

ERC2009-01

Evaluation Report

Mandipropamid Technical Fungicide

(publié aussi en français)

30 June 2009

This document is published by the Health Canada Pest Management Regulatory Agency. For further information, please contact:

Publications Pest Management Regulatory Agency Health Canada 2720 Riverside Drive A.L. 6605C Ottawa, Ontario K1A 0K9 Internet: pmra_publications@hc-sc.gc.ca healthcanada.gc.ca/pmra Facsimile: 613-736-3758 Information Service: 1-800-267-6315 or 613-736-3799 pmra_infoserv@hc-sc.gc.ca

HC Pub: 8162

ISBN: 978-1-100-12200-7 (978-1-100-12201-4) Catalogue number: H113-26/2009-1E (H113-26/2009-1E-PDF)

© Her Majesty the Queen in Right of Canada, represented by the Minister of Health Canada, 2009

All rights reserved. No part of this information (publication or product) may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, or stored in a retrieval system, without prior written permission of the Minister of Public Works and Government Services Canada, Ottawa, Ontario K1A 0S5.

Table of Contents

Overview	1
Registration Decision for Mandipropamid Technical Fungicide	1
What Does Health Canada Consider When Making a Registration Decision?	1
What Is Revus Fungicide?	2
Health Considerations	2
Environmental Considerations	4
Value Considerations	5
Measures to Minimize Risk	5
What Additional Scientific Information is Being Requested?	6
Other Information	7
Science Evaluation	9
1.0 The Active Ingredient, Its Properties and Uses	9
1.1 Identity of the Active Ingredient	9
1.2 Physical and Chemical Properties of the Active Ingredient and End-Use Product.	
1.3 Directions for Use	
1.4 Mode of Action	
2.0 Methods of Analysis	
2.1 Methods Used to Analyse the Active Ingredient	
2.2 Method for Formulation Analysis	
2.3 Methods for Residue Analysis	
3.0 Impact on Human and Animal Health	
3.1 Toxicology Summary	
3.2 Determination of Acute Reference Dose	17
3.3 Determination of Acceptable Daily Intake	17
3.4 Occupational and Residential Risk Assessment	17
3.4.1 I oxicological Endpoints	17
3.4.2 Occupational Exposure and Risk	
3.4.3 Residential Exposure and Risk Assessment	
3.5 Food Residues Exposure Assessment	
3.5.1 Residues in Plant and Animal Foodstuffs	
3.5.2 Dietary Risk Assessment	
3.5.3 Aggregate Exposure and KISK	
3.5.4 Maximum Residue Limits	
4.0 Impact on the Environment.	
4.1 Fate and Benaviour in the Environment	
4.2 Effects on Non-Target Species	
4.2.1 Effects on Terrestrial Organisms	
4.2.2 Effects on Aquatic Organisms	
5.0 Value	
5.1 Effectiveness Against Pests	
5.1.1 Acceptable Efficacy Claims.	
5.2 Phytotoxicity to Host Plants	
5.5 Impact on Succeeding Crops	

5.4	Eco	nomics	38
5.5	Sust	ainability	38
5.:	5.1	Survey of Alternatives	38
5.:	5.2	Compatibility with Current Management Practices Including Integrated Pest	
		Management	39
5.5	5.3	Information on the Occurrence or Possible Occurrence of the Development of	
		Resistance	39
5.:	5.4	Contribution to Risk Reduction and Sustainability	40
6.0	Pest	Control Product Policy Considerations	40
6.2	Form	nulants and Contaminants of Health or Environmental Concern	41
7.0	Sum	imary	42
7.1	Hun	nan Health and Safety	42
7.2	Envi	ironmental Risk	43
7.3	Valu	1e	43
7.4	Uns	upported Uses	43
8.0	Reg	ulatory Decision	44
List of	f Abbi	reviations	47
Appen	dix I	Tables and Figures	51
Tabl	le 1	Residue Analysis	51
Tabl	le 2	Acute Toxicity of Mandipropamid Technical Fungicide and Its Associated	
		End-use Product (Revus Fungicide)	52
Tabl	le 3	Toxicity Profile of Mandipropamid Technical Fungicide	52
Tabl	le 4	Toxicology Endpoints for Use in Health Risk Assessment for	
		Mandipropamid Technical Fungicide	60
Tabl	le 5	Integrated Food Residue Chemistry Summary	61
Tabl	le 6	Food Residue Chemistry Overview of Metabolism Studies and Risk	
		Assessment	86
Tabl	le 7	Major and Minor Transformation Products	87
Tabl	le 8	Fate and Behaviour of Mandipropamid in the Terrestrial Environment	91
Tabl	le 9	Fate and Behaviour in the Aquatic Environment	93
Tabl	le 10	Toxicity to Non-Target Terrestrial Organisms	96
Tabl	le 11	Toxicity to Non-Target Aquatic Organisms	98
Tabl	le 12	Screening Level Risk Assessment for Terrestrial Organisms Other Than	
		Birds and Mammals	99
Tabl	le 13	Screening Level Risk Assessment for Birds and Mammals	100
Tabl	le 14	Screening Level Risk Assessment for Aquatic Organisms	103
Tabl	le 15	Refined Risk Assessments for Small Mammals	105
Tabl	le 16	Summary of Alternatives	106
Tabl	le 17	Use Claims (i.e. Label Claims) Proposed by Applicant and Whether Claims Are	
1 000	• • • •	Acceptable or Unsupported	108
Appen	ndix II	Supplemental Maximum Residue Limit Information—International Situation	
-r p •n	<i>,</i> 11	and Trade Implications	113
Appen	ndix II	I Crop Groups: Numbers and Definitions	115
Refere	ences	- · r - · · r - · · · r - · · · · · · · · · · · · · · · · · ·	119
			/

Overview

Registration Decision for Mandipropamid Technical Fungicide

Health Canada's Pest Management Regulatory Agency (PMRA), under the authority of the *Pest Control Products Act* and in accordance with the Pest Control Products Regulations, has granted conditional registration for the sale and use of mandipropamid and Revus Fungicide containing the technical grade active ingredient Mandipropamid Technical Fungicide to control downy mildew on Brassica crops, bulb vegetables, grapes, leafy vegetables (including field and greenhouse, not for transplants for the field, and spinach); blue mould on spinach; late blight on tomatoes (including field and greenhouse, not transplants for the field), tomatillos and potatoes; suppression of phytophthora blight on peppers (Bell and non-Bell peppers to be treated in the greenhouse and immediately transplanted to the field) and suppression of downy mildew on cucurbits (including field and greenhouse, not transplants for the field).

Current scientific data from the applicant were evaluated to determine whether, under the proposed conditions of use, the product has value and does not present an unacceptable risk to human health or the environment.

This report summarizes the information that was evaluated and provides the results of the evaluation as well as the reasons for the registration decision, with an outline of the additional scientific information required from the applicant. It also describes the conditions of registration that the applicant must meet to ensure that the health and environmental risks as well as the value of these pest control products are acceptable for their intended use.

This Overview describes the key points of the evaluation, while the Science Evaluation section provides detailed technical information on the human health, environmental and value assessments of Mandipropamid Technical Fungicide and Revus Fungicide.

What Does Health Canada Consider When Making a Registration Decision?

The key objective of the *Pest Control Products Act* is to prevent unacceptable risks to people and the environment from the use of pest control products. Health or environmental risk is considered acceptable¹ if there is reasonable certainty that no harm to human health, future generations or the environment will result from use or exposure to the product under its proposed conditions of registration. The Act also requires that products have value² when used according

¹ "Acceptable risks" as defined by subsection 2(2) of the *Pest Control Products Act*.

² "Value" as defined by Subsection 2(1) of the *Pest Control Products Act* "...the product's actual or potential contribution to pest management, taking into account its conditions or proposed conditions of registration, and includes the product's (a) efficacy; (b) effect on host organisms in connection with which it is intended to be used; and (c) health, safety and environmental benefits and social and economic impact."

to the label directions. Conditions of registration may include special precautionary measures on the product label to further reduce risk.

To reach its decisions, the PMRA applies modern, rigorous risk-assessment methods and policies. These methods consider the unique characteristics of sensitive subpopulations in humans (e.g. children) as well as organisms in the environment (e.g. those most sensitive to environmental contaminants). These methods and policies also consider the nature of the effects observed and the uncertainties present when predicting the impact of pesticides. For more information on how the PMRA regulates pesticides, and on the assessment process and risk-reduction programs, please visit the Pesticides and Pest Management portion of Health Canada's website at healthcanada.gc.ca/pmra.

What Is Revus Fungicide?

Mandipropamid is a Group 40 fungicide active ingredient and is classified as a carboxylic acid amide. It has a proposed mode of action that inhibits phospholipid biosynthesis, and interferes with cell wall division. It is rated as having a low to medium risk for resistance development in pathogen populations. It is the active ingredient in the end-use product Revus Fungicide, which is used to control or suppress various foliar diseases when applied at rates between 400–600 mL/ha (100–150 g a.i./ha). Revus Fungicide is applied as a drench or foliar spray and can be tank mixed with Bravo 500 Agricultural Fungicide (Reg. No. 15723) for resistance management purposes, or to increase the disease spectrum for crops already registered on the Bravo 500 Agricultural Fungicide label. Revus Fungicide can be applied to field or selected greenhouse crops via ground or aerial application equipment.

Diseases controlled include downy mildew on brassica crops, bulb vegetables, grapes, leafy vegetables (including field and greenhouse, not for transplants for the field, and blue mould on spinach); late blight on tomatoes (including field and greenhouse, not transplants for the field), tomatillos and potatoes; and suppression of phytophthora blight on peppers (Bell and non-Bell peppers to be treated in the greenhouse and immediately transplanted to the field), and suppression of downy mildew on cucurbits (including field and greenhouse, not transplants for the field).

Health Considerations

Can Approved Uses of Mandipropamid Technical Fungicide Affect Human Health?

Mandipropamid Technical Fungicide is unlikely to affect your health when used according to the label directions.

Potential exposure to mandipropamid may occur through diet (food and water) or when handling and applying the product. When assessing health risks, two key factors are considered: the levels at which no health effects occur and the levels to which people may be exposed. The dose levels used to assess risks are established to protect the most sensitive human population group (e.g. children and nursing mothers). Only uses for which the exposure is well below levels that cause no effects in animal testing are considered acceptable for registration.

Toxicology studies in laboratory animals describe potential health effects from varying levels of exposure to a chemical and identify the dose at which no effects are observed. The health effects noted in animals occur at doses more than 100 times higher (and often much higher) than levels to which humans are normally exposed when mandipropamid products are used according to the label directions.

Mandipropamid Technical Fungicide and the end-use product, Revus Fungicide, are not acutely toxic. Consequently, no label statements are required.

Mandipropamid did not cause cancer in animals and was not genotoxic. There was also no indication that mandipropamid caused damage to the nervous system and there were no effects on reproduction or fetal development. The first signs of toxicity in animals given daily doses of mandipropamid over longer periods of time were decreases in bodyweight gain and liver effects. The risk assessment protects against these effects by ensuring that the level of human exposure is well below the lowest dose at which these effects occurred in animal tests.

Residues in Water and Food

Dietary risks from food and water are not of concern.

Aggregate dietary intake estimates (food plus water) revealed that the general population and infants, the subpopulation that would ingest the most mandipropamid relative to body weight, are expected to be exposed to less than 4.2% of the acceptable daily intake. Based on these estimates, the chronic dietary risk from mandipropamid is not of concern for all population subgroups.

Animal studies revealed no acute health effects. Consequently, a single dose of mandipropamid is not likely to cause acute health effects in the general population (including infants and children).

The *Food and Drugs Act* prohibits the sale of adulterated food, that is, food containing a pesticide residue that exceeds the established maximum residue limit (MRL). Pesticide MRLs are established for *Food and Drugs Act* purposes through the evaluation of scientific data under the *Pest Control Products Act*. Food containing a pesticide residue that does not exceed the established MRL does not pose an unacceptable health risk.

Residue trials conducted throughout the United States using mandipropamid on Brassica vegetables, cucurbits, dry bulb and green onion, fruiting vegetables, grapes, leafy vegetables and potato were acceptable. Residue trials conducted in Europe using mandipropamid on greenhouse vegetables (cucumber, lettuce and tomato) were

acceptable. The MRLs for this active ingredient can be found in the Science Evaluation of this Evaluation Document

Occupational Risks From Handling Revus Fungicide

Occupational risks are not of concern when Revus Fungicide is used according to the proposed label directions, which include protective measures.

Farmers and custom applicators who mix, load or apply Revus Fungicide, as well as field workers re-entering freshly treated fields, nurseries and greenhouses, can come in direct contact with mandipropamid residues on the skin. Therefore, the label specifies that anyone mixing/loading and applying Revus Fungicide must wear a long sleeved shirt, long pants, and shoes plus socks. Additionally, workers must wear chemical-resistant gloves during mixing/loading. The label also requires that workers do not enter treated fields for 12 hours after application. Taking into consideration these label statements, the number of applications, and the exposure duration for handlers and workers, risk to these workers is not of concern.

For bystanders, exposure is expected to be much less than that for workers and is considered negligible. Therefore, health risks to bystanders are not of concern.

Environmental Considerations

What Happens When Mandipropamid Technical Fungicide Is Introduced Into the Environment?

When used according to the label directions, which include precautionary statements, Revus Fungicide (active ingredient mandipropamid) does not pose a risk to the environment.

Mandipropamid enters the environment when used on various crops for treatment of fungal infection. In the terrestrial environment, mandipropamid is slightly to moderately persistent with the main route of dissipation being biotransformation in soil. Mandipropamid is not expected to volatilize nor leach significantly. No major transformation products of mandipropamid were identified in the soil laboratory studies.

Mandipropamid can enter the aquatic environment through spray drift and runoff from the application field. Based on the environmental fate characteristics, limited runoff of mandipropamid and its transformation products is expected. Mandipropamid dissipates rapidly from the water layer mainly via partitioning to the sediments, but phototransformation will also contribute to this dissipation in the photic zone. Biotransformation is the main route of dissipation for mandipropamid in sediments. Mandipropamid is stable to hydrolysis and is not expected to volatilize; therefore, these two processes will not affect the dissipation of mandipropamid from the aquatic environment. In the total aquatic system, mandipropamid is classified as non-persistent to slightly persistent depending on the system and conditions present. Major transformation products of mandipropamid were identified in the aquatic fate studies. These transformation products will only form in significant levels in the aquatic environment if large quantities of mandipropamid enter the aquatic environment as they are not expected to be present in runoff. Further discussion regarding these transformation products occurs in the Science Evaluation section of this document.

The risk to the environment was assessed for mandipropamid and it was determined that negligible risk exists to the terrestrial and aquatic organism groups assessed from the proposed uses.

Value Considerations

What Is the Value of Revus Fungicide?

Mandipropamid, the active ingredient in Revus Fungicide, controls or suppresses downy mildew, late blight and phytophthora blight on various field and greenhouse-grown crops

Revus Fungicide is a reduced-risk product that offers a new fungicide chemistry to Canadian growers for use on leafy vegetables, grapes, tomatoes, cucurbits, bulb vegetables, and Brassica head and stem crops. It is also currently the only fungicide registered in Canada for suppression of phytophthora blight on field peppers. Revus Fungicide can be tank mixed with Bravo 500 Agricultural Fungicide for resistance management, or to increase the disease spectrum on crops that are registered on both product labels. In addition, Revus Fungicide can be applied by ground and aerial application equipment.

Sensitivity monitoring studies have suggested that populations of *Phytophthora infestans*, the causative pathogen of potato late blight, have not developed resistance to mandipropamid. However, certain isolates of *Plasmopara viticola*, the causative pathogen for downy mildew of grape, have been found to be simultaneously resistant to all Group 40 active ingredients. Therefore, resistance management practices are required when using Revus Fungicide on grapes for control of downy mildew and are highly recommended when using Revus Fungicide on other labelled crops.

Measures to Minimize Risk

The labels of registered pesticide products include specific instructions for use. Directions include risk-reduction measures to protect human and environmental health. These directions must be followed by law.

The key risk-reduction measures being proposed on the label of Revus Fungicide to address the potential risks identified in this assessment are as follows.

Human Health

Given there is a concern with users coming into direct contact with Revus Fungicide on their skin or through inhalation of spray mists, anyone mixing, loading or applying Revus Fungicide must wear a long-sleeved shirt, long pants, and shoes plus socks. Additionally, workers must wear chemical-resistant gloves during mixing/loading. In addition, standard label statements to protect against drift during application have been added to the label.

What Additional Scientific Information is Being Requested?

Although the risks and value of Mandipropamid Technical Fungicide have been found acceptable when all risk-reduction measures are followed, the applicant must submit additional scientific information as a condition of registration. More details are presented in the Science Evaluation of this Evaluation Report or in the Section 12 Notice associated with these conditional registrations. The applicant must submit the following information within the time frames indicated.

Chemistry

- Analytical data from at least five batches of the technical grade active ingredient (TGAI) representing full-scale production, once commercial production has commenced at the manufacturing site.
- Analytical methods for the transformation products of mandipropamid in water and sediment.

Human Health

- For enforcement purposes, a confirmatory method or interference study for residue analytical method (RAM) 415/01.
- Final study report demonstrating the storage stability of analytical standards.
- Freezer storage stability study for residues of SYN 500003 in potato tubers and potato processed fractions for up to 32 months of frozen storage.
- Greenhouse lettuce trials conducted according to the approved Revus Fungicide label rate.

Value

- Confirmatory efficacy trials are required to determine whether a higher rate of Revus Fungicide (150 g a.i./ha) is required for control of downy mildew (*Peronospora destructor*) on green (bunching) onions, leeks and Welch onions.
- Confirmatory efficacy trials are required that assess Revus Fungicide for control of downy mildew (*Peronospora parasitica*) on crops within the Brassica leafy greens subgroup. Efficacy data are required within two years of a conditional registration being granted.

• Confirmatory efficacy trials are required that assess Revus Fungicide for suppression of Phytophthora blight (*Phytophthora capsici*) on peppers (Bell and non-Bell), as well as all other crops within the fruiting vegetables crop group. Efficacy data are required within two years of a conditional registration being granted.

Other Information

As these conditional registrations relate to a decision on which the public must be consulted,³ the PMRA will publish a consultation document when there is a proposed decision on applications to convert the conditional registrations to full registrations or on applications to renew the conditional registrations, whichever occurs first.

The test data cited in this Evaluation Report (i.e. the test data relevant in supporting the registration decision) will be made available for public inspection when the decision is made to convert the conditional registrations to full registrations or to renew the conditional registrations (following public consultation). If more information is required, please contact the PMRA's Pest Management Information Service by phone (1-800-267-6315) or by e-mail (pmra_infoserv@hc-sc.gc.ca).

³

As per subsection 28(1) of the *Pest Control Products Act*.

Science Evaluation

Mandipropamid Technical Fungicide

1.0 The Active Ingredient, Its Properties and Uses

1.1 Identity of the Active Ingredient

Active Substance	Mandipropamid
Function	Fungicide
Chemical Name	
1. International Union of Pure and Applied Chemistry (IUPAC)	(<i>RS</i>)-2-(4-chlorophenyl)- <i>N</i> -[3-methoxy-4-(prop-2-ynyloxy)phenethyl]-2-(prop-2-ynyloxy)acetamide
2. Chemical Abstracts Service (CAS)	4-chloro- <i>N</i> -[2-[3-methoxy-4-(2-propynyloxy)phenyl]ethyl]-α- (2-propynyloxy)benzeneacetamide
CAS Number	374726-62-2
Molecular Formula	C ₂₃ H ₂₂ CINO ₄
Molecular Weight	411.9
Structural Formula	

Purity of the Active Ingredient 96% nominal

1.2 Physical and Chemical Properties of the Active Ingredient and End-Use Product

Property	Result		
Colour and physical state	Light beige powder		
Odour	Odourless		
Melting range	96.4–97.3°C		
Boiling point	Not applicable for a solid		
Density	1.24 g/cm^3		
Vapour pressure at 20°C	$<9.4 \times 10^{-7}$ Pa		
Henry's law constant at 25°C	$<9.2 \times 10^{-5} \text{ Pa m}^{3}/\text{mol}$		
	$<9.1 \times 10^{-10}$ atm m ³ /mol		
Ultraviolet (UV) – Visible spectrum	λ_{max} at 223 nm and 276 nm, with no other absorbance maxima between 350 and 750 nm		
Solubility in water at 25°C	4.2 mg/L		
Solubility in organic solvents	Solvent Solubility (g/L)		
at 25°C	Acetone 300		
	Dichloromethane 400		
	Ethyl acetate 120		
	Methanol 66		
	n-hexane 42		
	Toluene 29		
	n-Octanol–water 4.8		
<i>n</i> -Octanol–water partition	<u>pH</u> $log K_{ow}$		
coefficient (K _{ow})	7.5–7.7 3.2		
Dissociation constant (pKa)	No dissociation between pH 1 and 12		
Stability (temperature, metal)	Stable to metals and elevated temperature		

Technical Product—Mandipropamid Technical Fungicide

Property	Result	
Colour	Light beige	
Odour	No particular odour	
Physical state	Liquid	
Formulation type	Suspension	
Guarantee	250 g/L nominal	
Container material and description	High-density polyethylene (HDPE) (non-fluorinated and fluorinated), polyethylene terephthalate (PET) or co-extrusion (COEX) material, in sizes 250 mL to bulk	
Density	1.07 g/mL	
pH of 1% dispersion in water	6-8	
Oxidizing or reducing action	Not an oxidizing substance	
Storage stability	Stable in commercial packaging for one year at 20°C	
Corrosion characteristics	Not corrosive to commercial packaging over one year at 20°C	
Explodability	Not explosive	

End-Use Product—Revus Fungicide

1.3 Directions for Use

Revus Fungicide, when applied at 400–600 mL product/ha (100–150 g a.i./ha), is proposed to control, or suppress, specific diseases of greenhouse and field crops (refer to Table 1.3.1). The product can be applied as either an initial drench application or foliar spray for suppression of phytophthora blight on peppers, or as a foliar spray for all other diseases. Up to five applications of Revus Fungicide per season is proposed for most crops. Revus Fungicide is proposed to be tank mixed with Bravo 500 Agricultural Fungicide to increase the disease spectrum.

Table 1.3.1 Crop and Disease Claims Proposed for Revus Fungicide*

Crop and Crop Group	Diseases Controlled or Suppressed
Brassica Head and Stem subgroup: Broccoli, Chinese broccoli (gailon), Brussels sprouts, cabbage, Chinese cabbage (napa), Chinese mustard, cabbage (gai choy), cauliflower, cavalo broccoli, kohlrabi	Control of downy mildew (Peronospora parasitica)
Leafy Greens subgroup: Broccoli raab, cabbage, Chinese collards, kale, mizuna, mustard greens, mustard spinach, rape greens, including all cultivars and/or hybrids of these	

Crop and Crop Group	Diseases Controlled or Suppressed
Bulb Vegetables Dry bulb: Onion, bulb, garlic, shallot	Control of downy mildew
Green Onion: Green onions, leek, Welch onion	(Peronospora destructor)
 Cucurbits: Cantaloupe, Chayote, Chinese-waxgourd, field cucumber, gourds, honeydew, melons <i>Momordica</i> spp. (bitter melon, balsam apple), muskmelon, watermelon, pumpkin, squash, zucchini, including cultivars and/or hybrids of these Greenhouse Cucumbers (For use in greenhouse only–not for transplant to the field) 	Suppression of downy mildew (<i>Pseudoperonospora</i> <i>cubensis</i>) Suppression of phytophthora blight (<i>Phytophthora cansici</i>)
Fruiting Vegetables: Field peppers, bell peppers, non-Bell peppers, sweet non-Bell, eggplant, okra, ground cherry, pepino	Control of downy mildew
Greenhouse Peppers (For use in greenhouse only–not for transplant to the field)	(Peronospora tabacina) Suppression of phytophthora blight (Phytophthora capsici)
Field Tomato , Tomatillo Greenhouse Tomatoes (For use in greenhouse only–not for transplant to the field)	Control of late blight (<i>Phytophthora</i> <i>infestans</i>)
Grapes	Control of downy mildew (<i>Plasmopara viticola</i>)
Root and Tuber Vegetables	Control of late blight
Tuberous and Corm Vegetables subgroup: Arracacha, arrowroot, Chinese and Jerusalem artichoke, burdock, canna, edible bitter and sweet cassava, chayote (root), chufa, dasheen (Taro), ginger, leren, potato, sweet potato, tanier, turmeric, yam (bean), yam (true)	(Phytophthora infestans)
Leafy Vegetables: Field lettuce, leaf and head, spinach	Control of downy mildew
Greenhouse Lettuce (For use in greenhouse only—not for transplant to the field)	(<i>Bremia lactucae</i>) also known as blue mould (<i>Peronospora effusa</i>)
* It is recommended that Revus Fungicide be applied with a non-ionic adjuvant at	0.125% volume per volume

It is recommended that Revus Fungicide be applied with a non-ionic adjuvant at 0.125% volume per volume dilution (v/v).

1.4 Mode of Action

Mandipropamid is classified as a Group 40 fungicide, and is part of the carboxylic acid amide (CAA) group of fungicides. The mode of action of CAA compounds has not yet been fully elucidated. Mandipropamid is a preventative fungicide with some curative activity, as it prevents spore germination and inhibits mycelial growth and sporulation. Mandipropamid binds to the waxy surface of plant tissues, and, once it is taken up, it is locally translocated to the opposite leaf surface.

2.0 Methods of Analysis

2.1 Methods Used to Analyse the Active Ingredient

The methods provided to analyse the active ingredient and the impurities in Mandipropamid Technical Fungicide have been validated and found to be acceptable for the determinations.

2.2 Method for Formulation Analysis

The method provided to analyse the active ingredient in the formulation has been validated and found to be acceptable for use as an enforcement analytical method.

2.3 Methods for Residue Analysis

A residue analytical method (RAM) 415/01 (LC-MS/MS) was developed and proposed to determine levels of mandipropamid in crop matrices and for enforcement purposes. This method fulfilled the requirements as a data gathering method with regards to specificity, accuracy and precision at the respective method limit of quantitation. Acceptable recoveries were obtained in primary and secondary crop matrices. Adequate extraction efficiencies were demonstrated using radiolabelled lettuce samples analyzed using the RAM 415/01 enforcement method. Additionally, RAM 415/01 was validated by an independent laboratory. Conditions for analyte confirmation are not specified in RAM 415/01. As such, a confirmatory study or interference study for RAM 415/01 is required. Residue analytical method GRM 001.01.B (LC-MS/MS) was developed and proposed for the determination of the metabolite SYN 500003 in potato tubers and potato processed fractions. This method fulfilled the requirements as a data gathering method with regards to specificity, accuracy and precision at the respective method limit of quantitation. Acceptable recoveries were obtained in potato matrices. Mandipropamid was analyzed according to the American Food and Drug Administrations's (USFDA) Multiresidue Method Testing guidelines in Pesticide Analytical Methods (PAM) Volume I. The multiresidue testing data indicated that mandipropamid is not recovered through PAM, Volume I. Analytical methodologies are not required at this time for livestock matrices as finite residues of mandipropamid are not anticipated in ruminant matrices and there are no poultry feed items associated with the proposed uses.

High-performance liquid chromatography methods with ultraviolet detection or tandem mass spectrometry were developed and proposed for data generation and enforcement purposes. These methods fulfilled the requirements with regards to selectivity, accuracy and precision at the respective method limit of quantitation. Acceptable recoveries (70–120%) were obtained in environmental media. However, transformation products in sediment and water have not been addressed. Methods for residue analysis are summarized in Appendix I, Table 1.

3.0 Impact on Human and Animal Health

3.1 Toxicology Summary

A detailed review of the toxicological database for mandipropamid was conducted. The database is complete, consisting of the full array of toxicity studies currently required for hazard assessment purposes. The studies were carried out in accordance with currently accepted international testing protocols and good laboratory practices. The scientific quality of the data is high and the database is considered adequate to define the majority of the toxic effects that may result from exposure to this chemical pest control product.

Mandipropamid was of low acute toxicity by the oral, dermal and inhalation routes of exposure in Wistar rats. It was minimally irritating to the skin and eyes of New Zealand White rabbits. Mandipropamid was negative for skin sensitization using the Guinea Pig Maximization and Local Lymph Node Assay methods.

Revus Fungicide was of low acute toxicity by the oral, dermal and inhalation routes of exposure in Wistar rats. It was minimally irritating to the skin and eyes of New Zealand White rabbit. Revus Fungicide was negative for skin sensitization using the Buehler method.

An extensive toxicokinetic assessment was carried out in the rat. In addition, a limited assessment was conducted in the dog. In the rat, there were dose-related differences observed in absorption, metabolism, distribution, and excretion and sex-related differences in excretion and absorption. Sex-related absorption and excretion differences were dose- and route-dependent in dogs.

In the rat, mandipropamid is rapidly but moderately absorbed following oral gavage dosing. Absorption was decreased at the high dose suggesting saturation of the absorption kinetics. Repeated dietary dosing did not demonstrate saturation. The maximum time (T_{max}) more than doubled in the high dose versus low dose with males about double that of females. Bile excretion accounted for a significant proportion of elimination with a wide range between sexes and dose levels. Urine was the least common route of excretion. Females excreted more radioactivity by urine due to the metabolite NOA 452422 glucuronide, which the males eliminated largely through bile and feces. Fecal excretion of radioactivity tended to be lower than bile excretion in males but not females. Elimination was virtually complete by 168 h.

The highest levels of residual radioactivity (<1%) occurred in the liver and kidney followed by pancreas, plasma and blood. More than half of the excreted product was mandipropamid glucuronide (mostly in urine for females and bile for males). Other major excretory products included parent compound in urine, feces and bile, metabolites SYN 534133 in urine and bile, CGA 380778 in the urine and feces and SYN 505503 glucuronide and SYN 505504 glucuronide in the urine. Although the excretion patterns for metabolites were different between the sexes, the plasma profiles were similar.

In the dog, absorption was 5–23% based on elimination in the urine. Absorbed mandipropamid was rapidly and extensively metabolized. There were no apparent differences in T_{max} in blood in the low or high dose groups after oral administration. After intravenous dosing, the T_{max} was 5.32 h in males and 3.17 h in females; these values decreased to 1 h in males and 3 h in females after the washout and single oral dose. In general, females took 1.7 to 2.5 times longer to reach maximum concentration (C_{max}) than males, although these differences were not observed in repeat high dose and intravenous dosed groups. The majority of the administered dose was eliminated in the feces, indicating a substantial contribution via biliary excretion for those dosed intravenously. The single high dose females excreted more radioactivity in the urine than the males and the other orally dosed groups. Urine was also a major route of elimination in the intravenous dosed animals.

Some accumulation/saturation occurred with repeat high dosing. Bioavailability of the oral dose was 44% for males and 78% for females. Doses of ≥ 100 mg/kg were poorly absorbed suggesting saturation. Repeated dosing did not appear to have an effect on the route or rate of metabolism in either sex, but increased the number of urinary metabolites. Major metabolites were parent compound in feces, and metabolites NOA 458422 glucuronide, CGA 380778 glucuronide, NOA 458422 sulfate and metabolite A (tentatively identified as O-glucuronide of NOA 446510) in urine. Minor metabolites included: CGA 380775 glucuronide in feces and urine, NOA 458422 in feces and urine, CGA 380778 in feces and urine and SYN 505503 in feces. Others were present at lower concentrations.

Short-term dermal studies showed mild erythema, edema and desquamation in the test groups after repeated application of mandipropamid to the shaved skin of rats. No systemic effects were observed.

In the short-term oral toxicity studies, the target organ was the liver with increases in liver weight, liver enzymes (dog), eosinophilia (mouse) and liver porphyrin pigmentation (dog). In contrast, in the long-term toxicity studies, the mouse did not display any adverse organ specific effects, while in the rat study the target organ was the kidney with effects such as roughened surface, chronic progressive nephropathy and renal osteodystrophia fibrosis. Decreases in body weight (mouse and rat) and in body-weight gain (mouse, rat and dog) were observed in both the short-term and long-term studies. In the long-term studies food consumption was also decreased.

There was no evidence of carcinogenic potential for mandipropamid in the mouse or the rat. The dose level chosen for the mouse study reached the maximum tolerated dose based on the decrease in body weight and in body-weight gain. Based on the body-weight gain data (decreased body weight) and the lowest observed adverse effect levels (LOAEL) observed in the

short-term studies using the rat, it was concluded that the maximum tolerated dose requirement was fulfilled. Mandipropamid was determined to be non-genotoxic in both the in vitro and in vivo mutagenicity studies.

There was no evidence of increased susceptibility of the young following in utero or early life exposure to mandipropamid. In the rat and rabbit developmental toxicity studies, there were no treatment-related effects on any maternal or fetal parameters up to the limit dose. In a two-generation reproductive toxicity study, pup weights were decreased in the F_1 and F_{2b} pups, thereby leading to an increase in time to preputial separation as a secondary effect. Adjusted liver weights were increased in F_1 , F_{2a} and F_{2b} pups and the absolute liver weight was increased in the F_{2a} pups. In the parental animals, decreased body weight and body-weight gain was observed in the males at this dose level. In addition, increased absolute and adjusted kidney weights were observed in P males and females and F_1 females at this dose. There was no indication of reproductive toxicity.

No evidence of neurotoxicity was observed in either the acute or subchronic neurotoxicity studies in rats. No treatment-related clinical signs indicative of neurotoxicity were observed in short-term or long-term exposure studies in rats, mice, or dogs. Therefore, it was concluded that mandipropamid is not a neurotoxicant.

Several impurities identified in the technical grade active ingredient were also examined. For the impurities SYN 500003 and SYN 545038, one genotoxicity study per impurity was provided. The SYN 500003 was negative and the SYN 545038 was positive in the presence of metabolic activity in the Ames study. In addition, SYN500003 was tested for acute oral toxicity and demonstrated moderate toxicity. Both these impurities were present in the technical grade active mandipropamid test batch in sufficient quantities to ensure that the results of the mandipropamid studies covered the toxicity of the impurities.

Studies were also available for propargyl alcohol as, based on the molecular structure of mandipropamid, the potential exists for two propargyl alcohol molecules to be realized. However, it should be noted that in vivo metabolism studies conducted on mandipropamid did not result in the creation of propargyl alcohol. Propargyl alcohol and mandipropamid demonstrate similar liver effects in the rat and mouse. These effects include increased liver weights, induction of liver enzymes and histopathology.

Results of the acute and chronic tests conducted on laboratory animals with Mandipropamid Technical Fungicide and its associated end-use product, along with the toxicology endpoints for use in the human health risk assessment, are summarized in Appendix I, Tables 2, 3 and 4.

Pest Control Products Act Hazard Characterization

For assessing risks from potential residues in food or from products used in or around homes or schools, the *Pest Control Products Act* requires the application of an additional 10-fold factor to take into account the completeness of the data, as well as potential prenatal and postnatal toxicity with respect to the exposure of and toxicity to infants and children. A different factor may be determined to be appropriate on the basis of reliable scientific data.

In considering the completeness of the toxicity database as it pertains to the exposure of and toxicity to infants and children, extensive data were available for mandipropamid with respect to the toxicity to infants and children, consisting of rabbit and rat developmental toxicity studies and a two-generation rat reproduction study. The prenatal developmental toxicity studies in rats and rabbits provided no indication of increased susceptibility of rat or rabbit fetuses to in utero exposure to mandipropamid. There was no indication of increased susceptibility in the offspring compared to parental animals in the reproduction study. On the basis of this information, the 10-fold factor required under the *Pest Control Products Act* was reduced to 1-fold.

3.2 Determination of Acute Reference Dose

An acute reference dose (ARfD) for mandipropamid was not required as there is no indication in the database that acute exposure will be of toxicological concern.

3.3 Determination of Acceptable Daily Intake

The recommended acceptable daily intake (ADI) for mandipropamid is 0.05 mg/kg bw/day based on the no observed adverse effect level (NOAEL) of 5 mg/kg bw/day in the 12-month dog study (capsule). The NOAEL was based on minimal porphyrin staining in the liver and increased alkaline phosphatase and alanine transaminase activity at the 40 mg/kg bw/day LOAEL. This value represents the lowest NOAEL in the database. The standard uncertainty factor of 100 is required to account for interspecies extrapolation (10-fold) as well as intraspecies variability (10-fold). As described in the *Pest Control Products Act* Hazard Classification section, the 10-fold factor required under the *Pest Control Products Act* was reduced to 1-fold, resulting in a composite assessment factor (CAF) of 100-fold.

The ADI is calculated according to the following formula:

$$ADI = \frac{NOAEL}{CAF} = \frac{5 \text{ mg/kg bw/day}}{100} = 0.05 \text{ mg/kg bw/day of mandipropamid}$$

3.4 Occupational and Residential Risk Assessment

3.4.1 Toxicological Endpoints

Occupational exposure to Revus Fungicide is characterized as short- to intermediate-term for field uses and long-term for greenhouse uses and is predominantly by the dermal route.

Short-term and intermediate-term dermal

The no observed adverse effect level (NOAEL) of 1000 mg/kg bw/day from the 28-day dermal study in rats is considered the most appropriate endpoint for dermal exposure. This study was conducted at the limit dose and did not demonstrate any clinically adverse effects. The target margin of exposure (MOE) of 100 includes a 10-fold uncertainty factor for interspecies extrapolation and a 10-fold uncertainty factor for intraspecies variability. No additional uncertainty factors were required. The selection of this study and MOE is considered to be

protective of all populations, including nursing infants and the unborn children of exposed female workers.

Short-term and intermediate-term inhalation

The NOAEL of 41 mg/kg bw/day from the 90-day dietary study in rats is considered the most appropriate study, given no studies of appropriate duration conducted via the inhalation route were available. This NOAEL is based on decreases in body weight, body-weight gain and food consumption at the LOAEL of 260 mg/kg bw/day. The target MOE of 100 includes a 10-fold uncertainty factor for interspecies extrapolation and a 10-fold uncertainty factor for intraspecies variability. No additional uncertainty factors were required. The selection of this study and MOE is considered to be protective of all populations, including nursing infants and the unborn children of exposed female workers.

Long-term dermal

The NOAEL of 1000 mg/kg bw/day from the 28-day dermal study in rats is considered the most appropriate endpoint for dermal exposure. This study was conducted at the limit dose and did not demonstrate any clinically adverse effects. The target MOE of 300 includes a 10-fold uncertainty factor for interspecies extrapolation and a 10-fold uncertainty factor for intraspecies variability. In addition, a threefold uncertainty factor was applied for durational extrapolation from a short-term study. The selection of this study and MOE is considered to be protective of all populations, including nursing infants and the unborn children of exposed female workers.

Long-term inhalation

The NOAEL of 5 mg/kg bw/day from the one-year dietary study in dogs is considered the most appropriate study, given no studies of appropriate duration conducted via the inhalation route were available. This NOAEL is based on porphyrin pigmentation in the liver and increased liver enzymes at the LOAEL of 40 mg/kg bw/day. The target MOE of 100 includes a 10-fold uncertainty factor for interspecies extrapolation and a 10-fold uncertainty factor for intraspecies variability. No additional uncertainty factors were required. The selection of this study and MOE is considered to be protective of all populations, including nursing infants and the unborn children of exposed female workers.

3.4.1.2 Dermal Absorption

Since a dermal NOAEL was used in the risk assessment, a dermal absorption value was not required.

3.4.2 Occupational Exposure and Risk

3.4.2.1 Mixer/Loader/Applicator Exposure and Risk Assessment

Individuals have potential for exposure to Revus Fungicide during mixing, loading and application. Dermal and inhalation exposure estimates for workers mixing/loading and applying Revus Fungicide to field and greenhouse crops were generated from the Pesticide Handlers Exposure Database (PHED).

Exposure to workers mixing, loading and applying Revus Fungicide is expected to be short- to intermediate-term in duration for field crops and long-term for greenhouse crops and to occur primarily by the dermal and inhalation routes. Exposure estimates were derived for mixers/loaders/applicators applying Revus Fungicide to the Brassica, Bulb Vegetable, Cucurbit, Fruiting Vegetable, Root and Tuber Vegetable and Leafy Vegetable crop groups plus field tomatoes and grapes using ground or aerial application equipment and to greenhouse vegetables using handheld spray equipment. The exposure estimates are based on mixers/loaders/applicators wearing long-sleeved shirts, long pants, shoes plus socks, and chemical-resistant gloves during mixing/loading.

Chemical-specific data for assessing human exposures during pesticide handling activities were not submitted.

Dermal exposure was estimated by coupling the unit exposure values with the amount of product handled per day. Inhalation exposure was estimated by coupling the unit exposure values with the amount of product handled per day with 100% inhalation absorption. Exposure was normalized to mg/kg bw/day by using 70 kg adult body weight.

Exposure estimates were compared to the toxicological endpoints (no observed adverse effects levels) to obtain the MOE; the target MOE is 100 for short-term to intermediate-term exposure for both inhalation and dermal exposure. For long-term exposure, the target MOE is 100 for inhalation exposure and 300 for dermal exposure.

Crop Group	Application Method	Area Treated per Day (ha)	Dermal Exposure ^a mg/kg bw/day	Dermal MOE ^b	Inhalation Exposure ^a mg/kg bw/day	Inhalation MOE ^c
Brassica, Bulb Vegetables, Cucurbits,	Groundboom – Farmer	32	0.0058	173 000	0.00018	234 000
Fruiting Vegetables, Leafy	Groundboom – Custom Applicator	80	0.014	69 300	0.00044	93 400
Vegetables, Field tomatoes	Aerial Mix/Load	490	0.054	18 600	0.0017	24 400
	Aerial Applicator	490	0.010	98 600	0.00007	558 000
Grapes	Airblast	16	0.030	33 200	0.00025	162 000
Root and Tuber Vegetables	Groundboom – Farmer	80	0.014	69 300	0.00044	93 400
	Groundboom – Custom Applicator	300	0.054	18 500	0.0017	24 900
	Aerial Mix/Load	490	0.054	18 600	0.0017	24 400
	Aerial Applicator	490	0.010	98 600	0.00007	558 000
Greenhouse Vegetables	Low Pressure Handwand	1	0.0020	495 000	0.00010	423 000
	High Pressure Handwand	1	0.012	83 600	0.00032	15 500
	Backpack	1	0.012	85 700	0.00013	37 600

Table 1Mixer/Loader/Applicator Dermal and Inhalation Exposure Estimates and
MOEs

Exposure Estimates = PHED Exposure (µg ai/kg ai handled) × Rate × Area Treated per Day (ha/day)

X Dermal Absorption Factor

bw (70kg)

^b Dermal MOE = <u>NOAEL (1000 mg/kg bw/d)</u> exposure estimates (mg/kg/day)

a

^c Inhalation MOE = <u>NOAEL (mg/kg bw/d)</u> exposure estimates (mg/kg/day) For short-term to intermediate-term exposure the target MOE is 100; for greenhouse (long-term) scenarios, the target MOE is 300.

For short-term to intermediate-term exposure, a NOAEL of 41 mg/kg bw/day with a target MOE of 100 was used. For greenhouse (long-term) scenarios, a NOAEL of 5 mg/kg bw/day with a target MOE of 100 was used.

As the MOEs are above the target, exposure for workers mixing/loading and applying Revus Fungicide to Brassica, Bulb Vegetable, Cucurbit, Fruiting Vegetable, Root and Tuber Vegetable and Leafy Vegetable crop groups, grapes and greenhouse vegetables is considered acceptable with the personal protective equipment of long-sleeved shirts, long pants, shoes plus socks and chemical-resistant gloves during mixing/loading and long-sleeved shirts and long pants during application.

3.4.2.2 Exposure and Risk Assessment for Workers Entering Treated Areas

There is potential for exposure to workers re-entering areas treated with Revus Fungicide to perform routine re-entry activities, such as scouting, weeding, harvesting and thinning. Inhalation exposure is expected to be minimal. The duration of exposure is considered to be intermediate-term for field crops and long-term for greenhouse vegetables, and the primary route of exposure for workers re-entering treated areas would be through dermal contact with treated foliage.

Dermal exposure to workers entering treated areas is estimated by coupling dislodgeable foliar residue values with activity-specific transfer coefficients. A tier one risk assessment was done based on a crop grouping approach. As such, the highest transfer coefficient application rate and number of applications (five) for each crop group were used to estimate exposure for each crop group. Chemical-specific dislodgeable foliar residue data were not submitted. Therefore, a default dislodgeable foliar residue value of 20% of the application rate and a dissipation rate of 10% per day were used in the exposure assessment for field vegetables. For greenhouse vegetables, a default dislodgeable foliar residue value of 20% of the application rate was also used, but no dissipation was assumed.

Exposure estimates were compared to the toxicological endpoint to obtain the MOE; the target MOE is 100 for intermediate-term and 300 for long-term exposures.

Activity	Transfer Coefficient (cm ² /hr)	Exposure (mg/kg bw/day) ^a	Margin of Exposure ^b
Hand harvesting, hand pruning and topping in Brassica	5000	0.256	3910
Hand harvesting and thinning in Bulb Vegetables	2500	0.160	6250
Hand harvesting, leaf pulling, hand pruning, thinning and turning in Cucurbits	2500	0.160	3250
Hand harvesting, staking, tying and hand pruning in Fruiting Vegetables and Field tomatoes	1000	0.064	15 600

Table 2Postapplication Margin of Exposure on Field Crops and Greenhouse
Vegetables

Activity	Transfer Coefficient (cm ² /hr)	Exposure (mg/kg bw/day) ^a	Margin of Exposure ^b
Cane turning and girdling in Grapes	19300	1.235	810
Hand harvesting in Root and Tuber Vegetables	2500	0.160	6250
Hand harvesting and thinning in Leafy Vegetables	2500	0.160	6250
All activities in Greenhouse Vegetables	1800	0.309	3241

Estimated as 20% application rate \times transfer coefficient (cm²/hour) \times 8 hour/day worked \times 100% dermal absorption / 70 kg body weight.

^b NOAEL (1000 mg/kg bw/day)/Exposure; target MOE is 100 for intermediate-term and 300 for long-term exposures.

Given the MOEs are above the target, exposure to workers entering fields and greenhouses treated with Revus Fungicide is considered acceptable on the day of the fifth application, i.e. the day expected to have the highest potential exposure.

3.4.3 Residential Exposure and Risk Assessment

Given there are no residential uses, no residential exposure is expected.

3.4.4.3 Bystander Exposure and Risk

Bystander exposure should be negligible, given the potential for drift is expected to be minimal. Application is limited to agricultural crops only when there is low risk of drift to areas of human habitation or activity, such as houses, cottages, schools and recreational areas, taking into consideration wind speed, wind direction, temperature inversions, application equipment and sprayer settings.

3.5 Food Residues Exposure Assessment

3.5.1 Residues in Plant and Animal Foodstuffs

The residue definition for enforcement purposes is mandipropamid in primary crops, rotational crops and animal commodities. For risk assessment purposes, the residue definition is mandipropamid in primary crops, except root and tuber vegetables, and in rotational crops and animal commodities; and is mandipropamid and the metabolite SYN 500003 in root and tuber vegetables. The data gathering/enforcement analytical methodology RAM 415/01 liquid chromatography with tandem mass spectrometry (LC/MS/MS) is valid for the quantification of mandipropamid residues in crop commodities. The data gathering method GRM 001.01.B (LC/MS/MS) is valid for the quantification of SYN 500003 in potato tubers and processed potato commodities. The residues of mandipropamid are stable when stored in a freezer at -20°C for 24 months. Raw agricultural commodities were processed, and mandipropamid residues were found to concentrate in potato wet peel, raisins and tomato paste. Supervised residue trials conducted

throughout the United States and greenhouse trials in Europe using end-use products containing mandipropamid at $0.75-1.2 \times$ the approved label rates in or on cabbage, broccoli, mustard greens, cucumber, cantaloupe, summer squash, dry bulb onion, green onion, bell peppers, non-Bell peppers, tomatoes, grapes, leaf lettuce and head lettuce, celery, spinach, potato, greenhouse cucumbers and greenhouse tomatoes and at $0.49-0.52 \times$ the approved label rates in or on greenhouse lettuce are sufficient to support the proposed maximum residue limits.

3.5.2 Dietary Risk Assessment

Chronic dietary risk assessments were conducted using the Dietary Exposure Evaluation Model– Food Commodity Intake Database (DEEM–FCIDTM Version 2.03), which uses updated food consumption data from the United States Department of Agriculture's Continuing Surveys of Food Intakes by Individuals, 1994–1996 and 1998.

3.5.2.1 Chronic Dietary Exposure Results and Characterization

The following assumptions were made in a refined chronic analysis: default and experimental processing factors, median values for certain commodities and American tolerances for all other commodities. The refined chronic dietary exposure from all supported mandipropamid food uses (alone) for the total population and all representative population subgroups is \leq 5.0% of the ADI. The PMRA estimates that chronic dietary exposure to mandipropamid from food and water is 3.6% (0.001822 mg/kg bw/day) of the ADI for the total population. The highest exposure and risk estimate is for children 1 to 2 yrs at 5.3% (0.002669 mg/kg bw/day) of the ADI. Aggregate exposure from food and water is considered acceptable.

3.5.2.2 Acute Dietary Exposure Results and Characterization

No appropriate endpoint attributable to a single dose for the general population (including children and infants) was identified.

3.5.3 Aggregate Exposure and Risk

The aggregate risk for mandipropamid consists of exposure from food and drinking water sources only; there are no residential uses. Aggregate risks were calculated based on chronic endpoints. No acute endpoint was identified for the general population, including infants and children.

3.5.4 Maximum Residue Limits

Commodity	Recommended MRL (ppm)
Leafy Brassica greens (Crop Subgroup 5B)	25.0
Leafy vegetables, except Brassica (Crop Group 4)	20.0
Green onion subgroup (Crop Subgroup 3-07B)	4.0
Head and stem Brassica (Crop Subgroup 5A), raisins	3.0
Grapes	1.4
Fruiting vegetables (Crop Group 8), okra	1.0
Cucurbit vegetables (Crop Group 9)	0.6
Bulb onion subgroup (Crop Subgroup 3-07A)	0.05
Tuberous and corm vegetables (Crop Subgroup 1C)	0.01

For additional information on Maximum Residue Limits (MRLs) in terms of the international situation and trade implications, refer to Appendix II.

The nature of the residues in animal and plant matrices, analytical methodology, field trial data, greenhouse trial data and the chronic dietary risk estimates are summarized in Appendix I, Tables 1, 5 and 6.

4.0 Impact on the Environment

4.1 Fate and Behaviour in the Environment

Mandipropamid enters the terrestrial environment when it is used as a fungicide on a variety of crops, including fruits and vegetables. The main dissipation route of mandipropamid in the terrestrial environment is biotransformation. Mandipropamid is slightly to moderately persistent in soil and dissipates with half-lives of 14–86 days under laboratory conditions and 27.5–102.8 days under field conditions. No major transformation products were detected in soil. A large portion of the applied radioactivity was determined to be non-extractable residue in laboratory soil biotransformation studies (30.9 to 45.5% applied radioactivity under aerobic conditions and 34.6 to 37.1% under anaerobic conditions). This non-extractable residue was determined to be associated with humic substances. Phototransformation will contribute to the dissipation of mandipropamid in the terrestrial environment, although this process will not contribute significantly as the half-life determined at 40°N ranged between 32.5 and 46.4 days. Henry's law constant (<9.1 × 10⁻¹⁰ atm m³/mol) indicates that mandipropamid is not expected to

volatilize from moist soil surfaces. Adsorption data indicates that mandipropamid has low mobility in soil ($K_{foc} = 411-1228$). Following desorption, a large portion (31.8 to 53.7%) of the applied radioactivity remained adsorbed to the soil, indicating that the non-extractable residues determined in the biotransformation study may not be bioavailable. The leaching assessment using groundwater ubiquity score (GUS)⁴ indicates that mandipropamid is a borderline leacher under certain conditions. In addition, only a few of the Cohen⁵ criteria are met for mandipropamid. Mandipropamid may leach in certain types of soils, although the active ingredient was not observed below 15 cm in the field dissipation studies. Groundwater modeling, which used a scenario that would result in the largest amount of leaching, indicated that low levels of mandipropamid may be detected in groundwater. As a result, the PMRA does not consider mandipropamid to be a significant concern regarding leaching.

The available data on the persistence of the transformation products of mandipropamid indicate that they are non-persistent in soil. No major transformation products were detected in laboratory soil studies (see Appendix I, Table 7); thus, these transformation products will not be available for leaching nor runoff from the application site.

Mandipropamid has low solubility in water (4.2 mg a.i./L) and can enter the aquatic environment through spray drift and runoff from the application site. In the aquatic environment, mandipropamid dissipates rapidly from the water layer via partitioning. Phototransformation will also contribute to the dissipation of mandipropamid from the water layer in the photic zone. Mandipropamid is stable to hydrolysis and is not expected to volatilize; therefore, these two processes will not affect the dissipation of mandipropamid from the aquatic environment.

Biotic transformation will affect the dissipation of mandipropamid in the aquatic environment; thus, it results in a classification of non-persistent to slightly persistent in the total system $(DT_{50} = 7.8-25.8 \text{ d})$. As a result of the rapid partitioning of mandipropamid from the water layer, the dissipation of mandipropamid in aquatic systems is driven by biotransformation in the sediment. During the aquatic biotransformation studies, it was determined that a large portion of the AR became incorporated into non-extractable residues (36.5 to 48.1% under aerobic conditions, 16.2 to 30.9% under anaerobic conditions). These non-extractable residues were determined to be associated with humic substances in the sediment. Under more realistic environmental conditions (outdoor pond), mandipropamid dissipated with a total system DT_{50} of 5.4 days.

The transformation products SYN539678, SYN504851 and SYN521195 were identified as major in at least one aquatic laboratory study. Individual fate studies were not submitted to determine the persistence of the transformation products in aquatic systems. The Organisation for Economic Co-operation and Development (OECD-RMS) calculated DT₅₀s for the

⁴ Gustafson, D.I. (1989) Groundwater Ubiquity Score: A Simple Method for Assessing Pesticide Leachability. Enviorn. Toxicol. Chem. 8: 339–357.

⁵ Cohen, S.Z., S.M. Creeger, R.F. Carsela nd C.G. Enfield (1984) Potential for Pesticide Contamination of Groundwater Resulting from Agricultural Uses. *IN* R.F. Drugger and J.N. Seiber, eds., Treatment and disposal of Pesticide Wastes. ACS symposium Series No. 259. American Chemical Society, Washington, DC, pp.297–325.

transformation products identified in the aerobic and anaerobic water/sediment studies using a multi-compartmental model that takes into consideration the formation and decline of the product in addition to the interaction between the water and sediment. Based on these $DT_{50}s$, the transformation products ranged from non-persistent to moderately persistent under aerobic and anaerobic conditions. The DT_{50} for SYN504851 could not be determined given that no decline had occurred at study termination.

The structure and percent detected of the major and minor transformation products of mandipropamid are presented in Appendix I, Table 7. Data on the fate and behaviour of mandipropamid and its transformation products are summarized in Appendix I, Tables 8 and 9.

4.2 Effects on Non-Target Species

The environmental risk assessment integrates the environmental exposure and ecotoxicology information to estimate the potential for adverse effects on non-target species. This integration is achieved by comparing exposure concentrations with concentrations at which adverse effects occur. Estimated environmental exposure concentrations (EECs) are concentrations of pesticide in various environmental media, such as food, water, soil and air. The EECs are estimated using standard models that take into consideration the application rate(s), chemical properties and environmental fate properties, including the dissipation of the pesticide between applications. Ecotoxicology information includes acute and chronic toxicity data for various organisms or groups of organisms from both terrestrial and aquatic habitats, including invertebrates, vertebrates, and plants. Toxicity endpoints used in risk assessments may be adjusted to account for potential differences in species sensitivity, as well as varying protection goals (i.e. protection at the community, population, or individual level).

Initially, a screening-level risk assessment is performed to identify pesticides and/or specific uses that do not pose a risk to non-target organisms, and to identify those groups of organisms for which there may be a potential risk. The screening level risk assessment uses simple methods, conservative exposure scenarios (e.g. direct application at a maximum cumulative application rate) and sensitive toxicity endpoints. A risk quotient (RQ) is calculated by dividing the exposure estimate by an appropriate toxicity value (RQ = exposure/toxicity), and the risk quotient is then compared to the level of concern (LOC = 1). If the screening level risk quotient is below the level of concern, the risk is considered negligible and no further risk characterization is necessary. If the screening level risk quotient is equal to or greater than the level of concern, then a refined risk assessment is performed to further characterize the risk. A refined assessment takes into consideration more realistic exposure scenarios (such as drift to non-target habitats) and might consider different toxicity endpoints. Refinements may include further characterization of risk based on exposure modelling, monitoring data, results from field or mesocosm studies, and probabilistic risk assessment methods. Refinements to the risk assessment may continue until the risk is adequately characterized or no further refinements are possible.

4.2.1 Effects on Terrestrial Organisms

Risks of mandipropamid, its related end-use product and transformation products to terrestrial organisms were based upon the evaluation of toxicity data for the following (see Appendix I, Table 10):

- one earthworm species, one bee species and two other arthropods representing invertebrates (acute and long-term exposure);
- two bird and two mammal species representing vertebrates (acute gavage, short-term and long-term, reproduction, dietary exposure); and,
- ten crop species representing non-target vascular plants.

Terrestrial Invertebrates

Two earthworm toxicity studies for mandipropamid and one of its transformation products (CGA380778) were submitted. Mortality was not observed in either study at the highest rate tested (1000 mg/kg soil), although a significant decrease in body weight was observed in both studies with a no observed effect concentration (NOEC) of 100 mg/kg soil. Risk quotients calculated for the screening level did not exceed the level of concern (see Appendix I, Table 12). The use of mandipropamid is not expected to pose a risk to earthworms.

Mandipropamid is relatively non-toxic to honeybees according to the classification of Atkins et al. $(1981)^6$ with acute contact and acute oral LD₅₀s being >200 µg a.i./bee and >160 µg a.i./bee, respectively. Both LD₅₀s represent the highest dose tested with no sub-acute effects noted at any concentration tested. According to Atkins et al. (1981), the LD₅₀ in micrograms per bee (µg/bee) can be converted to the equivalent application rate in kg a.i./ha by multiplying µg/bee by 1.12. After conversion, the acute oral LD₅₀ value is >224 g a.i./ha and the acute contact LD₅₀ value is >179.2 g a.i./ha. An RQ was calculated using the following equation: LD₅₀/EEC; where the EEC is the proposed maximum single application rate of 150 g a.i./ha. The RQs calculated and presented in Appendix I, Table 12 do not exceed the level of concern. The use of mandipropamid is not expected to pose an acute risk on a contact or oral basis. Toxicity studies for beneficial arthropods were not submitted to the PMRA. However, these studies were submitted to and reviewed by the OECD-RMS. The results were summarized in the OECD monograph and considered in this assessment.

The studies reviewed by the OECD-RMS indicated that mandipropamid is non-toxic for most predator and parasite species, although toxicity was noted with the parasitic wasp and the LR₅₀ of 827 g a.i./ha was used to calculate a risk quotient. The maximum seasonal rate that was considered for this assessment was 600 g a.i./ha (4 applications \times 150 g a.i./ha) without considering any dissipation between applications. This maximum seasonal rate was used as the EEC in determining the RQ, which did not exceed the level of concern (see Appendix I, Table 12). The use of mandipropamid is not expected to pose a risk to beneficial arthropods.

⁶ Atkins, E.L., Kellum, D., Atkins K.W. 1981. *Reducing pesticide hazards to honeybees: mortality prediction techniques and integrated management techniques.* University of California, Division of Agricultural Sciences, Leaflet 2883. 22 pp.

Terrestrial Plants

Seedling emergence and vegetative vigour studies on ten crop species were submitted to the PMRA for review. No adverse effects on seedling emergence were noted at application rates up to 750 g a.i./ha,. Similarly, no adverse effects on vegetative vigour were noted for the ten crop species at the highest dose tested, 900 g a.i./ha. The EC₂₅ for seedling emergence and vegetative vigour were set at >750 g a.i./ha and >900 g a.i./ha, respectively. The maximum seasonal application rate was 600 g a.i./ha, not taking into consideration the dissipation between applications that was considered for this assessment. The RQ determined indicates that the level of concern was not exceeded for terrestrial plants (Appendix I, Table 12). The use of mandipropamid is not expected to pose a risk to terrestrial plants.

Terrestrial Vertebrates

Acute and reproductive toxicity studies using mallard duck and bobwhite quail were submitted to the PMRA. The acute toxicity studies (oral and dietary) indicated that mandipropamid is practically non-toxic to birds with no mortality occurring at the highest dose tested in both study types. No avian reproductive effects were noted at the highest dose tested in the reproduction studies. Similarly, the acute oral and dietary studies for small mammals indicate that mandipropamid is practically non-toxic to small mammals with no mortality occurring at the highest dose tested in both study types. However, the small mammal dietary study demonstrated a significant decrease in body-weight gain at doses of 260 mg a.i./kg bw. The two-generation study demonstrated effects on pup body weights at dietary concentrations of greater than 250 mg a.i./kg diet (22.9 mg a.i./kg bw).

Because exposure is dependent on the body weight of the organisms and the amount and type of food consumed, the screening level risk assessment for birds and mammals considers a set of generic body weights (20, 100, 1000 g for birds and 15, 35, 1000 g for mammals) and food preferences (100% small insects for insectivores, 100% fruits for frugivores, 100% grain and seeds for granivores and 100% leaves and leafy crop for herbivores; food items considered at the screening level provide the most conservative EEC for each food guild). To account for dissipation of food sources, a default half-life of 35 days was used at the screening level. This default was based on a data set of 447 foliar half-lives acquired from an extensive literature review⁷. The 35 day half-life is the maximum half-life for insecticides and the second largest value in the entire dataset. Additionally, the acute toxicity endpoint is divided by a factor of 10 to account for potential differences in species sensitivity, as well as varying protection levels (e.g. community, population, individual).

The calculated screening level risk quotients for birds and mammals (Appendix I, Table 13) indicate that the level of concern was not exceeded except for two instances. For 1 kg and 0.035 kg mammals, the herbivore level of concern was exceeded for reproductive effects and, as a result, a refined assessment was conducted.

Willis, G.H., and McDowell, L.L. 1987. Pesticide persistence on foliage. *Reviews of Environmental Contamination and Toxicology*. 100:23-73.

Given the conservative assumptions taken in the screening level assessment, a refined assessment was conducted to further characterize the reproductive risk to herbivore mammals (Appendix I, Table 15). Instead of using the highly conservative plant half-life of 35 days, a halflife of 10 days was used. This half-life was obtained from the same data set (Willis and McDowell, 1987) and is still considered conservative given that 93% of the foliar half-lives within this data set are less than 10 days. An on-field assessment was conducted taking into consideration additional types of vegetation for the diet of herbivores. In addition, the risk associated with the consumption of food items contaminated from spray drift off the treated field was also assessed taking into consideration the spray drift deposition for medium sized spray droplets for both ground (11%) and aerial spray (23%). The reproduction level of concern was exceeded for small mammals of approximately 35 g feeding on short grass on the treated field; however, when the RQ was calculated for the off-field assessment, the level of concern was not exceeded. The on-field assessment assumes that the animal is feeding exclusively on treated food immediately after the final application of mandipropamid. Given the conservative nature of this assessment along with the fact that the LOC was only slightly exceeded, the PMRA concludes that reproductive risk to small mammals is expected to be negligible.

4.2.2 Effects on Aquatic Organisms

Risk of mandipropamid, its related end-use product and transformation products to freshwater aquatic organisms was based upon the evaluation of toxicity data for the following (Appendix I, Table 14):

- one invertebrate species: daphnid (acute and long-term exposure);
- two fish species (acute and long-term exposure);
- one green algae, one blue-green algae, and one vascular plant; and,
- amphibian species using fish as surrogate.

Risk of mandipropamid to marine aquatic organisms was based upon evaluation of toxicity data for the following (Appendix I, Table 14):

- two invertebrates: mysid and eastern oyster (acute exposure), and
- one fish species (acute exposure).

Aquatic organisms can be exposed to mandipropamid as a result of drift and runoff. To assess the potential for effects from exposure to mandipropamid and its transformation products, the screening level EECs in the aquatic environment, based on direct application to water, were used as exposure estimates. The calculated EECs were those determined in 15 cm of water for amphibians and 80 cm of water for all other aquatic organisms. For the screening level risk assessment for aquatic organisms, the laboratory endpoints were adjusted using factors to account for differences in species sensitivity and protection goals (e.g. community, population and individual).

Aquatic Invertebrates—Freshwater and Marine

The acute toxicity studies with mandipropamid using *Daphnia magna* demonstrated mortality/immobility with a 48-h EC₅₀ of 7.1 mg a.i./L, whereas the acute toxicity study using the transformation product CGA380778 resulted in a 48-h EC₅₀ of 55.9 mg TP/L. Similar acute toxicity for mandipropamid to marine invertebrates was demonstrated in a 96-h LC₅₀ of 1.7 mg a.i./L. Shell deposition for marine mollusk was affected at an EC₅₀ of 0.97 mg a.i./L. Reproductive effects of *Daphnia magna* were noted for mandipropmaid at a NOEC of 0.87 mg a.i./L for the number of live offspring. Calculated risk quotients for both freshwater and marine invertebrates demonstrate that the level of concern for acute and reproductive effects was not exceeded; therefore, the PMRA does not expect adverse effects on aquatic invertebrate populations as a result of the application of mandipropamid (Appendix I, Table 14).

Fish—Freshwater and Marine

Acute toxicity studies with mandipropamid were submitted for two freshwater fish and one marine fish species. The endpoints for mortality were similar for the freshwater fish (rainbow trout, 96-h $LC_{50} = 4.4 \text{ mg a.i./L}$) and marine fish (sheepshead minnow, 96-h $LC_{50} = 4.5 \text{ mg a.i./L}$). Reproductive effects were noted on fry survival at a NOEC of 0.48 mg a.i./L. Calculated risk quotients for both freshwater and marine fish demonstrate that the level of concern for acute and reproductive effects was not exceeded; therefore, the PMRA does not expect adverse effects on fish populations as a result of the application of mandipropamid (see Appendix I, Table 14).

Aquatic Plants

Acute studies for freshwater algae and vascular plants were submitted to the PMRA for exposure to mandipropamid and CGA380778. The endpoints determined for acute exposure were $EC_{50} > 2.5$ mg a.i./L and $EC_{50} > 4.3$ mg a.i./L for mandipropamid to algae and vascular plants, respectively. The PMRA considered the endpoints of additional transformation toxicity studies that were reviewed by the OECD-RMS. The calculated risk quotients indicate that the level of concern for acute exposure to aquatic plants does not exceed the level of concern; therefore, the PMRA does not expect adverse effects on aquatic plants as a result of the application of mandipropamid (see Appendix I, Table 14).

5.0 Value

- 5.1 Effectiveness Against Pests
- 5.1.1 Acceptable Efficacy Claims

5.1.1.1 Control of Downy Mildew (*Peronospora parasitica*) on Brassicas: Including the Head and Stem Subgroup, and the Leafy Greens Subgroup

Eight American trials were submitted for review. Tested rates ranged from 100–150 g a.i./ha, applied at 7–14 day intervals, with between 3 and 7 consecutive applications per year. Chinese broccoli (var. Kailaan, and an unspecified variety) was tested in seven of the trials, and one trial assessed an unspecified variety of broccoli. Trials also assessed Revus Fungicide applied alone and with various adjuvants (non-ionic surfactant, organosilicone surfactant).

Results were consistent across all trials, demonstrating that Revus Fungicide applied at 100– 150 g a.i./ha resulted in good disease control compared to the check treatments. A general trend was noted with respect to the rate and application interval, with the higher rate of 150 g a.i./ha and shorter application intervals (seven to ten days) providing the greatest disease control. Statistically greater disease control at the 150 g a.i./ha rate compared to the 100 g a.i./ha rate was only noted under conditions of high disease pressures; however, given not all trials directly compared Revus Fungicide at different rates, this trend could not be confirmed. When compared to the commercial standard, Revus Fungicide at 100 and 150 g a.i./ha performed as well or better with respect to disease incidence and/or disease severity control. Application of Revus Fungicide and an adjuvant showed that there was an increase in the efficacy of Revus Fungicide when applied with non-ionic adjuvant at 0.125% volume per volume dilution (v/v). Application of Revus Fungicide with X77, an organosilicone surfactant, resulted in significant phytotoxicity in one trial. This result was not seen in other trials where the same surfactant was tested.

Crop Grouping

Two Brassica crops were tested: Chinese broccoli (with only one variety of Chinese broccoli clearly identified) and broccoli. Based on the limited number of crops tested, only the Head and Stem sub-group can be fully supported (broccoli, Chinese broccoli, Brussels sprouts, cabbage, Chinese cabbage, Chinese mustard cabbage, cauliflower, cavallo broccoli and kohlrabi). However, the Brassica leafy greens crop subgroup can be conditionally supported.

5.1.1.2 Control of Downy Mildew (*Peronospora destructor*) on Bulb Vegetables: Dry Bulb (Onion, Garlic, Shallot) and Green Onion (Green Onions, Leeks, Welch Onion).

Three trials conducted in the United States (Michigan, New York, Oregon) on dry bulb onions were submitted for review. Revus Fungicide was applied between four and six times, at rates of 100 or 150 g a.i./ha, and was applied alone, with a non-ionic surfactant, or with a mineral oil/surfactant at 0.0625–1.0% v/v. All applications were made on seven day intervals, but the proposed 10-day application interval was not tested. No statistical analysis was provided for any of the onion data. Revus Fungicide was not tested with a silicone-based adjuvant, as proposed.

In general, under low to moderate disease pressures, Revus Fungicide applied alone was effective in controlling downy mildew disease severity or incidence at the 100 g a.i./ha rate. In two of the trials, no differences in disease control or defoliation were observed between the two rates (100 vs. 150 g a.i./ha) when applied alone. In the one trial where there was a difference, a single disease assessment was made after six consecutive applications, which is outside of the proposed use pattern. The efficacy of the product at 100 and 150 g a.i./ha was greatly increased when applied with a non-ionic surfactant at 0.125% v/v or with a crop oil concentrate (1% v/v). There was no difference in the level of disease control between the 100 or 150 g a.i./ha treatments when both rates were applied with a surfactant or crop oil. No phytotoxicity was reported in the three trials. Further trials testing the product as proposed for use would be recommended to confirm whether the 150 g a.i./ha rate is required, to test the application with a silicone-based adjuvant, and to determine whether the 10-day application interval is appropriate.

Crop Grouping

Two trials were conducted on dry bulb onions, and the third onion variety was not specified. Based on this lack of evidence, there is insufficient data to fully support a full crop grouping claim for all bulb vegetables, and only dry bulb onions can be fully supported. However, based on the similarity of bulb vegetables, this claim can be conditionally supported on garlic, shallot, green onions, leek and Welch onion.

5.1.1.3 Suppression of Downy Mildew (*Pseudoperonospora cubensis*) on Field Cucurbits, and Greenhouse Cucumbers

A total of ten field trials conducted on cantaloupe (five studies), cucumber (two studies) and pumpkin (three studies) were submitted. Trials were conducted in the United States (Texas, Florida, Alabama and Illinois) between 2002 and 2006. Revus Fungicide was tested at rates between 100 and 250 g a.i./ha, applied alone, with an adjuvant, or in alternation with other fungicides. Between 2 and 10 applications per season were made, at intervals of 2–14 days. Statistics were presented in only two of the ten trials.

For efficacy, two of the trials were not assessed due to very low disease pressures, and two trials were not assessed as various unforeseen circumstances heavily influenced the study, thus confounding the results (tropical storms and hurricanes resulted in torrential rainstorms and potentially washed away the fungicide when applied). Another trial was also not assessed, as 10 consecutive applications were made before assessing for disease, which is well above the requested use pattern.

Based on the lack of statistics conducted on the trial data, trends in the results can only be described. There was consistency across the trials and crops demonstrating that, under moderate and high disease pressures, Revus Fungicide applied alone at 100–150 g a.i./ha with a 7–10 day application interval provided acceptable control of downy mildew compared to the untreated check. Results also suggested a marked increase in efficacy when Revus Fungicide is applied with an adjuvant. When applied with a non-ionic adjuvant (0.125 % v/v) Revus Fungicide at 100 g a.i./ha resulted in similar efficacy to the 150 g a.i./ha rate without the adjuvant. Under high disease pressures, Revus Fungicide applied at 150 g a.i./ha provided slightly better disease control than at the 100 g a.i./ha. Since there were no trials that directly compared Revus
Fungicide to a commercial standard, a direct comparison cannot be made. There was sufficient evidence to support the proposed crop group, and the proposed application interval of seven to 10 days.

Based on a request from the registrant, the level of disease management for Revus Fungicide on cucurbit downy mildew will be suppression and not control. In addition, based on information regarding the use of Revus Fungicide on greenhouse cucumbers, a precautionary phytotoxicity statement will be added to the label.

5.1.1.4 Suppression of Phytophthora Blight on Field Cucurbits and Greenhouse Cucumbers

Two 2006 American field studies were conducted in Illinois (pumpkin) and Georgia (edible gourd) to support this claim. For each trial, Revus Fungicide was not tested alone, but as part of an alternation program with other fungicides or in a tank mix with other fungicides. Therefore, it is not possible to assess Revus Fungicide for this claim. Based on insufficient evidence testing Revus Fungicide applied alone and according to the proposed use pattern, this claim cannot be supported.

5.1.1.5 Control of Downy Mildew (*Peronospora tabacina*) on Fruiting Vegetables (Field) and Greenhouse Peppers

No data on this pathogen were submitted in support of this claim; therefore, it cannot be supported.

5.1.1.6 Suppression of Phytophthora Blight (*Phytophthora capsici*) on Fruiting Vegetables (Field) and Greenhouse Peppers

Fourteen trials were submitted in support of this claim; however, nine of them could not be assessed for various reasons, including the following:

- disease pressures were too low;
- Revus Fungicide was not tested as per the proposed directions for use, or was applied alone (only in rotation or else in a tank mix with other fungicides);
- Revus Fungicide was not applied as per the proposed application method (foliar vs. drench);
- assessments were made only at the end of the season;
- above-label consecutive applications (eight or more) were made before the first assessment was made;
- the trials were conducted such that application rates could not be determined or confirmed in the study; and
- the assessment made on chili pepper plants may not be applicable to Bell peppers (a rate adjustment may be required to reflect the greater surface area of Bell peppers).

Of the remaining five trials, all studies applied the product as a soil drench for the initial application and then reapplied it either as a drench or as a foliar spray.

Of the five trials that were assessed, Revus Fungicide was tested at 150 or 300 g a.i./ha, and applied at 7-, 10- or 14-day intervals. For all trials, a drench application was used as the first application. The disease was directly assessed by measuring the percentage of dead plants, percentage wilted plants, percentage of disease incidence, and the area under the disease progress curve (AUDPC).

Results across the trials indicate that when Revus Fungicide was applied as a soil drench immediately after planting, followed by foliar spray applications, there was a significant decrease in the percent plants with symptoms, the percent disease severity, the percent mortality and the AUDPC, and a significant increase in the duration of plant survival (days) compared to the untreated control. No differences were noted in the marketable or non-marketable yield. Notable differences in the level of disease control varied based on the application interval (applications made closer together having greater results), the number of sequential applications and the level of disease pressures reported in the studies. No phytotoxicity was reported in any of the trials. One study reported that increasing the application rate to 300 g a.i./ha resulted in an increased mortality rate (60% for the 300 g a.i./ha rate, compared to 30% for the 150 g a.i./ha rate).

No trials were submitted that tested the product according to the proposed claims of suppression of this disease. In addition, because there are no alternatives currently registered in Canada for this use, and resistance management practices must be adhered to, a maximum of one seasonal application may be made immediately before transplanting out.

There was sufficient evidence to conditionally support this claim, based on applying Revus Fungicide as a drench application immediately before transplanting in the field. Based on residue concerns, it is not to be used for greenhouse-grown peppers. Extensive confirmatory efficacy data are requested.

5.1.1.7 Control of Downy Mildew (*Plasmopara viticola*) on Grapes

Two trials conducted in the United States (New York) in 2002 were submitted for review. Revus Fungicide was tested alone at 125 g a.i./ha, applied between 4 and 7 times per season at 7-day intervals. Revus Fungicide was not applied with any adjuvant or additive. No statistical analysis was conducted on the data.

Results demonstrated that under low disease pressures, Revus Fungicide applied at 125 g a.i./ha resulted in moderate disease control of downy mildew on grape leaves (40% disease severity control). Under moderate to high disease pressures, it resulted in good to excellent control of disease severity on immature fruit (100% disease severity control), and mature fruit (94–99% control in two trials). No phytotoxicity was reported in any of the trials, including after 7 consecutive applications at 125 g a.i./ha. Based on the data presented and consistent results from other disease claims, an interval of 7–10 days can be supported.

None of the trials tested the proposed application rates of 100 or 150 g a.i./ha; however, the 125 g a.i./ha rate provided very good control of the disease on both the leaves and fruits.

Therefore, without further efficacy data to demonstrate otherwise, the 125 g a.i./ha rate can be supported.

5.1.1.8 Control of Late Blight (*Phytophthora infestans*) on Field Tomato, Tomatillo and Greenhouse Tomato

A total of eight tomato late blight trials were submitted for review. Of these, four were not assessed for efficacy due to low disease pressures, assessment of the wrong disease (early blight), or occurrence of confounding environmental factors during the study that made the results biased (researcher's opinion). However, these studies were assessed for phytotoxicity. The remaining four trials were conducted between 2002 and 2004 in the United States (Florida, California). Revus Fungicide was tested at 100, 125 or 150 g a.i./ha, applied alone or with an adjuvant, or treatments were set up to assess application intervals. Between 3 and 8 consecutive applications were made at 7-, 10- or 14-day intervals. Most, but not all, trials were statistically analyzed.

Results were consistent across most trials, showing that Revus Fungicide applied between 100 and 150 g a.i./ha resulted in good control of tomato late blight severity throughout the growing season and under increasing disease pressures. The data showed that under low to moderate disease pressures, the 100 g a.i./ha rate provided acceptable disease severity control when applied at 7- to 10-day intervals; however, 14-day intervals were too long between applications for consistent control. Under high disease pressures, the 150 g a.i./ha rate provided greater levels of disease control compared to the 100 g a.i./ha rate, and again, more frequent applications (7- and 10-day intervals) resulted in lower disease severity compared to a 14-day application interval. With respect to adjuvants, Revus Fungicide was tested with various non-ionic and organosilicone surfactants. Results showed a general increase in efficacy when any type of surfactant was used; however the increases were mainly numerical. Due to a lack of statistical analysis, it is unknown whether the differences were significant. In general, Revus Fungicide performed at levels similar to the commercial standards tested in the trials.

5.1.1.9 Control of Late Blight (*Phytophthora infestans*) on Root and Tuber Vegetables (Tuberous and Corm subgroup)

A total of nine potato late blight trials were submitted for review. Studies were conducted between 2002 and 2005 in the Unites States (New York, Michigan, Florida, Pennsylvania), and all had medium to high disease pressures throughout the study period. Revus Fungicide was tested at 100, 125 or 150 g a.i./ha, applied alone or with an adjuvant, or treatments were set up to assess application intervals. Between 3 and 9 consecutive applications were made at 3- to 14-day intervals. Disease severity, AUDPC or yield, was assessed.

Results showed that in all trials except for one, an application of Revus Fungicide at 100, 125 or 150 g a.i./ha provided good to excellent control of late blight disease severity compared to the untreated control, with the higher rate of 150 providing slightly greater control than the 100 g a.i./ha rate. The greatest increases in disease severity control were associated with the increased frequency and initial timing of applications. The proposed rates of 100–150 g a.i./ha were supported. A greater number of applications made more frequently (i.e. 7-day intervals)

resulted in notably greater disease control compared to the 14-day application interval. The 10-day interval was similar to the 7-day with respect to disease control. Therefore, a 7- to 10-day application interval was supported. With respect to the application of Revus Fungicide with or without an adjuvant, trials showed a consistent trend that applications of Revus Fungicide with an adjuvant, notably Activator 90 at 0.125-0.25% v/v and Silwet L77 at 0.1 v/v, increased efficacy when compared to Revus Fungicide applied alone.

Crop Grouping

The registration of Revus Fungicide was requested for the whole Root and Tuber Vegetables crop group. Since only data on potatoes were submitted, additional data are required to extrapolate the claim to the whole crop group. Therefore, only control on potatoes can be supported.

5.1.1.10 Control of Downy Mildew (*Bremia lactucae*) on Leafy Vegetables (Field Lettuce, Leaf and Head Lettuce, Spinach) and Greenhouse Lettuce

A total of nine studies conducted on head lettuce (six trials), leaf lettuce (two trials) and romaine lettuce (one trial), were submitted for review. All trials were conducted in 2001, 2002, 2004, 2005 or 2006 in either Florida or California. Disease pressures in the studies ranged from very low (2.5% disease severity) to very high (80% disease severity). Revus Fungicide was tested at 75, 100, 125 or 150 g a.i./ha, applied alone or with an adjuvant, or treatments were set up to assess application intervals. Between 2 and 6 consecutive applications of Revus Fungicide were made at 5- to 12-day intervals. Disease severity, disease incidence, and/or AUDPC were assessed.

Results were consistent across all trials, where an application of Revus Fungicide at any rate significantly reduced the level of disease severity compared to the untreated check treatment under moderate and high disease pressures. When comparing across all rates, the low rate of 75 g a.i./ha did not provide as good control as the 100 g a.i./ha rate; therefore, the 100 g a.i./ha rate is considered the lowest effective rate. When comparing the 100 to the 150 g a.i./ha rate, there were no significant differences in disease severity reported. Application intervals of between 7 and 11 days demonstrated good control; therefore, this interval can be supported. No phytotoxicity was reported in any of the trials.

Crop Grouping

Three crops were tested in the trials: head lettuce, leaf lettuce and Romaine lettuce. Since the efficacy results were consistent across all of the studies, and there were no reports of phytotoxicity, they can all be supported. This claim can also be extended to include spinach, given this crop is also susceptible to the pathogen.

5.1.1.11 Control of Blue Mould (*Peronospora effusa*) on Leafy Vegetables (Field Lettuce, Leaf and Head Lettuce, Spinach) and Greenhouse Lettuce

Within the leafy vegetables group, *Peronospora effusa* is responsible for downy mildew (also known as blue mould) on spinach and lettuce only. Two studies conducted on spinach in California in 2004 and 2005 were submitted for review. Revus Fungicide was applied at 100 g a.i./ha between 3 and 6 times per season, at application intervals ranging from 8 to 12 days. In both trials, Revus Fungicide was applied alone or with Activator 90. Disease pressures were considered to be moderate to high.

Results in both trials showed that there was excellent efficacy of Revus Fungicide against blue mould of spinach, when applied at 100 g a.i./ha. The application interval of 8 to 12 days also resulted in good disease control. There were no statistically significant differences between the two Revus Fungicide treatments (with and without the adjuvant); however, there were numerical differences, with the presence of the adjuvant increasing the level of disease severity control. No phytotoxicity was reported in either study.

Although the studies did not directly test lettuce, this crop is susceptible to *Peronospora effusa* as well, and the claim can be extrapolated to include lettuce. No other leafy vegetables (head lettuce, leaf lettuce, etc) are susceptible to this pathogen.

5.1.1.12 Aerial Application

Based on evidence from similar formulations, data indicated that a flowable formulation with the same mode of action provided a similar level of disease control when applied aerially or by ground. Therefore, no unacceptable loss of efficacy is expected when Revus Fungicide is applied by aerial application. For aerial application, a minimum carrier volume of 45 L was specified on the product label.

5.1.1.13 Revus Fungicide Tank Mix with Bravo Weatherstik

A tank mix of Revus Fungicide with Bravo 500 Agricultural Fungicide was requested for all crops and diseases on the proposed Revus Fungicide label, to either reduce the possibility of resistance developing or to broaden the spectrum of diseases controlled or suppressed. Not all crops, however, are currently listed on the Bravo 500 Agricultural Fungicide label.

The only Revus Fungicide rate tested was 100 g a.i./ha + 1000 g a.i./ha Bravo Weatherstik. Bravo Weatherstik (720 g chlorothalonil/L) is an American product with a different guarantee than the same product registered in Canada, Bravo 500 Agricultural Fungicide. The registered rates for Bravo 500 Agricultural Fungicide vary from 0.6 to 2.0 kg a.i./ha depending on the crop and disease. Based on the similarities of these two Bravo products, it is expected that the Canadian formulation will perform in a similar manner. Tank mix data were submitted on the following crops: Chinese broccoli (downy mildew), potatoes (late blight), tomatoes (late blight); and on the following cucurbits: cucumbers, winter squash, and pumpkins (downy mildew). Results indicate that Revus Fungicide can be tank-mixed with Bravo 500 Agricultural Fungicide, that there are no incompatibility issues, and that no unacceptable loss of efficacy occurs as a result of tank mixing these two products.

5.1.1.14 Maximum Number of Season Applications

Based on the fungicide Group 40 recommendations from the Fungicide Resistance Action Committee (FRAC), a seasonal maximum of four applications per season may be made, regardless of whether Revus Fungicide is applied at 100 or 150 g a.i./ha. Refer to Section 5.5.3 for further discussion.

5.2 **Phytotoxicity to Host Plants**

When Revus Fungicide was applied alone, there were no reports of unacceptable phytotoxicity to the crops tested in any of the trials submitted, with the exception of greenhouse cucumbers. This includes when a greater number of applications were made sequentially to a crop (up to 10), or when rates above 150 g a.i./ha were tested. Where phytotoxicity was reported in a trial, it occurred after tank-mixing with an organo-silicate adjuvant, and was considered to be an isolated case because it was not reported in other studies on similar crops. Therefore, based on this evidence, it is believed that Revus Fungicide is not phytotoxic to most crops when applied according to the proposed use pattern. For greenhouse cucumbers, the registrant supplied the following label wording to mitigate possible adverse effects for this crop and use.

Application of REVUS may result in injury on some cucumber varieties grown under cover, resulting in potential discolouration and necrotic spots on the fruit surface. Since not all cucumber varieties have been tested for tolerance to REVUS, first use of REVUS should be limited to a small area of each variety to confirm tolerance prior to adoption as a general production practice.

5.3 Impact on Succeeding Crops

Not assessed.

5.4 Economics

Not assessed.

5.5 Sustainability

5.5.1 Survey of Alternatives

Refer to Appendix I, Table 16 for a summary of the active ingredients currently registered for the same uses as Revus Fungicide.

5.5.2 Compatibility with Current Management Practices Including Integrated Pest Management

The use of Revus Fungicide is compatible with current integrated pest management practices and production practices.

5.5.3 Information on the Occurrence or Possible Occurrence of the Development of Resistance

Based on reports from the FRAC, sensitivity monitoring studies have suggested that populations of *Phytophthora infestans*, the causative pathogen of potato and tomato late blight, have not developed resistance to mandipropamid. However, certain isolates of Plasmopara viticola, the causative pathogen for downy mildew of grape, have been found to be simultaneously resistant to all group 40 active ingredients. Therefore, resistance management practices are required when using Revus Fungicide on grapes for control of downy mildew, and are highly recommended when using on other labelled diseases and crops. It is recommended to follow the FRAC CAA guidelines for resistance management when using Revus Fungicide. With regards to other oomycete (Peronosporomycete) pathogens, which cause downy mildew on various crops, FRAC considers these to be high risk pathogens, and despite a lack of resistance being detected in the field for CAA active ingredients, resistance management precautions are recommended.

Specific Resistance Management Practices for the use of Group 40 Fungicides on *Plasmopara viticola*:

- Apply a maximum of four CAA sprays during one crop cycle
- Apply CAA fungicides always in mixture with effective partners such as multi-sites or other non cross-resistant fungicides
- An effective partner for a CAA fungicide is one that provides satisfactory disease control when used alone at the mixture rate

Specific Resistance Management Practices for Group 40 Fungicides on *Phytophthora infestans*:

- Use of CAA fungicides limited to a maximum of 50% of all intended applications for Phytophthora control
- Alternation with other modes of action should be considered

Specific Resistance Management Practices for Group 40 Fungicides on other oomycete (*Peronosporomycete*) pathogens:

- Use of CAA fungicides limited to a maximum of 50% of all intended applications for Phytophthora control
- Alternation with other modes of action should be considered

Currently, there are no other products registered for control or suppression of phytophthora blight on peppers, including Bravo 500 Agricultural Fungicide. Therefore, it is not possible to tank-mix Revus Fungicide for the purposes of resistance management, or to alternate with other products. For this reason, and following the CAA recommendations from FRAC, only one application of Revus Fungicide may be made to pepper transplants for the suppression of phytophthora blight.

5.5.4 Contribution to Risk Reduction and Sustainability

Revus Fungicide offers a new fungicide chemistry to Canadian growers for use on leafy vegetables, grapes, tomatoes, cucurbits, bulb vegetables, and Brassica head and stem crops. It is currently the only fungicide registered in Canada for suppression of phytophthora blight on peppers. Revus Fungicide can be tank-mixed with Bravo 500 Agricultural Fungicide for resistance management, or to increase the disease spectrum on crops that are registered on both product labels.

6.0 Pest Control Product Policy Considerations

The management of toxic substances is guided by the federal government's Toxic Substances Management Policy, which puts forward a preventive and precautionary approach to deal with substances that enter the environment and could harm the environment or human health. The policy provides decision makers with direction and sets out a science-based management framework to ensure that federal programs are consistent with its objectives. One of the key management objectives is the virtual elimination from the environment of toxic substances that result predominantly from human activity and that are persistent and bioaccumulative. These substances are referred to in the policy as Track 1 substances.

During the review process, mandipropamid was assessed in accordance with the PMRA Regulatory Directive DIR99-03, *The Pest Management Regulatory Agency's Strategy for Implementing the Toxic Substances Management Policy*. Substances associated with the use of mandipropamid were also considered, including transformation products formed in the environment and contaminants and formulants in the technical product and end-use product. Mandipropamid and its transformation products were evaluated against the following Track 1 criteria: persistence in soil \geq 182 days, persistence in water \geq 182 days, persistence in sediment \geq 365 days, persistence in air \geq 2 days, bioaccumulation log K_{ow} \geq 5 or BCF \geq 5000 (or bioaccumulation factor \geq 5000). In order for mandipropamid or its transformation products to meet Track 1 criteria, the criteria for both bioaccumulation and persistence (in one media) must be met. The technical product and end-use product, including formulants, were assessed against the contaminants identified in the *Canada Gazette*, Part II, Volume 139, Number 24, pages 2641–2643: List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern, Part 3 Contaminants of Health or Environmental Concern. The PMRA has reached the following conclusions. Mandipropamid does not meet the Track 1 criterion for persistence, as its half-life values in water (2.1 to 14.5 days), soil (20 to 86 days), and sediment (15.3 to 20.6 days) are below the Track 1 criteria. Mandipropamid does not meet the Track 1 criterion for persistence in air because volatilisation is not an important route of dissipation and long-range atmospheric transport is unlikely to occur based on its vapour pressure ($<7.05 \times 10^{-9}$ mm Hg) and Henry's law constant ($<9.1 \times 10^{-10}$ atm m³/mole). Mandipropamid does not meet the Track 1 criterion for bioaccumulation, as its bioconcentration factor (BCF = 8.8–10 for edible tissue) is below the Track 1 criteria, and is not considered a Track 1 substance.

Mandipropamid does not form any transformation products that meet the Track 1 criteria.

There are no Track 1 contaminants in the technical product.

The end-use product, Revus Fungicide, contains a formulant contaminated with the Track 1 substances (hexa- to octa-dioxins and penta- to octa-furans) identified in the *Canada Gazette*, Part II, Volume 139, Number 24, pages 2641–2643: List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern, Part 3 Contaminants of Health or Environmental Concern. The PMRA is managing the presence of these contaminants in accordance with the Agency's strategy to prevent or minimize releases, with the ultimate goal of virtual elimination as described in *The Pest Management Regulatory Agency's Strategy for Implementing the Toxic Substances Management Policy*.

6.2 Formulants and Contaminants of Health or Environmental Concern

During the review process, formulants and contaminants in the technical and end-use products are assessed against the formulants and contaminants identified in the *Canada Gazette*, Part II, Volume 139, Number 24, pages 2641–2643: List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern. This list of formulants and contaminants of health and environmental concern are identified using existing policies and regulations including the federal Toxic Substances Management Policy; the Ozone-depleting Substance Regulations, 1998, of the *Canadian Environmental Protection Act* (substances designated under the Montreal Protocol); and the *PMRA Formulants Policy* as described in the PMRA Regulatory Directive DIR2006-02, *Formulants Policy and Implementation Guidance Document*. The List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern is maintained and used as described in the PMRA Notice of Intent NOI2005-01, *List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern under the New Pest Control Products Act*.

The List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern consists of three parts:

- Part 1: Formulants of Health or Environmental Concern;
- Part 2: Formulants of Health or Environmental Concern that are Allergens Known to Cause Anaphylactic-Type Reactions; and
- Part 3: Contaminants of Health or Environmental Concern.

The contaminants to which Part 3 applies meet the federal Toxic Substances Management Policy criteria as Track 1 substances and are considered in section 6.1. The following assessment refers to the formulants and contaminants in Part 1 and Part 2 of the list.

Technical grade Mandipropamid and the end-use product Revus Fungicide do not contain any formulants or contaminants of health or environmental concern identified in the *Canada Gazette*, Part II, Volume 139, Number 24, pages 2641–2643: List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern.

7.0 Summary

7.1 Human Health and Safety

The toxicology database submitted for mandipropamid is adequate to define the majority of toxic effects that may result from exposure to mandipropamid. In subchronic and chronic studies on laboratory animals, the primary target was the liver along with decreased body-weight gain. There was no evidence of carcinogenicity in rats or mice after longer-term dosing. There was no evidence of increased susceptibility of the young in reproduction or developmental toxicity studies. Mandipropamid is not considered to be a neurotoxicant. Only uses for which the exposure is well below levels that cause no effects in animal testing are considered acceptable for registration.

The residue definition for enforcement purposes is mandipropamid in primary crops, rotational crops and animal commodities. For risk-assessment purposes, the residue definition is mandipropamid in primary crops (except root and tuber vegetables), rotational crops and animal commodities; and mandipropamid and the metabolite SYN 500003 in root and tuber vegetables.

The proposed use of mandipropamid on Brassica vegetables, lettuce (leaf and head), spinach, bulb vegetables, cucurbits, peppers, field tomato (tomatillo), grapes, potatoes, greenhouse vegetables (lettuce, tomato and cucumber) and including the importation of okra, fruiting vegetables, leafy vegetables (except Brassica) and tuberous and corm vegetables does not constitute an unacceptable chronic or acute dietary risk (food and drinking water) to any segment of the population, including infants, children, adults and seniors.

Sufficient crop residue data have been reviewed to recommend maximum residue limits, both domestic and import, to protect human health. The PMRA recommends that the following maximum residue limits be specified for residues of mandipropamid in and on Leafy Brassica greens (Crop Subgroup 5B) (25 ppm); Leafy vegetables, except Brassica (Crop Group 4) (20 ppm); Green onion subgroup (Crop Subgroup 3-07B) (4.0 ppm); Head and stem Brassica (Crop Subgroup 5A), raisins (3.0 ppm); Grapes (1.4 ppm); Fruiting vegetables (Crop Group 8), okra (1.0 ppm); Cucurbit vegetables (Crop Group 9) (0.6 ppm); Bulb onion subgroup (Crop Subgroup 3-07A) (0.05 ppm); and Tuberous and corm vegetables (Crop Subgroup 1C) (0.01 ppm).

Mixers, loaders and applicators handling Revus Fungicide and workers re-entering areas treated with Revus Fungicide are not expected to be exposed to levels of mandipropimid that will result in an unacceptable risk when Revus Fungicide is used according to label directions. The personal protective equipment on the product label is adequate to protect workers.

7.2 Environmental Risk

The use of Revus Fungicide is not expected to pose a risk to terrestrial or aquatic organisms when used according to label directions. Standard environmental label statements must be added or updated on the product labels as precautions.

7.3 Value

Sufficient evidence of efficacy was provided to support the use of Revus Fungicide to control or suppress various diseases on field or greenhouse vegetable crops, grapes, and potatoes. The lower proposed rate was confirmed as the lowest effective rate. Revus Fungicide offers a new fungicide chemistry to Canadian growers for use on leafy vegetables, grapes, tomatoes, cucurbits, bulb vegetables, and Brassica head and stem crops. It is currently the only fungicide registered in Canada for suppression of phytophthora blight on peppers. Revus Fungicide can be tank-mixed with Bravo 500 Agricultural Fungicide for resistance management or to increase the disease spectrum on crops that are registered on both product labels.

A summary of the proposed and accepted uses for Revus Fungicide is presented in Appendix I, Table 17.

7.4 Unsupported Uses

Certain uses originally proposed with this application are not supported by the PMRA either because value has not been adequately demonstrated or due to unacceptable risk. Unsupported uses are listed below in Table 7.4.1.

Сгор	Disease	Reason for Not Supporting the Claim
Cucurbits:	Phytophthora blight	No data on the pathogen /
Cantaloupe, chayote,	(Phytophthora capsici)	disease for any crop within this
Chinese-waxgourd, field cucumber,		crop group were submitted.
gourds, honeydew, melons		Extrapolation for the
Momordica spp. (bitter melon,		conditionally supported claim
balsam apple), muskmelon,		for the same disease on peppers
watermelon, pumpkin, squash,		could not be made as the data
zucchini, including cultivars and/or		were very limited.
hybrids of these		
Greenhouse cucumbers		
Fruiting Vegetables Crop Group:	Downy mildew	While peppers (Bell and
Eggplant, okra, ground cherry,	(Peronospora tabacina)	non-Bell) were conditionally
pepino		supported based on very limited
		data, insufficient data were
		submitted to support a crop
	T / 11 1/	group claim.
Root and Tuber Vegetables	Late blight	Only data on potatoes were
Tuberous and Corm subgroup:	(Phytophthora infestans)	submitted, and the applicant did
Arracacha, arrowroot, Chinese and		not provide evidence that late
Jerusalem artichoke, burdock,		blight is a problem on the
canna, edible bitter and sweet		remaining crops listed;
cassava, chayote (root), chufa,		therefore, insufficient data were
dasheen (Taro), ginger, leren,		submitted for a crop group
potato, sweet potato, tanier,		claim.
turmeric, yam (bean), yam (true)		

 Table 7.4.1
 Use Claims Proposed that were Unsupported

8.0 Regulatory Decision

Health Canada's PMRA, under the authority of the *Pest Control Products Act* and in accordance with the Pest Control Products Regulations, has granted conditional registration for the sale and use of the technical grade active ingredient Mandipropamid Technical Fungicide and the end-use product Revus Fungicide to control downy mildew on Brassica crops, bulb vegetables, grapes, leafy vegetables (including field and greenhouse, not transplants for the field, and blue mould on spinach); late blight on tomatoes (including field and greenhouse, not transplants for the field), tomatillos and potatoes; and suppression of phytophthora blight on peppers (Bell and non-Bell peppers to be treated in the greenhouse and immediately transplanted to the field), and suppression of downy mildew on cucurbits (including field and greenhouse, not transplants for the field).

An evaluation of current scientific data from the applicant has resulted in the determination that, under the approved conditions of use, the end-use product has value and does not present an unacceptable risk to human health or the environment.

Although the risks and value have been determined to be acceptable when all risk-reduction measures are followed, as a condition of these registrations, the additional scientific information (listed below) is being requested from the applicant as a result of this evaluation. For more details, refer to the Section 12 Notice associated with these conditional registrations.

Chemistry

- Analytical data from at least five batches of technical grade active ingredient representing full-scale production, once commercial production has commenced at the manufacturing site.
- Analytical methods for the transformation products of mandipropamid in water and sediment.

Human Health

- For enforcement purposes, a confirmatory method or interference study for RAM 415/01.
- Final study report demonstrating the storage stability of analytical standards
- Freezer storage stability study for residues of SYN 500003 in potato tubers and potato processed fractions for up to 32 months of frozen storage.
- Greenhouse lettuce trials conducted according to the approved Revus Fungicide label rate.

Value

- Confirmatory efficacy trials are required assessing whether the higher rate of Revus Fungicide (150 g a.i./ha) is required for control of downy mildew (*Peronospora destructor*) on green (bunching) onions, leeks and Welch onions. Efficacy data is required within two years of a conditional registration being granted.
- Confirmatory efficacy trials are required assessing Revus Fungicide for control of downy mildew (*Peronospora parasitica*) on crops within the Brassica leafy greens sub-group.
- Confirmatory efficacy trials are required assessing Revus Fungicide for suppression of phytophthora blight (*Phytophthora capsici*) on peppers (Bell and non-Bell), as well as all other crops within the fruiting vegetables crop group.
- **NOTE:** The PMRA will publish a Consultation Document at the time when there is a proposed decision on applications to convert these conditional registrations to full registrations or on applications to renew the conditional registrations, whichever occurs first.

List of Abbreviations

μg	micrograms
μl	microlitre
ADI	acceptable daily intake
a.i.	active ingredient
AR	applied radioactivity
ARfD	acute reference dose
atm	atmosphere
AUDPC	area under the disease progress curve
BCF	bioaccumulation factor
bw	body weight
CAA	carboxylic acid amide
CAF	composite assessment factor
CAS	Chemical Abstracts Service
cm	centimetres
C _{max}	maximum concentration
COEX	co-extrusion
d	day(s)
DALA	days after last application
DT ₅₀	dissipation time 50% (the dose required to observe a 50% decline in the test population)
DT ₉₀	dissipation time 90% (the dose required to observe a 90% decline in the test population)
duy	dry weight
uw El Car	50% offective concentration for biomass
L _b C ₅₀	
EC	emulsifiable concentrate
EC_{25}	effective concentration on 25% of the population
EC ₅₀	effective concentration on 50% of the population
EDE	estimated daily exposure
EEC	estimated environmental exposure
E_rC_{50}	50% effective concentration for reproduction
EUP	end-use product
F_1	first filial generation
F ₂	second filial generation
FIR	food ingestion rate
FOB	functional observational battery
FRAC	Fungicide Resistance Action Committee
g	gram
GUS	groundwater ubiquity score
h	hour(s)
ha	hectare(s)
HAFT	highest average field trial
HDPE	high-density polyethylene
Hg	mercury
HPLC	high performance liquid chromatography
IUPAC	International Union of Pure and Applied Chemistry

i.v.	intravenous
kg	kilogram
K _{foc}	Freundlich organic-carbon partition coefficient
K _{oc}	organic-carbon partition coefficient
K _{ow}	<i>n</i> -octanol–water partition coefficient
L	litre
LC/MS/MS	Liquid chromatography with tandem mass spectrometry
LC ₅₀	lethal concentration 50%
LD_{50}	lethal dose 50%
LOAEL	lowest observed adverse effect level
LOC	level of concern
LOQ	limit of quantitation
LR ₅₀	lethal rate 50%
LSC	liquid scintillation counting
m	metre
mg	milligram
mL	millilitre
mm	millimetre(s)
MOE	margin of exposure
mol	mole
MRL	maximum residue limit
MS	mass spectrometry
MTD	maximum tolerated dose
N/A	not applicable
NAFTA	North American Free Trade Agreement
NER	non-extractable residues
NOAEL	no observed adverse effect level
NOEC	no observed effect concentration
NOEL	no observed effect level
OECD	Organisation for Economic Co-operation and Development
Р	parental generation
Pa	pascal
PBI	plantback interval
PET	polyethylene terephthalate
pН	-log 10 hydrogen ion concentration
PHED	Pesticide Handlers Exposure Database
PHI	preharvest interval
p <i>K</i> a	dissociation constant
PMRA	Pest Management Regulatory Agency
ppm	parts per million
RAC	raw agricultural commodity
RAM	residue analytical method
RQ	risk quotient
SC	soluble concentrate
SF	safety factor
$t_{1/2}$	half-life
TGAI	technical grade active ingredient

TLC	thin layer chromatography
T _{max}	maximum time
TRR	total radioactive residue
UF	uncertainty factor
USEPA	United States Environmental Protection Agency
UV	ultraviolet
vp	vapour pressure
v/v	volume per volume dilution

Appendix I **Tables and Figures**

Matrix	Method ID	Analyte	Method Type		LOQ	Reference (PMRA #)
Soil	_	Active	HPLC-MS-		0.5.4.0/1.0	1348290
5011		CGA-380778	MS^1		0.5 µg/kg	1348289
Saltwater		Active	HPLC-UV		0.05 mg a.i./L	1348291
Plant	RAM 415/01	Mandipropamid	Data Gathering and Enforcement LC-MS/MS	0.01 ppm	Cucumber, grape (fruit, wine, raisins, dry pomace), leeks, melon (peel and flesh), onion, oranges, sweet pepper, potatoes, rape seed, spinach, tomato (fruit, juice and purée) and wheat (straw)	1386771 1348173 1348174 1348284
	GRM001.01.B	SYN 500003	Data Gathering LC-MS/MS	0.005 ppm	Potato (tubers, chips, granules/flakes and peel)	1457579

Table 1 **Residue Analysis**

Transitions monitored: mandipropamid 412.1 * 327.9; CGA-380778 374.1 * 327.9

Table 2Acute Toxicity of Mandipropamid Technical Fungicide and Its Associated
End-use Product (Revus Fungicide)

Study Type	Species	Result	Comment	Reference (PMRA #)	
Acute Toxicity of Mandipropamid (Technical)					
Oral (up and down)	Rat	LD_{50} >5000 mg/kg bw	Low toxicity	1348240	
Dermal	Rat	LD_{50} >5050 mg/kg bw	Low toxicity	1348241	
Inhalation	Rat	LC ₅₀ >5.19 mg/L	Low toxicity	1348242	
Skin irritation	Rabbit	Positve	Minimally irritating	1348243	
Eye irritation	Rabbit	Positive	Minimally irritating	1348244	
Skin sensitization	Guinea Pig	Negative	Not a dermal sensitizer	1348245	
Skin sensitization	Mouse	Stimulation Index <3 Negative	Not a dermal sensitizer	1348246	
Acute Toxicity of En	nd-Use Product – Revus I	Fungicide (23.3% mandipro	pamid)		
Oral	Rat	LD ₅₀ >5000 mg/kg bw	Low toxicity	1348157	
Dermal	Rat	LD_{50} >5000 mg/kg bw	Low toxicity	1348158	
Inhalation	Rat	LC ₅₀ >4.89 mg/L	Low toxicity	1348159	
Skin irritation	Rabbit	Positive	Minimally irritating	1348160	
Eye irritation	Rabbit	Positive	Minimally irritating	1348161	
Skin sensitization	Guinea Pig	Negative	Not a dermal sensitizer	1348162	
Acute Toxicity of SY	N 500003 impurity (<0.1	%)			
Oral	Rat	$LD_{50} = 1049 \text{ mg/kg bw}$	Moderate toxicity	1457538	

Table 3 Toxicity Profile of Mandipropamid Technical Fungicide

Study Type	Species	Results ^a (mg/kg/day in M/F)	Reference (PMRA #)
14-day dermal	Rat	Effect levels not established, given this was a range-finding study. Slight dermal irritation (erythema, edema and scabs) were observed at 250 mg/kg bw/day.	1348256
29 day damaal		Dermal irritation:	
irritation	Rat	NOAEL: 1000 mg/kg bw/day	1348251
innation		LOAEL: Not established	
		Effect levels not established, given this was a range-finding study.	
28-day dietary	Mouse	The following effects were noted at a dose level of 319/378 mg/kg bw/day (\mathcal{J}, \mathcal{Q}): decreased body weight (\mathcal{Q}) and body-weight gain (\mathcal{Q}) and increased liver weights (\mathcal{Q}).	1348253
		NOAEL: 248/316 mg/kg bw/day (\mathcal{O}, \mathcal{Q})	
90-day dietary	Mouse	LOAEL: 624/800 mg/kg bw/day (\mathcal{E} , \mathcal{D}), based on decreased body weight and body-weight gain.	1348247

Study Type	Species	Results ^a (mg/kg/day in M/F)	Reference (PMRA #)
28-day gavage	Rat	Effect levels not established, given this was a range-finding study. No compound-related effects were observed on measured	1457528
28-day dietary	Rat	parameters. Effect levels were not established, given this was a range-finding study. The following effects were noted at a dose level of 135/121 mg/kg bw/day (\mathcal{J}, \mathcal{Q}): decreased food consumption (\mathcal{J}, \mathcal{Q}) and overall body-weight gain (\mathcal{J}).	1348252
90-day dietary	Rat	NOAEL: 41/45 mg/kg bw/day $(\mathcal{J}, \mathcal{Q})$ LOAEL: 260 mg/kg bw/day $(\mathcal{J}/\mathcal{Q})$, based on decreased body weight and body-weight gain and decreased food efficiency (\mathcal{J}) .	1348248
Preliminary oral toxicity comparing capsule and dietary administration	Dog	Effects were not established, given this was a supplemental study. Effects seen with capsule administration included increased alkaline phosphatase, alanineamino transferase and absolute and relative liver weight and slightly reduced periportal glycogen. Effects seen with dietary administration included decreased leukocytes and neutrophils (\mathcal{J}), increased alkaline phosphotase (\mathcal{Q}) and absolute and relative liver weight (\mathcal{Q}), slight brown pigmentation of the liver, minimal single cell necrosis in the liver (\mathcal{Q}) and slightly reduced peripotal glycogen.	1348255
6 week preliminary capsule	Dog	Effects were not established, given this was a range-finding study. The following effects were noted at a dose level of 100 mg/kg bw/day: increased alkaline phosphotase and liver weights (\mathcal{Q}), hepatocyte pigmentation (consistent with poryphrin) and pigmentation of the Kupffer cells (\mathcal{J}).	1348254
90-day dietary	Dog	NOAEL: 100 mg/kg bw/day LOAEL: 400 mg/kg bw/day, based on increased cholesterol, alkaline phosphotase, alanine transaminase and liver weights.	1348249
One-year capsule	Dog	NOAEL: 5 mg/kg bw/day (경/우) LOAEL: 40 mg/kg bw/day (경/우), based on minimal pigmentation (porphyrin) in the liver.	1348250
Carcinogenicity (18-month dietary)	Mouse	NOAEL:55/68 mg/kg bw/day (\Im/\Im) LOAEL: 222.7/284.6 mg/kg bw/day (\Im/\Im) , based on decreased body weight and food efficiency (\Im) .	1348257
Chronic / Carcinogenicity (Two-year dietary)	Rat	NOAEL: 15.27/17.6 mg/kg bw/day $(3/\mathfrak{P})$ LOAEL: 61.3/69.7 mg/kg bw/day $(3/\mathfrak{P})$, based on decrease body weight (3) , body-weight gain (3) and food efficiency (3) , increased incidence of roughened kidney surface (3) and increased severity of renal osteodystropia fibrosa (3) and severiyparathyriod hyperplasia.	1348258

Study Type	Species	Results ^a (mg/kg/day in M/F)	Reference (PMRA #)
One-generation reproduction	Rat	Effects were not established, given this was a supplemental study. The following effects were noted at 144.9/145.0 mg/kg bw/day $(2/2)$; increased food consumption (2) and	1348279
		decreased food efficiency premating (δ).	
		Parental toxicity:	
		NOAEL: 22.9/24.5 mg/kg bw/day (\mathcal{O}/\mathcal{Q})	
		LOAEL: 146.3/148.2 mg/kg bw/day (\mathcal{S}/\mathcal{Q}), based on decreased body weight (F1 \mathcal{S}) and body-weight gains (F1 \mathcal{S}) during premating and increased absolute and adjusted liver weight (P \mathcal{S} , P \mathcal{Q} and F1 \mathcal{Q})	
		Offspring toxicity:	
Two-generation	Rat	NOAEL: 22.9/24.5 mg/kg bw/day (♂/♀)	1348259
reproduction	Kat	LOAEL: 146.3/148.2 mg/kg bw/day (\mathcal{O}/\mathcal{Q}), based on decreased body weight (F1 and F2b), increased adjusted liver weights (F1, F2a and F2 b pups), increased absolute liver weights (F2a \mathcal{Q}) and increased time to preputial separation (F1 \mathcal{O}).	1340237
		Reproductive toxicity:	
		NOAEL: 146.3/148.2 mg/kg bw/day (♂/♀)	
		LOAEL: Not established	
Developmental toxicity	Rat	Effects were not established, given this was a range-finding study.	1348277
(range-finding)		Decreased total bilirubin was noted at 250 mg/kg bw/day.	
Developmental toxicity	Rat	Effects were not established, given this was a range-finding study.	1248274
(range-finding)	Kat	No compound-related effects were observed on measured parameters.	1346274
		Maternal:	
		NOAEL: 1000 mg/kg bw/day	
Developmental	Dat	LOAEL: Not established	1348260
toxicity	Kai	Developmental:	1348200
		NOAEL: 1000 mg/kg bw/day	
		LOAEL: Not established	
		Effects were not established, given this was a	
Developmental	Dabbit	range-finding study.	1248275
(range-finding)	Rabbit	No compound-related effects were observed on measured parameters.	1346275
Developmental		Effects were not established, given this was a range-finding study.	
toxicity (range-finding)	Rabbit	No compound-related effects were observed on measured parameters.	1348276

Study Type	Species	Results ^a (mg/kg/day in M/F)	Reference (PMRA #)
Developmental toxicity	Rabbit	Maternal: NOAEL: 1000 mg/kg bw/day LOAEL: Not established Developmental: NOAEL: 1000 mg/kg bw/day LOAEL: Not established	1348261
Reverse gene mutation assay	Salmonella tryphimurium strains TA98, TA 100, TA 1535, TA 1537, E. Coli WP2P and WP2PuvrA	Negative	1348262
Gene mutations in mammalian cells in vitro	Mouse lymphoma Cells (TK ^{+/-} locus)	Negative	1348263
In vitro unscheduled DNA synthesis	Primary rat hepatocytes from male rats	Negative	1348266
In vitro mammalian chromosomal aberration	Human lymphocytes	Negative	1348265
In vivo mammalian cytogenetics	Male and female rats	Negative	1348264
		Genotoxicty of impurities	
Reverse gene mutation assay SYN 500003	Salmonella tryphimurium strains TA98, TA 100, TA 1535, TA 1537, E. coli WP2P and WP2PuvrA	Negative	1457539
Gene mutations in mammalian cells in vitro SYN 545038	Salmonella tryphimurium strains TA98, TA 100, TA 1535, TA 1537, E. Coli WP2P and WP2PuvrA	Positive in the presence of metabolic activation	1457540

Neurotoxicity			
Primary acute neurotoxicty (gavage)	Rat	Effects were not established, since this was a range-finding study. No treatment related effects were noted in the FOB. Decreased mean body weight (♂) was noted at 2000 mg/kg bw.	446510
Acute neurotoxicity (gavage)	Rat	Neurotoxicity: NOAEL: >2000 mg/kg bw/day LOAEL: Not established Systemic: NOAEL: >2000 mg/kg bw/day LOAEL: Not established	1348271
Subchronic neurotoxicity (dietary)	Rat	Neurotoxicity: NOAEL: 192.5/206.7 mg/kg bw/day LOAEL: Not established Systemic: NOAEL: 37.3/41.0 mg/kg bw/day (\mathcal{J}/\mathcal{Q}) LOAEL: 192.5/206.7 mg/kg bw/day (\mathcal{J}/\mathcal{Q}), based on decreased body weight (\mathcal{J}), body-weight gain (\mathcal{J}) and food efficiency (\mathcal{J})	1452941
		Special studies	
Single high dose oral toxicity	Mouse	Effect levels not established, since this study was considered supplemental. The following effects were noted at 5000 mg/kg bw/day: increased cholesterol (12 h \Im , 12 and 24 h \Im), total bilirubin (24 h) and absolute, adjusted and relative body weight at \ge 12 h post dosing.	1457531
Single high dose oral toxicity	Rat	Effect levels not established, since this study was considered supplemental. The following effects were noted at 5000 mg/kg bw/day: increased absolute, adjusted and relative liver weight, mitosis in the liver and perioportal eosinophilia in the liver at 12 and 48 h but not at 24 h (\eth).	1457532
Single oral dose toxicity Propargyl alcohol	Rat	Effect levels not established, since this study was considered supplemental. The purpose of this study was to characterize the effects on the liver after single oral dosing with propargyl alcohol and select doses for the repeat dose study.	1457537

Repeat (14-day) oral dose toxicity Propargyl alcohol	Rat	Effect levels not established, since this study was considered supplemental. The purpose of this study was to characterize the effects on the liver after repeat oral dosing with propargyl alcohol and to compare the resulting liver effects to those caused by subchronic administration of mandipropamid. Conclusion: Propargyl alcohol and mandipropamid demonstrate similar liver effects. These effects include increased liver weights induction of liver enzymes	1457536
		histopathology and hepatocyte proliferation.	
28-day assessment of cell proliferation in mouse liver	Mouse	Effect levels not established, since this study was considered supplemental. The purpose of this study was to identify the key biochemical and morphological changes associated with the mandipropamid-induced liver enlargement in the mouse.	1457529
		Conclusion: No cell proliferation was observed.	
Cell proliferation in female rat liver	Rat	Effect levels not established, since this study was considered supplemental. The purpose of this study was to determine whether the liver enlargement in the rat was due to hepatocellular proliferation.	1457528
		Conclusion: No cell proliferation was observed.	
Effects on the rat liver (in vivo and in vitro)	Rat	Effect levels not established, since this study was considered supplemental. The purpose of the in vivo studies was to characterize the biochemical and pathological changes occurring in rat liver following dietary administration of mandipropamid for up to 28 days in order to understand the basis of the liver growth. The purpose of the in vitro study was to investigate the metabolism of mandipropamid in order to establish which enzymes are involved in metabolite production. Conclusion: In the in vivo study, no cell proliferation was observed. The data from the in vitro study suggests that	1457530
		CYP2B1, CYP2B2 and/or CYP1A2 may participate in the biotransformation of mandipropamid.	

Metabolism	Rat	Absorption: Mandipropamid is rapidly but moderately absorbed (approximately 67–74% at low dose and 30–45% at high dose, both at 48 h) following oral gavage dosing (3 or 300 mg/kg bw) in the rat. Absorption (as percent administered radioactivity) was decreased at the high dose suggesting saturation of the absorption kinetics. Repeated dietary dosing at levels of 100 to 5000 ppm did not demonstrate saturation of absorption. The T_{max} in blood at the low dose was 8.5 h in males and 4.5 h in females. At the high dose, the T_{max} was 24 h in males and 10 h in females. Distribution : The highest levels occurred in the liver and kidney followed by pancreas, plasma and blood. Combined, these tissues and organs accounted for less than 1% of the administered dose. There was no evidence of bioaccumulation.	
		Excretion : Bile excretion accounted for a significant proportion of excretion with a wide range between sexes and dose levels. Urine was the least common route of excretion. Females frequently showed significantly greater urinary excretion than males due to the metabolite NOA 452422 glucuronide, which the males eliminated almost completely through bile and feces. Fecal excretion of radioactivity tended to be lower than bile excretion in males but not females. Excretion (88-99%) was virtually complete by 168 h.	1348267 1348268 1348269
		Metabolism : More than half the excreted product was mandipropamid glucuronide (mostly in urine for females and bile for males), with parent in urine, feces and bile, SYN 534133 in urine and bile, CGA 380778 (2-(4-Chloro- phenyl)-2-hydroxy-N-[2-(3-methoxy-4-prop-2-ynyloxy- phenyl)-ethyl]-acetamide) in the urine and feces and SYN 505503 glucuronide (2-(4-Chloro-phenyl)-N-[2-(3,4- dihdroxy-phenyl)-ethyl]-2-prop-2-ynyloxy-acetamide) and SYN 505504 glucuronide2-(4-Chloro-phenyl)-N-2[2-(3,4- dihydroxy-phenyl)-ethyl]-2-hydroxy-acetamide) in the urine.	

feces and urine, NOA 458422 in feces and urine, CGA 380778 in feces and urine and SYN 505503 in feces. Others were present at lower concentrations. Note: Urine	 not appear to have an effect on the route or rate of metabolism in either sex but increased the number of urinary metabolites. Distribution: Not determined Excretion: The majority of the administered dose was eliminated in the feces. The presence of radioactivity in the feces of animals dosed intravenously indicated a substantial contribution via biliary excretion. The single dose 100 mg/kg bw females appeared to excrete more radioactivity in the urine than the males and the other orally dosed groups. Urine was also a major route of elimination in the intravenously dosed animals. Metabolism: Major metabolites were parent in feces, and NOA 458422 glucuronide, CGA 380778 glucuronide, NOA 458422 sulfate and Metabolite A (tentatively identified as O-glucuronide of NOA 446510) in urine. Minor metabolites included CGA 380775 glucuronide in feces and urine, NOA 458422 in feces and urine, CGA 380778 in feces. Others were present at lower concentrations. Note: Urine profiled at 6 h only. 	after the washout and single oral dose. In general, females took $1.7-2.5 \times \text{longer}$ to reach C_{max} than males, although these differences were not observed in repeat high dose and intravenously dosed groups. Some accumulation/saturation occurred with repeat 800 mg/kg bw dosing. Bioavailability of the oral dose was 44% for males and 78% for females. Doses of $\geq 100 \text{ mg/kg}$ bw were poorly absorbed and absorption decreased with increasing dose levels, suggesting saturation of absorption processes. Repeated dosing did not appear to have an effect on the route or rate of metabolism in either sex but increased the number of urinary metabolites.	IetabolismDogAbsorption: Recoveries of mandipropamid were $\sim/5-$ 103% of the administered dose following oral administration to dogs by gelatin capsule (100 or 800 mg/kg bw; 15 days) at 72 h. No significant differences in recovery were noted between single and repeat dosing and there were no sex differences. Recoveries of mandipropamid were $\sim69-87\%$ following intravenous administration (3 mg/kg bw) to dogs at 72 h. After a 15- day washout and a single gelatin capsule dose (3 mg/kg bw), the recoveries were 87% of the administered dose in both sexes. The majority of the radioactivity was generally recovered during the first 24 h post-dosing. Absorbed mandipropamid was rapidly and extensively metabolized. There were no apparent differences in T_{max} in blood in the low (4–10 h) or high (6–10 h) dose groups after oral administration. After intravenous dosing, the T_{max} was 5.32 h in males and 3.17 h in females; these values decreased to 1 h in males and and 3 h in females after the washout and single oral dose.
---	---	---	--

Effects observed in males as well as females unless otherwise reported.

Table 4Toxicology Endpoints for Use in Health Risk Assessment for
Mandipropamid Technical Fungicide

Exposure Scenario	Dose (mg/kg bw/day)	Study	Endpoint	UF/SF ¹ or Target MOE ²		
Acute dietary			Not required			
			ARfD = not required			
Chronic dietary	NOAEL = 5	12-month capsule dog	– pigmentation in the liver (porphrin)	100		
		ADI = 0.05				
Short-term dermal	NOAEL = 1000	28-day dermal rat	 limit dose with no treatment-related effects 	100		
Short-term to intermediate- term inhalation	NOAEL = 41	90-day dietary rat	 decreased body weight and body-weight gain and decreased food efficiency. 	100		
Short-term dermal	NOAEL = 1000	28-day dermal rat	 limit dose with no treatment-related effects 	300		
Long-term inhalation	NOAEL = 5	One-year dog	 porphyrin staining in the liver and increased liver enzymes 	100		

¹ Dietary scenarios

² Exposure scenarios

Table 5	Integrated Food Residue Chemistry Summary
---------	---

Nature of th	the Residue in Crop – Grapes PMRA #1348286			
Radiolabel Position	[Chlorophenyl-U-14C] [Methoxyphenyl-U-14C]			
Test site	Field-grown grape vines.			
Treatment	Mandipropamid was applied to grape vines using a hand-held sprayer. The first application was made at BBCH 67 stage (70% flowerhoods fallen). All subsequent applications were made at 10- to 12-day re-treament intervals. Residue data from the exaggerated treatment rates were used for metabolite characterization.			
	Six sequential applications at 143 g a.i./ha (1st), 144 g a.i./ha (2nd), 143 g a.i./ha (3rd), 145 g a.i./ha (4th), 151 g a.i./ha (5th) and150 g a.i./ha (6th) for a total of 876 g a.i./ha		Six sequential applications at 151 g a.i./ha (1st), 151 g a.i./ha (2nd), 147 g a.i./ha (3rd), 148 g a.i./ha (4th), 146 g a.i./ha (5th) and 151 g a.i./ha (6th) for a total of 894 g a.i./ha	
Rate	Exaggerated Treat	ment Rate	Exaggerated Treatment Rate	
	Six foliar applicati 430 g a.i./ha (2nd), g a.i./ha (4th), 432 a.i./ha (6th) for a to	ons at 411 g a.i./ha (1st), , 417 g a.i./ha (3rd), 431 g a.i./ha (5th) and 435 g otal of 2556 g a.i./ha.	Six foliar applications at 449 g a.i./ha (1st), 464 g a.i./ha (2nd), 440 g a.i./ha (3rd), 438 g a.i./ha (4th), 438 g a.i./ha (5th) and 421 g a.i./ha (6th) for a total of 2650 g a.i./ha.	
End-use product	Suspension concern	trate (SC 250).		
Preharvest interval	0, 14 and 28 days after the final (6th) application. For the exaggerated treatment rate, samples were harvested at only 28 days after the final (6th) application			
	Radiolabel Position	[Chlorophenyl-U- 14C]	[Methoxyphenyl-U-14C]	
Matrix	Preharvest Interval (PHI) (days)	Total Radioactive Residue (TRR) (ppm)	Total Radioactive Residue (TRR) (ppm)	
	Direct dete	rmination by combustion/li	quid scintillation counting (LSC)	
	(Summation o	f the wash analyzed by LSC combustion	C and the washed grapes analyzed by /LSC)	
	0	1.321	2.115	
	14	1.333	1.029	
	28	0.911	1.076	
Grape fruit	28 (exaggerated treatment rate)	d 7.3197 4.401		
	Indirect determination			
	(Summation of the extractable and		nonextractable radioactivity)	
	0	1.321	2.094	
	14	1.32	1.036	
	28	0.911	1.077	
	28 (exaggerated treatment rate)	7.379	4.38	

		Direct Determination by	y Combustion/LSC		
	0	59.25	66	5.955	
	14	48.649	59	0.036	
	28	29.451	35	5.609	
Grane leaves	28 (exaggerated treatment rate)	126.717	90.39		
	Indirect Determination				
Orape leaves	(Summation of the Extractable and Nonextractable Radioactivity)				
	0	74.947	75	5.643	
	14	50.388	61	.993	
	28	42.458	43	3.321	
	28 (exaggerated treatment rate)	122.54	12	2.789	
Major Metabolites Mi		Minor Metaboli	Minor Metabolites		
	(>10% TRRs)		(<10% TRRs)		
Radiolabel Position	[14C-Chloro- phenyl]	[[14C-Methoxy- phneyl]	[14C-Chloro- phenyl]	[[14C- Methoxy- phenyl]	
Radiolabel Position	[14C-Chloro- phenyl]	[[14C-Methoxy- phneyl]	[14C-Chloro- phenyl] NOA 458422;	[[14C- Methoxy- phenyl]	
Radiolabel Position	[14C-Chloro- phenyl]	[[14C-Methoxy- phneyl]	[14C-Chloro- phenyl] NOA 458422; CGA 380778;	[[14C- Methoxy- phenyl]	
Radiolabel Position	[14C-Chloro- phenyl]	[[14C-Methoxy- phneyl]	[14C-Chloro- phenyl] NOA 458422; CGA 380778; CGA 380775;	[[14C- Methoxy- phenyl] NOA 458422;	
Radiolabel Position	[14C-Chloro- phenyl]	[[14C-Methoxy- phneyl]	[14C-Chloro- phenyl] NOA 458422; CGA 380778; CGA 380775; CGA 155705;	[[14C- Methoxy- phenyl] NOA 458422; CGA 380778;	
Radiolabel Position	[14C-Chloro- phenyl]	[[14C-Methoxy- phneyl]	[14C-Chloro- phenyl] NOA 458422; CGA 380778; CGA 380775; CGA 155705; SYN 524197;	[[14C- Methoxy- phenyl] NOA 458422; CGA 380778; CGA 380775;	
Radiolabel Position	[14C-Chloro- phenyl]	[[14C-Methoxy- phneyl]	[14C-Chloro- phenyl] NOA 458422; CGA 380778; CGA 380775; CGA 155705; SYN 524197; SYN 524195;	[[14C- Methoxy- phenyl] NOA 458422; CGA 380778; CGA 380775; CGA 155705;	
Radiolabel Position	[14C-Chloro- phenyl]	[[14C-Methoxy- phneyl]	[14C-Chloro- phenyl] NOA 458422; CGA 380778; CGA 380775; CGA 155705; SYN 524197; SYN 524195; SYN 508792;	[[14C- Methoxy- phenyl] NOA 458422; CGA 380778; CGA 380775; CGA 155705; SYN 524197;	
Radiolabel Position	[14C-Chloro- phenyl] Mandipropami d	[[14C-Methoxy- phneyl] Mandipropamid	[14C-Chloro- phenyl] NOA 458422; CGA 380778; CGA 380775; CGA 155705; SYN 524197; SYN 524195; SYN 524195; SYN 508792; SYN 524200;	[[14C- Methoxy- phenyl] NOA 458422; CGA 380778; CGA 380775; CGA 155705; SYN 524197; SYN 508792	
Radiolabel Position Grape fruit	[14C-Chloro- phenyl] Mandipropami d	[[14C-Methoxy- phneyl] Mandipropamid	[14C-Chloro- phenyl] NOA 458422; CGA 380778; CGA 380775; CGA 155705; SYN 524197; SYN 524197; SYN 524195; SYN 508792; SYN 524200; SYN 524201;	[[14C- Methoxy- phenyl] NOA 458422; CGA 380778; CGA 380775; CGA 155705; SYN 524197; SYN 508792 SYN 524193;	
Radiolabel Position	[14C-Chloro- phenyl] Mandipropami d	[[14C-Methoxy- phneyl] Mandipropamid	[14C-Chloro- phenyl] NOA 458422; CGA 380778; CGA 380775; CGA 155705; SYN 524197; SYN 524195; SYN 524195; SYN 508792; SYN 524200; SYN 524201; SYN 524193;	[[14C- Methoxy- phenyl] NOA 458422; CGA 380778; CGA 380775; CGA 155705; SYN 524197; SYN 508792 SYN 508792 SYN 524193; SYN 524194;	
Radiolabel Position Grape fruit	[14C-Chloro- phenyl] Mandipropami d	[[14C-Methoxy- phneyl] Mandipropamid	[14C-Chloro- phenyl] NOA 458422; CGA 380778; CGA 380775; CGA 155705; SYN 524197; SYN 524197; SYN 524195; SYN 508792; SYN 508792; SYN 524200; SYN 524201; SYN 524193; SYN 524194;	[[14C- Methoxy- phenyl] NOA 458422; CGA 380778; CGA 380775; CGA 155705; SYN 524197; SYN 524197; SYN 524193; SYN 524194; SYN 524196;	
Radiolabel Position Grape fruit	[14C-Chloro- phenyl] Mandipropami d	[[14C-Methoxy- phneyl] Mandipropamid	[14C-Chloro- phenyl] NOA 458422; CGA 380778; CGA 380775; CGA 155705; SYN 524197; SYN 524197; SYN 524195; SYN 524200; SYN 524200; SYN 524201; SYN 524193; SYN 524194; SYN 524196;	[[14C- Methoxy- phenyl] NOA 458422; CGA 380778; CGA 380775; CGA 155705; SYN 524197; SYN 508792 SYN 508792 SYN 524193; SYN 524194; SYN 524196; NOA 459119;	
Radiolabel Position Grape fruit	[14C-Chloro- phenyl] Mandipropami d	[[14C-Methoxy- phneyl] Mandipropamid	[14C-Chloro- phenyl] NOA 458422; CGA 380778; CGA 380775; CGA 155705; SYN 524197; SYN 524197; SYN 524195; SYN 508792; SYN 524200; SYN 524200; SYN 524201; SYN 524193; SYN 524193; SYN 524194; SYN 524196; NOA 459119;	[[14C- Methoxy- phenyl] NOA 458422; CGA 380778; CGA 380775; CGA 155705; SYN 524197; SYN 508792 SYN 524193; SYN 524194; SYN 524196; NOA 459119; SYN 524198	
Radiolabel Position Grape fruit	[14C-Chloro- phenyl] Mandipropami d	[[14C-Methoxy- phneyl] Mandipropamid	[14C-Chloro- phenyl] NOA 458422; CGA 380778; CGA 380775; CGA 155705; SYN 524197; SYN 524197; SYN 524197; SYN 524195; SYN 524200; SYN 524200; SYN 524201; SYN 524193; SYN 524194; SYN 524196; NOA 459119; SYN 524198;	[[14C- Methoxy- phenyl] NOA 458422; CGA 380778; CGA 380775; CGA 155705; SYN 524197; SYN 508792 SYN 508792 SYN 524193; SYN 524194; SYN 524196; NOA 459119; SYN 524198	

Grape leaves	Mandipropami d	Mandipropamid	NOA 458422; CGA 380778; CGA 380775; CGA 155705; SYN 524197; SYN 524195; SYN 524195; SYN 524200; SYN 524200; SYN 524201; SYN 524201; SYN 524193; SYN 524194; SYN 524196; NOA 459119; SYN 524199	NOA 458422; CGA 380778; CGA 380775; CGA 155705; SYN 524197; SYN 508792 SYN 524193; SYN 524194; SYN 524196; NOA 459119; SYN 524198
--------------	-------------------	---------------	---	---

Nature of th	Nature of the Residue in Crop – Lettuce			PMRA #1348284		
Radiolabel Position	[Chlorog	ohenyl-U-14C]	[Methoxy]	phenyl-U-14C]		
Test site	Outdoor conditions.					
Treatment	Two foliar spray application:					
Treatment	1st at the 9–11 leaf	stage and the 2nd at the 1	0–12 leaf stage.			
Rate	136.0 g a.i./ha (1st 138.2 g a.i./ha (2nd application rate of	application); l application) for a total 274.2 g a.i./ha	155.5 (1st application); 159.5 g a.i./ha (2nd application) for a total application rate of 315.0 g a.i./ha.			
End-use product	Mandipropamid wa	as formulated as a soluble	e concentrate.			
Preharvest interval	3 and 14 days after the 2nd (final) application.					
Matrix	Radiolabel Position	[Chlorophenyl-U- 14C]	[Methoxyphenyl-U-14C]			
	PHI (days)TRR (ppm)TRR (ppm)		R (ppm)			
		Direct determination by combustion/LSC				
	3	3.042	4.411			
	14	1.322	2.644			
Lettuce	Indirect determination					
	(Summation of the extractable and nonextractable radioactivity)					
	3	3.091	4.444			
	14	1.392		2.702		
Metabolites Identified	Major Metabolites		Minor Metabolites			
	(>10% TRRs)		(<10% TRRs)			
Radiolabel Position	[14C-Chloro- phenyl]	[[14C-Methoxy- phneyl]	[14C-Chloro- phenyl] [[14C-Methoxy phenyl]			
Lettuce; Day 3	Mandipropamid	Mandipropamid	NOA 458422; CGA 380778	NOA 458422; CGA 380778		
Lettuce; Day 14	Mandipropamid	Mandipropamid	NOA 458422; CGA 380778	NOA 458422; CGA 380778		

Nature of th	ne Residue in Crop	– Potato	PMRA # 1348287	
Radiolabel Position	[Chlorophenyl-U-14C] [Methoxyphenyl-U-14C]			
Test site	Field-grown potato plants (1 m ² plots) surrounded by plastic sheeting.			
Treatment	Foliar broadcast applications using a hand-held sprayer. The first application was made to potato plants at the leaf developmental stage (macrostage 1) with the subsequent 5 applications made at 10–12 day re-treatment intervals.			
Rate	Applications 1–3 v 146 g a.i./ha. Appl at 158 g a.i./ha. Th 912 g a.i/.ha.	vere made at ications 4–6 were made e total applied rate was	Applications 1–3 were made at 146 g a.i./ha. Applications 4–6 were made at 151 g a.i./ha. The total applied rate was 891 g a.i./ha.	
	Exaggerated Treath 1–3 were made at 4 Applications 4–6 v 458 g a.i./ha. The t 2.6 kg a.i./ha.	ment Rate: Applications 418 g a.i./ha. vere made at otal applied rate was	Exaggerated Treatment Rate: Applications 1–3 were made at 427 g a.i./ha. Applications 4–6 were made at 452 g a.i./ha. The total applied rate was 2.6 kg a.i./ha.	
End-use product	Suspension concern	trate (SC 250).		
Preharvest interval	7 and 21 days for t	he 1× treatment rate; 21 d	ays for the exaggerated treatment rate.	
Radiolabel Matrix Position		[Chlorophenyl-U- 14C]	[Methoxyphenyl-U-14C]	
	PHI (days)	TRR (ppm)	TRR (ppm)	
	Direct determination by combustion/LSC			
	7	6.310	5.045	
	21	4.237	2.738	
	21 (exaggerated rate) 13.795		10.760	
Potato leaves	Indirect determination			
	(Summat	tion of the extractable and	nonextractable radioactivity)	
	7	6.239	4.814	
	21	4.160	2.711	
	21 (exaggerated rate)	13.444	10.729	
		Direct determination by	combustion/LSC	
	7	0.043	0.047	
	21	0.058	0.040	
	21 (exaggerated rate)	0.137	0.114	
Potato peel	Indirect determination			
	(Summation of the extractable and nor		nonextractable radioactivity)	
	7	0.044	0.048	
	21	0.059	0.040	
	21 (exaggerated rate)	0.141	0.111	

	Direct determination by combustion/LSC					
	7	0.042	0.0	56		
	21	0.049	0.045			
	21 (exaggerated rate)	0.115	0.125			
Potato flesh		Indirect deter	mination			
	(Summat	(Summation of the extractable and nonextractable radioactivity)				
	7	0.042	0.055			
	21	0.049	0.0	043		
	21 (exaggerated rate)	0.114	0.122			
Metabolites Identified	Major Metabo	olites (>10% TRRs)	Minor Metabolites (<10% TRRs)			
Dadialahal Desition	[14C-Chloro-	[14C-Methoxy-	[14C-Chloro-	[14C-Methoxy-		
Radiolabel Position	phenyl]	phneyl]	phenyl]	phenyl]		
Potato leaves (PHI = 7 Days)	Mandipropamid	Mandipropamid	NOA 458422; CGA 380778; CGA 380775	NOA 458422; CGA 380778; CGA 380775		
Potato leaves (PHI = 21 days)	Mandipropamid	Mandipropamid	NOA 458422; CGA 380778; CGA 380775	NOA 458422; CGA 380778; CGA 380775		
Potato peel (PHI = 7 days)	SYN 500003; glucose	Glucose	Mandipropamid; SYN 524199; CGA 155705	Mandipropamid		
Potato flesh (PHI = 7 days)	SYN 500003; glucose	Glucose	SYN 524199; CGA 155705	_		

Nature of th	e Residue in Crop – Tomato PMRA #1348285							
Radiolabel Position	[¹⁻¹⁴ C]							
	Residue characteriz	zation: field grown tomato	plants.					
Test site	Translocation study plots as for residue	y: tomato plants were grow characterization.	vn in plastic pots on the same field					
	All plants were pro	tected using a transparent	plastic roof.					
Treatment	Residue characteriz a foliar spray using 2-week intervals ar	zation: Mandipropamid (So a hand-held sprayer. The nd the 3rd and 4th applicat	C 250) was applied to tomato plants as 1st and 2nd applications were made at ions were made at weekly intervals.					
	Translocation study mandipropamid (Se	tomato leaves on separate plants were treated once with 250) using a micropipette.						
Rate	Residue characteriz 295 g a.i./ha (2nd), 587 g a.i./ha. The 1 Translocation study	Residue characterization: Four sequential applications at 266 g a.i./ha (1st), 295 g a.i./ha (2nd), 147 g a.i./ha (3rd) and 149 g a.i./ha (4th), for a total of 587 g a.i./ha. The 1st application was at the first fruit cluster growth stage. Franslocation study: 50 μL of a SC 250 formulation (15 g a.i./hL) per leaf.						
End-use product	Suspension concen	spension concentrate (SC 250).						
	Residue characteriz	esidue characterization: 0, 3, 7, 14 and 28 days after the final 4th application.						
Prenarvest interval	Translocation study	Translocation study: 0, 3, 7, 14 and 28 days						
	Radiolabel Position	olabel [¹⁻¹⁴ C]						
Matrix	PHI (days)	TRR (ppm) TRR (ppm)						
	Resi	due characterization						
		Direct determination by	combustion/LSC					
	0		18.221					
Tomato leaves	3		18.680					
Tomato reaves	7		22.976					
	14		22.234					
	28		9.287					
		Indirect deterr	nination					
	(Summation of th	e radioactivity in the surfa solids)	ice wash, extract and post-extractable					
	0		0.945					
Mature tomato fruit	3		0.813					
	7		0.608					
	14	0.465						
	28		0.328					
Immature tomato fruit	28		0.034					

	T	ranslocation Study					
	Radiolabel Position		[¹⁻¹⁴ C]				
Matrix	PHI (days)		% of the TRRs				
	0		98.9				
	3		94.5				
Tomato surface wash	7		91.5				
	14		79.2				
	28		60.7				
	0		1.1				
	3	2.3					
Tomato Leaves	7		2.8				
	14		7.5				
	28		17.0				
Metabolites Identified	Major Metab	olites (>10% TRRs)	Minor Metabolites (<10% TRRs)				
Radiolabel Position		[¹⁻¹⁴ C]	[¹⁻¹⁴ C]				
		NOA 458422;					
Tomato leaves			CGA 380778;				
(0, 3, 7, 14 and 28 days	Mano	dipropamid	CGA 380775;				
after treatment)			SYN 508792;				
			SYN 508793				
Matana tamata Casit			NOA 458422;				
Mature tomato fruit (0, 2, 7, 14 and 29 days)			CGA 380778;				
after treatment)	Mano	dipropamid	CGA 380775;				
,			SYN 508792;				
			SYN 508793				
			NOA 458422;				
Immature (Green) tomato			CGA 380778;				
fruit	Mano	dipropamid	CGA 380775;				
(28 days after treatment).			SYN 508792;				
			SYN 508793				

Confined Ac	cumulation in and S	Rotational Crops - Spring Wheat	– Lettuce, Radish,	PMRA #1348186, 1348487, 1348188 and 1348189				
Radiolabe	l Position	[14C-Ch]	loro-phenyl]	[14C-Methoxy-phenyl]				
Test site	The study was conducted on outdoor field plots (6 m ²). The bare soil was treat with mandipropamid (100EC) as a broadcast spray using a small plot sprayer During treatment the test plot was surrounded with a polythene foil to prever contamination of the adjacent area.							
Formulation use	ed for trial	Mandipropamid w	vas formulated as an er	mulsifiable concentra	ate (EC 100).			
Application rate	e and timing	Mandipropamid was applied once at 903 g a.i./ha (chlorophenyl label) or at 932 g a.i./ha (methoxyphenyl label) 29 days prior to the first planting of lettuc (seedling), radish (seed) and wheat (seed). Radishes were not grown at the 365 day plant back interval.						
Metabolites	Identified	Major Metabo	lites (>10% TRR)	Minor Metabol	ites (<10% TRR)			
Matrix	PBI (days)	[Chlorophenyl- U-14C]	[Methoxyphenyl- U-14C]					
	29	_	Mandipropamid	Mandipropamid	CGA 380778			
Lettuce, Head	58	_	_	Mandipropamid; CGA 380778	Mandipropamid; CGA 380778			
	120	_	_	Mandipropamid; CGA 380778	Mandipropamid			
Padish Poot	29	Mandipropamid	Mandipropamid	CGA 380778	CGA 380778			
Kauisii, Koot	58	Mandipropamid	Mandipropamid	CGA 380778	CGA 380778			
Radish, Top	29	_	_	Mandipropamid; CGA 380778	Mandipropamid; CGA 380778			
	58	Mandipropamid	Mandipropamid	CGA 380778	CGA 380778			
	29	_	_	Mandipropamid	Mandipropamid; CGA 380778			
Wheat, Forage	58	Mandipropamid	-	CGA 380778	Mandipropamid; CGA 380778			
	120	_	_	Mandipropamid; CGA 380778	Mandipropamid; CGA 380778			
	29	—	-	Mandipropamid + NOA 458422	_			
Wheat, Grain	58	_	_	—	-			
	120	—	-	—	-			
29		-	_	Mandipropamid; CGA 380778; NOA 458422	Mandipropamid; CGA 380778; NOA 458422			
Wheat, Straw	58	_	-	Mandipropamid; CGA 380778; NOA 458422	Mandipropamid; CGA 380778; NOA 458422			
	120	_	_	Mandipropamid	Mandipropamid			
	365	_	_	_				

Nature of th	e Residue in the Lact	ating Goat		PMRA # ar	1348283, 1410229 nd 1410526				
Lactating goats (Alpine breed; $n = 2$ animals per treatment) were dosed for 7 consecutive days at levels based o the average daily dietary intake of 27–45 ppm (chlorophenyl label) and 30–49 ppm (methoxyphenyl label).									
The goat dosed at 49 ppm wit samples from this animal were	h methoxyphenyl label e not used.	led mandipropamid be	ecame il	l during the	dosing period, and				
The treated goats were sacrific radioactive residues (TRRs) >	ced 20 h after administ 0.01 ppm were extract	ration of the final dos	se. All ti	ssue and mil	k samples with total				
Matrica	c	% 01	f the Ad	ministered	Dose				
	5	[Chlorophenyl-U-	-14C]	[Methoy	xyphenyl-U-14C]				
Urine (cumulative	e)	31.2			33.0				
Feces (cumulative	e)	47.4			49.2				
Cage washes (cur	nulative)	0.28-0.35			0.93				
Milk (cumulative)	0.011			0.048				
Fat (omental and	renal)	0.01			0.01				
Muscle (leg and t	enderloin)	0.03			0.03				
Liver		0.12		0.09					
Kidney	0.01 0.01								
Bile		0.02			0.05				
Gastrointestinal to	ract	3.6–9.4			4.1				
Blood (prior to sa	crifice)	0.01			0.02				
Metabolites Identified	Major Metabolit	tes (>10% TRR)	Min	or Metabolites (<10% TRR)					
Radiolabel Position	[Chlorophenyl-U- 14C]	[Methoxyphenyl- U-14C]	[Chlo U	rophenyl- -14C]	[Methoxyphenyl- U-14C]				
			Mand	ipropamid;	Mandipropamid;				
			CGA	380775;	CGA 380775;				
			CGA	380778;	CGA 380778;				
Liver	—		SYN	505503;	SYN 505503;				
			NOA	458422;	NOA 458422;				
			SYN	521195;	SYN 521195;				
			SYN	518495	SYN 518495				
			CGA	380775;	CGA 380775;				
			CGA	380778;	CGA 380778;				
Kidney	NOA 458422	NOA 458422	SYI	N 50553;	SYN 50553;				
			SYI	N 52119;	SYN 52119;				
			SYN	1 518495	SYN 518495				
Fat	Mandipropamid	Mandipropamid							
Milk (Day 4 a.m.)	Not analyzed	—	Not	analyzed	Mandipropamid				

		Storage	e Stabi	lity			PM	IRA #13481 1410232	78 and	
Samples of un cucumbers, wh spiked with ma	Samples of untreated tomatoes, tomato paste, grapes, grape juice, potato tubers, potato granules/flakes, lettuce, cucumbers, wheat forage, wheat straw, wheat grain, soybeans, soybean meal, soybean hulls, and soybean oil were spiked with mandipropamid at 0.5 ppm and stored frozen at -20°C for up to 24 months.									
Under these co juice, potato tu soybean meal,	onditions, resid bers, potato gr soybean hulls,	ues of mar anules/fla and soybe	ndiproj kes, let ean oil	pamid app ttuce, cucu for up to 2	ear to be sta umbers, whe 24 months c	able in toma eat forage, v of frozen sto	atoes, tomate wheat straw, prage.	o paste, grap wheat grain	es, grape , soybeans,	
Crop Fie	Crop Field Trials On Brassica Vegetables – Cabbage, Broccoli and Mustard Greens PMRA #1348183									
During the 200 were each com mandipropami concentrate (2)	During the 2004 growing season, field trials on the representative crops broccoli, cabbage and mustard greens were each conducted at six different locations in the United States to evaluate the magnitude of the residue of mandipropamid in/on brassica vegetables following four postfoliar broadcast applications of a suspension concentrate (250 SC). All applications were made with a non-ionic surfactant (0.25–0.26%; v/v).									
The broccoli field trials were conducted in zones 6 (Texas; 1 trial), 10 (California; 3 trials and Arizona; 1 trial) and 12 (Washington; 1 trial). The cabbage field trials were conducted in zones 1 (New York; 1 trial), 2 (North Carolina; 1 trial), 3 (Florida; 1 trial), 5A (Wisconsin; 1 trial), 6 (Texas; 1 trial) and 10 (California; 1 trial).										
The mustard g 1 trial), 6 (Tex DIR98-02 for trials each in z in zone 14), a of mandipropa conditions.	reens field tria as; 1 trial) and broccoli (5 tria one 5 and zone sufficient num mid were fairl	ls were con 10 (Califo ls: 2 trials e 5B and 1 ber of trial y consisten	nducte ornia; 1 each i trial in s was s nt acros	d in zones trial). Alt n zone 5 a n zone 12) submitted ss differen	2 (Georgia hough geog nd zone 5B or mustard for each rep t geographi	; 1 trial), 4 graphical re ; and 1 trial greens (5 t presentative cal zones, o	(Louisiana; presentation in zone 12) rials: 2 trials crop to den each with dif	1 trial), 5 (III was not me , cabbage (5 s in zone 7 ar honstrate tha fferent soil a	linois; t as per trials: 2 nd 3 trials t residues nd climatic	
Therefore, ther from trials con and stem), cab (leaves) were I conducted at th 3, 5, 7, and 9 c showed a gene	re is a reasonal ducted in the r bage (heads w harvested one a hree trial locati lays after the la ral decline wit	ble expectates espective rational and with and five to ons where ast applicates h increasing	tion the represe shout w seven sample sample tion. Ir	hat the resi entative Ca vrapper lea days after les of broch the residu pling inter	due profile madian zon wes, and wr the last (fo coli, cabbag ue decline tr vals.	would be s es. Mature rapper leave urth) applic ge, or musta rials averag	imilar in trea samples of t es alone) and tation. Resid and greens w e residues o	ated Brassica proccoli (flov d mustard gra- lue decline tr ere each coll f mandipropa	crops wer head eens ials were lected 0, 1, amid	
The Brassica f	ield trials were	conducte	d with	a 250 SC :	formulation	(250 g ma	ndipropamic	l/L).		
The LOQ for r	nandipropamic	l was repo	rted as	0.01 ppm	•					
	Total			R	esidue Lev	vels (ppm)				
Commodity	Applicatio n Rate (kg a.i./ha)	PHI (days)	n	Min.	Max.	HAFT	Median (STMdR	Mean (STMR)	Standard Deviation	

Commodity	Applicatio n Rate (kg a.i./ha)	(days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Standard Deviation
		0	2	0.118	0.158	0.138	0.138	0.138	N/A
Broccoli,	0.602	1	12	0.218	0.699	0.586	0.348	0.389	0.14
flower head and stem	0.603– 0.627	3	2	0.254	0.145	0.296	0.296	0.296	N/A
		5–7	14	< 0.01	0.222	0.211	0.382	0.136	0.07
		9	2	0.098	0.147	0.123	0.123	0.123	N/A
		0	2	1.54	2.61	2.08	2.08	2.08	N/A
Cabbage,	0.000	1	12	0.406	1.78	1.45	1.1	1.12	0.36
heads with wrapper leaves	0.600-	3	2	0.558	0.926	0.742	0.742	0.742	N/A
	0.017	5–7	14	0.086	0.548	0.435	0.221	0.237	0.121
		9	2	0.178	0.295	0.237	0.237	0.237	N/A

A	n	n	e	n	d	ix	I
	μ	μ	C		u	IV.	

		0	2	0.012	0.033	0.022	0.022	0.022	N/A
Cabbage, heads		1	12	< 0.01	0.312	0.252	0.01	0.056	0.096
without	0.600– 0.617	3	2	0.027	0.042	0.035	0.035	0.035	N/A
wrapper	0.017	5–7	14	< 0.01	0.013	0.012	0.01	0.01	0.001
leaves		9	2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	N/A
	0	2	2.29	4.65	3.47	3.47	3.47	N/A	
Cabbage, wrapper	0.000	1	12	1.86	5.76	4.95	3.23	3.43	1.33
	0.600– 0.617	3	2	1.27	1.63	1.45	1.45	1.45	N/A
leaves		5–7	14	0.315	3.05	2.77	1.21	1.28	0.794
		9	2	0.603	0.644	0.624	0.624	0.624	N/A
		0	2	8.94	10	9.49	9.49	9.49	N/A
Mustard	0.601	1	10	0.993	11.7	11.49	3.23	4.52	3.84
greens,	0.601- 0.630	3	2	0.761	1.18	0.968	0.968	0.968	N/A
leaves	0.02.0	5–7	12	0.198	5.69	5.57	0.467	1.35	1.99
		9	2	0.116	0.379	0.248	0.248	0.248	N/A
Crop Field T	rials On Cucu	Summer	PN	/IRA #13481	182				

During the 2004 growing season, field trials on the representative crops cucumber, cantaloupe and summer squash were each conducted at 4 to 7 different locations in the United States to evaluate the magnitude of the residue of mandipropamid in/on cucurbit vegetables following four postfoliar broadcast applications of a suspension concentrate (250 SC). All applications were made with a non-ionic surfactant (0.25-0.26%; v/v).

The cucumber field trials were conducted in zones 2 (Georgia and North Carolina; 2 trials), 3 (Florida; 1 trial), 5A (Michigan and Wisconsin; 2 trials), 6 (Texas; 1 trial), and 10 (California; 1 trial). The cantaloupe field trials were conducted in zones 2 (Georgia; 1 trial), 5 (Illinois; 1 trial), 6 (Texas; 1 trial), and 10 (California; 3 trials). The summer squash field trials were conducted in zones 1 (New York; 1 trial), 2 (South Carolina; 1 trial), 3 (Florida; 1 trial), 5 (Illinois; 1 trial), 5 (Illinois; 1 trial), 2 (South Carolina; 1 trial), 3 (Florida; 1 trial), 5 (Illinois; 1 trial), 5 (Illinois; 1 trial), 2 (South Carolina; 1 trial), 3 (Florida; 1 trial), 5 (Illinois; 1

Although geographical representation was not met as per DIR98-02 for cucumber (5 trials: 2 trials each in zone 5 and zone 5B; and 1 trial in zone 12), melons (3 trials: 2 trials in zone 5 and 1 trial in zone 5B) or summer squash (5 trials: 1 trial each in zone 1A and zone 5B; and 2 trials in zone 5), a sufficient number of trials was submitted for each representative crop to demonstrate that residues of mandipropamid were fairly consistent across different geographical zones, each with different soil and climatic conditions.

Therefore, there is a reasonable expectation that the residue profile would be similar in treated cucurbit crops from trials conducted in the respective representative Canadian zones. Mature samples of cucumber, cantaloupe, and summer squash were harvested 0 and 5–7 days after the last (fourth) application (DALA). At three CA trial locations, samples of cucumber, cantaloupe, or summer squash were collected at additional sampling intervals (0, 3, 5, 7, and 9 DALA) to evaluate residue decline. In the residue decline trials, residues of mandipropamid showed a general decline with increasing sampling intervals.

The cucurbit field trials were conducted with a 250 SC formulation (250 g mandipropamid/L).

Commodit	Total	DIII				Residue	Levels (ppm))	
y	Applic. Rate (kg a.i./ha)	(days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Standard Deviation
		0	14	< 0.01	0.071	0.069	0.017	0.028	0.022
Cucumber 0.601–0	0.601 0.610	3	2	0.025	0.032	0.028	0.028	0.028	N/A
	0.001-0.010	5–7	16	< 0.01	0.026	0.022	0.01	0.012	0.004
		9	2	0.011	0.011	0.011	0.011	0.011	N/A
	0.594-0.605	0	12	0.018	0.262	0.232	0.1	0.117	0.074
Contolouno		3	2	0.031	0.095	0.063	0.063	0.063	N/A
Cantaloupe		5–7	14	0.015	0.075	0.073	0.05	0.047	0.02
		9	2	0.031	0.04	0.036	0.036	0.036	N/A
		0	10	< 0.01	0.079	0.07	0.034	0.039	0.024
Summer	0.500 0.617	3	2	< 0.01	0.017	0.014	0.014	0.014	N/A
Squash	0.399-0.017	5–7	12	< 0.01	0.013	0.011	0.01	0.01	0.001
		9	2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	N/A
Crop Field	Trials On Bul	b Vegetal	oles – I	Drv Bulb	and Gre	en Onion	F	PMRA #134	48180

The representative crops for bulb vegetables are dry bulb onions and green onions. During the 2004 growing season, field trials on dry bulb onions were conducted at 8 different locations in the United States to evaluate the magnitude of the residue of mandipropamid in/on dry bulb onions following four postfoliar broadcast applications. Also during the 2004 growing season, field trials on green onions were conducted at three different locations in the United States to evaluate the magnitude of the residue of the residue of a three different locations in the United States to evaluate the magnitude of the residue of mandipropamid in/on green onions following three postfoliar broadcast applications. All applications were made with a non-ionic surfactant (0.24–0.27%; v/v). The dry bulb onion field trials were conducted in zones 1 (New York; 1 trial), 5 (Illinois; 1 trial), 6 (Texas; 1 trial), 8 (Colorado; 1 trial), 10 (California; 2 trials), 11 (Idaho; 1 trial) and 12 (Washington 1 trial). The green onion field trials were conducted in zones 2 (Georgia; 1 trial), 6 (Texas; 1 trial) and 10 (California; 1 trial).

Although geographical representation was not met as per DIR98-02 each for dry onions (5 trials: 3 trials in zone 5 and 2 trials in zone 5B) or green onions (2 trials: 1 trial each in zone 5 and zone 5B), a sufficient number of trials was submitted for the representative crops to demonstrate that residues of mandipropamid were fairly consistent across different geographical zones, each with different soil and climatic conditions. Therefore, there is a reasonable expectation that the residue profile would be similar in treated bulb vegetables from trials conducted in the respective representative Canadian zones.

Mature samples of dry onion bulbs were harvested 5-10 and 14-15 days after the last (fourth) treatment. Mature samples of green onions were harvested 7 days after the last (third) application. Residue decline trials were conducted at two trial locations where samples of dry bulb onions were collected 0, 3, 5, 7, 9, 14 and 15 days after the last application and samples of green onions were collected at 0, 3, 5, 7 and 9 days after the last application. In the green onion residue decline trial, residues of mandipropamid showed a general decline with increasing sampling intervals. In the dry bulb onion decline trial, residues of mandipropamid declined rapidly to below the method LOQ (<0.01 ppm) by Day 5.

The dry bulb and green onion trials were conducted with a 250 SC formulation (250 g mandipropamid/L). The LOQ for mandipropamid was reported as 0.01 ppm.

	Total		Residue Levels (ppm)								
Commodity	Applic. Rate (kg a.i./ha)	PHI (days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Standard Deviation		
		0	2	1.22	1.5	1.36	1.36	1.36	N/A		
Onion, 0.450 Green 0.455	0.450-	3	2	0.566	0.728	0.647	0.647	0.647	N/A		
	0	5–9	10	0.099	1.74	1.44	0.329	0.537	0.518		
	0.596– 0.650	0	2	< 0.01	0.018	0.014	0.014	0.014	N/A		
Onion, Dry		3	2	0.026	0.033	0.03	0.03	0.03	N/A		
Bulb		5-10	20	< 0.01	0.04	0.029	0.01	0.012	0.007		
		14–15	18	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0		
Crop Field	Trials On Fr Peppers (I	PM	IRA #1348	185							

During the 2003 and 2004 growing seasons, field trials on the representative crops bell peppers, non-Bell peppers (hot) and tomatoes were each conducted at 3–9 different locations in the United States (NAFTA representative zones) to evaluate the magnitude of the residue of mandipropamid in/on fruiting vegetables following four postfoliar broadcast applications of a suspension concentrate (250 SC). All applications were made with a non-ionic surfactant (0.24–0.26%; v/v). The Bell pepper field trials were conducted in zones 2 (North Carolina; 1 trial), 3 (Florida; 1 trial), 1 trial), 5 (Illinois; 1 trial), 6 (Texas; 1 trial) and 10 (California; 2 trials). The non-Bell pepper field trials were conducted in zones 6 (Texas; 1 trial), 8 (New Mexico; 1 trial) and 10 (California; 1 trial).

The tomato field trials were conducted in zones 1 (New York; 1 trial), 2 (South Carolina; 1 trial), 3 (Florida; 2 trials), 5 (Illinois, 1 trial) and 10 (California; 6 trials). Although geographical representation was not met as per DIR98-02 for tomatoes (12 trials: 11 trials in zone 5 and 1 trial in zone 5B) or peppers (5 trials: 4 trials in zone 5 and 1 trial in zone 5B), a sufficient number of trials was submitted for each crop to demonstrate that residues of mandipropamid were fairly consistent across different geographical zones, each with different soil and climatic conditions. Therefore, there is a reasonable expectation that the residue profile would be similar in treated peppers and tomatoes from trials conducted in the respective representative Canadian zones.

Mature samples of peppers (Bell and non-Bell) and tomatoes were harvested 1 and 3 days after the last (fourth) application. In one Bell pepper trial and two tomato trials, samples were collected at additional sampling intervals (0, 1, 2, 3 and 4 DALA) to evaluate residue decline. Residues of mandidpropamid showed a general decline with increasing sampling intervals.

The fruiting vegetables field trials were conducted with a 250 SC formulation (250 g mandipropamid/L).

	Total		Residue Levels (ppm)								
Commodity	Applic. Rate (kg a.i./ha)	PHI (days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Standard Deviation		
		0	2	0.05	0.116	0.083	0.083	0.083	N/A		
Bell peppers 0.57	0.574– 0.608	1–2	14	0.027	0.338	0.327	0.068	0.104	0.101		
	0.000	3–4	14	0.026	0.286	0.275	0.06	0.088	0.082		
Non-Bell	0.602-	1	6	0.055	0.375	0.37	0.166	0.206	0.138		
peppers (hot)	0.609	3	6	0.048	0.257	0.238	0.112	0.137	0.085		
		0	4	0.025	0.104	0.102	0.063	0.064	0.044		
Tomatoes	0.594– 0.628	1–2	26	0.015	0.199	0.181	0.063	0.064	0.044		
	0.020	3–4	26	< 0.010	0.097	0.082	0.028	0.036	0.024		

Crop Field Trials On Grapes PMRA #1348179

During the 2003 growing season, field trials on grapes were each conducted at 12 different locations in the United States to evaluate the magnitude of the residue of mandipropamid in/on grapes following four postfoliar broadcast applications of a suspension concentrate (250 SC). The grape field trials were conducted in zones 1 (New York and Pennsylvania; 2 trials), 10 (California; 8 trials), 11 (Washington; 1 trial), and 12 (Oregon; 1 trial).

Although geographical representation was not met as per DIR98-02 for grapes (5 trials: 4 trials in zone 5 and 1 trial in zone 11), a sufficient number of grape trials was submitted to demonstrate that residues of mandipropamid were fairly consistent across different geographical zones, each with different soil and climatic conditions. Therefore, there is a reasonable expectation that the residue profile would be similar in treated grapes from trials conducted in the respective representative Canadian zones.

Samples of mature grapes were harvested 14–15 and 27–28 days after the last application from all treatment plots. At two California trial locations, grapes were collected at additional sampling intervals to evaluate residue decline. Grapes were harvested at 0, 5, 10, 14, 20, and 28 days or at 8, 14, 21, 28, and 35 days after the last application. Residues of mandipropamid generally decreased with increasing sampling intervals.

The grape field trials were conducted with a 250 SC formulation (250 g mandipropamid/L).

The LOQ for mandipropamid was reported as 0.01 ppm.

Commodity	Total	PHI (days)	Residue Levels (ppm)								
	Applic. Rate (kg a.i./ha)		n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Standard Deviation		
		0	2	0.319	0.337	0.328	0.328	0.328	N/A		
	0.596– 0.624	5-10	6	0.163	1.43	1	0.491	0.571	0.448		
Grana		14–15	24	0.066	0.822	0.668	0.31	0.369	0.219		
Grape		20-21	4	0.078	0.509	0.426	0.249	0.271	0.194		
		27–28	24	0.094	0.684	0.625	0.261	0.32	0.196		
	-	35	2	0.079	0.087	0.083	0.083	0.083	N/A		

Crop Field Trials On leafy Vegetables – Leaf Lettuce, Head Lettuce, Celery and Spinach

PMRA #1410233

During the 2005 growing season, field trials on the representative crops lettuce, celery and spinach were each conducted at 16 different locations in the United States (NAFTA representative zones) to evaluate the magnitude of the residue of mandipropamid in/on leafy vegetables following four postfoliar broadcast applications of a suspension concentrate (250 SC). All applications were made with a non-ionic surfactant (0.24–0.26%; v/v). The leaf lettuce field trials were conducted in zones 1 (New York; 1 trial), 3 (Florida; 1 trial) and 10 (Arizona and California; 4 trials). The head lettuce field trials were conducted in zones 3 (Florida; 1 trial), 5A (Michigan; 1 trial) and 10 (California; 4 trials). The spinach field trials were conducted in zones 1 (New York; 1 trial), 5A (Michigan; 1 trial) and 10 (California; 4 trials). The spinach field trials were conducted in zones 1 (New York; 1 trial), 5A (Michigan; 1 trial) and 10 (California; 4 trials). The spinach field trials were conducted in zones 1 (New York; 1 trial), 5A (Michigan; 1 trial) and 10 (California; 4 trials). The spinach field trials were conducted in zones 1 (New York; 1 trial), 5A (Michigan; 1 trial) and 10 (California; 4 trials). The spinach field trials were conducted in zones 1 (New York; 1 trial), 2 (New Jersey; 1 trial), 6 (Texas; 1 trial), 9 (Colorado; 1 trial) and 10 (California; 2 trials).

Although geographical representation was not met as per DIR98-02 for lettuce (5 trials: 1 trial each in zone 5 and zone 12; and 3 trials in zone 5B) and spinach (3 trials: 1 trial each in zone 5, zone 5B and zone 12), a sufficient number of trials was submitted for each crop to demonstrate that residues of mandipropamid were fairly consistent across different geographical zones, each with different soil and climatic conditions. Therefore, there is reasonable expectation the residue profile would be similar in treated lettuce and spinach from trials conducted in the respective representative Canadian zones.

Mature samples of leaf lettuce, head lettuce (with wrapper leaves, without wrapper leaves and wrapper leaves only), celery (leaf stalks) and spinach (leaves) were harvested 1 and 7–9 days after the last (fourth) application. One decline trial was conducted for each representative commodity: leaf lettuce, head lettuce, celery, and spinach. The residue decline data demonstrated a general decline for all crops with increasing time after application.

The leafy vegetable field trials were conducted with a 250 SC formulation (250 g mandipropamid/L).

	Total		Residue Levels (ppm)						
Commodity	Applic. Rate (kg a.i./ha)	PHI (days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Standard Deviation
		0	2	10	13.5	11.8	11.8	11.8	N/A
Latturas lasf	0.595-	1	12	1.07	7.91	7.87	5.18	5	2.18
Lettuce, leaf	0.625	3	2	6.48	6.79	6.64	6.64	6.64	N/A
		7–9	14	0.18	4.21	3.65	1.49	1.78	1.2
		0	2	1.47	2.12	1.8	1.8	1.8	N/A
Lettuce, head	0.597–	1	10	0.98	9.56	8.29	2.66	3.85	2.75
leaves	0.621	3–5	4	0.965	4.23	2.99	2.83	2.71	1.61
		7–9	12	0.374	3.51	2.59	0.758	1.19	0.905
T // 1 1	0.597– 0.621	0	2	0.043	0.053	0.048	0.048	0.048	N/A
without		1	10	0.022	1.15	0.952	0.077	0.256	0.381
wrapper		3–5	4	< 0.01	0.039	0.03	0.018	0.012	0.013
leaves		7–9	12	< 0.01	0.087	0.054	0.01	0.02	0.022
	0.597–	0	2	9.8	12	10.9	10.9	10.9	N/A
Lettuce, head		1	10	3.28	12	11.6	7.62	7.95	2.5
wrapper	0.621	3–5	4	7.31	10.6	8.75	9	8.97	1.65
		7–9	12	0.871	10.4	8.77	5.3	5.04	2.71
		0	2	3.16	7.41	5.29	5.29	5.29	N/A
Celery, leaf	0.598–	1	12	0.384	6.44	5.7	2.59	2.98	2.15
stalks	0.618	3–5	4	1.26	2.95	2.28	2.28	2.19	0.844
		7–9	14	0.536	1.85	1.73	0.94	1.12	0.419
		0	2	11.9	12.3	12.1	12.1	12.1	N/A
Spinach	0.605-	1	12	5.11	11	10.7	9.33	8.86	1.95
leaves	0.625	3–5	4	4.51	4.88	4.74	4.74	4.72	0.169
		7–9	14	1.28	4.16	4.11	2.54	2.44	0.967

Cron Field Trials On Potato	PMRA #1348181 and 1457579
	1 WIKA #1340101 and 1437373

During the 2003–2004 growing season, field trials on potatoes were conducted at 15 different locations in the United States (NAFTA representative zones) to evaluate the magnitude of the residue of mandipropamid in/on potatoes following four postfoliar broadcast applications of a suspension concentrate (250 SC). The potato field trials were conducted in zones 1 (Maine and New York; 2 trials), 2 (North Carolina; 1 trial), 3 (Florida; 1 trial), 5 (Minnesota, North Dakota; 2 trials); 5A (Michigan and Wisconsin; 2 trials), 9 (Colorado; 1 trial), 10 (California; 1 trial), and 11 (Idaho, Oregon, and Washington; 6 trials).

Although geographical representation was not met as per DIR98-02 for potatoes (16 trials: 3 trials in zone 1; 4 trials in zone 1A; 3 trials in zone 5; 1 trial each in zone 5A, zone 5B, zone 7A and zone 12; and 2 trials in zone 14), a sufficient number of potato trials was submitted to demonstrate that residues of mandipropamid were fairly consistent across different geographical zones, each with different soil and climatic conditions. Therefore, there is a reasonable expectation that the residue profile would be similar in treated grapes from trials conducted in the respective representative Canadian zones.

Samples of potato tubers were harvested 13–14 and 21–28 days after the last application from all treatment plots. At two trial locations, potato tubers were collected at additional sampling intervals to evaluate residue decline; potatoes were collected 0, 3, 7, 14, 21, 28, and 35 days after the last application. Residue decline data from both potato field trials were inconclusive because residues of mandipropamid were below the LOQ (<0.01 ppm) at all sampling intervals. Residues of the metabolite SYN 500003 in one of the decline trials were also below the LOQ (<0.005 ppm) at all sampling intervals. The results of the other potato field trial, however, showed a decline in SYN 500003 residues with increasing PHIs.

The potato trials were conducted with a 250 SC formulation (250 g mandipropamid/L).

The LOQ was reported as 0.01 ppm for mandipropamid and as 0.005 ppm for the metabolite SYN 500003.										
Commodit	Total Applic. Rate (kg a.i./ha)	рні	Residue Levels (ppm)							
у		(days)	n	Min.	Max.	HAFT	Mediar (STMd1	n Mean R) (STMR)	Standard Deviation	
		Mandipropamid								
		0	4	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0	
	0.590 0.615	3–7	8	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0	
		13–14	32	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0	
Potato		21–35	39	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0	
Tubers	0.380-0.013	SYN 500003								
		0	4	< 0.005	0.016	0.015	0.01	0.01	0.006	
		3–7	8	< 0.005	0.012	0.011	0.007	0.008	0.003	
		13–14	32	< 0.005	0.015	0.015	0.006	0.007	0.003	
		21-35	12	< 0.005	0.01	0.01	0.005	0.006	0.002	
Eur	European Trials On Greenhouse Cucumber						A# 14102	34, 1410235, 1 10238 and 14	1410236,	

During the 2003–2004 growing season, eight residue decline trials on greenhouse cucumbers were conducted at seven different locations in Europe (Switzerland, Spain, France and the Netherlands) to evaluate the magnitude of the residue of mandipropamid in/on greenhouse cucumbers following four postfoliar applications of a suspension concentrate (250 SC). Samples of mature cucumber were harvested 0, 1, 3, 6–8 and 14 days after the final (fourth application). Residues of mandipropamid declined over the 14-day sampling period in cucumber samples harvested from all trial sites.

The cucumber greenhouse trials were conducted with a 250 SC formulation (250 g mandipropamid/L).

Commodit	Total Applic. Rate (kg a.i./ha)	PHI (days)	Residue Levels (ppm)						
y			n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Standard Deviation
		0	8	0.04	0.12	0.12	0.07	0.07	0.03
	0.572– 0.608	1	8	0.02	0.10	0.10	0.08	0.07	0.03
Cucumber, fruit		3	8	0.02	0.09	0.09	0.05	0.05	0.03
ii uit		6–8	8	< 0.01	0.05	0.05	0.02	0.02	0.02
		14	8	< 0.01	0.01	0.01	0.01	0.01	0
European Trials On Greenhouse Head Lettuce					PMRA #1410240, 1410241, 1410242, 1410243 and 1410244				

During the 2003–2004 growing season, residue decline trials on greenhouse lettuce (head variety) were conducted at five different locations in Europe (Switzerland, Spain, France and northern and southern and Italy) to evaluate the magnitude of the residue of mandipropamid in/on greenhouse lettuce following 1–2 postfoliar applications of a suspension concentrate (250 SC). Samples of mature lettuce were harvested 0, 3, 7, 14 and 20–21 days. Residues of mandipropamid in harvested lettuce samples generally declined over the 20- to 21-day sampling period.

The greenhouse lettuce trials were conducted with a 250 SC formulation (250 g mandipropamid/L).

Commodit	Total	DUI	Residue Levels (ppm)						
y	Applic. Rate (kg a.i./ha)	(days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Standard Deviation
		0	5	2.9	4.1	4.1	3.1	3.36	0.52
.	0.146	3	5	2.2	5.1	5.1	3.5	3.48	1.26
Lettuce, head	0.146– 0.154	7	5	0.93	3.3	3.3	2.5	2.27	0.92
		14	5	0.37	3.2	3.2	2.1	1.90	1.27
		20-21	5	0.05	2.8	2.8	2	1.53	1.16
		0	9	3.4	7.9	7.9	5.7	6	1.48
		3	9	3.5	8.7	8.7	6.2	5.93	1.82
Lettuce, head	0.292-	7	9	1.6	7.1	7.1	4.9	4.53	2.04
neud	0.507	14	9	0.36	5.7	5.7	4.1	3.27	2.04
		20-21	9	0.05	4.9	4.9	3.4	2.70	1.9
	European T	rials On (Greenł	nouse Ton	nato		PI	MRA #134	8172

The LOQ for mandipropamid was reported as 0.01 ppm.

During the 2003–2004 growing season, residue decline trials were conducted in Europe on greenhouse tomatoes (2 trials in France, 2 trials in Switzerland, 1 trial in Germany, 3 trials in Spain and 1 trial in Italy) and cherry tomatoes (2 trials in Spain and 3 trials in Italy) to evaluate the magnitude of the residue of mandipropamid in/on greenhouse tomatoes and cherry tomatoes following 4 postfoliar applications of a suspension concentrate (250 SC). Samples of mature tomato and cherry tomato fruit were harvested 0, 1, 3, 6–7, and 14–15 days after the final (fourth application). Residues of mandipropamid decreased in the fruit from some of the tomato trials and for the majority of the cherry tomato trials over the 14–15 day sampling interval.

The greenhouse to mato and cherry to mato trials were conducted with a 250 SC formulation (250 g mandi propamid/L).

	Total		Residue Levels (ppm)						
Commodity	Applic. Rate (kg a.i./ha)	PHI (days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Standard Deviation
Tomato, Fruit		0	13	0.04	0.59	0.59	0.14	0.2	0.17
	0.563– 0.618	1	13	0.04	0.45	0.45	0.16	0.20	0.13
		3	13	0.04	0.4	0.4	0.14	0.17	0.11
		7	13	0.03	0.38	0.38	0.13	0.17	0.11
		14	13	0.03	0.27	0.27	0.14	0.15	0.08
		0	5	0.3	0.59	0.59	0.37	0.42	0.14
Cherry		1	5	0.27	0.65	0.65	0.29	0.4	0.17
Tomato,	0.597-	3	5	0.28	0.6	0.6	0.33	0.40	0.15
Fruit	0.000	6–7	5	0.3	0.48	0.48	0.34	0.37	0.08
		14–15	5	0.23	0.37	0.37	0.29	0.29	0.05
Field Accum	ulation In Rot	ational C	rops –	Radish, S	pinach an	d Wheat	PI	MRA #134	8190

Three field trials were conducted in the United States (1 trial in New York, zone 1 and 2 trials in Illinois, zone 5), during the 2004 growing season. Mandipropamid (250 SC formulation) was applied four times as a postfoliar broadcast application at 6 to 8-day re-treatment intervals to the primary crop cucumber at 147–

155 g a.i./ha/application for a total seasonal rate of 597–607 g a.i./ha. Applications were made using ground equipment in 180–236 L/ha with a non-ionic surfactant (0.25%; v/v). Rotational crops (radish, spinach, and wheat) were planted 28–31 or 60 days after the last application and removal of the primary crop cucumber.

	Total		Residue Levels (ppm)							
Commodity	Applic. Rate (kg a.i./ha)	PBI (days)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Standard Deviation	
Spinach,		28-31	2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
leaves		61	4	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Padiah tana		28-31	2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Radisii, tops		61	4	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Padish roots		28-31	2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Rauisii, 100ts		61	4	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Wheat, fall		28-31	2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
forage	0.597–	61	2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Wheat,	0.607	28-31	4	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
spring forage		61	2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Wheet here		28-31	4	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
wheat, hay		61	2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Wheet onein		28-31	4	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
wheat, grain		61	2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Wheet strees		28-31	4	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
wheat, straw		61	2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	

Processed Food an	nd Feed – Grapes		PMRA #1348179		
Test site	Zone 10 (California)				
Treatment	Four postfoliar broadcast a	applicatio	ons		
Rate	Total of 0.61–0.62 kg a.i./	ha or 3.0	–3.1 kg a.i./ha		
End-use product	250 SC (250 g a.i. mandipropamid/L)				
Preharvest interval	14 or 28 days				
Processed commodity	Processing factor				
Grape, raisin	2.1–7.6				
Grape, juice	<1				
Grape, wine	0.97–2.8				
Processed Food an	d Feed – Potato]	PMRA #1348181 and 1457579		
Test site	Zone 11 (Idaho)				
Treatment	Four postfoliar broadcast a	applicatio	ons		
Rate	Total of 0.61 kg a.i./ha or	3.1 kg a.	i./ha		
End-use product	250 SC formulation (250 g	g a.i./L m	andipropamid)		
Preharvest interval	14 days				

Following treatments at the seasonal rate of 0.61 kg a.i./ha, residues of mandipropamid were below the LOQ (<0.01 ppm) in both the raw agricultural commodity (RAC) and all processed fractions; therefore, processing factors could not be calculated. Following treatments at the seasonal rate of 3.1 kg a.i./ha, residues of mandipropamid were also below the LOQ (<0.01 ppm) in the RAC and all processed fractions except in potato wet peel, for which a quantifiable residue level (0.03 ppm) was detected.

When adjusted for the degree of exaggeration (\sim 5x) as per DIR98-02 (Section 10.6.3 Use of Exaggerated Rate Studies), residues of mandipropamid in wet peel were <LOQ (0.006 ppm). Therefore, a processing factor could not be calculated. Processing factors for the metabolite SYN 500003 could not be calculated because residues were below the LOQ (<0.005 ppm) in both the RAC and processed fractions.

Processed Food and Fee	ed – Tomato	PMRA #1348185			
Test site	Zone 10 (California)				
Treatment	Four postfoliar broadcast applications				
Rate	Total of 0.60–0.61 kg a.i./ha or 3.0 kg a.i./ha				
End-use product	250 SC formulation (250 g a.i./L mandipropamid)				
Preharvest interval	1 or 3 days				
Processed commodity	Processing factor				
Tomato paste	2.5–7.1				
Tomato purée	0.8–2.3				
Livestoc	Livestock Feeding – Dairy Cattle and Laying Hens				
Finite residues of mandipropamid are n	ot anticipated in the milk, m	eat and eggs from the proposed uses.			

Table 6Food Residue Chemistry Overview of Metabolism Studies and Risk
Assessment

	Plant Studi	es			
Residue definition for enforcemen	t				
Primary crops		Mandipropamid			
Rotational crops		Mandipr	opamid		
Residue definition for enforcemen	t	Mandipropamid in all cro	ps except root and tuber		
Primary crops		vegetables; mandipropam SYN 500003 in Root and	id and the metabolite Tuber Vegetables		
Rotational crops		Mandipr	opamid		
Metabolic profile in diverse crops		Unchanged mandipropamid was the principal residue component identified in all analyzed crop matrices. Mandipropamid undergoes extensive metabolism to form a range of metabolites that are structurally related to or more polar than the parent compound mandipropamid.			
	Animal Stud	ies			
Animals		Ruminant			
Residue definition for enforcemen	t	Mandipropamid			
Residue definition for risk assessn	nent	Mandipr	opamid		
Metabolic profile in animals (goat	and rat)	The metabolic profile was similar in the goat and rat.			
Fat soluble residue		Yes ($K_{ow} = 3.2$ at pH 7.5–7.7, 25°C)			
	Dietary Risk From Foo	od and Water			
Refined chronic non-cancer	Population	Estimated Risk – % of Acceptable Daily Intake (ADI)			
dietary risk		Food Only	Food and Water		
	All infants <1 year	3.4	4.2		
ADI = 0.05 mg/kg bw	Children 1–2 years	5.0	5.3		
	Children 3–5 years	4.3	4.7		
Estimated chronic drinking	Children 6–12 years	3.1	3.3		
water concentration $=$ 5.9 µg/L for total residues of	Youth 13–19 years	2.5	2.6		
mandipropamid and the	Adults 20–49 years	3.3	3.6		
transformation products	Adults 50+ years	3.7	3.9		
SYN 500003 and SYN 504851	Females 13–49 years	3.4	3.7		
	Total population	3.4	3.6		

Table 7	Major and Minor Transformation Products
---------	---

Chemical Name	Code	Chemical Structure	Occurrence (Max A on Individual Rep	amounts licates)
ivanic			System	% AR
		Major Transformation Products		
2-(4- Chlorophenyl)- N-[2-(3- methoxy-4- prop-2-ynyloxy- phenyl)-ethyl]- 2-prop-2- ynyloxy- acetamide	SYN 504213 (S-isomer of mandipropamid)		S-isomer of mandip	ropamid
2-(4-Chloro- phenyl)-N-[2- (3-hydroxy-4- prop-2-ynyloxy- phenyl)ethyl]-2- prop-2-ynyloxy- acetamide	SYN521195	$C_{1}^{H} \xrightarrow{H_{2}C} \xrightarrow{H_{2}} \xrightarrow{H_{2}}$	Lab. soil: Field soil: Soil photolysis: Photolysis water: Aerobic – water/sed. – system: – sed: – water: Outdoor pond: Anaerobic – water/sed – system: – sed: – system: – sed: – water/sed – system: – sed: – sed: – water/sed	$ \begin{array}{c} 0\\ 0\\ 0\\ 17.7\\ 15.6\\ 3.4\\ 10.8\\ 15.4\\ 12.5\\ 3.9\\ \end{array} $
N-[2-(4- Allyloxy-3- hydroxy- phenyl)-ethyl]- 2-(4-chloro- phenyl)-2-prop- 2-ynyloxy- acetamide	SYN539678	C_{1}^{CH}	Lab. soil: Field soil: Soil photolysis: Photolysis water: Aerobic water/sed. system: - sed: Outdoor pond: Anaerobic - water/sed - system: - sed: - sed: - water/sed - system: - sed: - water/sed - system: - sed: - water:	0 0 0 0 12.6 11.2 6.9 24.2 17.5 6.7

Chemical Name	Code	Chemical Structure	Occurrence (Max A on Individual Rep	amounts licates)
			System	% AR
Allyloxy-(4- chloro-phenyl)- acetic acid.	SYN504851		Lab. soil: Field soil: Soil photolysis: Photolysis water: Aerobic water/sed. system: - sed: - water: Outdoor pond: Anaerobic - water/sed - system: - sed: - sed: - system: - sed: - system: - sed: - sed:	0 0 0 0 38.5 28.5 10.0 11.1 72.1 44 26.5
4-Chloro-alpha- (2- propynyloxy)- benzeneacetic acid.	SYN500003		 water. Lab. soil: Field soil: Soil photolysis: Photolysis water: Aerobic water/sed.: Outdoor pond: Anaerobic water/sed system: sed: water: 	$ \begin{array}{r} 26.3 \\ 0.3 \\ 0 \\ 3.7^{\circ} \\ 9.4 \\ 6.4 \\ 26.1 \\ 14.3 \\ 15.9 \\ \end{array} $
		Minor Transformation Products		
2-(4- Chlorophenyl)- N-[2-(4- hydroxy-3- methoxy- phenyl)-ethyl]- 2-prop-2- ynyloxy- acetamide.	NOA458422	$CH \\ C \\ CH_2 \\ CH_2 \\ H_2 \\ CI \\ CI \\ CI \\ CI \\ CH_2 \\ O \\ CH_2 \\ O \\ CI \\ O \\ CH_3 \\ O \\ O \\ O \\ CH_3 \\ O \\ $	Lab. soil: Field soil: Soil photolysis: Photolysis water: Aerobic water/sed.: Outdoor pond:	$ \begin{array}{r} 1.7 \\ 1.0 \\ 1.7 \\ 4.5 \\ 0 \\ 0 \\ 0 \end{array} $
4-Chloro-alpha- hydroxy-N-[2- [3-methoxy-4- (2- propynyloxy)ph enyl]ethyl]benze neacetamide	CGA380778	$\begin{array}{c} OH \\ OH \\ OH \\ OH \\ H_2 \\ OH \\ OH \\ H_2 \\ OH \\ OH \\ C \\ $	Lab. soil: Field soil: Soil photolysis: Photolysis water: Aerobic water/sed.: Outdoor pond:	$\begin{array}{c} 0.6 \\ 0.5 \\ 9.4/6.2^{\rm b} \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$
4-Chloro-alpha- hydroxy- benzeneacetic acid	NOA495119		Lab. soil: Field soil: Soil photolysis: Photolysis water: Aerobic water/sed.: Outdoor pond:	0.2 0 0 0 0 0 0

Chemical Name	Code	Chemical Structure	Occurrence (Max A on Individual Rep	Amounts licates)
i vanic			System	% AR
2-(4- Chlorophenyl)- N-[2-(3,4- dihydroxy- phenyl)-ethyl]- 2-prop-2- ynyloxy- acetamid.	SYN505503	$CH \\ CI \\ O \\ O \\ O \\ H_2 \\ O \\ H_2 \\ O \\ $	Lab. soil: Field soil: Soil photolysis: Photolysis water: Aerobic water/sed.: Outdoor pond:	T 0 3.0 0 0 0
4-Chloro-alpha- hydroxy-N-[2- (4-hydroxy-3- methoxyphenyl) ethyl]benzeneac etamide.	CGA380775	$\begin{array}{c} OH \\ H_2 \\ CI \end{array} \xrightarrow{O} CH_3 \\ O \\ H_2 \\ OH \end{array}$	Lab. soil: Field soil: Soil photolysis: Photolysis water: Aerobic water/sed.: Outdoor pond:	$\begin{array}{c} 0.6 \\ 0.5 \\ 9.4/6.2^{b} \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$
N-[2-(Allyloxy- 3-methoxy- phenyl)-ethyl]- 2-(4-chloro- phenyl)-2-prop- 2-ynyloxy- acetamide.	SYN536638	CH H_2C H_2C H_2C H_2C H_2C H_2C H_2 H_2C H_2 H_2C H_2 H_2C H_2 H_2C H_2 H_2 H_2C H_2 H_2C H_2 H_2C H_2 H_2C H_2 H_2C	Lab. soil: Field soil: Soil photolysis: Photolysis water: Aerobic water/sed.: Outdoor pond: Anaerobic – water/sed – system: – sed: – water:	3.0 <lod 0 8.4^a 1.9 7.9^a 6.8^a 1.3^a</lod
2-Allyloxy-N- [2-(4-allyloxy- 3-hydroxy- phenyl)-ethyl]2- (4-chloro- phenyl)- acetamide	SYN539679	$ \begin{array}{c} $	Lab. soil: Field soil: Soil photolysis: Photolysis water: Aerobic water/sed.: Outdoor pond: Anaerobic – water/sed – system: – sed: – water:	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 8.4^{a} \\ 1.0 \\ 7.9^{a} \\ 6.8^{a} \\ 1.3^{a} \end{array} $
N-[2-(3,4- dioxo-cyclohex- 1-enyl)-ethyl]-2- (4-hydroxy- phenyl)-2-prop- 2-ynyloxy- acetamide.	U9	$HO \xrightarrow{CH}_{C} H_{2}C \xrightarrow{O}_{O} H_{2}$	Lab. soil: Field soil: Soil photolysis: Photolysis water: Aerobic water/sed.: Outdoor pond:	0 0 3.4 0 0

Chemical	Code	Chemical Structure	Occurrence (Max A on Individual Repl	amounts licates)
Ivanie			System	% AR
2-(4-Chloro- phenyl)-N-[2- (4-hydroxy-3- methoxy-5- prop-2-ynyl- phenyl)-ethyl]- 2-prop-2- ynyloxy- acetamide.	U39	$CI \xrightarrow{CH}_{U_2} C$	Lab. soil: Field soil: Soil photolysis: Photolysis water: Aerobic water/sed.: Outdoor pond:	$ \begin{array}{c} 0 \\ 0 \\ 4.7 \\ 0 \\ 0 \end{array} $
N-[2-(4- hydroxy-3- methoxy- phenyl)-ethyl]- 2-phenyl-2- prop-2-ynyloxy- acetamide.	U29a	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} $ \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array}	Lab. soil: Field soil: Soil photolysis: Photolysis water: Aerobic water/sed.: Outdoor pond:	$ \begin{array}{c} 0 \\ 0 \\ 3.7^{c} \\ 0 \\ 0 \end{array} $
3-[2-(Chloro- phenyl)-2-prop- 2-ynyloxy- acetylamino]- propionic acid.	SYN524197 U24d	$CI = \begin{bmatrix} C \\ H \\ C \\ H_2 \\ C \\ O \\ O \\ H_2 \\ O \\ O \\ O \\ H_2 \\ O \\ O \\ O \\ H_2 \\ O \\ O \\ H_2 \\ O \\ $	Lab. soil: Field soil: Soil photolysis: Photolysis water: Aerobic water/sed.: Outdoor pond:	0 0 3.6 0 0 0
2-(4-Chloro- phenyl)-N-{2- (4-(3-hydroxy- propoxy)-3- methoxyphenyl] ethyl}-2-prop-2- ynyloxy acetamide	U7	CH H_2C H_2C H_2C H_2C H_2 CH H_2C H_2 H	Lab. soil: Field soil: Soil photolysis: Photolysis water: Aerobic water/sed.: Outdoor pond:	$ \begin{array}{c} 1.1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $
2-(4- Chlorophenyl)- N-{2-[4-((E)-3- hydroxy- allyloxy)-3- methoxyphenyl] ethyl}-2-prop-2- ynyloxy acetamide	U8	$C_{1} = C_{1} = C_{1} = C_{1} = C_{2} = C_{1} = C_{1} = C_{2} = C_{1} = C_{1$	Lab. soil: Field soil: Soil photolysis: Photolysis water: Aerobic water/sed.: Outdoor pond:	1.2 0 0 0 0 0

SYN 536638 and SYN 539679 could not be adequately separated in laboratory water/sediment studies (sum of both stated).

^b 9.4% of AR based on HPLC (together with an unknown substance), 6.2% of AR based on TLC.
 ^c SVN 500002 and U202 as obting (sum of both stated).

SYN 500003 and U29a co-eluting (sum of both stated).

T = traces.

Reference Property **Test substance** Value Comments (PMRA #) **Abiotic Transformation** Will not contribute to the dissipation of Hydrolysis Mandipropamid Stable 1348292 mandipropamid in the terrestrial environment Environmental half-lives for 40°N Phototransformation on 1348294 Phototrans-Mandipropamid $T_{1/2} = 32.5 - 46.4 d$ soil is not likely to formation on soil 1348296 contribute significantly to the dissipation of mandipropamid in the environment Phototrans-Mandipropamid Not required formation in air **Biotransformation** Simple First order kinetics 1348312 $DT_{50} = 14 - 86 d$ 1348305 Biotrans- $DT_{90} = 65 - 284 \text{ d}$ Slightly to moderately 1348309 formation in Mandipropamid persistent^a aerobic soil 1348330 <u>1st-order t_{1/2}</u> 1348307 80^{th} percentile DT ₅₀ = 80.6 d Simple first order kinetics CGA380778 $DT_{50} = 3 - 72 d$ Non- to slightly persistent^a 1348308 $DT_{90} = 10 - 138 d$ Simple first order kinetics $DT_{50} = 1.2 - 5.7 d$ Non-persistent^a 1348326 SYN504851^c $DT_{90} = 3.9 - 18.9 d$ Simple first order kinetics $DT_{50} = 15.7 - 32.5 d$ Slightly persistent^a 1348326 SYN536638^c $DT_{90} = 52.3 - 108 d$ Simple first order kinetics $DT_{50} = 1.2 - 4.0 d$ 1348326 SYN500003^c Non-persistent^a $DT_{90} = 3.9 - 13.2 d$ Simple first order kinetics $DT_{50} = 0.26 - 0.34 d$ Non-persistent^a 1348326 SYN521195^c $DT_{90} = 0.87 - 1.13 d$

Table 8 Fate and Behaviour of Mandipropamid in the Terrestrial Environment

л <u> </u>						
Biotrans-	Mandipropamid	Simple first order kinetics $DT_{re} = 1 fl_{re} 187 d$	Moderately persistent to	1348307		
anaerobic soil	Manupropannu	$DT_{50} = 111, 187 d$	persistent ^a	1348312		
		$DT_{90} = 501, 622 d$				
		Mobility				
Adsorption/		$K_{FOC} = 411 - 1228$	Modorato to low mobility ^b	1348341		
desorption in soil	Mandipropanna	20^{th} percentile = 648.8	Woderate to low mobility	1348343		
	CC 1 290779	$K_{FOC} = 360 - 501$	Madanata mahilitu ^b	1249245		
	CGA380//8	20^{th} percentile = 407.2	Moderate mobility	1348343		
	CND 1501 105	$K_{FOC} = 568 - 1552$	т <u>19</u> 17 b	1240227		
	SYN521195	20^{th} percentile = 798.4	Low mobility	1348337		
	SVN520(79	$K_{FOC} = 430 - 2100$	Moderate to slight	1249220		
	SY N539678	$20^{\text{th}} \text{ percentile } = 1058$	mobility ^b	1346339		
	SVN500002	$K_{FOC} = 3 - 29$	Vom high mability ^b	1249240		
	SY N500005	$20^{\text{th}} \text{ percentile } = 11.7$	very nigh mobility	1346340		
	SVN504951	$K_{FOC} = 3 - 8$	Vom high mability ^b	1249247		
	5 Y N504851	$20^{\text{th}} \text{ percentile } = 3.8$	very high mobility	1348347		
		vp <7.05 × 10 ⁻⁹ mm Hg	Not volatile			
Volatilization			Not and Indian Group and the			
		HLC $< 9.1 \times 10^{-10}$ atm m ³ /mole	and moist surfaces			
		Field studies	·			
			Mandipropamid is			
Field dissination		27.5 d (bare plot)	classified as slightly			
(New York)	Mandipropamid	102.8 d (aronnad nlat)	persistent on a bare plot	1348192		
		102.8 d (cropped plot)	and moderately persistent			
			on a cropped plot. ^a			

Classified according to the classification of Goring, C. A. I., Laskowski D. A., Hamaker, J. W., and Meikle R. W., 1975. Principles of Pesticide Degradation in Soil. In: *Environmental Dynamics of Pesticides*. Haque, R., and Freed, V. H. (Eds). Plenum Press, New York, pp. 135–172.

^b Classified according to the classification of McCall, J.P., D.A. Laskowski, R.L. Swann and J.J. Dishburger. (1981). Measurement of sorption coefficients of organic chemicals and their use in environmental fate analysis. In *Test protocols for environmental fate and movement of toxicants. Proceedings of a symposium.* Association of Official Analytical Chemists. 94th Annual Meeting, October 21–22, 1980, Washington, DC, pp. 89–109.

^c Data not submitted to the PMRA, reviewed by the OECD-RMS, details available in PMRA 1348326

а

Table 9Fate and Behaviour in the Aquatic Environment

Property	Test material	Value	Comments	Reference (PMRA#)
		Abiotic transformation		
Hydrolysis	Mandipropamid	Stable		1348292
Phototrans- formation in water	Mandipropamid	$T_{1/2} = 1.5 - 1.7 \text{ d at } 40^{\circ} \text{N}$	Phototransformation in the aquatic environment will contribute significantly to the dissipation of mandipropamid in the environment.	1348299 1348300 1348303 1348301
		Biotransformation		
Biotransformation in aerobic water systems	Mandipropamid	Water: Simple 1st order & 1st order & 1st order & 1st order multi-compartmentkineticsDT ₅₀ = 0.19–14.5 dDT ₅₀ = 0.19–14.5 dDT ₉₀ = 7.1–45.4 dWater: Estimated 1st order t _{1/2} 80 th percentile = 9.1 dSediment: 1st-order multi-compartment kineticssediment:DT ₅₀ = 5.3–20.6 dDT ₉₀ = 50.9–65.4 dSediment: Estimated 1 st ordert _{1/2} 80 th percentile = 18.6 dSystem: Simple 1 st -order & 1 st -order & 1 st -order multi-compartmentkineticsDT ₅₀ = 7.8–25.8 dDT ₅₀ = 31.1–77.8 dSystem: Estimated 1 st ordert _{1/2} 80 th percentile = 21.7 d	Mandipropamid is classified as non-persistent to slightly persistent in the total system under aerobic conditions in the aquatic environment. ^a	1348333 1348335

Dissipation in aerobic water/sediment system (calculated from the data obtained on the formation and decline in the parent aerobic biotransformation study by the OECD-RMS using a multi- compartmental model)	SYN521195	9.7–16.2 d	Non to slightly persistent	1348326
	SYN539678	19.7–36.9 d	Slightly persistent	1348326
	SUM of SYN536638/ SYN539679	5.8–18.3 d	Non to slightly persistent	1348326
	SYN504851	Maximum detected at study termination therefore DT50 cannot be calculated	Cannot be classified	1348326
	SYN500003	13.2–74.1 d	Non to moderately persistent	1348326
Biotransformation in anaerobic water systems	Mandipropamid	Water: Simple 1 st order and 1 st order multi-compartment kinetics $DT_{50} = 0.8-50.9 \text{ d}$ $DT_{90} = 12.5-70.8 \text{ d}$ Water: estimated 1 st order t 1/2 80 th percentile = 26.1 dSediment: simple 1 st order kinetics $DT_{50} = 5.4-15.2 \text{ d}$ $DT_{90} = 17.2-48.4 \text{ d}$ Sediment: 1 st order t 1/2 80 th percentile = 13.3 dSystem: Simple 1 st order kinetics $DT_{50} = 6.0-22.8 \text{ d}$ $DT_{90} = 19.4-74.7 \text{ d}$ Sediment: 1 st order t 1/2 80 th percentile = 18.2 d	Mandipropamid is classified as non-persistent to slightly persistent under anaerobic conditions in the aquatic environment. ^a	1348333 1348335

Dissipation in anaerobic water/sediment system (calculated from the data obtained on the formation and decline in the parent aerobic biotransformation study by the OECD-RMS using a multi- compartmental model)	SYN521195	6.3–15.4 d	Non to slightly persistent	1348326
	SYN539678	12.0–23.0 d	Non to slightly persistent	1348326
	SUM of SYN536638/ SYN539679	3.7–33.0 d	Non to slightly persistent	1348326
	SYN504851	maximum detected at study termination therefore DT_{50} cannot be calculated	Cannot be classified	1348326
	SYN500003	23.0–34.2 d	Slightly persistent	1348326
		Partitioning		
Adsorption/ desorption in sediment	Mandipropamid	$K_{oc} = 1479 - 1981$	Information from water/sediment study Mandipropamid is classified as having low mobility ^b	1348333
	•	Field studies		
Field dissipation (outdoor pond)	Mandipropamid	System $DT_{50} = 5.4 d$	Mandipropamid is non- persistent in an outdoor pond setting. ^a	1348334

^a Classified according to the classification scheme used in McEwen, F.L., and G.R. Stephenson. *The use and significance of pesticides in the environment*. Toronto: John Wiley and Sons Inc., 1979. 282 pp.

^b Classified according to the classification scheme used in McCall, J.P., D.A. Laskowski, R.L. Swann and J.J. Dishburger. (1981). Measurement of sorption coefficients of organic chemicals and their use in environmental fate analysis. Pages 89–109 in Test protocols for environmental fate and movement of toxicants. Proceedings of a symposium. Association of Official Analytical Chemists. 94th Annual Meeting, 21–22 October 1980 Washington, DC.

Organism	Exposure	Test substance	Endpoint value	Degree of toxicity ^a	Reference (PMRA #)
		÷	Invertebrates		
Earthworm	Acute	Mandipropamid	NOEC: 100 mg/kg soil dw (bw effect); EC ₅₀ : >1000 mg/kg soil dw		1348350
		CGA380778	NOEC: 100 mg/kg soil dw (bw effect); EC ₅₀ : >1000 mg/kg soil dw	_	1348349
Bee	Oral	Mandipropamid	LD ₅₀ : >200 µg a.i./bee	Relatively non-toxic	1348351
	Contact	Mandipropamid	LC ₅₀ : >160 µg a.i./bee		
Parasitic wasp	Contact	End-use product	48-h LR ₅₀ : = 827 g a.i./ha	_	1348327
Predatory mite	Contact	End-use product	7-d LR ₅₀ : >900 g a.i./ha		1348327
		·	Birds		
Bobwhite quail	Acute	Mandipropamid	LD ₅₀ : >2250 mg a.i./kg bw	Practically non-toxic	1348363
	Dietary	Mandipropamid	LC ₅₀ : >6080 mg a.i./kg diet LD ₅₀ : >2141 mg a.i./kg bw/day NOEC: 3400 mg a.i./kg diet (bw effect) NOEL: 1448 mg a.i./kg bw/day	Practically non-toxic	1348365
	Reproduction	Mandipropamid	NOEC: 1060 mg a.i./kg diet NOEL: 83.6 mg a.i./kg bw/day (highest dose tested)	Reproductive effects are not expected below dietary concentrations of 1060 mg a.i./kg diet	1348367
Mallard duck	Acute	Mandipropamid	LD ₅₀ : >1000 mg a.i./kg bw NOEL: 1000 mg a.i./kg bw	Slightly toxic	1348364
	Dietary	Mandipropamid	LC_{50} : >6080 mg a.i./kg diet LD_{50} : >2856 mg a.i./kg bw/day NOEC: 3400 mg a.i./kg diet (bw effect) NOEL: 1222 mg a.i./kg bw/day	Practically non-toxic	1348366
	Reproduction	Mandipropamid	NOEC: 1050 mg a.i./kg diet NOEL: 158 mg a.i./kg bw/day	Reproductive effects are not expected below dietary concentrations of 1050 mg a.i./kg diet	1348368

Table 10	Toxicity to	Non-Target	Terrestrial	Organisms
----------	--------------------	------------	-------------	-----------

			Mammals		
Rat	Acute	Mandipropamid	LD ₅₀ : >5000 mg a.i./kg bw/day	Practically non-toxic	1348240
		SYN500003	LD_{50} : = 1049 mg a.i./kg bw/day	Slightly toxic	1457538
		Revus Fungicide	LD ₅₀ : >5000 mg a.i./kg bw/day	Low toxicity	1348157
	Dietary 90-d	Mandipropamid	LD ₅₀ : >5000 mg a.i./kg bw/day NOEL = 435 mg a.i./kg bw/day, based on decreased body weight and body-weight gain	Practically non-toxic	1348247
	Reproduction	Mandipropamid	NOEC = 250 mg a.i./kg diet NOEL = 22.9 mg a.i./kg bw/day; based on pup body weight	Effects on reproduction are not expected at or below 250 mg a.i./kg diet	1348259
Mouse	Dietary 28-d	Mandipropamid	LD ₅₀ : >7000 mg a.i./kg bw/day NOEL = 700 mg a.i./kg bw/day, based on deceased body weight and body-weight gain	Practically non-toxic	1348252 1348253
	•	•	Vascular plants		
Vascular plant	Seedling emergence	End-use product	EC ₂₅ : >750 g a.i./ha.	No effects were noted on seedling emergence at the highest test application	1348314
	Vegetative vigour	End-use product	EC ₂₅ : >900 g a.i./ha	No effects were noted on vegetative vigour at the highest test application	1348315

Atkins et al. (1981) for bees and United States Environmental Protection Agency (USEPA) classification for others, where applicable

Organism	Exposure	Test substance	Endpoint value	Degree of toxicity ^a	Reference (PMRA #)
		F	reshwater species		
Daphnia magna	Acute	Mandipropamid	48-h LC ₅₀ = 7.1 mg a.i./L	Moderately toxic	1348352
		CGA380778	48-h LC ₅₀ = 55.9 mg a.i./L	Slightly toxic	1348353
	Re- production	Mandipropamid	NOEC = 0.87 mg a.i./L , based on reproduction NOEC = 0.28 mg a.i./L , based on parent length	Effect on the timing in which the first brood appeared at the highest dose tested (2.64 mg a.i./L)	1348354
Rainbow trout	Acute	Mandipropamid	96-h LC_{50} = 4.4 mg a.i./L	Moderately toxic	1348358
		CGA380778	96-4 LC ₅₀ >15.3 mg a.i./L	Not toxic at limit of solubility	1348357
Fathead minnow	Acute	Mandipropamid	96-h LC ₅₀ >5.8 mg a.i./L	Not toxic at limit of solubility	1348360
	Early life stage	Mandipropamid	NOEC >1.9 mg a.i./L; hatchability NOEC = 0.48 mg a.i./L, growth NOEC = 0.48 mg a.i./L, fry survival		1348361
Pseudokirchneri ella subcapitata	Acute	Mandipropamid	EC ₅₀ >2.5 mg a.i./L		1348317
		CGA380778	$EC_{50} = 16 \text{ mg TGAI/L}$	—	1348313
		SYN504851	72-h E_bC_{50} = 26.7 mg/L 72-h E_rC_{50} = 36.9 mg/L		1348361
		SYN500003	72-h $E_bC_{50} = 27.1 \text{ mg/L}$ 72-h $E_rC_{50} = 39.8 \text{ mg/L}$		1348361
		SYN536638	72-h E_bC_{50} >5.5 mg/L 72-h E_rC_{50} >5.5 mg/L	_	1348361
		NOA458422	72-h E_bC_{50} = 6.79 mg/L 72-h E_rC_{50} = 28.8 mg/L	_	1348361
Anabaena flos-aquae	Acute	Mandipropamid	96-h EC ₅₀ >19.8 mg a.i./L		1348361
Vascular plant	Dissolved	Mandipropamid	EC ₅₀ >4.3 mg a.i./L	—	1348316
	I	1	Marine species		
Crustacean	Acute	Mandipropamid	96-h $LC_{50} = 1.7 \text{ mg a.i./L}$	Moderately toxic	1348355
Mollusk	Acute	Mandipropamid	$EC_{50} = 0.97 \text{ mg a.i./L (shell growth)}$	Highly toxic	1348356
Sheepshead minnow	Acute	Mandipropamid	96-h LC ₅₀ = 4.5 mg a.i./L	Moderately toxic	1348359

USEPA classification, where applicable.

Table 12Screening Level Risk Assessment for Terrestrial Organisms Other Than
Birds and Mammals

Organism	Exposure	Endpoint value ^a	EEC ^c	RQ ^d	LOC ^e exceeded				
	Invertebrates								
Earthworm	Acute: Mandipropamid	LC ₅₀ /2 >500 mg a.i./kg soil	0.244 mg a.i./kg soil	<0.5	No				
	Acute: CGA380778	LC ₅₀ /2 >500 mg a.i./kg soil	0.19 mg a.i./kg soil	<0.5	No				
Bee	Contact: Mandipropamid	LC ₅₀ >200 μg a.i./bee (>224 kg a.i./ha ^b)	150 g a.i./ha	<0.75	No				
	Oral: Mandipropamid	LC ₅₀ >160 μg a.i./bee (>179.2 kg a.i./ha ^b)	150 g a.i./ha	<0.9	No				
Predatory mites and spidermites	Contact: end-use product (EUP)	No effects after 4 applications at rates up to 240 g a.i./ha (= 960 g a.i./ha)	600 g a.i./ha	0.6	No				
Parasitic wasp	Contact: EUP	$LR_{50} = 827 \text{ g a.i./ha}$	600 g a.i./ha	0.7	No				
Vascular plants									
Vascular plant	Seedling emergence	EC ₂₅ >750 g a.i./ha	600 g a.i./ha ^f	0.8	No				
	Vegetative vigour	EC ₂₅ >900 g a.i./ha		0.7	No				

^a Endpoints were divided by an Uncertainty Factor to account for varying protection goals (i.e. protection at the community, population or individual level).

^b Toxicity in μ g/bee converted to the equivalent kg a.i./ha using a conversion factor of 1.12 (Atkins et al., 1981).

^c Environmental Exposure Concentration (Soil: calculated based on a soil density of 1.5 g/cm³, soil depth of 15 cm and the label rates, taking into consideration dissipation between applications; Bee: maximum individual application rate; Parasitic wasp and vascular plants: maximum application rate not taking into consideration between applications).

^d Risk Quotient (RQ) = exposure/toxicity.

^e Level of Concern (LOC) = RQ = 1; a calculated RQ > 1 exceeds the LOC.

^f The maximum seasonal rate proposed for registration in Canada is 600 g a.i./ha (4 × 150 mg a.i./ha), does not take into consideration dissipation between applications.

	Exposure	Endpoint value ^a	Feeding	Exposure ^d			LOC
Organism				EEC	EDE	RQ ^e	
			Gunus	(mg a.i./kg diet)	(mg a.i./kg bw)		exceeded
			Birds				
Bird weight: 20 g	Acute: Mandipropamid	LD ₅₀ /10 >100 mg a.i./kg bw	Insectivore	97.5	24.9	0.25	No
			Granivore	16.7	4.3	< 0.1	No
			Frugivore	50.2	12.8	0.13	No
	Dietary: Mandipropamid	5-d LD ₅₀ /10 >214.1 mg a.i./kg bw ^b	Insectivore	97.5	24.9	<0.1	No
			Granivore	16.7	4.3	< 0.1	No
			Frugivore	50.2	12.8	< 0.1	No
	Reproduction: Mandipropamid	NOEL = 83.6mg a.i./kg bw/day ^c	Insectivore	97.5	24.9	0.3	No
			Granivore	16.7	4.3	< 0.1	No
			Frugivore	50.2	12.8	0.15	No
Bird weight: 100 g	Acute: Mandipropamid	LD ₅₀ /10 >100 mg a.i./kg bw	Insectivore	97.5	19.4	0.19	No
			Granivore	16.7	3.3	< 0.1	No
			Frugivore	50.2	10.0	0.1	No
	Dietary	5-d LD ₅₀ /10 >214.1 mg a.i./kg bw ^b	Insectivore	97.5	19.4	<0.1	No
			Granivore	16.7	3.3	< 0.1	No
			Frugivore	50.2	10.0	< 0.1	No
	Reproduction: Mandipropamid	NOEL = 83.6 mg a.i./kg bw/day ^c	Insectivore	97.5	19.4	0.23	No
			Granivore	16.7	3.3	< 0.1	No
			Frugivore	50.2	10.0	0.12	No
Bird weight: 1000 g	Acute: Mandipropamid	LD ₅₀ /10 >100 mg a.i./kg bw	Insectivore	97.5	5.7	<0.1	No
			Granivore	16.7	0.9	< 0.1	No
			Frugivore	50.2	2.9	< 0.1	No
			Herbivore	607.7	35.3	< 0.35	No
	Dietary	5-d LD ₅₀ /10 >214.1 mg a.i./kg bw ^b	Insectivore	97.5	5.7	<0.1	No
			Granivore	16.7	0.9	< 0.1	No
			Frugivore	50.2	2.9	< 0.1	No
			Herbivore	607.7	35.3	< 0.17	No
	Reproduction: Mandipropamid	NOEL = 83.6 mg a.i./kg bw/day ^c	Insectivore	97.5	5.7	<0.1	No
			Granivore	16.7	0.9	< 0.1	No
			Frugivore	50.2	2.9	< 0.1	No
			Herbivore	607.7	35.3	0.42	No

Table 13 Screening Level Risk Assessment for Birds and Mammals

Mammals							
Mammal weight: 0.015 kg	Acute: Mandipropamid	LD ₅₀ /10 >500 mg a.i./kg bw	Insectivore	97.5	14.2	<0.1	No
			Granivore	16.7	2.4	< 0.1	No
			Frugivore	50.2	7.3	<0.1	No
	Acute: SYN500003	$LD_{50}/10 = 104.9 \text{ mg}$ a.i./kg bw	Insectivore	97.5	14.2	0.28	No
			Granivore	16.7	2.4	<0.1	No
			Frugivore	50.2	7.3	<0.1	No
	Dietary: Mandipropamid	90-d LD ₅₀ /10 >43.5 mg a.i./kg bw/day ^c	Insectivore	97.5	14.2	<0.3	No
			Granivore	16.7	2.4	< 0.1	No
			Frugivore	50.2	7.3	< 0.2	No
	Reproduction: Mandipropamid	NOEL = 22.9 mg a.i./kg bw/day ^c	Insectivore	97.5	14.2	0.62	No
			Granivore	16.7	2.4	0.1	No
			Frugivore	50.2	7.3	0.3	No
Mammal weight: 0.035 kg	Acute: Mandipropamid	LD ₅₀ /10 >500 mg a.i./kg bw	Insectivore	97.5	12.2	<0.1	No
			Granivore	16.7	2.1	< 0.1	No
			Frugivore	50.2	6.3	< 0.1	No
			Herbivore	607.7	75.9	<0.1	No
	Acute: SYN500003	$LD_{50}/10 = 104.9 \text{ mg}$ a.i./kg bw	Insectivore	97.5	12.2	<0.1	No
			Granivore	16.7	2.1	< 0.1	No
			Frugivore	50.2	6.3	< 0.1	No
			Herbivore	607.7	75.9	0.7	No
	Dietary: Mandipropamid	90-d LD ₅₀ /10 >43.5 mg a.i./kg bw/day ^c	Insectivore	97.5	12.2	<0.3	No
			Granivore	16.7	2.1	< 0.1	No
			Frugivore	50.2	6.3	< 0.14	No
			Herbivore	607.7	75.9	<1.7	No
	Reproduction: Mandipropamid	NOEL = 22.9 mg a.i./kg bw/day ^c	Insectivore	97.5	12.2	0.5	No
			Granivore	16.7	2.1	0.1	No
			Frugivore	50.2	6.3	0.3	No
			Herbivore	607.7	75.9	3.3	Yes
Mammal weight: 1 kg	Acute: Mandipropamid	LD ₅₀ /10 >500 mg a.i./kg bw	Insectivore	97.5	6.7	<0.1	No
			Granivore	16.7	1.2	< 0.1	No
			Frugivore	50.2	3.5	<0.1	No
			Herbivore	607.7	41.8	<0.1	No
	Acute: SYN500003	$LD_{50}/10 = 104.9 \text{ mg}$ a.i./kg bw	Insectivore	97.5	6.7	<0.1	No
			Granivore	16.7	1.2	< 0.1	No
			Frugivore	50.2	3.5	< 0.1	No
			Herbivore	607.7	41.8	0.38	No

Dietary: Mandipropan	90-d LD ₅₀ /10 >43.5 mg a.i./kg bw/day ^c	Insectivore	97.5	6.7	< 0.15	No
		Granivore	16.7	1.2	< 0.1	No
		Frugivore	50.2	3.5	< 0.1	No
		Herbivore	607.7	41.8	<0.9	No
Reproductio Mandipropan	n: NOEL = 22.9 mg nid a.i./kg bw/day ^c	Insectivore	97.5	6.7	0.3	No
		Granivore	16.7	1.2	< 0.1	No
		Frugivore	50.2	3.5	0.1	No
		Herbivore	607.7	41.8	1.8	Yes

Endpoints were divided by an Uncertainty Factor to account for varying protection goals (i.e. protection at the community, population, or individual level).

^b 5-day LD_{50} - conversion of 5-day LC_{50} from a concentration to a dose [5-day LD_{50} (mg a.i./kg bw) = LC_{50} (mg a.i./kg diet)/BW (g) × FIR (g diet/day)].

^c NOEL obtained from study.

^d EEC: For birds and mammals, the EEC takes into account the maximum seasonal cumulative rate on vegetation and is calculated using PMRA standard methods based on the Hoerger and Kenaga nomogram as modified by Fletcher (1994).

EDE = Estimated dietary exposure; calculated for each bird or mammal size based on the EEC on appropriate food item for each food guild (at the screening level, the most conservative EEC for each food guild was used). The EDE was calculated using the following formula: (FIR/BW) × EEC. For each body weight (BW), the food ingestion rate (FIR) was based on equations from Nagy, K.A. Field metabolic rate and food requirement scaling in mammals and birds. *Ecological Monographs* 57: 1987, pp. 111–128. For generic birds with body weight less than or equal to 200 g, the "passerine" equation was used; for generic birds with body weight greater than 200 g, the "all birds" equation was used; for mammals, the "all mammals" equation was used:

Passerine Equation (body weight <or =200 g): FIR (g dry weight/day) = 0.398(BW in g) 0.850

All Birds Equation (body weight >200 g): FIR (g dry weight/day) = 0.648(BW in g) 0.651

All Mammals Equation: FIR (g dry weight/day) = 0.235(BW in g) 0.822

RQ = expsoure/toxicity; RQs < 0.1 were not calculated to show all decimal points

Table 14 Screening Level Risk Assessment for Aquatic Organisms

Organism	Exposure	Substance	Endpoint value ^a	EEC ^b mg a.i./L	RQ	LOC exceeded				
Freshwater species										
Daphnia magna	Acute	Mandipropamid	48-h EC ₅₀ /2 = 3.55 mg a.i./L	0.06 <0.1		No				
		CGA380778	48-h EC ₅₀ /2 = 27.9 mg a.i./L	Not environr therefore, a F calculated, n concern to ac	nentally RQ was ot cons quatic c	y relevant; not idered of organisms				
	Reproduction	Mandipropamid	NOEC = 0.87 mg a.i./L, reproductive effects	0.06	<0.1	No				
			NOEC = 0.28 mg a.i./L, parental effects	0.06	0.2	No				
Rainbow trout	Acute	Mandipropamid	96-h LC ₅₀ /10 = 0.4 mg a.i./L	0.06	0.15	No				
		CGA380778	96-h LC ₅₀ /10 >4.3 mg TGAI/L	Not environmentally rel therefore, a RQ was not calculated, not consider concern to aquatic orga		y relevant; not idered of organisms				
Fathead minnow	Acute	Mandipropamid	96-h LC ₅₀ /10 >0.58 mg a.i./L	0.06	0.1	No				
	Chronic (early life-stage)	Mandipropamid	NOEC >1.9 mg a.i./L; hatchability	0.06	<0.1	No				
			NOEC = 0.48 mg a.i./L; growth & fry survival	0.06	0.13	No				
Pseudokirchneriella subcapitata	Acute	Mandipropamid	EC ₅₀ /2 >1.25 mg a.i./L	0.06 <0.1		No				
		CGA380778	$EC_{50}/2 = 7.65 \text{ mg TGAI/L}$	L Not environmentally re therefore, a RQ was no calculated, not conside concern to aquatic orga		y relevant; not idered of organisms				
			72-h $E_b C_{50}/2 = 13.4 \text{ mg/L}$							
		SYN504851	72-h $E_{r}C_{50}/2 = 18.5 \text{ mg/L}$	0.03	<0.1	No				
		GND1500002	72-h $E_b C_{50}/2 = 13.6 \text{ mg/L}$	0.02	-0.1	27				
		SYN500003	72-h $E_r C_{50}/2 = 19.9 \text{ mg/L}$	0.03	<0.1	NO				
		SVA152((29	72-h $E_bC_{50}/2 > 2.8 \text{ mg/L}$	0.07	<0.1	N.				
	SYN536638		72-h $E_r C_{50}/2 > 2.8 \text{ mg/L}$	0.06	<0.1	No				
			72-h $E_{\rm b}C_{50}/2 = 3.4$ mg/L	Not environmental therefore, a RQ wa calculated, not con concern to aquatic		tally relevant;				
		NOA458422	72-h $E_r C_{50}/2 = 14.4 \text{ mg/L}$			idered of organisms				
Anabaena flos-aquae	Acute	Mandipropamid	96-h EC ₅₀ /2 >9.9 mg a.i./L	0.06	<0.1	No				
Vascular plant	Dissolved	Mandipropamid	mid $EC_{50}/2 > 2.2 \text{ mg a.i./L}$ 0.06 <0.1		No					

Amphibians								
Amphibians Acute Mandipropamid 96-h LC ₅₀ /1		96-h LC ₅₀ /10 = 0.4 mg a.i./L	0.3	0.75	No			
	Chronic	Mandipropamid	NOEC = 0.48 mg a.i./L; fry survival	0.3	0.63	No		
Marine species								
CrustaceanAcuteMandipropamid96-h $LC_{50}/10 = 0.17$ mg a.i./L0.060.35					No			
Mollusk	Acute	Mandipropamid	$EC_{50}/10 = 0.097 \text{ mg a.i./L}$ (shell growth)	0.06	0.62	No		
Sheepshead minnow Acute Mandipropamid 96-h $LC_{50}/10 = 0.45$ mg a.i./L 0.06 0.13 N					No			

^a Endpoints were divided by an Uncertainty Factor to account for varying protection goals (i.e. protection at the community, population or individual level).

^b EECs for aquatic systems were calculated assuming a reasonable conservative scenario of direct application into water bodies at two different depths (80 cm and 15 cm). The 80 cm water body is chosen to represent a permanent body of water and 15 cm is chosen to represent a seasonal body of water. EECs for transformation products assumed 100% conversion to the transformation product, adjusted for molecular weight (SYN504851 and SYN500003 have the same chemical formula–molecular weight = 226.66 g/mol; SYN536638 has the same chemical formula as mandipropamid–molecular weight = 411.9 g/mol).
Table 15	Refined Risk Assessments for Small Mammals
----------	---

Organisms	Type of Exposure: Test	Toxicity	Feeding	Re (1	fined Exposure mg a.i./kg bw)	RQ	>LOC
0	Substance	J	Guild	EEC ^a	EDE ^c		
					Off-field assessm	ient	
			Herbivore (leaves, leafy	411.7	With 11% drift deposition: 5.7	0.3	No
			crops)	411./	With 23% drift deposition: 11.87	0.52	No
					In-field assessme	ent ^b	
			TT 1.	236.01	29.5	1.3	Yes
		NOFI -	Herbivore (short grass -		Off-field assessm	ient	
Mammal weight:	Reproduction:	NOEL = 22.9	additional food type) ^d	226.01	With 11% drift deposition: 3.2	0.14	No
0.035 kg	Manupropannu	mg a.1./kg bw/day ^b	· · · · · · · · · · · · · · · · · · ·	230.01	With 23% drift deposition: 6.8	0.52	No
					In-field assessme	ent ^b	
			II. d. i.e. a	144.1	17.9	0.8	No
			(long grass –	Off-field assessment			
			additional food type) ^d	144.1	With 11% drift deposition: 1.9	0.1	No
				144.1	With 23% drift deposition: 4.1	0.18	No
					Off-field assessm	ient	
	Reproduction: Mandipropamid		Herbivore (leaves, leafy crops)	411.7	With 11% drift deposition: 3.1	0.14	No
				411./	With 23% drift deposition: 6.5	<0.1	No
					In-field assessme	ent ^b	•
				236	16.2	0.71	No
		NOEL -	(short grass –		Off-field assessm	ent	
Mammals weight:		NOEL = 22.9	additional food type) ^d	226	With 11% drift deposition: 1.8	<0.1	No
1 kg		mg a.1./kg bw/day ^b	lood type)	230	With 23% drift deposition: 3.7	0.16	No
				In-field assessment ^b		•	
			Hankingan	144.1	9.9	0.4	No
			(long grass –		Off-field assessm	ient	
			additional food type) ^d	144 1	With 11% drift deposition: 1.1	<0.1	No
				144.1	With 23% drift deposition: 2.3	0.1	No

а The EEC was calculated using a half-life of 10 days rather than 35 days used in the screening level risk assessment. b In-field assessment assumes 100% contamination of the food source immediately after the final application. The

assessment was conducted to take into consideration other food sources for herbivores.

с EDE takes into consideration spray deposition rates of 11% for ground application and 23% for aerial applications at 1 m downwind from the site of application.

d

Different food type than at screening level.

Table 16Summary of Alternatives

Сгор	Disease	Active and FRAC Fungicide Group
Brassica Head and Stem subgroup:Broccoli, Chinese broccoli (gailon),Brussels sprouts, cabbage, Chinesecabbage (napa), Chinese mustard, cabbage(gai choy), cauliflower, cavalo broccoli,kohlrabiLeafy Greens subgroup:Broccoli raab,cabbage, Chinese collards, kale, mizuna,mustard greens, mustard spinach, rapegreens, including all cultivars and/orhybrids of these	Downy mildew (Peronospora parasitica)	<i>Bacillus subtilis</i> (N/A) Chlorothalonil (Group M5) Fosetyl–al (Group 33) Zineb (Group M3)
Bulb Vegetables (Dry bulbs): Onion, bulb, garlic, shallot Green Onions: Green onions, leek, welch onion	Downy mildew (Peronospora destructor)	Bacillus subtilis (N/A) Boscalid (Group 7) Copper (Group M1) Fosetyl–al (Group 33) Maneb (Group M3) Metalaxyl–M (Group 4) Mancozeb (Group M3) Pyraclostrobin (Group 11)
Cucurbits: Cantaloupe, Chayote, Chinese-waxgourd, field cucumber, gourds, honeydew, melons <i>Momordica</i> spp. (bitter melon,balsam apple), muskmelon, watermelon, pumpkin, squash, zucchini	Downy mildew (Pseudo-peronospora cubensis)	Chlorothalonil (Group M5) Copper (Group M1) Cyazofamid (Group 21) Folpet (Group M4) Mancozeb (Group M3) Maneb (Group M3) Pyraclostrobin (Group 11)
Fruiting Vegetables: Bell peppers, non-Bell peppers	Phytophthora blight (Phytophthora capsici)	None
Field Tomato : Tomatillo	Late blight (Phytophthora infestans)	Boscalid (Group 7) Captan (Group M4) Chlorothalonil (Group M5) Copper (Group M1) Mancozeb (Group M3) Maneb (Group M3) Metiram (Group M3) Pyraclostrobin (Group 11) Ziram (Group M3)

Сгор	Disease	Active and FRAC Fungicide Group
Grapes	Downy mildew (<i>Plasmopara viticola</i>)	Azoxystrobin (Group 11) Captan (Group M4) Copper (Group M1) Folpet (Group M4) Kresoxim–methyl (Group 11) Metalaxyl–M (Group 4) Mancozeb (Group M3) Metiram (Group M3)
Potatoes	Late blight (Phytophthora infestans)	Zoxamide (Group 22) Boscalid (Group 7) Captan (Group M4) Chlorothalonil (Group M5) Copper (Group M1) Cymoxanil (Group 27) Dimethomorph (Group 40) Fenamidone (Group 11) Fluazinam (Group 29) Mancozeb (Group M3) Maneb (Group M3) Metalaxyl–M (Group 4) Metiram (Group M3) Propamocarb HCl (Group 28) Zoxamide (Group 22)
Leafy Vegetables: Field lettuce, leaf and head, spinach	Downy mildew (<i>Bremia lactucae</i>) Blue mould (<i>Peronospora effusa</i>)	Bacillus subtilis (N/A) Fosetyl–al (Group 33) Metalaxyl–M (Group 4) Mancozeb (Group M3) Quadris (spinach only – Group 11) Zineb (Group M3)

Table 17Use Claims (i.e. Label Claims) Proposed by Applicant and Whether Claims
Are Acceptable or Unsupported

Propos	sed Claims	Accepted Value and Sustainability	
Crops	Diseases, Rates, Use Pattern	Assessment Directorate Claims	
Brassica Head and Stem subgroup:	Diseases: control of Downy mildew (<i>Peronospora</i> <i>parasitica</i>)	Supported as proposed with the following changes:	
Broccoli, Chinese broccoli (gailon), Brussels sprouts, cabbage, Chinese cabbage (napa), Chinese mustard, cabbage (gai choy), cauliflower, cavalo broccoli, kohlrabi	Rates: 400–600 mL/ha (100–150 g a.i./ha) Use pattern: Apply prior to disease development, and	<u>Crops</u> : The Head and Stem sub-group crops are fully supported, and the leafy greens subgroup are conditionally supported.	
Leafy Greens subgroup: Broccoli raab, cabbage, Chinese collards, kale,	continue on a 7–10 day interval. The use of silicone-based adjuvants (0.25% v/v) is recommended.	adjuvant, it is recommended to use a non-ionic surfactant at 0.125% v/v.	
mizuna, mustard greens, mustard spinach, rape greens	Apply by ground or air.	season may be made for resistance-management reasons.	
	Diseases: control of Downy mildew (<i>Peronospora</i> <i>destructor</i>) Rates: 400–600 mL/ha (100–150 g a.i./ha)	Supported as proposed with the following changes: <u>Crops</u> : The dry bulb crops were fully supported. The green onion crops (green onions, leek, Welch onion) were conditionally supported.	
Bulb Vegetables	Use pattern: Apply prior to disease development, and continue on a 7–10 day interval.	<u>Rate</u> : The 400 mL rate is supported; the 600 mL rate is conditionally supported	
Onion, bulb, garlic, shallot Green Onion:	The use of silicone-based adjuvants (0.25% v/v) is recommended.	<u>Use pattern</u> : Apply prior to disease development, and continue on a 7 day interval (instead of 7–10 day interval).	
onion	Apply by ground or air.	Instead of a silicone-based adjuvant, it is recommended to use a non-ionic surfactant at 0.125% v/v, or mineral oil at	
	For dry bulb vegetables, a max of 2.3 L/ha (575 g a.i./ha) may be applied. For green onions, do not apply more than 1.75 L/ha/season (439 g a.i./ha/season).	Instead of stating a maximum amount of product per ha per season, it is recommended that a maximum of four applications per season may be made for resistance management.	

Propos	sed Claims	Accepted Value and Sustainability
Crops	Diseases, Rates, Use Pattern	Assessment Directorate Claims
	Diseases: Suppression of Downy mildew	Supported as proposed with the following changes:
Cucurbits: Cantaloupe, Chayote, Chinese-waxgourd field	cubensis)	<u>Use pattern</u> : it is recommended to use a non-ionic surfactant at $0.125\% v/v$.
cucumber, gourds, honeydew, melons	Rates: 400–600 mL/ha (100–150 g a.i./ha)	Instead of stating a maximum amount of product per hap er season, it is
<i>Momordica</i> spp. (bitter melon, balsam apple), muskmelon, watermelon, pumpkin, squash, zucchini,	Use pattern: Apply prior to disease development, and continue on a 7–10 day interval.	recommended that a maximum of four applications per season may be made for resistance management.
including cultivars and/or hybrids of these	The use of non-ionic surfactants $(0.25\% \text{ v/v})$ is recommended.	For resistance management purposes, do not apply Revus Fungicide to greenhouse-
Greenhouse cucumbers (For use in greenhouse only – not for transplant to the	Apply by ground or air (field use).	the field until after they have been transplanted-out.
field)	A maximum of 2.3 L/ha (575 g a.i./ha) may be applied per season.	It is necessary to add a phytotoxicity warning statement to the label (warning statement was provided by the registrant).
	Disease: Suppression of phytophthora blight	Conditionally supported with the following major changes:
Fruiting Vegetables:	(Phytophthora capsici)	Crops supported: Field pepper transplants
Field peppers: Bell peppers, non-Bell peppers, sweet non-Bell peppers	Use pattern: Apply prior to disease development, and continue on a 7–10 day interval.	For use on peppers to be treated in the greenhouse and immediately transplanted to the field, including: Bell peppers, non-Bell peppers and sweet non-Bell peppers
Eggplant Okra Groundcherry	The use of a non-ionic surfactant $(0.25\% \text{ v/v})$ is recommended.	<u>Use pattern:</u> Make one application of Revus Fungicide as a drench immediately before transplanting to the field.
Greenhouse peppers	Apply by ground or air (field use).	The use of a non-ionic adjuvant (0.125%) is recommended.
	Do not apply more than 2.3 L product/season (585 g a.i./ha).	For resistance management purposes make no more than one application per season.

Propos	sed Claims	Accepted Value and Sustainability
Crops	Diseases, Rates, Use Pattern	Assessment Directorate Claims
	Disease: control of Downy mildew (<i>Plasmopara viticola</i>)	Supported as proposed with the following changes:
	Rates: 400–600 mL/ha (100–150 g a.i./ha)	<u>Rates</u> : 500 mL/ha (125 g a.i./ha)
Grapes	Use pattern: Apply prior to disease development, and continue on a 7 day interval.	<u>Use pattern</u> : Apply prior to disease development, and continue on a 7 to 10 day interval.
1	The use of non-ionic surfactants $(0.25\% \text{ v/v})$ is recommended.	The use of a non-ionic surfactant (0.125% v/v) is recommended.
	Apply by ground or air (field use).	Instead of stating a maximum amount of product per ha per season, it is recommended that a maximum of four
	A maximum of 2.3 L/ha (575 g a.i./ha) may be applied.	applications per season may be made for resistance management.
	Disease: control of Late blight	
	(Phytophthora infestans)	Supported as proposed with the following changes:
	Rates: 400-600 mL/ha	
	(100–150 g a.i./ha)	<u>Use pattern</u> : it is recommended to use a non-ionic surfactant at 0.125% v/v.
Field Tomato, tomatillo	Use pattern: Apply prior to	
	disease development, and	Instead of stating a maximum amount of
Greenhouse tomatoes	continue on a 7–10 day interval.	product per ha per season, it is recommended that a maximum of four
(For use in greenhouse only	The use of a non-ionic	applications per season may be made for
– not for transplant to the	surfactant $(0.25\% \text{ v/v})$ is	resistance management.
field)	recommended.	C
		For resistance management purposes, do
	Apply by ground or air	not apply Revus Fungicide to greenhouse-
	(field use).	grown seedlings to be transplanted into
	Denset englisher at the 2.2.1	the field until after they have been
	Do not apply more than 2.3 L	transplanted-out.
	product/season (585 g a.l./ha).	

Propos	sed Claims	Accepted Value and Sustainability
Crops	Diseases, Rates, Use Pattern	Assessment Directorate Claims
	Disease: control of Late blight	
	(Phytophthora infestans)	Supported as proposed with the following changes:
Root and Tuber Vegetables	Rates: 400–600 mL/ha	
Tuberous and corm	(100–150 g a.i./ha)	<u>Crop</u> : only potatoes are supported.
subgroup.	Use pattern: Apply prior to	<u>Use pattern</u> : Apply prior to disease development, and continue on a 7-
Arracacha, arrowroot, Chinese and Jerusalem	continue on a 7 day interval.	to 10-day interval.
artichoke, burdock, canna, edible bitter and sweet cassava, chayote (root), chufa, dasheen (Taro)	The use of non-ionic surfactants (0.25% v/v) is recommended.	The use of a non-ionic surfactant (0.125% v/v) is recommended.
ginger, leren, potato, sweet potato, tanier, turmeric, yam (bean), yam (true)	Apply by ground or air (field use).	Instead of stating a maximum amount of product per ha per season, it is recommended that a maximum of four
	A maximum of 2.3 L/ha (575 g a.i./ha) may be applied.	applications per season may be made for resistance management.
	Disease: control of Downy mildew	Supported as proposed with the following changes:
	(Bremia lactucae)	<u>Use pattern</u> : Apply prior to disease
	Rates: 400-600 mL/ha	day interval.
Leafy Vegetables:	(100–150 g a.i./ha)	
Field lettuce, leaf and head, spinach	Use pattern: Apply prior to disease development and	The use of a non-ionic surfactant (0.125%) v/v) is recommended.
1	continue on a 7-day interval.	Instead of stating a maximum amount of
Greenhouse lettuce		product per ha per season, it is
(For use in greenhouse only – not for transplant to the	(0.25% v/v) is recommended.	applications per season may be made for
field)		resistance management.
	Apply by ground or air (field use).	For resistance management purposes, do not apply Revus Fungicide to greenhouse-
	A maximum of 2.3 L/ha (575 g a.i./ha) may be applied.	grown seedlings to be transplanted into the field until after they have been transplanted-out.

Propos	sed Claims	Accepted Value and Sustainability
Crops	Diseases, Rates, Use Pattern	Assessment Directorate Claims
	Disease: control of Downy mildew also known as Blue mould	Supported as proposed with the following changes:
	(Peronospora effusa)	<u>Use pattern</u> : Apply prior to disease development, and continue on a 7 to 10
Leafy Vegetables:	Rates: 400–600 mL/ha	day interval.
Field lettuce, leaf and head, spinach	(100–150 g a.i./ha) Use pattern: Apply prior to	The use of a non-ionic surfactant (0.125% v/v) is recommended.
Greenhouse lettuce	continue on a 7-day interval.	Instead of stating a maximum amount of product per ha per season, it is
- not for transplant to the field)	The use of non-ionic surfactants $(0.25\% \text{ v/v})$ is recommended.	applications per season may be made for resistance management.
	Apply by ground or air (field use).	For resistance management purposes, do not apply Revus Fungicide to greenhouse- grown seedlings to be transplanted into
	A maximum of 2.3 L/ha (575 g a.i./ha) may be applied.	the field, until after they have been transplanted-out.
Aerial application on field crops (minimum of 45 L water as carrier volume).	For the supported field crops on the Revus Fungicide label.	Supported as proposed.
Tank mix with Bravo 500 Agricultural Fungicide for all field crops (not greenhouse crops)	For the supported field crops on the Revus Fungicide label, a tank mix with Bravo 500 Agricultural Fungicide at labelled rates for resistance management and broader spectrum of disease control.	Supported as proposed for crops that are already listed on the Bravo 500 Agricultural Fungicide label, including: broccoli, Brussels sprouts, cabbage, cauliflower, cucumbers, cantaloup, muskmelon, honeydew, watermelons, squash, pumpkin, dry bulb onions, green bunching onions, potatoes, tomatoes.

Appendix II Supplemental Maximum Residue Limit Information— International Situation and Trade Implications

The Canadian MRLs on the following crops and crop groups are the same as those in the American *Electronic Code of Federal Regulations*:

- Vegetable, Brassica, head and stem, crop subgroup 5A;
- Vegetable, Brassica, leafy greens, crop subgroup 5B;
- Vegetable, cucurbit, crop group 9;
- Vegetable, leafy except Brassica, crop group 4;
- Vegetable, fruiting, crop group 8;
- Vegetable, tuberous and corm, crop subgroup 1C;
- Grape;
- Grape, raisin;
- Bulb onion subgroup 3-07A;
- Green onion subgroup 07B; and
- Okra.

Currently, no Codex MRLs have been established for mandipropamid on any commodity (www.mrldatabase.com).

Crop Group Number	Name of the Crop Group	Food Commodities Included in the Crop Group
1C	Root and tuber vegetables	Arracacha
		Arrowroot
	Tuberous and corm vegetables subgroup	Cassava roots
		Chayote roots
		Chinese artichokes
		Chufa
		Edible canna
		Ginger roots
		Jerusalem artichokes
		Lerens
		Potatoes
		Sweet potato roots
		Tanier corms
		Taro corms
		True yam tubers
		Turmeric roots
		Yam bean roots
3-07A	Bulb vegetables	Chinese onions
		Daylilies
	Bulb onion subgroup	Dry bulb onions
		Fritillaria bulbs
		Garlic
		Great headed garlic
		Lilies
		Pearl onions
		Potato onions
		Serpent garlic
		Shallot bulbs
3-07B	Bulb vegetables	Beltsville bunching onions
		Elegans hosta
	Green onion subgroup	Fresh Chinese chive leaves
		Fresh chive leaves
		Fresh onions
		Fritillaria leaves
		Green onions
		Kurrats
		Lady's leeks
		Leeks
		Macrostem onions
		Shallot leaves
		Tree onion tops

Appendix III Crop Groups: Numbers and Definitions

Crop Group Number	Name of the Crop Group	Food Commodities Included in the Crop Group
		Welsh onion tops Wild leeks
4	Leafy vegetables (except <i>Brassica</i> vegetables)	Amaranth Arugula Cardoon Celery Celtuce Chinese celery Corn salad Dandelion leaves Dock Edible leaved chrysanthemum Endives Fresh chervil leaves Fresh Florence fennel leaves and stalk Fresh parsley leaves Garden cress Garden cress Garden purslane Garland chrysanthemum Head lettuce Leaf lettuce New Zealand spinach Orach leaves Radicchio Rhubarb Spinach Swiss chard Upland cress Vine spinach
5A	<i>Brassica</i> (cole) leafy vegetables Head and stem <i>Brassica</i> subgroup	Broccoli Brussels sprouts Cabbages Cauliflower Chinese broccoli Chinese mustard cabbages Kohlrabi Nana Chinese cabbages
5B	Brassica (cole) leafy vegetables Leafy Brassica greens subgroup	Bok choy Chinese cabbages Broccoli raab Collards Kale Mustard greens

Crop Group Number	Name of the Crop Group	Food Commodities Included in the Crop Group
		Mustard spinach Rape greens
8	Fruiting vegetables (except cucurbits)	Bell peppers Eggplants Groundcherries Non-Bell peppers Pepinos Pepper hybrids Tomatillos Tomatoes
9	Cucurbit vegetables	Balsam apples Balsam pears Cantaloupes Chayote fruit Chinese cucumbers Chinese waxgourds Citron melons Cucumbers Edible gourds (other than those listed in this item) Muskmelons (other than those listed in this item) Pumpkins Summer squash Watermelons West Indian gherkins Winter squash

References

List of Studies and Information Submitted by the Registrant

1.0 The Active Ingredient, Its Properties and Uses

- 1348233 2006, Mandipropamid Technical: TGAI Identification, DACO: 2.1,2.3,2.4,2.5,2.6,2.7,2.8,2.9
- 1348234 2006, Manufacturing Plant Name and Address, DACO: 2.2 CBI
- 1348235 2006, Mandipropamid Technical (NOA 446510): Manufacturing Process
 Description and Supporting Data for Mandipropamid Technical, PC-06-039,
 MRID: 46800004, DACO:
 2.11,2.11.1,2.11.2,2.11.3,2.11.4,2.12.1,2.12.2,2.13.1,2.13.2,2.13.3,2.13.4 CBI
- 1348236 2006, Mandipropamid: Process impurity [CBI REMOVED], DACO: 2.13.3 CBI
- 1348237 2006, Mandipropamid Technical (NOA 446510): Physical and chemical properties of Mandipropamid Technical, PC-06-040, MRID: 46800006, DACO: 2.14,2.14.1,2.14.10,2.14.11,2.14.12,2.14.13,2.14.14,2.14.2,2.14.3,2.14.4,2.14.6,2.1 4.7,2.14.8,2.14.9
- 1348238 2006, Sample for Analysis, DACO: 2.15
- 1605424 2008, Mandipropamid Sub. No. 2006-8072: Response to Clarification Questions Regarding the Control Product Specification Form, DACO: 2.16 CBI
- 1608969 2006, Mandipropamid: [CBI REMOVED] of five representative batches produced at [CBI REMOVED], 116161, DACO: 2.13.3 CBI
- 1608970 2008, Mandipropamid Sub. No. 2006-8072: Response to Clarification Questions Regarding the Control Product Specification Form, DACO: 2.16 CBI
- 1348147 2006, Mandy Flowable Identification, DACO: 3.1.1,3.1.3,3.1.4
- 1348148 2006, Mandy Flowable Formulating Plant Name and Address, DACO: 3.1.2 CBI
- 1348149 2005, Mandipropamid 250 SC (A12946B) Manufacturing Process Description and Supporting Data for Mandipropamid 250 SC (A12946B), PC-05-084, MRID: 46800003, DACO: 3.2.1,3.2.2,3.2.3,3.1,3.3.2,3.4.1,3.4.2 CBI
- 1348150 2005, Mandipropamid 250 SC (A12946B) Physical and chemical properties of Mandipropamid 250 SC (A12946B), PC-05-085, MRID: 46800005, DACO: 3.5.1,3.5.10,3.5.11,3.5.12,3.5.14,3.5.2,3.5.3,3.5.4,3.5.6,3.5.7,3.5.8,3.5.9
- 1348151 2006, Container Material and Description, DACO: 3.5.5
- 1348152 2006, A12946B Chemical Stability After Storage in Packaging Made of HDPE for 1 Year at 20C, 114171, DACO: 3.5.10 CBI
- 1348153 2006, A12946B Chemical Stability After Storage in Packaging Made of Fluorinated HDPE for 1 Year at 20C, 114187, DACO: 3.5.10 CBI
- 1348154 2006, A12946B Chemical Stability After Storage in Packaging Made of PET for 1 Year at 20C, 114179, DACO: 3.5.10 CBI

- 1348155 2006, A12946B Corrosion Characteristics After Storage in Packaging Made of HDPE for 1 Year at 20C, 114170, DACO: 3.5.14
- 1610249 2008, 3.7 REVUS 2006-8073- Response to Clarification Question Product Chemistry, DACO: 3.7 CBI

2.0 Impact on Human and Animal Health

Toxicology

1348239	2006, Toxicology Summary - Mandipropamid Technical, DACO: 4.1
1348240	2004, Acute Oral Toxicity Up And Down Procedure In Rats, T003555-03,
	MRID: 46800201, DACO: 4.2.1
1348241	2005, NOA 446510 Technical (Batch SEZ2BP007): Acute Dermal Toxicity
	Study in Rats, T003767-05, MRID: 46800202, DACO: 4.2.2
1348242	2003, NOA446510: 4-Hour Acute Inhalation Toxicity Study in Rats, T004626-
	02, MRID: 46800204, DACO: 4.2.3
1348243	2004, NOA446510: Eye Irritation Study in the Rabbit, T001401-99,
	MRID: 46800206, DACO: 4.2.4
1348244	2004, NOA446510: Skin Irritation Study in the Rabbit, T001400-99,
	MRID: 46800208, DACO: 4.2.5
1348245	2004, NOA446510: Skin Sensitization Study in the Guinea Pig, T001397-99,
	MRID: 46800210, DACO: 4.2.6
1348246	2005, NOA446510: Local Lymph Node Assay - Final Report Amendment,
	T004638-02, MRID: 46800212, DACO: 4.2.6
1348247	2005, NOA446510: 90 Day Dietary Toxicity Study in the Mouse, T004588-02,
	MRID: 46800213, DACO: 4.3.1
1348248	2005, NOA446510: 90 Day Dietary Toxicity Study in Rats, T004583-02,
	MRID: 46800216, DACO: 4.3.1
1348249	2005, NOA446510: 90 Day Oral Toxicity Study in Dogs, T004586-02,
	MRID: 46800218, DACO: 4.3.2
1348250	2005, NOA446510: 1 Year Oral Toxicity Study in Dogs, T004622-02,
	MRID: 46800232, DACO: 4.3.2
1348251	2005, NOA446510: 28 Day Dermal Toxicity Study in Rats, T004582-02,
	MRID: 46800222, DACO: 4.3.5
1348252	2005, NOA446510: 28 Day Dietary Range Finding Study in Rats, T005177-01,
	MRID: 46800214, DACO: 4.3.8
1348253	2005, NOA446510: 28 Day Dietary Range Finding Study in Mice, T005180-01,
	MRID: 46800217, DACO: 4.3.8
1348254	2005, NOA446510: 6 Week Preliminary Oral Toxicity Study in Dogs,
	T004600-02, MRID: 46800219, DACO: 4.3.8
1348255	2005, NOA446510: Preliminary Oral Toxicity Study in Dogs, T005184-01,
	MRID: 46800220, DACO: 4.3.8

1348256	2005, NOA446510: Dose Range Finding Study in the Rat (For a 28 Day Dermal Toxicity Study), T008147-03, MRID: 46800221, DACO: 4.3.8
1348257	2005, NOA446510: 80 Week Carcinogenicity Study in Mice, T004628-02, MRID: 46800233 DACO: 4.4.2
1348258	2005, NOA446510: Two Year Chronic Toxicity and Carcinogenicity Study in the Rat_T004616-02_MRID: 46800234_DACO: 4.4.4
1348259	2005, NOA446510: Multigeneration Reproduction Toxicity Study in Rats, T005169-01, MRID: 46800230, DACO: 4.5.1
1348260	2005, NOA446510: Prenatal Developmental Toxicity Study in the Rat, T004598- 02, MRID: 46800224, DACO: 4.5.2
1348261	2005, NOA446510: Prenatal Developmental Toxicity Study in the Rabbit, T004609-02, MRID: 46800227, DACO: 4.5.3
1348262	2005, NOA446510: Bacterial Mutation Assay in S. typhimurium and E. coli - Amendment, T004610-02, MRID: 46800235, DACO: 4.5.4
1348263	2005, NOA446510: L5178Y TK+/- Mouse Lymphoma Mutation Assay, T004606-02, MRID: 46800236, DACO: 4.5.5
1348264	2002, NOA446510: In Vitro Cytogenetic Assay in Human Lymphocytes, T004601-02_MRID: 46800237_DACO: 4.5.6
1348265	2005, NOA446510: Rat Bone Marrow Micronucleus Test, T004631-02, MRID: 46800238, DACO: 4.5.7
1348266	2005, NOA446510: In Vivo Rat Liver Unscheduled DNA Synthesis Assay, T004573-02 MRID: 46800239, DACO: 4.5.8
1348267	2005, NOA446510: Tissue Depletion Following a Single Oral Dose (3 mg/kg and 300 mg/kg) in the Rat, T004639-02, MRID: 46800243, DACO: 4.5.9
1348268	2005, NOA446510: Biotransformation in the Rat, T001396-99, MRID: 46800244, DACO: 4.5.9
1348269	2005, NOA446510: Absorption, Distribution and Excretion in the Rat, T004576- 02, MRID: 46800245, DACO: 4.5.9
1348270	2005, NOA446510: Tissue Accumulation and Depletion Following Multiple Oral Dosing (3 mg/kg) in the Rat. T004612-02, MRID: 46800246, DACO: 4.5.9
1348271	2005, NOA446510: Acute Neurotoxicity Study in the Rat, T008108-03, MRID: 46800242, DACO: 4.5.12
1348272	2005, NOA446510: Subchronic Neurotoxicity Study in Rats, T008126-03, MRID: 46800240, DACO: 4.5.13
1348273	2002, NOA446510: Development and Validation of Methodology for the Analysis NOA446510 in Diet, Including Stability Assessment, T005174-01, MRID: 46800215, DACO: 4.8
1348274	2005, NOA446510: Dose Range Finding Study in the Pregnant Rat, T004641-02, MRID: 46800223, DACO: 4.8
1348275	2005, NOA446510: Dose Range Finding Study in the Pregnant Rabbit, T004637- 02, MRID: 46800225, DACO: 4.8
1348276	2005, NOA446510: Dose Range Finding Study in Non-Pregnant Rabbits, T004624-02, MRID: 46800226, DACO: 4.8
1348277	2001, NOA446510: Rangefinding Prenatal Developmental Toxicity Study in the Rat, T001467-06, MRID: 46800228, DACO: 4.8

1348278	2005, NOA446510: Investigation of Tray Paper Staining Observed in IN NOA446510 Rabbit Developmental Toxicity Studies, T017067-04, MRID: 46800229, DACO: 4.8
1348279	2005, NOA446510: Preliminary One Generation Reproduction Toxicity Study in Rats, T004587-02, MRID: 46800231, DACO: 4.8
1348281	2003, NOA446510: Preliminary Acute Neurotoxicity Study in Rats, T004596-02, MRID: 46800241, DACO: 4.8
1457527	2001, NOA446510 Tech: 28-Day Exploratory Toxicity Study in Rats (Gavage), T002342-06, MRID: 46953710, DACO: 4.3.3
1457528	2006, Mandipropamid: Investigation of Cell Proliferation in the Liver in Female Rats, T001830-06, MRID: 46953709, DACO: 4.3.3,4.8
1457529	2006, NOA446510: Effects on the Liver Following Dietary Administration in the Mouse, T001723-06, MRID: 46953707, DACO: 4.3.3,4.8
1457530	2006, NOA446510: Effects on the Liver Following Dietary Administration in the Rat, T008129-03, MRID: 46953708, DACO: 4.3.3,4.8
1457531	2006, NOA446510: Acute High Dose Study in the Mouse, T008144-03, MRID: 46953715, DACO: 4.5.9,4.8
1457532	2006, NOA446510: Acute High Dose Study in Rats, T008143-03, MRID: 46953714, DACO: 4.5.9,4.8
1457533	2006, NOA446510: Programme to Investigate Dose NOA446510 Versus Oral Absorption/Systemic Exposure Relationship in Mice, T0081806-06, MRID: 46953713, DACO: 4.5.9,4.8
1457534	2006, NOA446510: Investigative Metabolism in the Rat, T004636-02, MRID: 46953717, DACO: 4.5.9
1457535	2006, NOA446510: Preliminary Metabolism and Bioavailability in the Dog, T004644-02, MRID: 46953716, DACO: 4.5.9
1457536	2006, Propargyl Alcohol: Effects on the Liver Following Repeat Oral Gavage Dosing in the Male Alpk Rat, T001808-06, MRID: 46953706, DACO: 4.3.3,4.8
1457537	2006, Propargyl Alcohol: Effects on the Liver Following a Single Oral Gavage Dose in the Male Alpk Rat, T001807-06, MRID: 46953705, DACO: 4.8
1457538	2006, SYN 500003 (Metabolite of NOA446510): Acute Oral Toxicity in the Rat - Up and Down Procedure, T006762-04, MRID: 46953704, DACO: 4.8
1457539	2006, SYN 500003 (Metabolite of NOA446510): Bacterial Mutation Assay in S. typhimurium and E. coli, T003954-05, MRID: 46953711, DACO: 4.5.4,4.8
1457540	2006, SYN 545038 (Impurity of Mandipropamid): Bacterial Mutation Assay in S. typhimurium and E. coli, T013670-05, MRID: 46953712, DACO: 4.5.4,4.8 CBI
1493789	2007, Technical (SEZ3BP004) - Skin Sensitization: Local Lymph Node Assay in Mice T003750-07, T003750-07, DACO: 4.2.6
1348156	2006, MANDY Flowable Fungicide - Acute Toxicology Studies, DACO: 4.1
1348157	2004, Acute Oral Toxicity Up And Down Procedure In Rats, T003556-03, MRID: 46800150, DACO: 4.6.1
1348158	2004, NOA446510 250g/L SC (A12946B): Acute Dermal Toxcity Study in the Rat, T008173-03, MRID: 46800203, DACO: 4.6.2
1348159	2005, NOA446510 SC 250 (A12946B): 4-Hour Acute Inhalation Toxicity Study in Rats, T008167-03, MRID: 46800205, DACO: 4.6.3
1348160	2004, NOA446510 250g/L SC (A12946B): Eye Irritation Study in the Rabbit, T008166-03, MRID: 46800207, DACO: 4.6.4

1348161	2004, NOA446510 250g/L SC (A12946B): Skin Irritation Study in the Rabbit,
	T008174-03, MRID: 46800209, DACO: 4.6.5
1348162	2004, NOA446510 250g/l SC (A12946B): Contact Hypersensitivity in Albino
	Guinea Pigs, Buhler Test (9-Induction), T001468-06, MRID: 46800211,
	DACO: 4.6.6

Food Residues

1348283	2005, NOA446510: Metabolism in the Goat, T004579-02, MRID: 46800128, DACO: 6.21348284 2005, NOA446510: Metabolism in Lettuce, T004603-02, MRID: 46800127 DACO: 6.3
1348285	2003, Metabolism of (1-14C) NOA446510 in Field Grown Tomato Plants (Including Final Report Amendment 1), T008115-03, MRID: 46800129, DACO: 6.3
1348286	2003, Metabolism of (Methoxyphenyl-(U)-14C) and (Chlorophenyl-(U)-14C) NOA446510 in Field Grown Grapevine (Includes Final Report Amendments 1, 2 and 3), T004623-02, MRID: 46800130, DACO: 6.3
1348287	2006, NOA446510: Metabolism in Potatoes, T001139-06, MRID: 46800131, DACO: 6.3
1410229	2007, Response to clarification questions regarding the study titled NOA446510: Metabolism in the Goat, DACO: 6.2
1410526	2007, Response to clarification questions regarding the study titled NOA446510: Metabolism in the Goat, DACO: 6.2
1348172	2006, NOA446510 - Summary of EU Supervised Field Trials Residue Data on Tomatoes, T012551-05, MRID: 46800143, DACO: 7.1
1348173	2004, NOA446510: Validation of Residue Analytical Method RAM 415/01 for the Determination of Residue in Crops, T004213-05, MRID: 46800132, DACO: 7.2.1,7.2.5
1348174	2006, Independent Laboratory Validation: Syngenta: Analytical Method RAM 415/01 Residue Analytical Method for the Determination of NOA446510 in Crop Samples. Final Determination by LC-MS/MS, T010236-04, MRID: 46800133, DACO: 7.2.3
1348175	2005, Determination of NOA-446510 by the United States Food and Drug Administration Multiresidue Methods, T003473-05, MRID: 46800134, DACO: 7.2.4
1348176	2006, Determination of NOA-446510 by the United States Food and Drug Administration Multiresidue Methods - Study Profile, T003473-05, MRID: 46800135, DACO: 7.2.4
1348178	2005, Residue Stability of NOA-446510 Fortified Into Crop Commodities Under Freezer Storage Conditions, T006170-04, MRID: 46800136, DACO: 7.3
1348179	2005, NOA446510 - Magnitude of the Residues in or on Grapes, including Processed Commodities, T000208-03, MRID: 46800137, DACO: 7.4.1,7.4.2,7.4.5

1348180	2005, NOA446510 - Magnitude of the Residues In or On Vegetables, Bulb, Group 3, T000283-03, MRID: 46800138, DACO: 7.4.1.7.4.2
1348181	2005, NOA446510 - Magnitude of the Residues in or on Crop Subgroup 1C: Tuberous and Corm Vegetables, Including Processed Commodities., T000011-03, MRID: 46800139, DACO: 7.4.1,7.4.2,7.4.5
1348182	2005, NOA-446510 - Magnitude of the Residues of NOA-446510 in or on Cantaloupe, Cucumber, and Squash as Representative Commodities of Crop Group 9: Cucurbit Vegetables, T000015-03, MRID: 46800140, DACO: 7.4.1,7.4.2
1348183	2005, NOA-446510 - Magnitude of the Residues in or on Vegetables, Brassica, Group 5, T000013-03, MRID: 46800141, DACO: 7.4.1,7.4.2
1348185	2005, NOA446510 - Magnitude of the Residues in or on Crop Group 8: Fruiting Vegetables, Including Processed Commodities, T000012-03, MRID: 46800142, DACO: 7.4.1,7.4.2,7.4.5
1348186	2004, Outdoor Confined Accumulation Study on Rotational Crops After Bareground Application of (Chlorophenyl-(U)-14C) NOA446510 (Including Final Report Amendments 1 and 2), T004608-02, MRID: 46800145, DACO: 7.4.3
1348187	2004, Outdoor Confinced Accumulation Study on Rotational Crops After Bareground Application of (Methoxyphenyl-(U)-14C) NOA446510 (Including Final Report Amendments 1 and 2), T004212-05, MRID: 46800146, DACO: 7.4.3
1348188	2005, N0A446510: Outdoor Confined Accumulation Study on Rotational Crops after Bareground Application of 14C-NOA446520: Additional Work on Non- Extractable Residues, T016317-04, MRID: 46800147, DACO: 7.4.3
1348189	2006, NOA446510 - Confined Accumulation in Rotational Crops, T001140-06, MRID: 46800148, DACO: 7.4.3
1348190	2005, NOA-446510 - Field Accumulation in Rotational Crops (30-Day and 60-Day PBIs), T000843-03, MRID: 46800149, DACO: 7.4.4
1386771	2004, Residue Analytical Method for the Determination of Residues of NOA446510 in Crop Samples, Final Determination by LC-MS/MS, RAM 415/01, DACO: 7.2.1,7.2.2
1410232	2006, Residue Stability of NOA-446510 Fortified Into Crop Commodities Under Freezer Storage Conditions - Final Report, T006170-04, DACO: 7.3
1410233	2007, NOA446510 - Magnitude of the Residues In or On Vegetables, Leafy, Group 4, T000014-03, DACO: 7.4.1,7.4.2
1410234	2004, NOA446510 : Residue Study in or on Protected Cucumbers in Switzerland, 03-6025, DACO: 7.4.1,7.4.2
1410235	2004, NOA446510 : Residue Study in or on Protected Cucumbers in Spain, 03-6027, DACO: 7.4.1,7.4.2
1410236	2004, NOA446510 : Residue Study in or on Protected Cucumbers in France (South), 03-6028, DACO: 7.4.1,7.4.2
1410237	2004, NOA446510 : Residue Study in or on Protected Cucumbers in The Netherlands, 03-6050, DACO: 7.4.1,7.4.2
1410238	2005, Mandipropamid (NOA446510) : Residue Study in or on Protected Cucumbers in Switzerland, 04-6010, DACO: 7.4.1,7.4.2
1410239	2005, Mandipropamid (NOA446510) : Residue Study in or on Protected

	Cucumbers in Spain, 04-6051, DACO: 7.4.1,7.4.2
1410240	2005, NOA446510: Residue Study in or on Protected Lettuces in Spain, 03-6012,
	DACO: 7.4.1,7.4.2
1410241	2005, Mandipropamid (NOA446510) : Residue Study in or on Protected Lettuces
	in Switzerland, 04-6007, DACO: 7.4.1,7.4.2
1410242	2005, Mandipropamid (NOA446510) : Residue Study in or on Protected Lettuces
	in Italy, 04-6070, DACO: 7.4.1,7.4.2
1410243	2005, Mandipropamid (NOA446510) : Residue Study in or on Protected Lettuces
	in Southern France, 04-6071, DACO: 7.4.1,7.4.2
1410244	2005, Mandipropamid (NOA446510) : Residue Study in or on Protected Lettuces
	in Northern France, 04-6072, DACO: 7.4.1,7.4.2
1410245	2007, Growing of crops under cover in Europe - Protected Crops, DACO: 7.8
1457577	2007, 0.8 - Correspondence - Response to Request for Clarification - Residue
	Trial and Analytical Method, DACO: 0.8
1457579	2006, NOA446510 - Magnitude of the Residues in or on Crop Subgroup 1C:
	Tuberous and Corm Vegetables, Including Processed Commodities (Replaces
	MRID Number 46800139) - Amended Final Report, T000011-03,
	DACO: 7.2,7.4.1,7.4.2,7.4.5

3.0 Impact on the Environment

1348292	2002, Hydrolysis of (Ethyl-1-14C) labelled NOA446510 under Laboratory
	Conditions, T004591-02, MRID: 46800007, DACO: 8.2.3.2
1348294	2005, NOA446510: Soil Photolysis of 14C-Chlorophenyl Ring Labelled
	NOA446510 Under Laboratory Conditions, T008105-03, MRID: 46800015,
	DACO: 8.2.3.3.1
1348296	2003, NOA446510: Soil Photolysis of 14C-Methoxyphenyl Ring Labelled
	NOA446510 under Laboratory Conditions, T004595-02, MRID: 46800017,
	DACO: 8.2.3.3.1
1348299	2004, NOA446510: Photolysis of 14C-Chlorophenyl Ring Labelled NOA446510 in
	Sterile Natural Water under Laboratory Conditions, T004575-02, MRID: 46800009,
	DACO: 8.2.3.3.2
1348300	2004, NOA446510: 14C-Methoxyphenyl Labelled Sterile Natural Water Photolysis
	under Laboratory Conditions, T004607-02, MRID: 46800010, DACO: 8.2.3.3.2
1348301	2003, Aqueous Photolysis of (Chlorophenyl-U-14C)-labelled NOA446510 under
	Laboratory Conditions, T004618-02, MRID: 46800011, DACO: 8.2.3.3.2
1348303	2003, Aqueous Photolysis of 14C-Methoxyphenyl-NOA446510 under Laboratory
	Conditions, T004630-02, MRID: 46800013, DACO: 8.2.3.3.2
1348305	2004, Metabolism of (14C-Chlorophenyl)-NOA-446510 in Viable Soil Under
	Aerobic Conditions, T000680-02, MRID: 46800020, DACO: 8.2.3.4.2
1348307	2003, Metabolism of (Methoxyphenyl-U-14C) Labelled NOA446510 under Aerobic,
	Aerobic/Anaerobic and Sterile Aerobic Laboratory Conditions in One Soil at 20C,
	T004633-02, MRID: 46800022, DACO: 8.2.3.4.2,8.2.3.4.4
1348308	2005, Rate of Degradation of (14C) CGA380778 (Metabolite of NOA446510) in
	Various Soils under Aerobic Laboratory Conditions at 20C, T004943-04, MRID:
	46800023, DACO: 8.2.3.4.2

1348309	2004, NOA446510: Rate of Degradation in One Soil under Various Laboratory Conditions, T008097-03, MRID: 46800024, DACO: 8.2.3.4.2
1348312	2003, Metabolism of (Chlorophenyl-U-14C) Labelled NOA446510 under Aerobic and Aerobic/Anaerobic Laboratory Conditions in One Soil at 20C, T004572-02, MRID: 46800027, DACO: 8.2.3.4.2,8.2.3.4.4
1348330	2004, NOA446510: Metabolism and Rate of Degradation of 14C-Chlorophenyl Ring Labelled NOA446510 under Aerobic Laboratory Conditions, in Three Soils, at 20C, T008109-03, MRID: 46800028, DACO: 8.2.3.4.2
1348333	2005, NOA446510: Degradation in Two Aquatic Sediment Systems, T008095-03, MRID: 46800031, DACO: 8.2.3.5.2,8.2.3.5.4,8.2.3.5.5,8.2.3.5.6
1348334	2005, NOA446510: Degradation in an Outdoor Aquatic Sediment System, T009117- 04, MRID: 46800032, DACO: 8.2.3.5.2,8.2.3.5.4,8.2.3.5.5,8.2.3.5.6
1348335	2005, NOA466510: Degradation in Two Aquatic Sediment Systems (Methoxyphenyl Ring), T008104-03, MRID: 46800033, DACO: 8.2.3.5.2,8.2.3.5.4,8.2.3.5.5,8.2.3.5.6
1348337	2005, Adsorption/Desorption of (Chlorophenyl-U-14C)-labelled SYN521195 in Various Soils, T013384-04, MRID: 46800035, DACO: 8.2.4.2
1348339	2005, Adsorption/Desorption Properties of a Metabolite (SYN539678) in Three Soils, T013385-04, MRID: 46800036, DACO: 8.2.4.2
1348340	2005, Adsorption/Desorption of (Phenyl-U-14C)-labelled SYN500003 in Various Soils (Including Final Report Amendment 1), T006595-04, MRID: 46800037, DACO: 8.2.4.2
1348341	2003, Adsorption/Desorption of (Methoxyphenyl-U-14C)-labelled NOA446510 in Various Soils (Including Final Report Amendment 1), T004577-02, MRID: 46800038, DACO: 8.2.4.2
1348343	2004, NOA446510: Adsorption/Desorption of (Methoxyphenyl-U-14C)-labelled NOA446510 in Various U.S. Field Soils (Includes Final Report Amendment 1), T000738-02, MRID: 46800040, DACO: 8.2.4.2
1348345	2004, Adsorption/Desorption of (14C)-CGA380778 on Various Soils, T0004956-04, MRID: 46800042, DACO: 8.2.4.2
1348347	2005, NOA446510: Adsorption/Desorption Properties of a Water Sediment Metabolite SYN504851 in Three Soils, T013383-04, MRID: 46800044, DACO: 8.2.4.2
1348192	2005, Dissipation of NOA446510 250 SC Under Field Conditions on Crop (Potatoes) and Bare Soil in New York, T000053-03, MRID: 46800046, DACO: 8.3.2.2
1348193	2005, Dissipation of NOA446510 250 SC in Bare Soil Plot Under Simulated Leafy Vegetable Production Conditions in the San Joaquin Valley of California, T000052- 03, MRID: 46800045, DACO: 8.3.2.3
1348194	2005, Dissipation of NOA446510 250 SC in a Bare Soil Plot Under Simulated Squash Production Conditions in Georgia, T000054-03, MRID: 46800047, DACO: 8.3.2.3

Environmental Toxicology

1348313 2005, NOA446510 Metabolite (CGA380778): Toxicity to the Green Alga *Pseudokirchneriella subcapitata* (Formerly *Selenastrum capricornutum*), T006606-04, MRID: 46800120, DACO: 9.8.2

1348314	2005, NOA446510: A Glasshouse Toxicity Study to Determine the Effects of a 250 g a.i./Litre SC Formulation (A12946B) on the Seedling Emergence of Ten Species of Plants T004962-04 MRID: 46800117 DACO: 9.8.4
1348315	2005, NOA446510: A Glasshouse Toxicity Study to Determine the Effects of a 250 g a.i./Litre SC Formulation (A12946B) on the Vegetative Vigour of Ten Species of Plants, T013671-05, MRID: 46800118, DACO: 9.8.4
1348316	2006, NOA446510: A 7-Day Static-Renewal Toxicity Test with Duckweed (<i>Lemna gibba</i> G3), T014081-05, MRID: 46800119, DACO: 9.8.5
1348317	2005, Mandipropamid (NOA446510): Toxicity to <i>Pseudokirchneriella subcapitata</i> (formerly <i>Selenastrum capricornutum</i>) in a 96-hour Algal Growth Inhibition Test, T011224-05, MRID: 46800121, DACO: 9.8.2
1348326	2006, Mandipropamid - Annex B.8 - Fate and Behaviour, DACO: 12.5.8, 12.7, 8.1, 8.2.1, 8.2.3.1, 8.2.4.1, 8.3.1, 8.4.1, 8.5.1
1348327	2006, Mandipropamid - Annex B.9 - Ecotoxicology, DACO: 12.5.9, 12.7, 9.1, 9.2.1, 9.3.1, 9.4.1, 9.5.1, 9.6.1, 9.7.1, 9.8.1
1348349	2004, CGA380778 (Metabolite of NOA446510): Acute Toxicity to the Earthworm <i>Eisenia fetida</i> , T006608-04, MRID: 46800122, DACO: 9.2.3.1
1348350	2001, Acute Toxicity of NOA446510 to the Earthworm <i>Eisenia fetida</i> , T011804-05, MRID: 46800123, DACO: 9.2.3.1
1348351	2003, Acute Contact and Oral Toxicity of NOA446510 to Honey Bees (<i>Apis mellifera</i> L.), T011807-05, MRID: 46800116, DACO: 9.2.4.1,9.2.4.2
1348352	2004, NOA446510: Acute Toxicity to <i>Daphnia magna</i> , T004988-04, MRID: 46800050, DACO: 9.3.2
1348353	2005, NOA446510 Metabolite (CGA380778): Acute Toxicity to <i>Daphnia magna</i> , T006603-04, MRID: 46800051, DACO: 9.3.2
1348354	2003, <i>Daphnia magna</i> Reproduction Test: Effects of NOA 446510 on the Reproduction of the Cladoceran <i>Daphnia magna</i> STRAUS in a Semi-Static Laboratory Test, T011821-05, MRID: 46800107, DACO: 9.3.3
1348355	2005, NOA446510: A 96-Hour Flow-Through Acute Toxicity Test with the Saltwater Mysid (<i>Americamysis bahia</i>), T000733-02, MRID: 46800102, DACO: 9.4.2
1348356	2005, NOA446510: A 96-Hour Flow-Through Shell Deposition Test with the Eastern Oyster (<i>Crassostrea virginica</i>), T000735-02, MRID: 46800101, DACO: 9.4.4
1348357	2005, NOA446510 Metabolite (CGA380778): Acute Toxicity to Rainbow Trout (Oncorhynchus mykiss), T004941-04, MRID: 46800104, DACO: 9.5.2.1
1348358	2006, NOA446510: A 96-Hour Flow-Through Acute Toxicity Test with the Rainbow Trout (<i>Oncorhynchus mykiss</i>), T014079-05, MRID: 46800106, DACO: 9.5.2.1
1348359	2005, NOA446510: A 96-Hour Flow-Through Acute Toxicity Test with the Sheepshead Minnow (<i>Cyprinodon variegatus</i>), T000734-02, MRID: 46800103, DACO: 9.5.2.3
1348360	2006, NOA446510: A 96-Hour Flow-Through Acute Toxicity Test with the Fathead Minnow (<i>Pimephales promelas</i>), T014080-05, MRID: 46800105, DACO: 9.5.2.3
1348361	2003, NOA446510 tech: Early-Life Stage Toxicity Test to the Fathead Minnow (<i>Pimephales promelas</i>), T011834-05, MRID: 46800108, DACO: 9.5.3.1

1348362	2003, NOA446510: Determination of the Accumulation and Elimination of [14C]NOA446510 in Fathead Minnow (<i>Pimephales promelas</i>), T011831-05, MRID: 46800109, DACO: 9.5.6
1348363	2002, NOA446510 (AMS): An Acute Oral Toxicity Study with the Northern Bobwhite, T011816-05, MRID: 46800110, DACO: 9.6.2.1
1348364	2005, NOA446510 (AMS): An Acute Oral Toxicity Study With the Mallard, T011814-05, MRID: 46800111, DACO: 9.6.2.2
1348365	2002, NOA446510 (AMS): A Dietary LC_{50} Study with the Northern Bobwhite, T011818-05, MRID: 46800113, DACO: 9.6.2.4
1348366	2002, NOA446510 (AMS): A Dietary LC ₅₀ Study with the Mallard, T011820-05, MRID: 46800112, DACO: 9.6.2.5
1348367	2003, NOA446510 (AMS): A Reproduction Study with the Northern Bobwhite, T011828-05, MRID: 46800115, DACO: 9.6.3.1
1348368	2003, NOA446510 (AMS): A Reproduction Study with the Mallard, T011823-05, MRID: 46800114, DACO: 9.6.3.2
1386756	2004, NOA446510: Acute Toxicity to Common Carp (<i>Cyprinus carpio</i>) in a Flow- Through Test System, BL7872B, DACO: 9.5.2.2.9.5.2.3
1386758	2005, A 96-Hour Acute Toxicity Test of NOA446510 with Common Carp., 93451E, DACO: 9.5.2.2.9.5.2.3
1348314	2005, NOA446510: A Glasshouse Toxicity Study to Determine the Effects of a 250 g a.i./Litre SC Formulation (A12946B) on the Seedling Emergence of Ten Species of Plants T004962-04 MRID: 46800117 DACO: 9.8.4
1348315	2005, NOA446510: A Glasshouse Toxicity Study to Determine the Effects of a 250 g a.i./Litre SC Formulation (A12946B) on the Vegetative Vigour of Ten Species of Plants, T013671-05, MRID: 46800118, DACO: 9.8.4

4.0 Value

1517462	2005, Efficacy of Fungicides on <i>Phytophthora capsici</i> of Pepper Crops: DACO: 10.2.3
1517463	2006, Assessment of new fungicides as potential management tools for <i>Phytophthora</i> grown and root rot on pepper plants: DACO: 10.2.3
1517464	2006, Evaluating selected fungicides for control of <i>Phytophthora</i> blight of bell pepper 2006 [•] DACO [•] 10.2.3
1517465	2006, Efficacy of fungicides for control of <i>Phytophthora</i> blight bell pepper on crown root tolerant and susceptible cultivars, 2006: DACO: 10.2.3
1517466	2006, Evaluation of compounds for efficacy against <i>Phytophthora capsici</i> in bell pepper, fall 2006; DACO: 10.2.3
1517467	2006, Efficacy of Experimental Fungicides against <i>P. capsici</i> on Bell Pepper: DACO: 10.2.3
1517468	2005, Evaluation of fungicides for control of <i>Phytophthora</i> blight of bell pepper, 2005: DACO: 10.2.3
1517469	2005, Evaluation of new fungicides as potential management tools for <i>Phytophthora</i> crown rot on pepper plants: DACO: 10.2.3
1517470	2006, Evaluation of fungicides for control of <i>Phytophthora</i> blight of peppers, 2006: DACO: 10.2.3

1374710	2002, 10.2.3.3 - Efficacy Trial - 2002-DM-BHS-01 - Brassica Head and Stem Subgroup DACO: 10.2.3.3
1374711	2002, 10.2.3.3 - Efficacy Trial - 2002-DM-BHS-02 - Brassica Head and Stem
1374712	2004, 10.2.3.3 - Efficacy Trial - 2004-DM-BHS-01 - Brassica Head and Stem Subgroup, DACO: 10.2.3.3
1374713	2004, 10.2.3.3 - Efficacy Trial - 2004-DM-BHS-02 - Brassica Head and Stem Subgroup, DACO: 10.2.3.3
1374714	2004, 10.2.3.3 - Efficacy Trial - 2004-DM-BHS-03 - Brassica Head and Stem Subgroup, DACO: 10.2.3.3
1374715	2005, 10.2.3.3 - Efficacy Trial - 2005-DM-BHS-01 - Brassica Head and Stem
1374716	2005, 10.2.3.3 - Efficacy Trial - 2005-DM-BHS-02 - Brassica Head and Stem
1374717	2006, 10.2.3.3 - Efficacy Trial - 2006-DM-BHS-01 - Brassica Head and Stem
1374718	Subgroup, DACO: 10.2.3.3 2005, 10.2.3.3 - Efficacy Trial - 2004-DM-BV-01 - Bulb Vegetables,
1374719	2005, 10.2.3.3 - Efficacy Trial - 2004-DM-BV-02 - Bulb Vegetables,
1374720	2005, 10.2.3.3 - Efficacy Trial - 2005-DM-BV-01 - Bulb Vegetables,
1274721	2002 10.2.2.2 Efficiency Trial 2002 DM CU 01 Cueurbite DACO: 10.2.2.2
1374721	2003, 10.2.3.5 - Efficacy Trial 2002 DM-CU-01 - Cucurbits, DACO: 10.2.3.5
13/4/22	2003, 10.2.3.5 - Efficiency Trial 2002-DM-CU-02 - Cucurbits, DACO: 10.2.3.5
13/4/23	2002, 10.2.3.5 - Efficiency Trial 2002-DM-CU-05 - Cucurbits, DACO: 10.2.3.5
13/4/24	2002, 10.2.3.5 - Efficiency Trial - 2002-DM-CU-04 - Cucurbits, DACO. 10.2.3.5
13/4/23	2005, 10.2.5.5 - Efficiency Trial 2005-DM-CU-01 - Cucurbits, DACO: 10.2.5.5 2004, 10.2.2.2 Efficiency Trial 2004 DM CU 01 Cucurbits DACO: 10.2.2.2
13/4/20	2004, 10.2.3.5 - Efficiency That - 2004-DM-CU-01 - Cucurbits, DACO. 10.2.3.5
13/4/2/	2004, 10.2.3.3 - Efficience Trial - 2004-DM-CU-02 - Cucurbits, DACO: 10.2.3.3
13/4/28	2004, 10.2.3.3 - Efficacy Irial - 2004-DM-CU-03 - Cucurbits, DACO: 10.2.3.3
13/4/29	2006, 10.2.3.3 - Efficacy Irial - 2006-DM-CU-01 - Cucurbits, DACO: 10.2.3.3
13/4/30	2006, 10.2.3.3 - Efficacy Irial - 2006-PB-CU-01 - Cucurbits, DACO: 10.2.3.3
13/4/31	2007, 10.2.3.3 - Efficacy Irial - 2006-PB-CU-02 - Cucurbits, DACO: 10.2.3.3
1374732	2003, 10.2.3.3 - Efficacy Trial - 2003-PB-FV-01 - Fruiting Vegetables, DACO: 10.2.3.3
1374733	2004, 10.2.3.3 - Efficacy Trial - 2004-PB-FV-01 - Fruiting Vegetables, DACO: 10.2.3.3
1374734	2005, 10.2.3.3 - Efficacy Trial - 2005-PB-FV-01 - Fruiting Vegetables, DACO: 10.2.3.3
1374735	2005, 10.2.3.3 - Efficacy Trial - 2005-PB-FV-02 - Fruiting Vegetables, DACO: 10.2.3.3
1374736	2006, 10.2.3.3 - Efficacy Trial - 2006-PB-FV-01 - Fruiting Vegetables,
1374737	2002 10.2.3.3 - Efficacy Trial - 2002-DM_G_01 - Granes DACO. 10.2.3.3
1374738	2002, 10.2.3.3 - Efficacy Trial - 2002-DM-G-01 - Grapes, DACO: 10.2.3.3 2002 $10.2.3.3$ - Efficacy Trial - 2002-DM-G-02 - Grapes DACO: 10.2.3.3
1374730	2002, 10.2.3.5 - Efficacy Trial - 2002-DM-0-02 - Orapos, DACO. 10.2.3.5
1317137	DACO: 10.2.3.3

1374740	2002, 10.2.3.3 - Efficacy Trial - 2002-DM-LV-01 - Leafy Vegetables, DACO: 10.2.3.3
1374741	2004, 10.2.3.3 - Efficacy Trial - 2004-BM-LV-01 - Leafy Vegetables, DACO: 10.2.3.3
1374742	2004, 10.2.3.3 - Efficacy Trial - 2004-DM-LV-01 - Leafy Vegetables, DACO: 10.2.3.3
1374743	2004, 10.2.3.3 - Efficacy Trial - 2004-DM-LV-02 - Leafy Vegetables, DACO: 10 2 3 3
1374744	2004, 10.2.3.3 - Efficacy Trial - 2004-DM-LV-03 - Leafy Vegetables, DACO: 10.2.3.3
1374745	2005, 10.2.3.3 - Efficacy Trial - 2005-DM-LV-01 - Leafy Vegetables, DACO: 10.2.3.3
1374746	2006, 10.2.3.3 - Efficacy Trial - 2006-DM-LV-01 - Leafy Vegetables, DACO: 10.2.3.3
1374747	2006, 10.2.3.3 - Efficacy Trial - 2006-DM-LV-02 - Leafy Vegetables, DACO: 10.2.3.3
1374748	2004, 10.2.3.3 - Efficacy Trial - 2004-DM-GH-CU-01 - Greenhouse Cucumbers, DACO: 10 2 3 3
1374749	2004, 10.2.3.3 - Efficacy Trial - 2004-DM-GH-CU-02 - Greenhouse Cucumbers, DACO: 10.2.3.3
1374750	2004, 10.2.3.3 - Efficacy Trial - 2004-DM-GH-CU-03 - Greenhouse Cucumbers, DACO: 10.2.3.3
1374751	2004, 10.2.3.3 - Efficacy Trial - 2004-LB-GH-TOM-01 - Greenhouse Tomatoes, DACO: 10.2.3.3
1374752	2006, 10.2.3.3 - Efficacy Trial - 2005-LB-GH-TOM-01 - Greenhouse Tomatoes, DACO: 10.2.3.3
1374753	2006, 10.2.3.3 - Efficacy Trial - 2006-LB-GH-TOM-01 - Greenhouse Tomatoes, DACO: 10.2.3.3
1374754	2006, 10.2.3.3 - Efficacy Trial - 2006-LB-GH-TOM-02 - Greenhouse Tomatoes,
1374755	2005, 10.2.3.3 - Efficacy Trial - 2005-DM-GH-L-01 - Greenhouse Lettuce,
1374756	2002, 10.2.3.3 - Efficacy Trial - 2002-LB-POT-01 - Root and Tuber Vegetables, DACO: 10.2.3.3
1374757	2002, 10.2.3.3 - Efficacy Trial - 2002-LB-POT-02 - Root and Tuber Vegetables,
1374758	2002, 10.2.3.3 - Efficacy Trial - 2002-LB-POT-03 - Root and Tuber Vegetables, DACO: 10.2.3.3
1374759	2004, 10.2.3.3 - Efficacy Trial - 2003-LB-POT-01 - Root and Tuber Vegetables, DACO: 10.2.3.3
1374760	2004, 10.2.3.3 - Efficacy Trial - 2004-LB-POT-01 - Root and Tuber Vegetables, DACO: 10.2.3.3
1374761	2004, 10.2.3.3 - Efficacy Trial - 2004-LB-POT-02 - Root and Tuber Vegetables, DACO: 10.2.3.3
1374762	2006, 10.2.3.3 - Efficacy Trial - 2005-LB-POT-01 - Root and Tuber Vegetables, DACO: 10.2.3.3

1374763	2005. 10.2.3.3 - Efficacy Trial - 2005-LB-POT-02 - Root and Tuber Vegetables.
	DACO: 10.2.3.3
1374764	2005, 10.2.3.3 - Efficacy Trial - 2005-LB-POT-03 - Root and Tuber Vegetables,
	DACO: 10.2.3.3
1374765	2002, 10.2.3.3 - Efficacy Trial - 2002-LB-TOM-01 - Tomatoes, DACO: 10.2.3.3
1374766	2002, 10.2.3.3 - Efficacy Trial - 2002-LB-TOM-02 - Tomatoes, DACO: 10.2.3.3
1374767	2002, 10.2.3.3 - Efficacy Trial - 2002-LB-TOM-03 - Tomatoes, DACO: 10.2.3.3
1374768	2002, 10.2.3.3 - Efficacy Trial - 2002-LB-TOM-04 - Tomatoes, DACO: 10.2.3.3
1374769	2002, 10.2.3.3 - Efficacy Trial - 2002-LB-TOM-05 - Tomatoes, DACO: 10.2.3.3
1374770	2002, 10.2.3.3 - Efficacy Trial - 2002-LB-TOM-06 - Tomatoes, DACO: 10.2.3.3
1374771	2004, 10.2.3.3 - Efficacy Trial - 2003-LB-TOM-01 - Tomatoes, DACO: 10.2.3.3
1374772	2004, 10.2.3.3 - Efficacy Trial - 2004-LB-TOM-01 - Tomatoes, DACO: 10.2.3.3
1374773	2006, 10.2.3.3 - Efficacy Trial - 2006-LB-TOM-01 - Tomatoes, DACO: 10.2.3.3
1374774	2004, 10.2.3.3 - Efficacy Trial - 2004-CT-GH-TOM-01 - Greenhouse -
	Phytotoxicity, DACO: 10.2.3.3
1374775	2004, 10.2.3.3 - Efficacy Trial - 2005-CT-GH-CU-01 - Greenhouse Phytotoxicity,
	DACO: 10.2.3.3
1374776	2005, 10.2.3.3 - Efficacy Trial - 2005-CT-GH-TOM-01 – Greenhouse
	Phytotoxicity, DACO: 10.2.3.3
1374777	2005, 10.2.3.3 - Efficacy Trial - 2005-CT-GH-TOM-02 - Greenhouse
	Phytotoxicity, DACO: 10.2.3.3
1374778	2005, 10.2.3.3 - Efficacy Trial - 2005-CT-GH-TOM-03 - Greenhouse -
	Phytotoxicity, DACO: 10.2.3.3
1374779	2005, 10.2.3.3 - Efficacy Trial - 2005-CT-GH-TOM-04 - Greenhouse -
	Phytotoxicity, DACO: 10.2.3.3