		
	96-h Acute,	EP, Versys	$LC_{50} = 0.096$ mg a.i./L (equivalent to	Very highly	2627478
	static- renewal	Insecticide (9.7% a.i.)	0.987 mg EP/L)	toxic	
			Sublethal behavioural effects were		
			observed in all but the lowest		
			concentration tested (erratic		
			swimming and abnormal opercular flap movement).		
Fathead	96-h Acute,	Afidopyropen	$LC_{50} = 19.9 \text{ mg a.i./L}$	Slightly	2628031
minnow,	static-	(TGAI,		toxic	
Pimephales	renewal	94.54% a.i.)	Sublethal behavioural effects were		
promelas			observed at two intermediate test		
			concentrations (loss of equilibrium and lethargy).		
	33-d ELS,	Afidopyropen	NOAEC = 0.297 mg a.i./L	N/A	2628035
	flow-through	(TGAI, purity	LOAEC = 0.937 mg a.i./L (based on	11/21	2020033
	now unough	94.54%)	reductions in wet weight and length)		
			No treatment-related effects on hatching success or survival.		
Carp,	96-h Acute,	Afidopyropen	$LC_{50} = 17.2 \text{ mg a.i./L}$	Slightly	2628033
Cyprinus	static-	(TGAI, purity		toxic	
carpio	renewal	95.74%)	Sublethal behavioural effects were		
			observed at the three highest test		
			concentrations (loss of equilibrium,		
			lethargy and various other effects).		
Diatom, Navicula	96-h Acute	Afidopyropen (TGAI, purity	$IC_{50} = 14.73 \text{ mg a.i./L} (AUC)$	N/A	2628057
pelliculosa		94.54%)	There were significant effects on		
			yield, growth rate, and area under the		
			growth curve (AUC), resulting in a		
Green algae,	72-h Acute	Afidopyropen	NOAEC of 1.99 mg a.i./L. $IC_{50} = 20.37$ mg a.i./L (yield)	N/A	2628059
Pseudokirchn	72-II Acute	(TGAI, purity	$1C_{50} = 20.37 \text{ mg a.i./L (yield)}$	1N/ A	2028039
eriella		95.74%)	There were significant effects on		
subcapitata			yield, growth rate, and area under the		
			growth curve (AUC), resulting in a		
	96-h Acute	EP, Sefina	NOAEC of 6.1 mg a.i./L. IC ₅₀ = 0.385 mg a.i./L (AUC)	N/A	2627062
	50 Il Medic	Insecticide	1050 – 0.505 mg a.i./ L (100)	14/24	2027002
		(4.8% a.i.)	There were significant effects on		
			yield, growth rate, and area under the		
			growth curve (AUC), resulting in a		
			NOAEC of 0.014 mg a.i./L.		
	96-h Acute	EP, Versys Insecticide	$IC_{50} = 0.314 \text{ mg a.i./L} (AUC)$	N/A	2627483
		(9.7% a.i.)	There were significant effects on		
			yield, growth rate, and area under the		
			growth curve (AUC), resulting in a NOAEC of 0.028 mg a.i./L.		
Blue-green algae,	96-h Acute	Afidopyropen (TGAI, purity	IC ₅₀ > 44.20 mg a.i./L (AUC)	N/A	2628053

Organism	Exposure	Test substance	Endpoint value	Degree of toxicity ¹	PMRA #
Anabaena flos-aquae		94.54%)	There were minimal effects on yield, growth rate, and area under the growth curve (AUC), resulting in a NOAEC of 21.80 mg a.i./L (second highest concentration tested).		
Vascular plant, duckweed, <i>Lemna gibba</i>	7-d Dissolved	Afidopyropen (TGAI, purity 94.54%)	IC ₅₀ = 8.74 mg a.i./L (for most sensitive endpoint of frond number yield) There were significant effects on frond growth rate and yield, and dry weight growth rate and yield, resulting in a NOAEC of 1.58 mg a.i./L (lowest treatment concentration).	N/A	2628073
Marine species		1	1	I	
Amphipod, Leptocheirus plumulosus	10-d Acute, spiked sediment	Afidopyropen (TGAI, purity 94.54%)	Pore water: NOAEC < 9.1 μ g a.i./L LOAEC = 9.1 μ g a.i./L LC ₅₀ = 84.7 μ g a.i./L (pore water) Endpoints based on survival. Sublethal effects (amphipods leaving sediment or located on sediment surface) increased in severity through the duration of the study, and appeared to progress towards mortality (52% mortality at the highest treatment concentration).	N/A	2628065
	10-d Acute, spiked sediment	Afidopyropen (TGAI, purity 94.54%)	Pore water: NOAEC = $5.0 \ \mu g \ a.i./L$ LOAEC > $5.0 \ \mu g \ a.i./L$ LC ₅₀ > $5.0 \ \mu g \ a.i./L$ No treatment-related effects at highest concentration tested. Sublethal effects not reported.	N/A	2628069
Crustacean, mysid shrimp, <i>Americamysis</i> bahia	96-h Acute	Afidopyropen (TGAI, purity 94.54%)	$LC_{50} = 4.49 \text{ mg a.i./L (survival)}$ There were behavioural abnormalities (lethargy and erratic swimming) in many surviving mysids across all treatment groups and time points, with the percentage of test animals expressing sublethal effects increasing over time. After 96 hours, all surviving mysids in test substance treatment concentrations greater than 0.28 mg a.i./L were reported as showing sublethal effects.	Moderately toxic	2628023
	28-d Chronic	Afidopyropen (TGAI, purity 94.54%)	NOAEC = 3.96 ng a.i./L (no. offspring/female) There were significant effects on	N/A	2628045

Organism	Exposure	Test	Endpoint value	Degree of	PMRA #
		substance		toxicity ¹	
			post-pairing survival; days to first brood release; no. offspring/surviving		
			female; and offspring survival.		
			Sublethal behavioural effects		
			(lethargy, erratic swimming, and loss		
			of equilibrium) were observed at all		
			treatment levels and appeared dose-		
			responsive for both first and second		
			generation mysids.		
Mollusk,	96-h Acute	Afidopyropen	$IC_{50} = 1.43 \text{ mg a.i./L}$ (shell	Moderately	2628021
Eastern oyster,		(TGAI, purity 94.54%)	deposition)	toxic	
Crassostrea		, , , , , , , , , , , , , , , , , , ,	No mortality was observed in any		
virginica			treatment group. At study		
			termination, all oysters in the two		
			highest treatment groups (4.16 and		
			6.81 mg a.i./L) appeared closed and		
			in the highest treatment group		
			reportedly did not produce fecal		
			matter (suggesting abstinence from feeding).		
Marine	96-h Acute	Afidopyropen	$IC_{50} = 2.04 \text{ mg a.i./L (yield)}$	N/A	2628055
diatom,		(TGAI, purity			
Skeletonema		94.54%)	There were significant effects on		
costatum			yield, growth rate, and area under the		
			growth curve (AUC), resulting in a NOAEC of 0.07 mg a.i./L.		
Sheepshead	96-h Acute,	Afidopyropen	$LC_{50} > 31.5 \text{ mg a.i./L}$	Slightly	2628019
minnow, <i>Cyprinodon</i>	static	(TGAI, purity 94.54%)	NOAEC: 31.5 mg a.i./L	toxic	2020019
variegatus		74.5470)	No treatment-related effects at		
U U			highest concentration tested.		
	34-d ELS,	Afidopyropen	NOAEC < 0.0818 mg a.i./L	N/A	2628037
	flow-through	(TGAI, purity	LOAEC = 0.0818 mg a.i./L (based on		
		94.54%)	reductions in wet weight and length)		
			Due to statistically significant		
			inhibitions in length (4.2%) and wet		
			weight (7.9%) at the lowest treatment level $(0.0818 \text{ mg a i}/\text{I})$ the study		
			level (0.0818 mg a.i./L), the study resulted in a non-definitive NOAEC.		
			No treatment-related effects on		
			hatching success or survival.		

¹ USEPA classification, where applicable

Table 25 Screening Level Risk Assessment of Afidopyropen for Aquatic Species

Organism	Exposure	Endpoint value (mg a.i./L)	EEC ¹ (mg a.i./L)	RQ	Level of Concern ²
Freshwater species					
Invertebrate, Daphnia	Acute – a.i.	EC ₅₀ /2: 4.4	0.0154	< 0.1	
magna	Acute – Versys	EC ₅₀ /2: 0.06	0.0154	0.3	
	Insecticide				

Organism	Exposure	Endpoint value	EEC ¹	RQ	Level of
		(mg a.i./L)	(mg a.i./L)		Concern ²
	Acute – Sefina Insecticide	EC ₅₀ /2: 0.045	0.0154	0.3	Not exceeded
	Chronic – a.i.	NOEC: 0.000 123	0.0154	124.8	Exceeded
Ceriodaphnia dubia	Chronic – a.i.	NOEC: 0.000 181 5	0.0154	84.6	Exceeded
Moina macrocopa	Chronic – a.i.	NOEC: 0.000 849 3	0.0154	18.1	Exceeded
Carp, Cyprinus carpio	Acute – a.i.	LC ₅₀ /10: 1.789	0.0154	< 0.1	Not exceeded
Rainbow trout, Oncorhynchus mykiss	Acute – Versys Insecticide	LC ₅₀ /10: 0.0096	0.0154	1.6	Exceeded
	Acute – Sefina Insecticide	LC ₅₀ /10: 0.0043	0.0154	3.6	Exceeded
Fathead minnow, Pimephales promelas	ELS – a.i.	NOEC: 0.297	0.0154	< 0.1	Not exceeded
Amphibians (using	Acute – a.i.	LC ₅₀ /10: 1.789	0.0819	< 0.1	Not exceeded
fish data as a surrogate)	Acute – Versys Insecticide	LC ₅₀ /10: 0.0096	0.0819	8.5	Exceeded
	Acute – Sefina Insecticide	LC ₅₀ /10: 0.0043	0.0819	19.0	Exceeded
	ELS – a.i.	NOEC: 0.297	0.0819	0.3	Not exceeded
Aquatic vascular plants, <i>Lemna gibba</i>	Dissolved – a.i.	IC ₅₀ /2: 4.37	0.0154	< 0.1	Not exceeded
Diatom, Navicula pelliculosa	Acute – a.i.	IC ₅₀ /2: 7.365	0.0154	< 0.1	Not exceeded
Green algae,	Acute – a.i.	IC ₅₀ /2: 10.185	0.0154	< 0.1	Not exceeded
Pseudokirchneriella subcapitata	Acute – Versys Insecticide	IC ₅₀ /2: 0.157	0.0154	< 0.1	Not exceeded
-	Acute – Sefina Insecticide	IC ₅₀ /2: 0.193	0.0154	< 0.1	Not exceeded
Marine species			•		
Crustacean, mysid	Acute – a.i.	LC ₅₀ /2: 2.245	0.0154	< 0.1	Not exceeded
shrimp, Americamysis bahia	Chronic – a.i.	NOEC: 0.000 003 96	0.0154	3889	Exceeded
Mollusk, Eastern oyster, Crassostrea virginica	Acute – a.i.	LC ₅₀ /2: 0.715	0.0154	< 0.1	Not exceeded
Sheepshead minnow,	Acute – a.i.	$LC_{50}/10: > 3.15$	0.0154	< 0.1	Not exceeded
Cyprinodon variegatus	ELS – a.i.	NOEC: < 0.0818	0.0154	> 0.2	Not exceeded
Marine diatom, Skeletonema costatum	Acute – a.i.	IC ₅₀ /2: 1.02	0.0154	< 0.1	Not exceeded

¹ Estimated environmental concentrations (EECs) at the screening level in water bodies 80 cm and 15 cm deep were determined using maximum exposure scenarios for afidopyropen to achieve the proposed yearly cumulative rate of 125 g a.i./ha.

² Level of concern = 1

Organism (exposure)	Endpoint (mg a.i./L)	Refined EEC (mg a.i./L) ¹	RQ	Level of Concern
Freshwater species				
<i>Daphnia magna</i> (chronic; 21 days; technical afidopyropen) ²	LOEC: 0.000 190	0.0114	60.0	Exceeded
<i>Ceriodaphnia dubia</i> (chronic; 7 days; technical afidopyropen)	NOEC: 0.000 181 5	0.0114	62.8	Exceeded
<i>Moina macrocopa</i> (chronic; 10 days; technical afidopyropen)	NOEC: 0.000 849 3	0.0114	13.4	Exceeded
<i>Chironomus riparius</i> (chronic spiked water; 25 days; technical afidopyropen) ³	overlying water NOEC: 0.022	0.0114	0.5	Not exceeded
Oncorhynchus mykiss (acute; 96 hours; Versys)	LC ₅₀ /10: 0.0096	0.0114	1.2	Exceeded
<i>Oncorhynchus mykiss</i> (acute; 96 hours; Sefina)	LC ₅₀ /10: 0.0043	0.0114	2.6	Exceeded
Amphibians (acute; 96 hours; Versys) ⁴	LC ₅₀ /10: 0.0096	0.0606	6.3	Exceeded
Amphibians (acute; 96 hours; Sefina) ⁴	LC ₅₀ /10: 0.0043	0.0606	14.1	Exceeded
Marine species				
Mysid shrimp, <i>Americamysis bahia</i> (chronic; 28 days; technical afidopyropen)	NOEC: 0.000 003 96	0.00462	1167	Exceeded

Table 26 Risk Quotients for Aquatic Organisms Determined for Drift of Afidopyropen

¹ Refined EECs were calculated using a maximum percent drift deposition at one metre downwind (74% for early airblast) from the point of application for an ASAE 'fine' droplet size and the proposed use on outdoor ornamentals. Freshwater EECs were based on the cumulative yearly maximum application rate. The marine EEC was based on the single maximum application rate, since tides and dilution are expected to result in negligible residues at the time of subsequent applications. It is noted that other methods of application are proposed on other crops with less drift deposition.

² In the screening level risk assessment a NOEC of 0.000 123 mg a.i./L was used based on a 13% reduction in adult body weight at the next treatment level (0.000 190 mg a.i./L); however, for the refined aquatic risk assessment the LOEC of 0.000 190 mg a.i./L was more appropriate based on more substantial ecologically relevant effects at the next treatment level of 0.000 295 mg a.i./L (16% reduction in mean number of offspring per adult female, 14% reduction in mean number of offspring per reproductive day and 28% reduction in mean adult body weight compared to the negative control). No statistically significant effects on adult survival, time to first brood, production rate of first brood, and adult body length were reported in this study.

³ In this spiked water study no treatment-related effects were noted at the highest concentration tested. ⁴ Using fish data as a surrogate.

Organism (exposure)	exposure)Endpoint (mg a.i./L)EEC (mg a.i./L; the vertical bar indicates values calculated without and with unidentified residues)		RQ	Level of Concern
Freshwater species				
<i>Daphnia magna</i> (chronic; 21 days; technical	LOEC: 0.000 190	Atlantic (water column 21-d): 0.0074 0.0113	38.9–59.5	Exceeded
afidopyropen) ¹		BC (water column 21-d): 0.001 0.0012	5.3-6.3	Exceeded
<i>Ceriodaphnia dubia</i> (chronic; 7 days; technical	NOEC: 0.000 181 5	Atlantic (water column 96-h): 0.0076 0.0114	41.9 - 62.8	Exceeded
afidopyropen)		BC (water column 96-h): 0.0011 0.0013	6.1–7.2	Exceeded
<i>Moina macrocopa</i> (chronic; 10 days;	NOEC: 0.000 849 3	Atlantic (water column 96-h): 0.0076 0.0114	8.9–13.4	Exceeded
technical afidopyropen)		BC (water column 96-h): 0.0011 0.0013	1.3–1.5	Exceeded
<i>Hyalella azteca</i> (acute; 10 days; technical	pore water IC ₅₀ /2: >	Atlantic (pore water peak): 0.0066 0.0102	< 0.1	Not exceeded
afidopyropen) ²	0.14	BC (pore water peak): 0.0008 0.001	< 0.1	Not exceeded
<i>Chironomus dilutus</i> (acute; 10 days; technical	pore water IC ₅₀ /2: >	Atlantic (pore water peak): 0.0066 0.0102	< 0.1	Not exceeded
afidopyropen) ³	0.13	BC (pore water peak): 0.0008 0.001	< 0.1	Not exceeded
Chironomus dilutus (acute; 10 days;	pore water IC ₅₀ /2: >	Atlantic (pore water peak): 0.0066 0.0102	< 0.1	Not exceeded
M440I024) ⁴	3.17	BC (pore water peak): 0.0008 0.001	< 0.1	Not exceeded
<i>Chironomus dilutus</i> (chronic; 40 days,	pore water NOEC:	Atlantic (pore water 21-d): 0.0066 0.0102	41.0-63.4	Exceeded
technical afidopyropen)5	0.000 161	BC (pore water 21-d): 0.0008 0.001	5.0-6.2	Exceeded
Oncorhynchus mykiss (acute; 96 hours, Versys)	LC ₅₀ /10: 0.0096	Atlantic (water column 96-h): 0.0076 0.0114	0.8–1.2	Exceeded
		BC (water column 96-h): 0.0011 0.0013	< 1.0	Not exceeded
Oncorhynchus mykiss (acute; 96 hours, Sefina)	LC ₅₀ /10: 0.0043	Atlantic (water column 96-h): 0.0076 0.0114	1.8–2.7	Exceeded
		BC (water column 96-h): 0.0011 0.0013	< 1.0	Not exceeded
Amphibians (acute; 96 hours, Versys) ⁶	LC ₅₀ /10: 0.0096	Atlantic (water column 96-h): 0.0214 0.0329	2.2 – 3.4	Exceeded
		BC (water column 96-h): 0.0035 0.0043	< 1.0	Not exceeded
Amphibians (acute; 96 hours, Sefina) ⁶	LC ₅₀ /10: 0.0043	Atlantic (water column 96-h): 0.0214 0.0329	5.0-7.7	Exceeded
		BC (water column 96-h): 0.0035 0.0043	0.8– 1.0	Exceeded
Marine species	1			
<i>Leptocheirus plumulosus</i> (acute; 10 days; technical	pore water LC ₅₀ /2:	Atlantic (pore water peak): 0.0066 0.0102	< 1.0	Not exceeded
afidopyropen) ⁷	0.042	BC (pore water peak): 0.0008 0.001	< 1.0	Not exceeded
<i>Leptocheirus plumulosus</i> (acute; 10 days; technical	pore water LC ₅₀ /2: >	Atlantic (pore water peak): 0.0066 0.0102	2.6 – 4.1	Exceeded
afidopyropen) ⁸	0.0025	BC (pore water peak): 0.0008 0.001	< 1.0	Not exceeded
Americamysis bahia (chronic; 28 days;	NOEC: 0.000 003 96	Atlantic (water column 21-d): 0.0074 0.0113	1869–2854	Exceeded
technical afidopyropen)9		BC (water column 21-d): 0.001 0.0012	252.5-303.0	Exceeded

Table 27 Risk Quotients for Aquatic Organisms Determined for Runoff of Afidopyropen

Organism (exposure)	Endpoint	EEC (mg a.i./L; the vertical bar	RQ	Level of
	(mg a.i./L)	indicates values calculated without and		Concern
	-	with unidentified residues)		

In the screening level risk assessment, a NOEC of 0.000 123 mg a.i./L was used based on a 13% reduction in adult body weight at the next treatment level (0.000 190 mg a.i./L); however, for the refined aquatic risk assessment the LOEC of 0.000 190 mg a.i./L was more appropriate based on more substantial ecologically relevant effects at the next treatment level of 0.000 295 mg a.i./L (16% reduction in mean number of offspring per adult female, 14% reduction in mean number of offspring per reproductive day and 28% reduction in mean adult body weight compared to the negative control). No statistically significant effects on adult survival, time to first brood, production rate of first brood, and adult body length were reported in this study.

² In this acute spiked sediment study, dry weight was significantly reduced in the three highest treatment groups by just under 50%, therefore the resulting LC_{50} value was determined to be greater than the highest treatment concentration.

³ In this acute spiked sediment study, no treatment-related effects were noted at the highest concentration tested.
 ⁴ In this acute spiked sediment study with the transformation product, M440I024, the water EEC for afidopyropen was used as their molecular weights are comparable. No treatment-related effects were noted at the highest concentration tested.

⁵ In this chronic spiked sediment study, no treatment-related effects were noted at the highest concentration tested; therefore, the associated RQs are considered overestimated.

⁶ Using fish data as a surrogate.

⁷ In this acute spiked sediment study, the endpoint was definitive and based on significant effects on survival.

⁸ In this acute spiked sediment study, no treatment-related effects were noted at the highest concentration tested.

⁹ In this chronic study with mysid shrimp, a NOAEC of 3.96 ng a.i./L, was established based on a significant reduction (34%) in the mean number of offspring per surviving female at the next treatment level of 7.12 ng a.i./L. The NOAEC for G2 survival was 7.12/8.61 ng a.i./L based on a 42% reduction at the next treatment level of 14.3/11.6 ng a.i./L. The NOAEC for post-pairing G1 survival and day-to-first-brood release was 14.3 ng a.i./L based on significant effects (30% reduction in G1 survival and 37% days later to brood release) at the next treatment level of 29.9 ng a.i./L. Sublethal behavioural effects (lethargy, erratic swimming, and loss of equilibrium) were observed across all treatment levels for both G1 and G2 mysids, and appeared to be dose-responsive.

Table 28Toxic Substances Management Policy Considerations – Comparison to TSMP
Track 1 Criteria

TSMP Track 1 Criteria	TSMP Track 1 Criterion value		Afidopyropen Endpoints	Endpoints for Combined residues	
CEPA toxic or CEPA toxic equivalent ¹	Yes		Yes		
Predominantly anthropogenic ²	Yes		Yes		
Persistence ³	Soil Half-life ≥		Laboratory studies		
		182 days	No: Representative half-lives	Yes: Representative half-	
			of 5.2-52.5 days.	lives of 90 to 626 days.	
			Field dissipa	tion studies	
			No: Representative half-lives	No: Representative half-	
			of 12.6 to 22.6 days.	lives of 18.6 to 61.3 days.	
	Water	Half-life \geq	Yes: Representative half-lives	Yes: Total system	
		182 days	of 7.8 to 13 days in the water	representative half-lives	
			phase of aerobic and anaerobic	range from 197 to 475 days	
			water-sediment systems. Total	in aerobic and anaerobic	
			system representative half-	water sediment systems.	
			lives range from 41.5 to 205		
			days in aerobic and anaerobic		
			water sediment systems.		
	Sediment	Half-life \geq	No: Total system	No: Total system	
		365 days	representative half-lives of	representative half-lives of	
		-	from 91.6 and 205 days in	from 197 and 244 days in	

TSMP Track 1 Criteria	TSMP Track 1 Criterion value		Afidopyropen Endpoints	Endpoints for Combined residues
			aerobic water sediment systems.	aerobic water sediment systems.
	Air	Half-life ≥ 2 days or evidence of long range transport	No: AOPWIN (v1.92) predicted half-life < 0.1 days.	Unknown; however unlikely based on properties of parent.
Bioaccumulation ⁴	$Log K_{OW} \ge$	<u>-</u> 5	No: 3.45	Not available
	BCF ≥ 5000		No: 0.059	Unknown; however unlikely based on BCF of parent.
	$BAF \ge 500$	00	Not available	Not available
Is the chemical a TSMP Track 1 substance (all four		No, does not meet TSMP	No, does not meet TSMP	
criteria must be met)?		Track 1 criteria.	Track 1 criteria.	

¹All pesticides will be considered toxic or toxic equivalent as defined by the *Canadian Environmental Protection Act* (CEPA) for the purpose of initially assessing a pesticide against the TSMP criteria. Assessment of the CEPA toxicity criteria may be refined if required (i.e., all other TSMP criteria are met).

²The policy considers a substance "predominantly anthropogenic" if, based on expert judgement, its concentration in the environment medium is largely due to human activity, rather than to natural sources or releases.

³ If the pesticide and/or the transformation product(s) meet one persistence criterion identified for one media (soil, water, sediment or air) than the criterion for persistence is considered to be met.

⁴Field data (e.g., bioaccumulation factors (BAFs)) are preferred over laboratory data (e.g., bioconcentration factors (BCFs)) which, in turn, are preferred over chemical properties (e.g., *n*-octanol–water partition coefficient (log *K*_{OW})).

Appendix II Supplemental Maximum Residue Limit Information— International Situation and Trade Implications

Afidopyropen is a new active ingredient which is concurrently being registered in Canada and the United States. The MRLs proposed for afidopyropen in Canada are the same as corresponding tolerances to be promulgated in the United States, except for livestock commodities, in accordance with Table 1.

Once established, the American tolerances for afidopyropen will be listed in the <u>Electronic Code</u> <u>of Federal Regulations</u>, 40 CFR Part 180, by pesticide.

Currently, there are no Codex MRLs⁹ listed for afidopyropen in or on any commodity on the Codex Alimentarius <u>Pesticide Residues in Food</u> website.

Table 1 Comparison of Canadian MRLs and American Tolerances (where different)

Food Commodity	Canadian MRL (ppm)	American Tolerance (ppm)
Eggs, fat, meat, and meat by-products of cattle, goats, hogs, horses, poultry, and sheep	0.01	Not required ¹
Milk	0.001	Not required ¹

¹ as per Category 3 of 40 CFR 180.6(a) for livestock

MRLs may vary from one country to another for a number of reasons. For animal commodities, differences in MRLs are due to different legislative framework.

⁹ The Codex Alimentarius Commission is an international organization under the auspices of the United Nations that develops international food standards, including MRLs.

References

A. List of Studies/Information Submitted by Registrant

1.0 Chemistry

PMRA Document Number	Reference
2627596	2016, IIA 1.1 Applicant (name, address, contact, phone and fax numbers), DACO:
	12.7,Document M
2627597	2016, IIA 1.2 Manufacturer(s) (name, address, contact, phone and fax numbers),
	DACO: 12.7,Document M
2627599	2016, IIA 1.4 Chemical name, DACO: 12.7,Document M
2627600	2016, IIA 1.5 Manufacturers codes, names and patent status, DACO: 12.7,Document M
2627601	2016, IIA 1.6 Existing CAS, CIPAC, EINECS and ELINCS numbers, DACO:
2627602	12.7,Document M
2627602	2016, IIA 1.7 Molecular formula, molecular mass and structural formula, DACO: 12.7,Document M
2627619	2016, IIA 4.2 Methods for the analysis of the active substance as manufactured,
2027019	DACO: 12.7,Document M
2627621	2016, IIA 4.4 Description of methods for analysis of soil, DACO: 12.7,Document M
2627622	2016, IIA 4.5 Description of methods of analysis of son, DACO: 12.7, Document M
2627666	2016, IIA 2 Physical and chemical properties of the active substance, DACO:
2027000	12.7,8.2.1 (OECD),Document M
2627683	2016, DACO 2.1 to 2.9, DACO: 2.1,2.2,2.3,2.3,1,2.4,2.5,2.6,2.7,2.8,2.9,IIA 1.1,IIA
2027000	1.2,IIA 1.3,IIA 1.4,IIA 1.5.1,IIA 1.5.2,IIA 1.6,IIA 1.7
2627684	2016, Characterization of five batches of Technical Grade Active Ingredient
	Afidopyropen (BAS 440 I, Reg.No.: 5599022), DACO: 2.13.3, IIA 1.11.1 CBI
2627686	2016, Product identity and composition of Afidopyropen (BAS 440 I), DACO:
	1.1,2.11.1,2.11.2,2.11.3,2.11.4,2.12.1,2.12.2,2.13.4,2.2,2.3,2.3,1,2.4,2.6,2.7,2.8,2.9,7.8,
	IIA 1.10.2,IIA 1.2,IIA 1.3,IIA 1.5.1,IIA 1.5.2,IIA 1.6,IIA 1.7,IIA 1.8.1,IIA 1.8.2,IIA
	1.9.1.1,IIA 1.9.2,IIA 1.9.3,IIA 6.2.6 CBI
2627687	2011, Determination of melting point of ME5343 pure grade, DACO: 2.14.4, IIA 2.1.1
2627688	2011, Determination of boiling point of ME5343 pure grade, DACO: 2.14.5, IIA 2.1.2
2627689	2011, Thermal stability of ME5343 pure grade, DACO: 2.14.13, IIA 2.1.3
2627692	2015, BAS 440 I (TGAI): Stability to normal and elevated temperature, metal and metal ions, DACO: 2.14.13, IIA 2.17.2
2627693	2011, Determination of density of ME5343 pure grade, DACO: 2.14.6, IIA 2.2
2627694	2011, Vapour pressure of ME5343 pure grade - Final revised report, DACO: 2.14.9,IIA 2.3.1
2627696	2009, Determination of physical state of ME5343 pure grade, DACO: 2.14.1,2.14.2,IIA 2.4.1
2627697	2009, Determination of color of ME5343 pure grade, DACO: 2.14.1,2.14.2, IIA 2.4.1
2627698	2009, Determination of odor of ME5343 pure grade, DACO: 2.14.3, IIA 2.4.2
2627699	2011, Ultraviolet-visible (UV/VIS) absorption spectra of ME5343 pure grade - Final
	report revised (No. 2), DACO: 2.13.2,2.14.12,IIA 2.5.1.1,IIA 2.5.1.5
2627700	2011, Infrared spectrum of ME5343 pure grade, DACO: 2.13.2, IIA 2.5.1.2
2627701	2011, ME5343: Determination of NMR spectra - Amended report, DACO: 2.13.2, IIA
	2.5.1.3
2627702	2011, Mass spectrum of ME5343 pure grade, DACO: 2.13.2, IIA 2.5.1.4

PMRA Document Number	Reference
2627703	2016, Determination of the specific optical rotation of "BAS 440 I (TGAI) - Afidopyropen Reg.No. 5599022" - Study No. 15L00455 (confidential), DACO: 2.12.1,2.12.2,2.13.2,IIA 2.5.1.6
2627704	2016, Determination of the specific optical rotation of "BAS 440 I (PAI - Afidopyropen Reg.No.: 5599022" - Study No. 15L00456 (confidential), DACO: 2.12.1,2.12.2,2.13.2,IIA 2.5.1.6
2627705	2011, Water solubility of ME5343 pure grade - Revised final report (No. 2), DACO: 2.14.7,IIA 2.6
2627706	2011, Solubility of ME5343 pure grade in organic solvents - Revised report No. 2, DACO: 2.14.8, IIA 2.7
2627707	2010, Partition coefficient (n-octanol/water) of ME5343 pure grade, DACO: 2.14.11,IIA 2.8.1
2627715	2010, Dissociation constants of ME5343 pure grade, DACO: 2.14.10,8.2.3.2, IIA 2.9.5
2627717	2014, Validation of the analytical method APL0689/01: Determination of the active ingredient Afidopyropen (BAS 440 I, TGAI), DACO: 2.13.1,7.2.5,IIA 4.2.1,IIA 4.2.7 CBI
2627718	2015, Determination of organic solvents by Headspace-GC in Afidopyropen (BAS 440 I, TGAI), DACO: 2.13.4,IIA 4.2.3 CBI
2627719	2015, Validation of the analytical method APL0691/01: Determination of organic solvents by Headspace-GC in Afidopyropen (BAS 440 I, TGAI), DACO: 2.13.4,IIA 4.2.3 CBI
2627720	2015, Determination of process-related impurities in Afidopyropen (BAS 440 I, TGAI), DACO: 2.13.4,IIA 4.2.3 CBI
2627721	2015, Validation of the analytical method APL0690/01 - Determination of process- related impurities in Afidopyropen (BAS 440 I, TGAI), DACO: 2.13.4, IIA 4.2.3 CBI
2627722	2014, Determination of the active ingredient Afidopyropen (BAS 440 I, TGAI), DACO: 2.13.1,7.2.2,IIA 4.2.5 CBI
2628095	2014, Physical properties of Afidopyropen (BAS 440 I, Reg.No. 5599022) technical active ingredient TC/TGAI, DACO: 2.14.1,2.14.2,2.14.3,2.16,3.5.7,IIA 2.16,IIA 2.4.1,IIA 2.4.2,IIIA 2.4.1
2735469	2017, Product identity and composition of Afidopyropen (BAS 440 I), DACO: 1.1,2.11.1,2.11.2,2.11.3,2.11.4,2.12.1,2.12.2,2.13.4,2.2,2.3,2.3.1,2.4,2.6,2.7,2.8,2.9,7.8, IIA 1.10.2,IIA 1.2,IIA 1.3,IIA 1.5.1,IIA 1.5.2,IIA 1.6,IIA 1.7,IIA 1.8.1,IIA 1.8.2,IIA 1.9.1.1,IIA 1.9.2,IIA 1.9.3,IIA 6.2.6 CBI
2627052	2016, DACO 3.1.1 to 3.4, DACO: 3.1.1,3.1.2,3.1.3,3.1.4,IIIA 1.1,IIIA 1.2.1,IIIA 1.2.2,IIIA 1.2.2,IIIA 1.3
2627053	2015, BAS 440 01 I - Group A - Product identity, composition, and analysis, DACO: 3.2.2,3.2.3,3.5.4,IIIA 1.4.5.1,IIIA 1.4.5.2,IIIA 1.5 CBI
2627080	2016, DACO 3.5.4, 3.5.5,3.5.11,3.5.12,3.5.13,3.5.15, DACO: 3.5.11,3.5.12,3.5.13,3.5.15,3.5.5,3.7,IIIA 2.11,IIIA 2.12,IIIA 2.14,IIIA 2.15,IIIA 2.2.1,IIIA 2.3.2
2627081	2014, BAS 440 01 I - determination of physico-chemical properties according to Directive 94/37/EC (Regulation (EC) No. 440/2008), DACO: 3.5.11,3.5.12,IIIA 2.2.1,IIIA 2.3.1,IIIA 2.3.2
2627082	2014, BAS 440 00 I, BAS 440 01 I: Determination of oxidation/reduction, DACO: 3.5.8,IIIA 2.2.2

PMRA Document Number	Reference
2627083	2014, Accelerated storage stability report - Physical and chemical properties of BAS 440 01 I: Storage stability and corrosion characteristics in commercial type containers, DACO: 2.14.1,2.14.14,2.14.2,2.14.3,3.5.14,3.5.7,IIA 2.17.1,IIA 2.4.1,IIA 2.4.2,IIIA 2.13,IIIA 2.4.1
2627085	2015, GLP Validation of Analytical Method AFR0114/01: Determination of BAS 440 I in BAS 440 01 I Formulations by Reverse-Phase HPLC Using UV Detection., DACO: 3.4.1,IIIA 5.2.1
2735413	2017, Response to PMRA Product chemisty questions, DACO: 2.12 CBI
2627475	2015, BAS 440 00 I - Group A - Product identity, composition, and analysis, DACO: 3.1.2,3.1.3,3.1.4,3.2.1,3.2.2,3.2.3,3.3.1,3.3.2,IIIA 1.2.1,IIIA 1.2.2,IIIA 1.2.3,IIIA 1.3,IIIA 1.4.1,IIIA 1.4.2,IIIA 1.4.3.1,IIIA 1.4.3.2,IIIA 1.4.3.3,IIIA 1.4.4,IIIA 1.4.5.1,IIIA 1.4.5.2 CBI
2627533	2016, DACO 3.5.4, 3.5.5,3.5.11,3.5.12,3.5.13,3.5.15, DACO: 3.5.11,3.5.12,3.5.13,3.5.15,3.5.5,3.7,IIIA 2.11,IIIA 2.12,IIIA 2.14,IIIA 2.15,IIIA 2.2.1,IIIA 2.3.2
2627534	2014, Accelerated storage stability report - Physical and chemical properties of BAS 440 00 I: Storage stability and corrosion characteristics in commercial type containers, DACO: 2.14.1,2.14.14,2.14.2,2.14.3,3.5.14,IIA 2.17.1,IIA 2.4.1,IIA 2.4.2,IIIA 2.13
2627535	2014, BAS 440 00 I - determination of physico-chemical properties according to Directive 94/37/EC (Regulation (C) No. 440/2008), DACO: 3.5.12,IIIA 2.2.1
2627536	2014, BAS 440 00 I, BAS 440 01 I: Determination of oxidation/reduction, DACO: 3.5.8,IIIA 2.2.2

2.0 Human and Animal Health

PMRA Document Number	Reference
2627737	2011, Excretion and metabolism of 14C- Meiji Reg.No. 5599022 (BAS 440 I) after oral administration in rats, DACO: 4.5.9,IIA 5.1.1
2627738	2012, Metabolic fate of (NCA-14C)ME5343 in rats - Preliminary study, DACO: 4.5.9,IIA 5.1.1
2627739	2013, Metabolic fate of ME5343-T7 pure in rats - Identification of metabolites in urine and faeces, DACO: 4.5.9, IIA 5.1.1
2627740	2015, Single-dose oral pharmacokinetic and tissue distribution study of (NCA-14C)ME5343 in Fischer 344 rats, DACO: 4.5.9,IIA 5.1.1
2627741	2015, Metabolic fate of [NCA-14C]ME5343 in rats - Excretion balance study, DACO: 4.5.9,IIA 5.1.1
2627742	2015, Kinetics of 14C-BAS 440 I in rats after oral and intravenous administration, DACO: 4.5.9, IIA 5.1.3
2627743	2016, 14C-BAS 440 I: Study on absorption, distribution, metabolism and excretion in the F344 rat (Japanese clone) after combined dietary and oral administration, DACO: 4.2.9,4.3.8,4.4.5,4.5.8,4.5.9,4.8,IIA 5.1.3,IIA 5.10
2627744	2016, BAS 440 I (Afidopyropen) - Immunotoxicity study in female Wistar rats - Administration via the diet for 4 weeks, DACO: 4.2.9,4.3.8,4.4.5,4.5.8,4.8,IIA 5.10
2627746	2016, BAS 440 I (Afidopyropen) - Repeated-dose 90-day oral toxicity study in Fischer F344 rats - Administration via the diet, DACO: 4.2.9,4.3.8,4.4.5,4.5.8,4.8,IIA 5.10
2627748	2015, In vitro pharmacology - Study of several compounds: BASF SE study number 99V0676/09X179, DACO: 4.2.9,4.3.8,4.4.5,4.5.8,4.8,IIA 5.10

PMRA Document Number	Reference
2627749	2016, BAS 440 I (Afidopyropen) - Repeated-dose 90-day oral toxicity study in Fischer
2627750	F344 rats - Administration via the diet, DACO: 4.2.9,4.3.8,4.4.5,4.5.8,4.8,IIA 5.10 2015, 14 day dietary study investigating potential for BAS 440 I (Afidopyropen) to induce CYP1A1 and CYP1B1 in female F344 rats, DACO: 4.2.9,4.3.8,4.4.5,4.5.8,4.8,IIA 5.10
2627751	2015, In vitro pharmacology study of compounds 09/0676-1 and 15/0197-1, DACO: 4.2.9,4.3.8,4.4.5,4.5.8,4.8,IIA 5.10
2627752	2015, In vitro pharmacology study of compounds 09/0676-1 and 15/0197-1, DACO: 4.2.9,4.3.8,4.4.5,4.5,4.5,8,4.8,IIA 5.10
2627753	2015, Estrogen receptor transcriptional activation (human cell line (Hela-9903)), DACO: 4.2.9,4.3.8,4.4.5,4.5.8,4.8,IIA 5.10
2627754	2015, Estrogen receptor binding assay using rat uterine cytosol (ER-RUC), DACO: 4.2.9,4.3.8,4.4.5,4.5.8,4.8,IIA 5.10
2627755	2016, BAS 440 I (Afidopyropen) - Repeated-dose 90-day oral toxicity study in Wistar rats - Administration via the diet, DACO: 4.2.9,4.3.8,4.4.5,4.5,8,4.8,IIA 5.10
2627756	2016, BAS 440 I - Repeated-dose 28-day toxicity study in Fischer F344 rats to determine treatment-related effects on prolactin levels in comparison to the positive control Bromocriptine mesylate, 28-day acclimatization period, administration via the diet, DACO: 4.2.9,4.3.8,4.4.5,4.5.8,4.8,IIA 5.10
2627757	2016, BAS 440 I (Afidopyropen) - In-silico off-target predictions for BAS 440 I and its main metabolites, DACO: 4.2.9,4.3.8,4.4.5,4.5.8,4.8,IIA 5.10
2627759	2016, Afidopyropen (BAS 440 I): Cyclopropane Carboxylic Acid (CPCA) Metabolite, DACO: 4.2.9,4.3.8,4.4.5,4.5.8,4.8,IIA 5.10
2627761	2016, Mode-of-action and human relevance framework for analysis of uterine adenocarcinomas associated with Afidopyropen, DACO: 4.2.9,4.3.8,4.4.5,4.5.8,4.8,IIA 5.10
2627763	2009, Acute oral toxicity study of ME5343 technical in rats, DACO: 4.2.1, IIA 5.2.1
2627764	2009, Acute dermal toxicity study of ME5343 technical in rats, DACO: 4.2.2, IIA 5.2.2
2627765	2010, Acute inhalation toxicity study of ME5343 technical in rats, DACO: 4.2.3,IIA 5.2.3
2627766	2009, Skin irritation study of ME5343 technical in rabbits, DACO: 4.2.5, IIA 5.2.4
2627767	2009, Eye irritation study of ME5343 technical in rabbits, DACO: 4.2.4, IIA 5.2.5
2627768	2009, Skin sensitization study of ME5343 Technical in Guinea pigs - Maximization test, DACO: 4.2.6,IIA 5.2.6
2627769	2009, Repeated dose 28-day oral toxicity study of ME5343 Technical in mice, DACO: 4.3.3,IIA 5.3.1
2627779	2009, Repeated dose 28-day oral toxicity study of ME5343 Technical in dogs, DACO: 4.3.3,IIA 5.3.1
2627789	2010, Repeated dose 28-day oral toxicity study of ME5343 Technical in rats (Including amendment no. 1), DACO: 4.3.3,IIA 5.3.1
2627790	2010, Repeated dose 90-day oral toxicity study of ME5343 technical in rats (Including amendment no. 1), DACO: 4.3.1,IIA 5.3.2
2627791	2010, Repeated dose 90-day oral toxicity study of ME5343 Technical in mice, DACO: 4.3.1,IIA 5.3.2
2627803	2010, Repeated dose 90-day oral toxicity study of ME5343 Technical in dogs, DACO: 4.3.2,IIA 5.3.3
2627826	2011, Repeated dose 1-year oral toxicity study of ME5343 technical in dogs, DACO: 4.3.2,IIA 5.3.4

PMRA Document Number	Reference
2627849	2016, Afidopyropen: Waiver Request for Subchronic Inhalation Study, DACO: 4.3.7,IIA 5.3.5
2627850	2012, BAS 440 I (Reg.No. 5599022, ME5343 technical) - Repeated dose 28-day dermal toxicity study in Wistar rats, DACO: 4.3.5,IIA 5.3.7
2627851	2009, Bacterial reverse mutation test on ME5343 technical, DACO: 4.5.4, IIA 5.4.1
2627852	2015, BAS 440 I (Afidopyropen) - Salmonella typhimurium / Escherichia coli - Reverse mutation assay, DACO: 4.5.4, IIA 5.4.1
2627853	2015, BAS 440 I (Afidopyropen) - Salmonella typhimurium / Escherichia coli - Reverse mutation assay, DACO: 4.5.4, IIA 5.4.1
2627854	2015, BAS 440 I (Afidopyropen) - Salmonella typhimurium / Escherichia coli reverse mutation assay, DACO: 4.5.4,IIA 5.4.1
2627855	2009, Chromosome aberration test in cultured mammalian cells with ME5343 technical, DACO: 4.5.6,IIA 5.4.2
2627856	2015, BAS 440 I (Afidopyropen) - In vitro gene mutation test in CHO cells (HPRT locus assay), DACO: 4.5.5, IIA 5.4.3
2627857	2009, Micronucleus test in mice with ME5343 technical, DACO: 4.5.7, IIA 5.4.4
2627858	2015, BAS 440 I (Afidopyropen): Micronucleus Assay in bone marrow cells of the
	mouse (Including the Analytical Report), DACO: 4.5.7, IIA 5.4.4
2627859	2016, BAS 440 I (Afidopyropen) - Micronucleus assay in bone marrow cells of the mouse, DACO: 4.5.7, IIA 5.4.4
2627860	2011, Repeated dose 1-year oral toxicity study of ME5343 technical in rats, DACO: 4.4.1,4.4.4,IIA 5.5.1
2627861	2015, Repeated dose 1-year oral toxicity study of BAS 440 I (Reg.No. 5599022,
2627862	ME5343 technical) in rats administration via the diet, DACO: 4.4.1,4.4.4,IIA 5.5.1 2015, Carcinogenicity study of BAS 440 I (Reg.No. 5599022, ME5343 technical) in rats - Administration via the diet, DACO: 4.4.2,4.4,IIA 5.5.2
2627863	2014, Carcinogenicity study of ME5343 Technical in rats, DACO: 4.4.2,4.4,IIA 5.5.2
2627864	2012, Carcinogenicity study of ME5343 technical in mice, DACO: 4.4.3, IIA 5.5.3
2627875	2009, Two-generation reproductive toxicity study of ME5343 technical in rats, dose- range finding study (Including amendment no.1), DACO: 4.5.1, IIA 5.6.1
2627876	2016, BAS 440 I (Afidopyropen) - One-Generation reproduction toxicity study in Wistar rats - Administration via the diet, DACO: 4.5.1, IIA 5.6.1
2627877	2016, BAS 440 I (Afidopyropen) - Two-Generation reproduction toxicity study in Wistar rats - Administration via the diet, DACO: 4.5.1,IIA 5.6.1
2627878	2013, Two-generation reproductive toxicity study of ME5343 Technical in rats, DACO: 4.5.1,IIA 5.6.1
2627880	2013, Teratogenicity study of ME5343 Technical in rats - Dose-Range Finding Study, DACO: 4.5.2,IIA 5.6.10
2627882	2013, Teratogenicity study of ME5343 Technical in rats, DACO: 4.5.2, IIA 5.6.10
2627884	2014, Teratogenicity study of ME5343 Technical in rats, DACO: 4.5.2, IIA 5.6.10
2627897	2011, Teratogenicity study of ME5343 Technical in rabbits, DACO: 4.5.3, IIA 5.6.11
2627912	2009, Teratogenicity study of ME5343 Technical in rabbits - Dose range-finding study, DACO: 4.5.3, IIA 5.6.11
2627914	2016, BAS 440 I (Afidopyropen) - Cross fostering study to detect prenatal and postnatal developmental toxicity in Wistar rats - Oral administration via the diet, DACO: 4.8,IIA 5.6.5
2627916	2012, BAS 440 I (Reg.No. 5599022, ME5343 technical) - Acute oral neurotoxicity study in Wistar rats - Administration via gavage, DACO: 4.5.12, IIA 5.7.1

PMRA Document Reference Number 2627917 2016, BAS 440 I (Afidopyropen) - Repeated dose 90-day oral neurotoxicity study in Wistar rats - Administration via the diet, DACO: 4.5.12, IIA 5.7.1 2627918 2012, Acute oral toxicity study of ME5343-T7 in rats, DACO: 4.8, IIA 5.8 2627919 2012, Bacterial reverse mutation test on ME5343-T7, DACO: 4.8, IIA 5.8 2014, Reg.No. 5824749 (metabolite of BAS 440 I, Afidopyropen) - Salmonella 2627920 typhimurium / Escherichia coli reverse mutation assay, DACO: 4.8, IIA 5.8 2016. Reg.No. 5824749 (metabolite of BAS 440 I, Afidopyropen) - Repeated dose 90-2627921 day oral toxicity study in Wistar rats - Administration via the diet, DACO: 4.8, IIA 5.8 2015, Reg.No. 5824749 (metabolite of BAS 440 I, Afidopyropen): Micronucleus test in 2627922 human lymphocytes in vitro, DACO: 4.8, IIA 5.8 2015, Reg.No. 5824749 (metabolite of BAS 440 I, Afidopyropen) - In vitro gene 2627923 mutation test in L5178Y mouse lymphoma cells (TK+/- locus assay, microwell version), DACO: 4.8, IIA 5.8 2627924 2015, Reg.No. 5824749 (metabolite of BAS 440 I, Afidopyropen) - Micronucleus test in bone marrow cells of the mouse, DACO: 4.8, IIA 5.8 2012, IN-V0977: Subchronic Toxicity 90-Day Gavage Study in Rats, DACO: 4.3.1 2635785 2635786 2012, IN-V0977: Subchronic Toxicity 90-Day Gavage Study in Rats, DACO: 4.3.1 2737900 2017, Reg.No. 53128 (metabolite of BAS 440 I, Afidopyropen) - Acute oral toxicity study in rats, DACO: 4.8, IIA 5.8 2760761 2017, BrlHanWIST@Jcl(GALAS) historical control data for fetal abnormalities (SR10180), DACO: 4.5.2, IIA 5.6.10 2760762 2017, PMRA comment 3 revised historical control data Wistar Han 2009-2012 IET 13-0049., DACO: 4.5.2, IIA 5.6.10 2017, Reply to PMRA comment 4_ historical control data, JW RB 2001-2015 2760763 (20170427)., DACO: 4.5.2, IIA 5.6.10 2017, HCD_09R65_Wurfdaten_Ratte_Gen_with_live_males_fr_Kanada, DACO: 2760766 4.5.2,IIA 5.6.10 2760767 2017, HCD 09R105 Wurfdaten Ratte Gen with live males fr Kanada, DACO: 4.5.2.IIA 5.6.10 2776084 2009, Stability study of ME5343 technical in the diet for rodents (IET 08-5039), DACO: 4.5.1 2017, Report Amendment 1- 14 Day Dietary Study investigating potential for BAS 440 2776086 I (Afidopyropen) to induce CYP1A1 and CYP1B1 in Female F344 Rats, DACO: 4.8 2009, Stability study of ME5343 technical in 1% sodium carboxymethyl cellulose 2776087 solution, DACO: 4.8 2784120 2017, Incidence of neoplastic lesions in control rates (24 month study), DACO: 4.5.1.IIA 5.6.1 2796732 2017, BASF Response to PMRA request for Historical Control data Prostate Inflammation, DACO: 4.8, IIA 5.8 2014, BAS 440 00 I - Acute oral toxicity study in rats, DACO: 4.6.1, IIIA 7.1.1 2627543 2627544 2014, BAS 440 00 I - Acute dermal toxicity study in rats, DACO: 4.6.2, IIIA 7.1.2 2014, Acute (4-hour) inhalation toxicity study with BAS 440 00 I in rats, DACO: 2627545 4.6.3.IIIA 7.1.3 2014, BAS 440 00 I - Acute dermal irritation / corrosion in rabbits, DACO: 4.6.5, IIIA 2627546 7.1.4 2627547 2014, BAS 440 00 I - Acute eye irritation in rabbits, DACO: 4.6.4, IIIA 7.1.5 2014, BAS 440 00 I - Assessment of sensitizing properties on albino guinea pig by 2627548 repeated applications BUEHLER test with 3 applications (Including analytical report), DACO: 4.6.6,IIIA 7.1.6

PMRA Document Number	Reference
2627549	2014, BAS 440 00 I - Salmonella typhimurium / Escherichia coli - Reverse mutation assay, DACO: 4.6.8,4.7.7,4.8,5.14,IIIA 7.11
2627550	2015, BAS 440 00 I - Micronucleus test in bone marrow cells of the mouse, DACO: 4.6.8,4.7.7,4.8,5.14,IIIA 7.11
2627087	2014, BAS 440 01 I - Acute oral toxicity study in rats, DACO: 4.6.1, IIIA 7.1.1
2627088	2014, BAS 440 01 I - Acute dermal toxicity study in rats, DACO: 4.6.2, IIIA 7.1.2
2627089	2014, Acute (4-hour) inhalation toxicity study with BAS 440 01 I in rats, DACO: 4.6.3,IIIA 7.1.3
2627090	2014, BAS 440 01 I - Acute dermal irritation / corrosion in rabbits, DACO: 4.6.5,IIIA 7.1.4
2627091	2015, BAS 440 01 I - Acute eye irritation in rabbits (Including amendment no. 1), DACO: 4.6.4,IIIA 7.1.5
2627092	2014, BAS 440 01 I - Assessment of sensitizing properties on albino guinea pig by repeated applications - BUEHLER test with 3 applications (including the analytical report), DACO: 4.6.6, IIIA 7.1.6
2784120	2017, Incidence of neoplastic lesions in control rates (24 month study), DACO: 4.5.1,IIA 5.6.1
2627925	2015, ¹⁴ C-BAS 440 I in BAS 440 01 I - Study of the dermal penetration in rats, DACO: 5.8,IIA 5.9.9
2627552	2016, Dissipation of dislodgeable foliar residues of the insecticide BAS 440 I from melons following broadcast applications of BAS 440 00 I (DC), DACO: 5.9,IIIA 7.7.1
2627553	2016, Dissipation of dislodgeable foliar residues of the insecticide BAS 440 I from peaches following braodcast applications of BAS 440 00 I (DC), DACO: 5.9,IIIA 7.7.1
2627554	2016, Dissipation of dislodgeable foliar residues of the insecticide BAS 440 I from tomato following broadcast applications of BAS 440 00 I (DC) Amended final report, DACO: 5.9,IIIA 7.7.1
1913109	2009, Agricultural Handler Exposure Scenario Monograph: Open Cab Groundboom Application of Liquid Sprays, DACO: 5.3,5.4
2115788	2008, Data Submitted by the Agricultural Rentry Task Force (ARTF) to Support Revision of Agricultural Transfer Coefficients., DACO: 5.6
2172938	2012, Agricultural Handler Exposure Scenario Monograph: Closed Cockpit Aerial Application of Liquid Sprays, DACO: 5.3,5.4
2572743	2014, Agricultural Handler Exposure Scenario Monograph: Open Cab Airblast Application of Liquid Sprays, DACO: 5.3,5.4
2572745	2015, Agricultural Handler Exposure Scenario Monograph: Open Pour Mixing and Loading of Liquid Formulations, DACO: 5.3,5.4
2627723	2015, Investigation of the extractability of BAS 440 I and its metabolite M440I007 in samples from ¹⁴ C plant metabolism studies, DACO: 7.2.1,7.2.4,IIA 4.3
2627724	2015, Validation of BASF Method D1103 in cotton seed (seed), beans (seed), tomato (whole fruit), citrus (whole fruit) and potato (tuber): Determination of Residues of BAS 440 I and its Metabolite M440I007 in Plant Matrices using LC-MS/MS, DACO: 7.2.1,7.2.4,IIA 4.3
2627725	2015, Independent laboratory validation of BASF analytical method D1103/01: Determination of residues of BAS 440 I and its metabolite M440I007 in plant matrices using LC-MS/MS, DACO: 7.2.1,7.2.4,IIA 4.3
2627726	2016, Independent laboratory validation of residue method D1507/01: Method for the determination of residues of Afidopyropen (BAS 440 I Reg No. 5599022) and its metabolites M440I001 (Reg No. 5741530), M440I003 (Reg No. 5741533), M440I005 (Reg No. 5824382) and CPCA Carnatine (Reg No. 6009307) in animal matrices by

PMRA Document Number	Reference
	LC-MS/MS, DACO: 7.2.1,7.2.4,IIA 4.3
2627727	2016, Validation of BASF analytical method D1507/01: Method for the determination of residues of Afidopyropen (BAS 440 I - Reg No. 5599022) and its metabolites M440I001 (Reg No. 5741530), M440I003 (Reg No. 5741533), M440I005 (Reg No. 5824382) and CPCA Carnatine (Reg No. 6009307) in animal matrices by LC-MS/MS, DACO: 7.2.1,7.2.4,IIA 4.3
2627728	2016, Validation of BASF method D1514/01: Multi-residue method using AOAC official method 2007.01 for the determination of residues of Afidopyropen (BAS 440 I, Reg no. 5599022) and its metabolite M440I007 (Reg no. 5824749) in plant matrices using LC-MS/MS, DACO: 7.2.1,7.2.4,IIA 4.3
2627729	2016, Validation of BASF Method Number D1103/01 for the determination of residues of BAS 440 I and its metabolite M440I007 in cotton (seed), dry bean (seed), tomato (whole fruit), citrus (whole fruit) and rice (grain with hulls) using LC-MS/MS (Including amendment no. 1), DACO: 7.2.1,7.2.4,IIA 4.3
2627929	2016, Afidopyropen (BAS 440 I): Request to waive requirement for additional freezer storage stability data for Afidopyropen and metabolites in animal matrices, DACO: 7.3,IIA 6.1.1
2627930	2015, Metabolism of ¹⁴ C-BAS 440 I in soybean, DACO: 6.3, IIA 6.2.1
2627931	2015, Metabolism of ¹⁴ C-BAS 440 I in soybean, DACO: 6.3,IIA 6.2.1 CBI
2627932	2015, Metabolism of ¹⁴ C BAS 440 I in cabbage, DACO: 6.3,IIA 6.2.1
2627933	2015, Metabolism of ¹⁴ C BAS 440 I in cabbage, DACO: 6.3,IIA 6.2.1 CBI
2627934	2015, Metabolism of ¹⁴ C BAS 440 I in tomato, DACO: 6.3,IIA 6.2.1
2627935	2015, Metabolism of ¹⁴ C BAS 440 I in tomato, DACO: 6.3,IIA 6.2.1 CBI
2627936	2015, Metabolism of ¹⁴ C BAS 440 I in soybean, DACO: 6.3,IIA 6.2.1
2627937	2016, Investigation of BAS M440I031 (Trigonelline) in [¹⁴ C]-BAS 440 I treated cabbage, DACO: 6.3,IIA 6.2.1
2627938	2015, (NCA-14C)ME5343 - Metabolic fate in tomato, DACO: 6.3,IIA 6.2.1
2627939	2015, Amended report - (NCA- ¹⁴ C)ME5343 - Metabolism in cabbages, DACO: 6.3,IIA 6.2.1
2627940	2013, The metabolism of ¹⁴ C-BAS 440 I (Reg.No. 5599022) in the lactating goat, DACO: 6.2,IIA 6.2.2
2627941	2016, The metabolism of ¹⁴ C-CPCA-BAS 440 I in the laying hen, DACO: 6.2,IIA 6.2.2
2627942	2016, The metabolism of [¹⁴ C-CPCA]-BAS 440 I in the lactating goat including Amendment No 1., DACO: 6.2,IIA 6.2.2
2627943	2016, Magnitude of the residues of BAS 440 I in fruiting vegetables following applications of BAS 440 00 I, DACO: 7.4.1,7.4.2,7.4.6,IIA 6.3.1
2627944	2015, Magnitude of the residues of BAS 440 I in/on leafy vegetables following applications of BAS 440 00 I, DACO: 7.4.1,7.4.2,7.4.6,IIA 6.3.1
2627945	2015, Magnitude of the residues of BAS 440 I in/on cucurbit vegetables following applications of BAS 440 00 I, DACO: 7.4.1,7.4.2,7.4.6,IIA 6.3.1
2627946	2016, Residue in brassica BAS 440 I, DACO: 7.4.1,7.4.2,7.4.6,IIA 6.3.1
2627947	2016, Residue in BAS 440 00 I Stone Fruit (Crop Group 12), DACO: 7.4.1,7.4.2,7.4.6,IIA 6.3.1
2627948	2016, Residue in BAS 440 00 I pomefruit, DACO: 7.4.1,7.4.2,7.4.6,IIA 6.3.1
2627949	2016, Magnitude of BAS 440 I and metabolite residues in potato following applications of BAS 440 00 I DC in North America, DACO: 7.4.1,7.4.2,7.4.6,IIA 6.3.1

PMRA Document Number	Reference
2627950	2016, Magnitude of BAS 440 I and metabolite residues in soybean following applications of BAS 440 01 I in North America, DACO: 7.4.1,7.4.2,7.4.6,IIA 6.3.1
2627951	2015, Determination of residues of BAS 440 00 I in potatoes following four (4) applications of BAS 440 00 I, DACO: 7.4.1,7.4.2,7.4.6,IIA 6.3.1
2627952	2015, Determination of residues of BAS 440 00 I in fruiting vegetables following four (4) applications of BAS 440 00 I, DACO: 7.4.1,7.4.2,7.4.6,IIA 6.3.1
2627953	2015, Determination of residues of BAS 440 00 I in brassicas and leafy vegetables following four (4) applications of BAS 440 00 I, DACO: 7.4.1,7.4.2,7.4.6,IIA 6.3.1
2627955	2016, Magnitude of the residues of BAS 440 I in tree nut raw agricultural commodities, DACO: 7.4.1,7.4.2,7.4.6,IIA 6.3.1
2627956	2016, Afidopryopen (BAS 440 I): Request for waiver of a feeding study in poultry, DACO: 7.5,7.6,IIA 6.4.1
2627957	2016, A Meat and Milk Magnitude of the Residue Study with BAS 440 I in Lactating Dairy Cows, DACO: 7.5,7.6,IIA 6.4.2
2627958	2016, Magnitude of the residues of BAS 440 I in potato processed fractions following applications of BAS 440 00I DC, DACO: 7.4.5,IIA 6.5.3
2627959	2015, Magnitude of the residues of BAS 440 I in tomato processing fractions following applications of BAS 440 00 I to tomatoes, DACO: 7.4.5,IIA 6.5.3
2627960	2016, BAS 440 I Plum Process fraction, DACO: 7.4.5,IIA 6.5.3
2627961	2016, Residue in BAS 440 00 I apple process fraction, DACO: 7.4.5, IIA 6.5.3
2627962	2016, Magnitude of the residue of BAS 440 I in soybean processed fractions, DACO: 7.4.5,IIA 6.5.3
2627963	2015, Confined rotational crop study with ¹⁴ C-BAS 440 I, DACO: 7.4.4, IIA 6.6.2
2627964	2016, Confined rotational crop study with ¹⁴ C-BAS 440 I, DACO: 7.4.4, IIA 6.6.2
2627965	2016, Confined rotational crop study with ¹⁴ C-BAS 440 I, DACO: 7.4.4, IIA 6.6.2
2627966	2016, Afidopyropen (BAS 440 I): Request to waive requirement for field accumulation in rotational crops, DACO: 7.4.4,IIA 6.6.3
2715858	2016, 24 month freezer stability report - Determination of residues of Afidopyropen (BAS 440 I) and its metabolite M440I007 in plant matrices using LC-MS/MS, DACO: 7.3,IIA 6.1.1

3.0 Environment

PMRA Document Number	Reference
2627054	2015, BAS 440 01 F - Acute toxicity in the bobwhite quail (Colinus virginianus) after
	single oral administration (LD50), DACO: 9.6.4,IIIA 10.1.6
2627055	2015, BAS 440 01 F - Acute toxicity in the bobwhite quail (Colinus virginianus) after
	single oral administration (LD50), DACO: 9.6.4,IIIA 10.1.6
2627056	2015, BAS 440 01 I - Acute toxicity in the mallard duck (Anas platyrhynchos) after
	single oral administration (LD50), DACO: 9.6.4,IIIA 10.1.6
2627057	2014, BAS 440 01 I - Rainbow trout, acute toxicity test, DACO: 9.5.4, IIIA 10.2.2.1
2627058	2014, BAS 440 01 I - Rainbow trout, acute toxicity test, DACO: 9.5.4, IIIA 10.2.2.1
2627059	2014, BAS 440 01 I - Daphnia magna, acute immobilization test, DACO: 9.3.2,IIIA
	10.2.2.2
2627061	2014, BAS 440 01 I - Daphnia magna, acute immobilization test, DACO: 9.3.2,IIIA
	10.2.2.2
2627062	2014, BAS 440 01 I - Pseudokirchneriella subcapitata SAG 61.81 - Growth inhibition
	test, DACO: 9.8.2,9.8.3,IIIA 10.2.2.3

PMRA Document Number	Reference
2627063	2015, Acute toxicity of BAS 440 01 I to the honeybee <i>Apis mellifera L</i> . under
2627064	laboratory conditions, DACO: 9.2.8,IIIA 10.4.1.1,IIIA 10.4.2.2 2015, Acute toxicity of BAS 440 01 I to the honeybee <i>Apis mellifera L</i> . under laboratory conditions, DACO: 9.2.8,IIIA 10.4.1.1,IIIA 10.4.2.2
2627065	2015, Acute toxicity of BAS 440 01 I to the honeybee <i>Apis mellifera L</i> . under laboratory conditions, DACO: 9.2.8,IIIA 10.4.1.1,IIIA 10.4.2.2
2627066	2012, Effects of EXP 5599022 AA I on the parasitic wasp <i>Aphidius rhopalosiphi</i> (DESTEPHANI-PEREZ) (Hymenoptera: Braconidae) in a laboratory trial - Dose response design, DACO: 9.2.8,IIIA 10.5.1
2627067	2012, Effects of EXP 5599022 AA I on the parasitic wasp <i>Aphidius rhopalosiphi</i> (DESTEPHANI-PEREZ) (Hymenoptera: Braconidae) in a laboratory trial - Dose response design, DACO: 9.2.8,IIIA 10.5.1
2627068	2012, Effects of EXP 5599022 AA I on the predatory mite <i>Typhlodromus pyri</i> (Acari: Phytoseiidae) in a laboratory trial - Dose response design, DACO: 9.2.8,IIIA 10.5.1
2627069	2012, Effects of EXP 5599022 AA I on the predatory mite Typhlodromus pyri (Acari:
2627070	Phytoseiidae) in a laboratory trial - Dose response design, DACO: 9.2.8,IIIA 10.5.1 2015, EXP 5599022 AA I: Toxicity to the green lacewing <i>Chrysoperla carnea Steph</i> . (Neuroptera, Chrysopidae) after exposure to freshly applied spray deposits under
2627071	extended laboratory conditions, DACO: 9.2.8,IIIA 10.5.1 2015, EXP 5599022 AA I: Toxicity to the green lacewing <i>Chrysoperla carnea Steph</i> . (Neuroptera, Chrysopidae) after exposure to freshly applied spray deposits under
2627072	extended laboratory conditions, DACO: 9.2.8,IIIA 10.5.1 2012, Effects of EXP 5599022 AA I on the parasitic wasp <i>Aphidius rhopalosiphi</i> (DESTEPHANI-PEREZ) (Hymenoptera: Braconidae) in an extended laboratory trial -
2627073	Dose response design, DACO: 9.2.8,IIIA 10.5.2 2012, Effects of EXP 5599022 AA I on the parasitic wasp <i>Aphidius rhopalosiphi</i> (DESTEPHANI-PEREZ) (Hymenoptera: Braconidae) in an extended laboratory trial -
2627074	Dose response design, DACO: 9.2.8,IIIA 10.5.2 2012, Effects of EXP 5599022 AA I on the predatory mite <i>Typhlodromus pyri</i> (Acari: Phytoseiidae) in an extended laboratory trial - Dose response design, DACO: 9.2.8,IIIA 10.5.2
2627075	2012, Effects of EXP 5599022 AA I on the predatory mite <i>Typhlodromus pyri</i> (Acari: Phytoseiidae) in an extended laboratory trial - Dose response design, DACO: 9.2.8,IIIA 10.5.2
2627076	2012, A field study to evaluate the effects of EXP 5599022 AA I on predatory mites (Acari: Phytoseiidae) in an apple orchard in Germany - Two late applications, DACO: 9.2.9.IIIA 10.5.4
2627077	2012, A field study to evaluate the effects of EXP 5599022 AA I on predatory mites (Acari: Phytoseiidae) in an apple orchard in Southern France - Two late applications, DACO: 9.2.9,IIIA 10.5.4
2627078	2015, Acute toxicity of BAS 440 01 I to the earthworm <i>Eisenia fetida</i> in artificial soil with 10 % peat, DACO: 9.2.8,IIIA 10.6.2
2627079	2015, Acute toxicity of BAS 440 01 I to the earthworm <i>Eisenia fetida</i> in artificial soil with 10 % peat, DACO: 9.2.8,IIIA 10.6.2
2627476	2015, BAS 440 00 I - Acute toxicity in the bobwhite quail (<i>Colinus virginianus</i>) after single oral administration (LD50), DACO: 9.6.4,IIIA 10.1.6
2627477	2015, BAS 440 00 I - Acute toxicity in the bobwhite quail (<i>Colinus virginianus</i>) after single oral administration (LD50), DACO: 9.6.4,IIIA 10.1.6
2627478	2014, BAS 440 00 I - Rainbow trout, acute toxicity test, DACO: 9.5.4,IIIA 10.2.2.1

PMRA Document Number	Reference
2627479	2014, BAS 440 00 I - Rainbow trout, acute toxicity test, DACO: 9.5.4, IIIA 10.2.2.1
2627480	2014, BAS 440 00 I - <i>Daphnia magna</i> , acute immobilization test, DACO: 9.3.2,IIIA 10.2.2.2
2627481	2014, BAS 440 00 I - i, acute immobilization test, DACO: 9.3.2, IIIA 10.2.2.2
2627482	2014, BAS 440 I - <i>Pseudokirchneriella subcapitata</i> SAG 61.81, growth inhibition test, DACO: 9.4.6,9.5.4,IIIA 10.2.2.4
2627483	2014, BAS 440 I - <i>Pseudokirchneriella subcapitata</i> SAG 61.81, growth inhibition test, DACO: 9.4.6,9.5.4,IIIA 10.2.2.4
2627484	2014, Chronic toxicity of BAS 440 I (Reg.No. 5599022) to the honeybee <i>Apis mellifera L</i> . under laboratory conditions, DACO: 9.2.8,IIIA 10.4.1.2
2627485	2014, Chronic toxicity of BAS 440 I (Reg.No. 5599022) to the honeybee <i>Apis mellifera L</i> . under laboratory conditions, DACO: 9.2.8,IIIA 10.4.1.2
2627486	2013, BAS 440 00 I - Acute oral and contact toxicity to the honeybee, <i>Apis mellifera L.</i> under laboratory conditions (Including amendment no. 1), DACO: 9.2.8,IIIA 10.4.2.1,IIIA 10.4.2.2
2627487	2013, BAS 440 00 I - Acute oral and contact toxicity to the honeybee, <i>Apis mellifera L.</i> under laboratory conditions (Including amendment no. 1), DACO: 9.2.8,IIIA 10.4.2.1,IIIA 10.4.2.2
2627488	2015, BAS 440 00 I (a.i. name/reg. no. Afidopyropen/5599022): Toxicity of residues on foliage to the Honey bee, <i>Apis mellifera</i> , DACO: 9.2.8,IIIA 10.4.3
2627489	2015, BAS 440 00 I (a.i. name/reg. no. Afidopyropen/5599022): Toxicity of residues on foliage to the Honey bee, <i>Apis mellifera</i> , DACO: 9.2.8, IIIA 10.4.3
2627490	2015, Determination of residues of BAS 440 00 I (Afidopyropen) in bee-relevant matrices in a semi-field honey bee (<i>Apis mellifera L.</i>) study in canola (Brassica sp.) after one application during flowering, DACO: 9.2.8,IIIA 10.4.3
2627491	2015, Determination of the residues of BAS 440 00 I in bee relevant matrices collected from tomatoes following a full bloom foliar application of BAS 440 00 I, DACO: 9.2.8,IIIA 10.4.3
2627492	2015, Determination of residues of BAS 440 00 I (Afidopyropen and its metabolite M440I007) in bee-relevant matrices in a field study in citrus after one application during flowering, DACO: 9.2.8,IIIA 10.4.3
2627493	2015, Determination of residues of BAS 440 00 I (Afidopyropen) in bee-relevant matrices in a semi-field honey bee (<i>Apis mellifera L.</i>) study in canola (Brassica sp.) after one application during flowering, DACO: 9.2.8,IIIA 10.4.3
2627494	2015, Determination of the residues of BAS 440 00 I in bee relevant matrices collected from tomatoes following a full bloom foliar application of BAS 440 00 I, DACO: 9.2.8,IIIA 10.4.3
2627495	2015, Determination of residues of BAS 440 00 I (Afidopyropen and its metabolite M440I007) in bee-relevant matrices in a field study in citrus after one application during flowering, DACO: 9.2.8,IIIA 10.4.3
2627496	2013, Field study to evaluate potential side effects of BAS 440 UV I on honeybees (<i>Apis mellifera L.</i>) (Including amendment no. 1), DACO: 9.2.9,IIIA 10.4.5
2627497	2013, Field study to evaluate potential side effects of BAS 440 UV I on honeybees (<i>Apis mellifera L.</i>) (Including amendment no. 1), DACO: 9.2.9,IIIA 10.4.5
2627498	2014, Effects of BAS 440 00 I on the honeybee Apis mellifera L. under field conditions with additional assessments on colony and brood development, DACO: 9.2.9,IIIA 10.4.5

PMRA Document Number	Reference
2627499	2014, Effects of BAS 440 00 I on the honeybee <i>Apis mellifera L</i> . under field conditions with additional assessments on colony and brood development, DACO: 9.2.9,IIIA 10.4.5
2627500	2015, Acute toxicity of BAS 440 00 I to honeybee larvae (<i>Apis mellifera L.</i>) under laboratory conditions (in vitro) (Including amendment no. 1), DACO: 9.2.9,IIIA 10.4.6.1
2627501	2015, Acute toxicity of BAS 440 00 I to honeybee larvae (<i>Apis mellifera L.</i>) under laboratory conditions (in vitro) (Including amendment no. 1), DACO: 9.2.9,IIIA 10.4.6.1
2627503	2015, Chronic toxicity of BAS 440 00 I to honeybee larvae <i>Apis mellifera L</i> . under laboratory conditions (in vitro), DACO: 9.2.9,IIIA 10.4.6.1
2627504	2015, Chronic toxicity of BAS 440 00 I to honeybee larvae <i>Apis mellifera L</i> . under laboratory conditions (in vitro), DACO: 9.2.9,IIIA 10.4.6.1
2627505	2014, Semi-field brood study to evaluate potential effects of BAS 440 00 I on brood development of honeybees (<i>Apis mellifera L.</i>), DACO: 9.2.8,IIIA 10.4.7
2627506	2014, Semi-field brood study to evaluate potential effects of BAS 440 00 I on brood development of honeybees (<i>Apis mellifera L.</i>), DACO: 9.2.8,IIIA 10.4.7
2627507	2015, Effects of BAS 440 00 I on the honeybee <i>Apis mellifera L</i> . under semi-field conditions (tunnel test) with additional assessments on colony and brood development, DACO: 9.2.8,IIIA 10.4.7
2627508	2015, Semi-field brood study to evaluate potential effects of BAS 440 00 I on brood development of honeybees (<i>Apis mellifera L.</i>), DACO: 9.2.8,IIIA 10.4.7
2627509	2015, Semi-field study to evaluate potential effects of BAS 440 00 I on the development of honeybee colonies (<i>Apis mellifera L.</i>), DACO: 9.2.8,IIIA 10.4.7
2627510	2015, Determination of side-effects of BAS 440 00 I (Afidopyropen) on honey bees (<i>Apis mellifera L.</i>) in a semi-field (tunnel) study after application in flowering winter oil seed rape (<i>Brassica napus</i>), DACO: 9.2.8,IIIA 10.4.7
2627511	2015, Effects of BAS 440 00 I on the honeybee <i>Apis mellifera L</i> . under semi-field conditions (tunnel test) with additional assessments on colony and brood development, DACO: 9.2.8,IIIA 10.4.7
2627512	2015, Semi-field brood study to evaluate potential effects of BAS 440 00 I on brood development of honeybees (<i>Apis mellifera L.</i>), DACO: 9.2.8,IIIA 10.4.7
2627513	2015, Semi-field study to evaluate potential effects of BAS 440 00 I on the development of honeybee colonies (<i>Apis mellifera L.</i>), DACO: 9.2.8,IIIA 10.4.7
2627514	2015, Determination of side-effects of BAS 440 00 I (Afidopyropen) on honey bees (<i>Apis mellifera L.</i>) in a semi-field (tunnel) study after application in flowering winter oil seed rape (<i>Brassica napus</i>), DACO: 9.2.8,IIIA 10.4.7
2627516	2015, Effects of BAS 440 00 I on the honeybee <i>Apis mellifera L</i> . under semi-field conditions (tunnel test) with additional assessments on colony and brood development, DACO: 9.2.8,IIIA 10.4.7
2627517	2015, Effects of BAS 440 00 I on the honeybee <i>Apis mellifera L</i> . under semi-field conditions (tunnel test) with additional assessments on colony and brood development, DACO: 9.2.8,IIIA 10.4.7
2627518	2014, Effects of BAS 440 00 I on the predatory mite <i>Typhlodromus pyri</i> SCHEUTEN in a laboratory test - Rate-response test, DACO: 9.2.8,IIIA 10.5.1
2627519	2014, Effects of BAS 440 00 I on the parasitic wasp <i>Aphidius rhopalosiphi</i> (DeStefani- Perez) in a laboratory test - Rate-Response-Test (LR50), DACO: 9.2.8,IIIA 10.5.1
2627521	2014, Effects of BAS 440 00 I on the parasitic wasp <i>Aphidius rhopalosiphi</i> (DeStefani- Perez) in a laboratory test - Rate-Response-Test (LR50), DACO: 9.2.8,IIIA 10.5.1

PMRA Document Number	Reference
2627522	2014, Effects of BAS 440 00 I on the predatory mite Typhlodromus pyri SCHEUTEN
	in a laboratory test - Rate-response test, DACO: 9.2.8,IIIA 10.5.1
2627523	2014, Acute toxicity of BAS 440 00 I to the earthworm <i>Eisenia fetida</i> in artificial soil
	with 10 % peat, DACO: 9.2.8,IIIA 10.6.2
2627524	2014, Acute toxicity of BAS 440 00 I to the earthworm Eisenia fetida in artificial soil
	with 10 % peat, DACO: 9.2.8,IIIA 10.6.2
2627525	2014, Effects of BAS 440 00 I on the activity of soil microflora (Carbon transformation test), DACO: 9.2.8,IIIA 10.7.1
2627526	2014, Effects of BAS 440 00 I on the activity of soil microflora (Nitrogen
	transformation test), DACO: 9.2.8,IIIA 10.7.1
2627527	2014, Effects of BAS 440 00 I on the activity of soil microflora (Carbon transformation
	test), DACO: 9.2.8,IIIA 10.7.1
2627528	2014, Effects of BAS 440 00 I on the activity of soil microflora (Nitrogen
	transformation test), DACO: 9.2.8,IIIA 10.7.1
2627529	2015, BAS 440 00I: A toxicity test to determine the effects on seedling emergence of
	ten species of plants, DACO: 9.8.6,IIIA 10.8.1.1
2627530	2015, BAS 440 00I: A toxicity test to determine the effects on seedling emergence of
	ten species of plants, DACO: 9.8.6,IIIA 10.8.1.1
2627531	2015, BAS 440 00I: A toxicity test to determine the effects on vegetative vigor of ten
	species of plants, DACO: 9.8.6,IIIA 10.8.1.2
2627532	2015, BAS 440 00I: A toxicity test to determine the effects on vegetative vigor of ten
2 (20000	species of plants, DACO: 9.8.6,IIIA 10.8.1.2
2628000	2012, BAS 440 I (Reg.No. 5599022, ME5343 technical) - Acute toxicity in the
	Bobwhite quail (<i>Colinus virginianus</i>) after single oral administration (LD50), DACO: 9.6.2.1,9.6.2.2,9.6.2.3,IIA 8.1.1
2628001	2012, BAS 440 I (Reg.No. 5599022, ME5343 technical) - Acute toxicity in the
	Bobwhite quail (Colinus virginianus) after single oral administration (LD50), DACO:
	9.6.2.1,9.6.2.2,9.6.2.3,IIA 8.1.1
2628002	2012, BAS 440 I (Reg.No. 5599022, ME5343 technical) - Acute toxicity in the Mallard
	duck (Anas platyrhynchos) after single oral administration (LD50), DACO:
	9.6.2.1,9.6.2.2,9.6.2.3,IIA 8.1.1
2628003	2012, BAS 440 I (Reg.No. 5599022, ME5343 technical) - Acute toxicity in the Mallard
	duck (<i>Anas platyrhynchos</i>) after single oral administration (LD50), DACO:
2620004	9.6.2.1,9.6.2.2,9.6.2.3,IIA 8.1.1
2628004	2013, BAS 440 I (Afidopyropen) - Acute toxicity in the Zebra finch (<i>Taeniopygia</i>
	guttata) after single oral administration (LD50), DACO: 9.6.2.1,9.6.2.2,9.6.2.3,IIA 8.1.1
2628005	2013, BAS 440 I (Afidopyropen) - Acute toxicity in the Zebra finch (Taeniopygia
	guttata) after single oral administration (LD50), DACO: 9.6.2.1,9.6.2.2,9.6.2.3,IIA 8.1.1
2628006	2012, BAS 440 I (Reg.No. 5599022, ME5343 technical) - Avian dietary LC50 test in
	chicks of the Bobwhite quail (Colinus virginianus), DACO: 9.6.2.4, 9.6.2.5, IIA 8.1.2
2628007	2012, BAS 440 I (Reg.No. 5599022, ME5343 technical) - Avian dietary LC50 test in
	chicks of the Bobwhite quail (Colinus virginianus), DACO: 9.6.2.4,9.6.2.5, IIA 8.1.2
2628008	2012, BAS 440 I (Reg.No. 5599022, ME5343 technical) - Avian dietary LC50 test in
	ducklings of the mallard duck (Anas platyrhynchos), DACO: 9.6.2.4,9.6.2.5, IIA 8.1.2
2628009	2012, BAS 440 I (Reg.No. 5599022, ME5343 technical) - Avian dietary LC50 test in
	ducklings of the mallard duck (Anas platyrhynchos), DACO: 9.6.2.4, 9.6.2.5, IIA 8.1.2

PMRA Document Number	Reference
2628010	2014, BAS 440 I - A reproduction study with the Northern Bobwhite, DACO:
	9.6.3.1,9.6.3.2,9.6.3.3,IIA 8.1.4
2628011	2014, BAS 440 I - A reproduction study with the Northern Bobwhite, DACO:
	9.6.3.1,9.6.3.2,9.6.3.3,IIA 8.1.4
2628012	2015, BAS 440 I: A Reproduction Study with the Mallard, DACO: 9.6.3.1,9.6.3.2,9.6.3.3,IIA 8.1.4
2628013	2015, BAS 440 I: A Reproduction Study with the Mallard, DACO:
2020015	9.6.3.1,9.6.3.2,9.6.3.3,IIA 8.1.4
2628014	2015, Effects of BAS 440 I (Reg.No. 5599022, ME 5343 technical) on the activity of
	soil microflora (Nitrogen transformation test), DACO: 9.2.8,9.2.9, IIA 8.10.1
2628015	2015, Effects of BAS 440 I (Reg.No. 5599022, ME 5343 technical) on the activity of
	soil microflora (Nitrogen transformation test), DACO: 9.2.8,9.2.9, IIA 8.10.1
2628016	2015, Effects of BAS 440 I (Reg.No. 5599022, ME 5343 technical) on the activity of
	soil microflora (Carbon transformation test), DACO: 9.2.8,9.2.9,IIA 8.10.2
2628017	2015, Effects of BAS 440 I (Reg.No. 5599022, ME 5343 technical) on the activity of
	soil microflora (Carbon transformation test), DACO: 9.2.8,9.2.9,IIA 8.10.2
2628018	2015, Effects of BAS 440 I (Reg.No. 5599022, ME 5343 technical) on the activity of
	soil microflora (Carbon transformation test), DACO: 9.2.8,9.2.9,IIA 8.10.2
2628019	2012, BAS 440 I: A 96-hour static acute toxicity test with the sheepshead minnow
	(<i>Cyprinodon variegatus</i>), DACO: 9.4.2,9.4.3,9.4.4,IIA 8.11.1
2628020	2012, BAS 440 I: A 96-hour static acute toxicity test with the sheepshead minnow
	(<i>Cyprinodon variegatus</i>), DACO: 9.4.2,9.4.3,9.4.4,IIA 8.11.1
2628021	2012, BAS 440 I: A 96-hour shell deposition test with the eastern oyster (<i>Crassostrea</i>
0.00000	<i>virginica</i>), DACO: 9.4.2,9.4.3,9.4.4,IIA 8.11.1
2628022	2012, BAS 440 I: A 96-hour shell deposition test with the eastern oyster (<i>Crassostrea</i>
2628022	virginica), DACO: 9.4.2,9.4.3,9.4.4,IIA 8.11.1
2628023	2015, BAS 440 I: A 96-hour static acute toxicity test with the saltwater mysid (<i>Americamysis bahia</i>), DACO: 9.4.2,9.4.3,9.4.4,IIA 8.11.1
2628024	2016, BAS 440 I (Afidopyropen): Detailed review of metabolites of relevance for
2028024	ecotoxicology, DACO: 9.9,IIA 8.14.2
2628025	2015, Effects of BAS 440 I (Reg.No. 5599022, ME5343 technical) on the reproduction
2020023	of the collembolan <i>Folsomia candida</i> , DACO: 9.3.4,9.6.6,9.9,IIA 8.16.1
2628027	2015, BAS 440 I (Afidopyropen) - Acute toxicity study in the rainbow trout
	(Oncorhynchus mykiss), DACO: 9.5.2.1,9.5.2.3,IIA 8.2.1.1
2628029	2015, BAS 440 I (Afidopyropen) - Acute toxicity study in the rainbow trout
	(Oncorhynchus mykiss), DACO: 9.5.2.1,9.5.2.3,IIA 8.2.1.1
2628031	2013, BAS 440 I (Reg.No. 5599022, ME5343 technical) - Acute toxicity study in the
	fathead minnow (Pimephales promelas), DACO: 9.5.2.2,9.5.2.3, IIA 8.2.1.2
2628032	2013, BAS 440 I (Reg.No. 5599022, ME5343 technical) - Acute toxicity study in the
	fathead minnow (Pimephales promelas), DACO: 9.5.2.2,9.5.2.3, IIA 8.2.1.2
2628033	2011, Acute toxicity Study of ME5343 in Carp, DACO: 9.5.2.2,9.5.2.3,IIA 8.2.1.2
2628034	2011, Acute toxicity Study of ME5343 in Carp, DACO: 9.5.2.2,9.5.2.3, IIA 8.2.1.2
2628035	2013, BAS 440 I (Afidopyropen) - Early life-stage toxicity test on the fathead minnow
2020000	(<i>Pimephales promelas</i>) in a flow through system, DACO: 9.5.3.1, IIA 8.2.4
2628036	2013, BAS 440 I (Afidopyropen) - Early life-stage toxicity test on the fathead minnow
	(<i>Pimephales promelas</i>) in a flow through system, DACO: 9.5.3.1, IIA 8.2.4
2628037	2015, BAS 440I: An early life-stage toxicity test with the sheepshead minnow
	(Cyprinodon variegatus), DACO: 9.5.3.1,IIA 8.2.4

PMRA Document Number	Reference
2628038	2015, BAS 440I: An early life-stage toxicity test with the sheepshead minnow (<i>Cyprinodon variegatus</i>), DACO: 9.5.3.1,IIA 8.2.4
2628039	2013, Bioconcentration study of ME5343 in carp, DACO: 9.5.6,IIA 8.2.6.1
2628040	2013, Bioconcentration study of ME5343 in carp, DACO: 9.5.6, IIA 8.2.6.1
2628041	2011, Acute immobilization study of ME5343 with <i>Daphnia magna</i> , DACO: 9.3.2,IIA
	8.3.1.1
2628042	2011, Acute immobilization study of ME5343 with <i>Daphnia magna</i> , DACO: 9.3.2,IIA 8.3.1.1
2628043	2014, Chronic toxicity of BAS 440 I (Reg.No.5599022, ME5343 technical) to <i>Daphnia magna</i> Straus in a 21 day semi-static test, DACO: 9.3.3,IIA 8.3.2.1
2628044	2014, Chronic toxicity of BAS 440 I (Reg.No.5599022, ME5343 technical) to <i>Daphnia magna</i> Straus in a 21 day semi-static test, DACO: 9.3.3,IIA 8.3.2.1
2628045	2013, BAS 440 I: A flow-through life-cycle toxicity test with the saltwater mysid (<i>Americamysis bahia</i>), DACO: 9.3.3,IIA 8.3.2.1
2628046	2013, BAS 440 I: A flow-through life-cycle toxicity test with the saltwater mysid (<i>Americamysis bahia</i>), DACO: 9.3.3,IIA 8.3.2.1
2628047	2014, Chronic toxicity of the BAS 440 I (Reg.No.5599022; ME5343 technical) to Moina macrocopa in a 10 day semi-static test, DACO: 9.3.3,IIA 8.3.2.1
2628048	2014, Chronic toxicity of the BAS 440 I (Reg.No.5599022; ME5343 technical) to Moina macrocopa in a 10 day semi-static test, DACO: 9.3.3,IIA 8.3.2.1
2628049	2014, BAS 440 I: Chronic toxicity to the Cladoceran, <i>Ceriodaphnia dubia</i> , under flow-through test conditions, DACO: 9.3.3,IIA 8.3.2.1
2628050	2014, BAS 440 I: Chronic toxicity to the Cladoceran, <i>Ceriodaphnia dubia</i> , under flow-through test conditions, DACO: 9.3.3, IIA 8.3.2.1
2628051	2013, Chronic toxicity of BAS 440 I (Reg.No. 5599022, ME5343) to the non-biting midge <i>Chironomus riparius</i> - A spiked water study, DACO: 9.3.4,9.9,IIA 8.3.2.2,IIA 8.5.2
2628052	2013, Chronic toxicity of BAS 440 I (Reg.No. 5599022, ME5343) to the non-biting midge <i>Chironomus riparius</i> - A spiked water study, DACO: 9.3.4,9.9,IIA 8.3.2.2,IIA 8.5.2
2628053	2014, Effect of BAS 440 I (ME5343, Reg.No. 5599022) on the growth of the blue- green alga <i>Anabaena flos-aquae</i> , DACO: 9.8.2,9.8.3,IIA 8.4
2628054	2014, Effect of BAS 440 I (ME5343, Reg.No. 5599022) on the growth of the blue- green alga <i>Anabaena flos-aquae</i> , DACO: 9.8.2,9.8.3,IIA 8.4
2628055	2014, BAS 440 I (Reg. No. 5599022) - <i>Skeletonema costatum</i> UTEX LB 2308 growth inhibition test, DACO: 9.8.2,9.8.3,IIA 8.4
2628056	2014, BAS 440 I (Reg. No. 5599022) - <i>Skeletonema costatum</i> UTEX LB 2308 growth inhibition test, DACO: 9.8.2,9.8.3,IIA 8.4
2628057	2014, BAS 440 I (Reg. No. 5599022) - <i>Navicula pelliculosa</i> SAG 1050-3 - Growth inhibition test, DACO: 9.8.2,9.8.3,IIA 8.4
2628058	2014, BAS 440 I (Reg. No. 5599022) - <i>Navicula pelliculosa</i> SAG 1050-3 - Growth inhibition test, DACO: 9.8.2,9.8.3,IIA 8.4
2628059	2011, Algae growth inhibition study of ME5343, DACO: 9.8.2,9.8.3,IIA 8.4
2628060	2011, Algae growth inhibition study of ME5343, DACO: 9.8.2,9.8.3, IIA 8.4
2628061	2014, BAS 440 I: A 10-day acute toxicity test with the freshwater amphipod (Hyalella
2628062	<i>azteca</i>) using spiked sediment, DACO: 9.9,IIA 8.5.1 2014, BAS 440 I: A 10-day acute toxicity test with the freshwater amphipod (<i>Hyalella azteca</i>) using spiked sediment, DACO: 9.9,IIA 8.5.1

PMRA Document Number	Reference
2628063	2014, BAS 440 I: A 10-day acute toxicity test with the chironomid midge (Chironomus
	dilutus) using spiked sediment, DACO: 9.9,IIA 8.5.1
2628064	2014, BAS 440 I: A 10-day acute toxicity test with the chironomid midge (Chironomus
0.000.05	<i>dilutus</i>) using spiked sediment, DACO: 9.9,IIA 8.5.1
2628065	2014, BAS 440 I: A 10-day acute toxicity test with the marine amphipod (<i>Leptocheirus plumulosus</i>) using spiked sediment, DACO: 9.9,IIA 8.5.1
2628066	2014, BAS 440 I: A 10-day acute toxicity test with the marine amphipod (<i>Leptocheirus plumulosus</i>) using spiked sediment, DACO: 9.9,IIA 8.5.1
2628067	2015, M440I024: A 10-day acute toxicity test with the midge (<i>Chironomus dilutus</i>) using spiked sediment, DACO: 9.9,IIA 8.5.1
2628068	2015, M440I024: A 10-day acute toxicity test with the midge (<i>Chironomus dilutus</i>) using spiked sediment, DACO: 9.9,IIA 8.5.1
2628069	2015, BAS 440 I - 10-Day toxicity test exposing estuarine amphipods (<i>Leptocheirus</i>
	<i>plumulosus</i>) to a test substance applied to sediment under static conditions, DACO: 9.9,IIA 8.5.1
2628070	2015, BAS 440 I - 10-Day toxicity test exposing estuarine amphipods (Leptocheirus
	<i>plumulosus</i>) to a test substance applied to sediment under static conditions, DACO: 9.9,IIA 8.5.1
2628071	2015, BAS 440 I: A Life cycle toxicity test with the midge (<i>Chironomus dilutus</i>) Using
	Spiked Sediment, DACO: 9.9,IIA 8.5.2
2628072	2015, BAS 440 I: A Life cycle toxicity test with the midge (Chironomus dilutus) Using
2/20072	Spiked Sediment, DACO: 9.9,IIA 8.5.2
2628073	2014, BAS 440 I (Reg. No. 5599022) - <i>Lemna gibba</i> CPCC 310 growth inhibition test, DACO: 9.8.5,IIA 8.6
2628074	2014, BAS 440 I (Reg. No. 5599022) - <i>Lemna gibba</i> CPCC 310 growth inhibition test,
2020071	DACO: 9.8.5,IIA 8.6
2628075	2016, BAS 440 I (Afidopyropen): Pollinator Screening Level Ecological Risk
	Assessment Including Higher Tiered Steps for Proposed Applications in Several Crops
0 (000 5 (of the United States and Canada, DACO: 9.2.4.2,IIA 8.7.1
2628076	2013, Acute toxicity of BAS 440 I (Reg.No. 5599022) to the honeybee <i>Apis mellifera</i>
2628077	<i>L</i> . under laboratory conditions, DACO: 9.2.4.1,9.2.4.2,IIA 8.7.1,IIA 8.7.2 2013, Acute toxicity of BAS 440 I (Reg.No. 5599022) to the honeybee <i>Apis mellifera</i>
2020077	L. under laboratory conditions, DACO: 9.2.4.1,9.2.4.2,IIA 8.7.1,IIA 8.7.2
2628078	2013, Acute toxicity of BAS 440 I (Reg.No. 5599022) to the honeybee <i>Apis mellifera</i>
	L. under laboratory conditions, DACO: 9.2.4.1,9.2.4.2,IIA 8.7.1,IIA 8.7.2
2628079	2014, Acute oral and contact toxicity of BAS 440 I (Reg.No. 5599022) to the
	bumblebee (<i>Bombus terrestris L.</i>) in the laboratory, DACO: 9.2.4.1,9.2.4.2,IIA 8.7.1,IIA 8.7.2
2628080	2014, Acute oral and contact toxicity of BAS 440 I (Reg.No. 5599022) to the
	bumblebee (<i>Bombus terrestris L.</i>) in the laboratory, DACO: 9.2.4.1,9.2.4.2,IIA 8.7.1,IIA 8.7.2
2628081	2014, Acute oral and contact toxicity of BAS 440 I (Reg.No. 5599022) to the
	bumblebee (<i>Bombus terrestris L.</i>) in the laboratory, DACO: 9.2.4.1,9.2.4.2,IIA
2/20002	8.7.1,IIA 8.7.2
2628082	2014, Acute oral and contact toxicity of BAS 440 I (Reg.No. 5599022) to the bumblebee (<i>Bombus terrestris L.</i>) in the laboratory, DACO: 9.2.4.1,9.2.4.2,IIA
	8.7.1,IIA 8.7.2
2628083	2012, Acute toxicity (14 days) of BAS 440 I (Reg.No. 5599022, ME5343 technical) to
	the earthworm <i>Eisenia fetida</i> in artificial soil with 5% peat, DACO: 9.2.3.1,IIA 8.9.1

PMRA Document	Reference
Number	
2628084	2012, Acute toxicity (14 days) of BAS 440 I (Reg.No. 5599022, ME5343 technical) to
	the earthworm <i>Eisenia fetida</i> in artificial soil with 5% peat, DACO: 9.2.3.1, IIA 8.9.1
2628085	2014, Acute toxicity of Reg.No. 5741532 (metabolite of BAS 440 I), M440I002) to the
	earthworm - Eisenia fetida in artificial soil with 10% peat, DACO: 9.2.3.1, IIA 8.9.1
2628086	2014, Acute toxicity of Reg.No. 5741532 (metabolite of BAS 440 I), M440I002) to the
	earthworm - Eisenia fetida in artificial soil with 10% peat, DACO: 9.2.3.1, IIA 8.9.1
2628087	2014, Acute toxicity of Reg.No. 5824382 (metabolite of BAS 440 I, M440Ioo5) to the
2020007	earthworm <i>Eisenia fetida</i> in artificial soil with 10% peat, DACO: 9.2.3.1,IIA 8.9.1
2628088	2014, Acute toxicity of Reg.No. 5824382 (metabolite of BAS 440 I, M440Ioo5) to the
2020000	earthworm <i>Eisenia fetida</i> in artificial soil with 10% peat, DACO: 9.2.3.1,IIA 8.9.1
2628089	
2020009	2014, Reg.No. 5741533 (metabolite of BAS 440 I): Acute toxicity to the earthworm
2/20000	<i>Eisenia fetida</i> in artificial soil with 10% peat, DACO: 9.2.3.1,IIA 8.9.1
2628090	2014, Reg.No. 5741533 (metabolite of BAS 440 I): Acute toxicity to the earthworm
2 (20001	<i>Eisenia fetida</i> in artificial soil with 10% peat, DACO: 9.2.3.1,IIA 8.9.1
2628091	2015, Reg.No. 5886215 (metabolite of BAS 440 I, M440I024): Acute toxicity to the
	earthworm <i>Eisenia fetida</i> in artificial soil with 10% peat, DACO: 9.2.3.1, IIA 8.9.1
2628092	2015, Reg.No. 5886215 (metabolite of BAS 440 I, M440I024): Acute toxicity to the
	earthworm Eisenia fetida in artificial soil with 10% peat, DACO: 9.2.3.1, IIA 8.9.1
2628093	2012, Effects of BAS 440 I (Reg.No. 5599022, ME5343 technical) on growth and
	reproduction of earthworms (Eisenia fetida) in artificial soil, DACO: 9.2.3.1, IIA 8.9.2
2628094	2012, Effects of BAS 440 I (Reg.No. 5599022, ME5343 technical) on growth and
	reproduction of earthworms (<i>Eisenia fetida</i>) in artificial soil, DACO: 9.2.3.1, IIA 8.9.2
2793343	2017, EFED for additional information regarding toxicity of formulated products of
	Afidopyropen, DACO: 9.3.2, IIA 8.3.1.1 CBI
2627690	2015, Atmospheric degradation of Afidopyropen (BAS 440 I) by reaction with
	Hydroxyl radicals and ozone: Structure-activity relationship calculations using
	AOPWIN v1.92, DACO: 8.2.3.3.3,IIA 2.10,IIA 7.10
2627709	2014, (NCA-14C)ME5343 - Hydrolysis in water, DACO: 8.2.3.2,IIA 2.9.1,IIA 7.5
2627710	2014, (NCA-14C)ME5343 - Hydrolysis in water, DACO: 8.2.3.2,IIA 2.9.1,IIA 7.5
2627711	2014, (NCA-14C)ME5343 - Photodegradation in water and determination of the
0,,11	quantum yield, DACO: 8.2.3.3,8.2.3.3.2,IIA 2.9.2,IIA 2.9.3,IIA 2.9.4,IIA 7.6
2627712	2014, (NCA-14C)ME5343 - Photodegradation in water and determination of the
2027712	quantum yield, DACO: 8.2.3.3,8.2.3.3.2,IIA 2.9.2,IIA 2.9.3,IIA 2.9.4,IIA 7.6
2627713	2015, (Pyranon-14C)ME5343: Photolytic fate in water, DACO: 8.2.3.3.2,IIA 2.9.2,IIA
2027715	7.6
2627714	2015, (Pyranon-14C)ME5343: Photolytic fate in water, DACO: 8.2.3.3.2,IIA 2.9.2,IIA
2027714	7.6
2627730	2015, Extractability evaluation of BAS 440 I residues in soil using procedures from the
2027730	aerobic soil metabolism and the residue analytical method, DACO: 8.2.2.1,IIA 4.4
2627732	2016, Validation of method D1308/02: Method for the determination of BAS 440 I
2027732	
	(Reg No. 5599022) and its metabolites M440I001 (Reg No.5741530), M440I002 (Reg No. 5741532), M440I003 (Bag No. 5741532), M440I005 (Bag No. 5824382)
	No. 5741532), M440I003 (Reg No. 5741533), M440I005 (Reg No. 5824382), M440I016 (Bag No. 5845507), M440I024 (Bag No. 5886215) and M440I057 (Bag No.
	M440I016 (Reg No. 5845597), M440I024 (Reg No. 5886215) and M440I057 (Reg No. 6010120) in acid by LC MS (MS, DACO) 8 22218 222 HA 4 4 HA 4 6
	6010129) in soil by LC-MS/MS, DACO: 8.2.2.1,8.2.2.2,IIA 4.4,IIA 4.6

PMRA Document Number	Reference
2627733	2016, Independent laboratory validation of BASF analytical method D1308/02: Method for the determination of residues of Afidopyropen (BAS 440 I, Reg No. 5599022) and its metabolites M440I001 (Reg No. 5741530), M440I002 (Reg No. 5741532), M440I003 (Reg No. 5741533), M440I005 (Reg No. 5824382), M440I016 (Reg No. 5845597), M440I024 (Reg No. 5886215) and M440I057 (Reg No. 6010129) in soil by LC-MS/MS, DACO: 8.2.2.1,8.2.2.2,IIA 4.4,IIA 4.6
2627734	2016, Validation of Method D1505/01: Method for the determination of residues of BAS 440 I (Reg. No. 5599022) and its metabolites M440I001 (Reg. No. 5741530), M440I002 (Reg. No. 5741532), M440I003 (Reg. No. 5741533), M440I005 (Reg. No. 5824382), M440I016 (Reg. No. 5845597) and M440I024 (Reg. No. 5886215) in surface and drinking water by LC-MS/MS, DACO: 8.2.2.3,IIA 4.5
2627735	2016, Independent laboratory validation of BASF analytical method D1505/02: Method for the determination of residues of Afidopyropen (BAS 440 I, Reg. No. 5599022) and its metabolites M440I001 (Reg. No. 5741530), M440I002 (Reg. No. 5741532), M440I003 (Reg. No. 5741533), M440I005 (Reg. No. 5824382), M440I016 (Reg. No. 5845597), M440I024 (Reg. No. 5886215), and M440I057 (Reg. No. 6010129) in surface and drinking water by LC-MS/MS, DACO: 8.2.2.3,IIA 4.5
2627967	2015, Aerobic soil metabolism of BAS 440 I, DACO: 8.2.3.4.2, IIA 7.1.1, IIA 7.2.3
2627968	2015, Aerobic soil metabolism of BAS 440 I, DACO: 8.2.3.4.2, IIA 7.1.1, IIA 7.2.3
2627969	2015, Degradation of BAS 440 I in aerobic soils, DACO: 8.2.3.4.2, IIA 7.1.1, IIA 7.2.3
2627970	2015, Degradation of BAS 440 I in aerobic soils, DACO: 8.2.3.4.2, IIA 7.1.1, IIA 7.2.3
2627971	2015, Anaerobic soil metabolism of 14C-BAS 440 I, DACO: 8.2.3.4.4,IIA 7.1.2,IIA 7.2.4
2627972	2015, Anaerobic soil metabolism of 14C-BAS 440 I, DACO: 8.2.3.4.4, IIA 7.1.2, IIA 7.2.4
2627973	2015, BAS 440 I Afidopyropen: Soil photolysis, DACO: 8.2.3.3.1, IIA 7.1.3
2627974	2015, BAS 440 I Afidopyropen: Soil photolysis, DACO: 8.2.3.3.1, IIA 7.1.3
2627975	2015, USDA taxonomic information for soils used in the environmental fate studies of Afidopyropen (BAS 440 I), DACO: 8.2.3.6,8.2.4.6,8.5.1,8.6,IIA 7.13
2627976	2016, Extractability testing of 14C-BAS 440 I in soil samples, DACO: 8.2.3.6,8.2.4.6,8.5.1,8.6,IIA 7.13
2627977	2015, Aerobic soil metabolism of 14C-Cyclopropane Carboxylic Acid (CPCA), DACO: 8.2.3.4.2, IIA 7.2.3
2627978	2015, Aerobic soil metabolism of 14C-Cyclopropane Carboxylic Acid (CPCA), DACO: 8.2.3.4.2,IIA 7.2.3
2627982	2015, Adsorption / desorption behavior of 14C-BAS 440 I in US and European soils, DACO: 8.2.4.2, IIA 7.4.1
2627983	2015, Adsorption / desorption behavior of 14C-BAS 440 I in US and European soils, DACO: 8.2.4.2, IIA 7.4.1
2627984	2015, Adsorption / desorption behavior of M440I001 (metabolite of BAS 440 I) on different US and European soils, DACO: 8.2.4.2,IIA 7.4.2
2627985	2015, Adsorption / desorption behavior of M440I001 (metabolite of BAS 440 I) on different US and European soils, DACO: 8.2.4.2,IIA 7.4.2
2627986	2015, Adsorption / desorption behavior of M440I002 (metabolite of BAS 440 I) on different US and European soils, DACO: 8.2.4.2, IIA 7.4.2
2627987	2015, Adsorption / desorption behavior of M440I002 (metabolite of BAS 440 I) on different US and European soils, DACO: 8.2.4.2,IIA 7.4.2
2627988	2015, Adsorption / desorption behavior of M440I003 (metabolite of BAS 440 I) on different US and European soils, DACO: 8.2.4.2,IIA 7.4.2

PMRA Document Reference Number 2627989 2015, Adsorption / desorption behavior of M440I003 (metabolite of BAS 440 I) on different US and European soils, DACO: 8.2.4.2, IIA 7.4.2 2627990 2015, Adsorption / desorption behavior of M440I024 (metabolite of BAS 440 I) on US and European soils, DACO: 8.2.4.2, IIA 7.4.2 2627991 2015, Adsorption / desorption behavior of M440I024 (metabolite of BAS 440 I) on US and European soils, DACO: 8.2.4.2, IIA 7.4.2 2627992 2015, Adsorption / desorption behavior of M440I005 (metabolite of BAS 440 I) on different European and US soils, DACO: 8.2.4.2, IIA 7.4.2 2015, Adsorption / desorption behavior of M440I005 (metabolite of BAS 440 I) on 2627993 different European and US soils, DACO: 8.2.4.2, IIA 7.4.2 2014, BAS 440 I (Afidopyropen) - Determination of the ready biodegradability in the 2627994 CO2-evolution test, DACO: 8.2.3.6,9.9, IIA 7.7, IIA 8.15 2627995 2014, BAS 440 I (Afidopyropen) - Determination of the ready biodegradability in the

- CO2-evolution test, DACO: 8.2.3.6,9.9, IIA 7.7, IIA 8.15 2013, Aerobic aquatic metabolism of BAS 440 I, DACO: 8.2.3.5.2,8.2.3.5.4, IIA 7.8.1 2627996 2013, Aerobic aquatic metabolism of BAS 440 I, DACO: 8.2.3.5.2,8.2.3.5.4, IIA 7.8.1 2627997 2015, BAS 440 I: Anaerobic aquatic metabolism, DACO: 8.2.3.5.5, 8.2.3.5.6, IIA 7.8.2 2627998 2627999 2015, BAS 440 I: Anaerobic aquatic metabolism, DACO: 8.2.3.5.5, 8.2.3.5.6, IIA 7.8.2 2773071 2017, BASF Response to a Request for Additional information from EPA and PMRA Regarding Unextracted Residues in Soil Metabolism and Soil Photolysis Studies Submitted in Support of Registration of Afidopyropen (BAS 440 I), DACO: 8.2.2.1,IIA 4.4 2830311 2017, Rationale for Waiver of Soil and Water Analytical Methods for Afidopyropen
 - Metabolite CPCA, DACO: 8.2.2.1,8.2.2.3,IIA 4.4,IIA 4.5
- 4.0 Value

PMRA Document Number	Reference
2627537 2627539	BASF, 2016, DACO 5.2 Use Description /Scnenario, DACO: 10.2.2,5.2,IIIA 3.3.1 2016, Value 10 Summary, DACO: 10.2.3.1, 10.2.3.2, 10.2.3.3, 10.2.3.4, 10.3.1, 10.3.2,
2027339	10.3.3, 10.4, 10.5.1, 10.5.2, 10.5.3, 10.5.4, 10.6, IIIA 6.1.1, IIIA 6.1.2, IIIA 6.1.3, IIIA
	6.1.4.1, IIIA 6.1.4.2, IIIA 6.1.4.3, IIIA 6.2.1, IIIA 6.2.2, IIIA 6.2.3, IIIA 6.2.4, IIIA 6.2.5, IIIA 6.2.6, IIIA 6.2.7, IIIA 6.2.8, IIIA 6.3, IIIA 6.4.1, IIIA 6.4.2, IIIA 6.4.3, IIIA
2627540	6.5, IIIA 6.6, IIIA 6.7 2016, Value 10 excel spreadsheet, DACO: 10.2.3.1, 10.2.3.2, 10.2.3.3, 10.2.3.4, 10.3.1,
2027340	10.3.2, 10.3.3, 10.4, 10.5.1, 10.5.2, 10.5.3, 10.5.4, 10.6, IIIA 6.1.1, IIIA 6.1.2, IIIA
	6.1.3, IIIA 6.1.4.1, IIIA 6.1.4.2, IIIA 6.1.4.3, IIIA 6.2.1, IIIA 6.2.2, IIIA 6.2.3, IIIA 6.2.4, IIIA 6.2.5, IIIA 6.2.6, IIIA 6.2.7, IIIA 6.2.8, IIIA 6.3, IIIA 6.4.1, IIIA 6.4.2, IIIA
	6.4.3, IIIA 6.5, IIIA 6.6, IIIA 6.7
2627541	2016, Value 10 appendix, DACO: 10.2.3.1, 10.2.3.2, 10.2.3.3, 10.2.3.4, 10.3.1, 10.3.2,
	10.3.3, 10.4, 10.5.1, 10.5.2, 10.5.3, 10.5.4, 10.6, IIIA 6.1.1, IIIA 6.1.2, IIIA 6.1.3, IIIA 6.1.4.1, IIIA 6.1.4.2, IIIA 6.1.4.3, IIIA 6.2.1, IIIA 6.2.2, IIIA 6.2.3, IIIA 6.2.4, IIIA
	6.2.5, IIIA 6.2.6, IIIA 6.2.7, IIIA 6.2.8, IIIA 6.3, IIIA 6.4.1, IIIA 6.4.2, IIIA 6.4.3, IIIA
	6.5, IIIA 6.6, IIIA 6.7

PMRA Document	Kelerence
Number	
2627542	2016, Value 10 excel raw data, DACO: 10.2.3.1, 10.2.3.2, 10.2.3.3, 10.2.3.4, 10.3.1,
	10.3.2, 10.3.3, 10.4, 10.5.1, 10.5.2, 10.5.3, 10.5.4, 10.6, IIIA 6.1.1, IIIA 6.1.2, IIIA
	6.1.3, IIIA 6.1.4.1, IIIA 6.1.4.2, IIIA 6.1.4.3, IIIA 6.2.1, IIIA 6.2.2, IIIA 6.2.3, IIIA
	6.2.4, IIIA 6.2.5, IIIA 6.2.6, IIIA 6.2.7, IIIA 6.2.8, IIIA 6.3, IIIA 6.4.1, IIIA 6.4.2, IIIA
	6.4.3, IIIA 6.5, IIIA 6.6, IIIA 6.7
2696108	2016, BAS 440 I efficacy selectivity aphid in tree nuts, DACO: 10.2.3.3(D)

PMRA Document Reference

Additional Information Considered B.

i) **Published Information**

1.0 Human and Animal Health

PMRA Document	Reference
Number	
2832324	2012, Harleman JH, Hargreaves A, Andersson H, and Kirk S. A review of the
	incidence and coincidence of uterine and mammary tumors in Wistar and Sprague-
	Dawley rats based on the RITA database and the role of prolactin. Toxicol Pathol. 40: 926-930.
2832325	2009, Yoshida M, Watanabe G, Suzuki T, Inoue K, Takahashi M, Maekawa A, Taya
	K, and Nishikawa A. Long-term treatment with bromocriptine inhibits endometrial
	adenocarcinoma development in rats. J Reprod Dev. 55: 105-109.
2832326	2015, Yoshida M, Inoue K, and Takahashi M. Predictive modes of action of pesticides
	in uterine adenocarcinoma development in rats. J Toxicol Pathol. 28 (4): 207-216.
2832327	1998, Ulrich RG, Bacon JA, Cramer CT, Petrella DK, Sun EL, Magalsson MD, and
	Holmuhamedov E. Disruption of mitochondrial activities in rabbit and human
	hepatocytes by a quinoxalionone anxiolytic and its carboxylic acid metabolite.
	Toxicology 131: 33-47.
2798508	2013, Yuichi Kuroiwa, Ryo Ando, Kenichiro Kasahara, Mariko Nagatani, Seiki
	Yamakawa, and Shuzo Okazaki. Transition of Historical Control Data for High
	Incidence Tumors in F344 Rats, J Toxicol Pathol; 26: 227-230.