

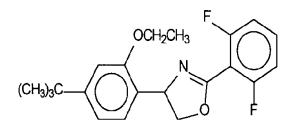
Evaluation Report for Category A, Subcategory 1.3 Application

Application Number:	2008-0581
Application:	A.1.3, New Active Ingredient-Maximum Residue Limits
	(MRL)s only
Product:	Etoxazole Technical
Active ingredients (a.i.):	Etoxazole
PMRA Document Number:	1776498

Purpose of Application

Etoxazole is a technical grade active ingredient (TGAI) that is not currently registered in Canada. Valent USA Corporation wished to establish Maximum Residue Limits (MRLs) for etoxazole in grape, pome fruit, strawberry and tree nuts. Etoxazole Technical is the active ingredient in ZEAL WP Miticide, an etoxazole formulation, which is registered in the USA for use on the above mentioned crops. For specific details of uses, application rates and methods, precautions, restrictions, and personal protective equipment requirements, refer to the product label.

Chemistry Assessment


1.0 The Active Ingredient, Its Properties and Uses

1.1 Identity of the Active Ingredient

Active substance: Function:	Etoxazole Insecticide
Chemical name: 1. International Union of Pure and Applied Chemistry (IUPAC):	(<i>RS</i>)-5- <i>tert</i> -butyl-2-[2-(2,6-difluorophenyl)-4,5- dihydro-1,3-oxazol-4-yl]phenetole
2. Chemical Abstracts Service (CAS):	2-(2,6-difluorophenyl)-4-[4-(1,1-dimethylethyl)-2- ethoxyphenyl]-4,5-dihydrooxazole
CAS number: Molecular formula:	153233-91-1 C ₂₁ H ₂₃ F ₂ NO ₂
Molecular weight:	359.4

Structural formula:

Purity of the active ingredient:

97.2% (limits: 94.8-99.9%)

1.2 Physical and Chemical Properties of the Active Ingredient

Property	Result		
Colour and physical state	White crystalline powder		
Odour	No obvious odour		
Melting range	101.5 to 102.5°	С	
Boiling point or range	The product is a solid		
Specific gravity at 20°C	1.2389		
Vapour pressure at 20°C	7.0 x 10 ⁻⁶ Pa		
Henry's law constant at 20°C	3.574 x 10 ⁻² Pa 1	m ³ /mc	ble
Ultraviolet (UV)-visible	λ	. <u>max(</u> 1	nm)
spectrum	Neutral 2	20	
		72	
		22.5	
		72.5	
		72.5	
Solubility in water	$3.99 \times 10^{-5} \text{ g/L}$ is	n disti	illed water at 10°C
	$7.04 \text{ x } 10^{-5} \text{ g/L in}$	n disti	illed water at 20°C
		n disti	illed water at 30°C
Solubility in organic solvents at			Solubility (g/L)
20°C	Acetone		309
	1,2-Dichloroetha	ane	402
	Ethyl acetate		249
	n-Heptane		18.7
	Methanol		104
	Xylene		252
<i>n</i> -Octanol-water partition	$\log \text{Kow} = 5.52$	at 20°	C
coefficient ($K_{\rm OW}$)			
Dissociation constant (pK_a)	Does not dissoci	iate	
Stability	The product was	s foun	d to be stable under elevated temperature.
(temperature, metal)	11		hat the TGAI was not tested for stability
	to metals since c	contac	t with metals in unlikely in normal
	product storage	and us	se.

2.0 Methods of Analysis

2.1 Methods for Analysis of the Active Ingredient

The methods provided for the analysis of the active ingredient and the impurities in Etoxazole Technical have been validated and assessed to be acceptable for the determinations.

Health Assessments

3.0 Impact on Human and Animal Health

3.1 Toxicology Summary

A detailed review of the toxicological database for etoxazole was conducted. The database is complete, consisting of the full array of toxicity studies currently required for hazard assessment purposes. The studies were carried out in accordance with currently accepted international testing protocols and Good Laboratory Practices. The scientific quality of the data is high and the database is considered adequate to define the majority of the toxic effects that may result from exposure to this chemical pest control product.

Etoxazole was rapidly and moderately absorbed from the gastrointestinal tract of rats following oral dosing. The degree of absorption in males was approximately twice that in females, but there were no major sex-related differences in the pattern of excretion. Saturation of absorption occurred at high doses (500 mg/kg bw/day). Fecal excretion was the primary route of elimination, and excretion was essentially complete within 120 hours after dosing. The parent compound was the major component in the feces. Very little etoxazole was retained in the tissues, but repeated dosing of rats indicated some potential for accumulation.

Etoxazole was of low toxicity following a single dose by the oral route. Following repeated dietary dosing, the liver was the main target organ in mice, rats and dogs. Hepatotoxicity was manifest as increased liver weight, liver enlargement, and centrilobular hepatocellular hypertrophy as well as alterations in clinical pathology (elevated serum levels of liver enzymes, cholesterol, triglycerides, and protein). In several studies, effects on the liver were mild and considered to be non-adverse, reflecting an adaptative response of the liver to an increased metabolic demand rather than overt hepatotoxicity. The spectrum of liver effects and the doses eliciting hepatotoxicity did not change significantly with duration of dosing, although the severity of the histopathological lesions observed in the liver did increase slightly with longerterm dosing. For example, fatty change of the liver was observed in mice only after exposure to high doses for 18 months (and in rats in the second generation of the multigeneration reproduction study), and the degree of centrilobular hepatocellular hypertrophy was graded as severe only in high-dose dogs after 12 months of dosing. Generally, the macroscopic observation of liver enlargement was more evident in females than in males, while the microscopic observation of hepatocellular hypertrophy was more prominent in males. Necrosis of the liver was observed only in mice at doses approaching the limit dose. An increased incidence of hyperplasia of the bile duct was observed at high doses in female rats only after dosing for two

years. A special study revealed that drug metabolizing enzymes were not induced following exposure to etoxazole for four or 13 weeks.

Changes in the weights of some organs (e.g. decreased kidney and spleen weight in mice; increased adrenal gland, thyroid gland, and kidney weight in rats) were observed at high doses in the absence of corroborating evidence of toxicity. In addition, slight changes in haematology parameters (e.g. increased platelets; altered clotting time; decreased red blood cell count, hemoglobin, hemotocrit, and mean cell volume) were observed in rats and dogs. Both the organ weight changes and alterations in haematology parameters were deemed not to be toxicologically relevant.

Dental and bone abnormalities were observed in rats after repeated dosing. The dental abnormalities included elongation of the upper incisors after subchronic dosing and elongation, whitening and abrasion of the upper and lower incisors as well as abnormal amelogenesis (formation of tooth enamel) of the upper incisor after longer-term dosing. Thickening and hyperplasia of the parietal bone was observed in rats only after chronic dosing at the highest dose tested.

Effects on organs of the reproductive system were observed in dogs and rats after repeated dosing. Decreased prostate weights and atrophy of the glandular epithelium of the prostate were noted in male dogs. In the male rat, an equivocal increase in the incidence of atrophy of the seminiferous tubules was observed after chronic dosing. However, special studies conducted to examined testicular function in the rat revealed that exposure to etoxazole did not affect the proliferative activity of testicular interstitial cells after four or 13 weeks of dosing, nor did it have a significant impact on circulating levels of male reproductive hormones, the histology of the testis or epididymides, or spermatogenesis after 13 weeks of dosing in the rat.

No effect on reproduction was noted in the multigeneration reproduction study in the rat. However, there was an increase in the mortality rate of the offspring during early lactation in both generations at the highest dose tested. An increase in pup deaths as well as litters with pup deaths was observed at the highest dose tested. Furthermore, at this dose, the viability index on lactation day 4 was below historical control values. Effects in parental animals at the high dose were limited to non-adverse changes in organ weight (increased liver weight in males, increased adrenal gland weight in females) in the first generation and slight hepatotoxicity in males (increased liver weight, slight centrilobular hepatocellular fatty change in two males) of the second generation.

No developmental toxicity was observed when pregnant rats were dosed at the limit dose (1000 mg/kg bw/day) over the period of major organogenesis. Slight reductions in body weight and food consumption were observed in maternal animals at this dose. In rabbits, skeletal variations (increased fetal and litter incidences of 27th presacral vertebra and 27th presacral vertebra with a 13th rib) were noted in fetuses following prenatal exposure to etoxazole at the limit dose, which produced effects on the pregnant rabbit in the form of liver enlargement in two dams as well as body weight decrements.

The clinical observations of the repeat-dose studies did not reveal any evidence of neurotoxicity. In addition, a functional observational battery, which included an assessment of motor activity, grip strength, and sensorimotor reaction to stimuli, conducted at one year in the two-year study in rats, yielded negative results for neurotoxicity.

Overall, etoxazole does not appear to be genotoxic. Negative results were obtained in a battery of in vitro and in vivo genotoxicity studies, with the exception of positive and equivocal responses for gene mutations in mouse lymphoma in the presence and absence of external metabolic activation, respectively. Two carcinogenicity studies each were conducted in the rat and the mouse due to inadequate dosing in the initial studies. In the second mouse carcinogenicity study, dosing was still not sufficient to produce adverse effects. However, based on a weight of evidence evaluation, the study was considered acceptable for the assessment of carcinogenicity in mice. Overall, there was no evidence of carcinogenicity in either the rat or the mouse when the results from all of these studies are considered.

Results of the acute and repeated-dose tests conducted on laboratory animals with etoxazole, along with the toxicology endpoints for use in the human health risk assessment, are summarized in Tables 1, 2, and 3 of Appendix I.

In assessing the occupational, residential, and dietary risks from potential exposure to etoxazole products, the standard uncertainty factor (UF) of 100 has been applied to account for interspecies extrapolation and intraspecies variability. Additional factors may also be applied, where warranted, to protect the population from relevant endpoints of concern or any database uncertainty.

3.1.1 PCPA Hazard Characterization

For assessing risks from potential residues in food or from products used in or around homes or schools, the *Pest Control Products Act (PCPA)* requires the application of an additional 10-fold factor to take into account potential prenatal and postnatal toxicity and completeness of the data with respect to the exposure of and toxicity to infants and children. A different factor may be determined to be appropriate on the basis of reliable scientific data.

With respect to the completeness of the toxicity database as it pertains to the exposure of and toxicity to infants and children, the database contains the full complement of required studies including developmental toxicity studies in rats and rabbits and a reproductive toxicity study in rats.

With respect to identified concerns relevant to the assessment of risk to infants and children, no evidence of increased susceptibility was seen following in utero exposure to rats or rabbits in the developmental toxicity studies. However, a serious endpoint (reduced viability) was observed in offspring in the rat multigeneration reproduction study in the absence of adverse effects on the parents. On the basis of this information, the 10-fold factor required under the *Pest Control Products Act* was retained.

3.2 Determination of Acute Reference Dose

An acute reference dose was not established as no endpoint of concern attributable to a single oral dose was identified. In the developmental toxicity study in rabbit, the developmental NOAEL of 200 mg/kg bw/day was based on an increased incidence of skeletal variations (27 presacral vertebrae and 27 presacral vertebrae with 13th ribs) in the fetuses at the LOAEL of 1000 mg/kg bw/day (limit dose). Although these developmental effects may be attributed to a single dose, it was determined that quantification of the acute risk is not required since these effects were considered minor in magnitude and were observed at the limit dose (1000 mg/kg bw/day).

3.3 Determination of Acceptable Daily Intake

The recommended acceptable daily intake (ADI) for etoxazole is 0.028 mg/kg bw/day. The most appropriate study for selection of a toxicity endpoint for chronic dietary exposure was the multigeneration reproductive toxicity study in the rat, in which a NOAEL of 28 mg/kg bw/day was determined in offspring based on an increased incidence of pup deaths between lactation days 0 and 4 and a reduced viability index observed at the LOAEL of 139 mg/kg bw/day.

Although the one-year dog study yielded the lowest NOAEL of the database (4.6 mg/kg bw/day), it was not considered to be appropriate for the determination of the ADI since it would not be protective of the critical endpoint of concern, i.e., reduced offspring viability.

Uncertainty factors of 10-fold for interspecies extrapolation as well as a 10-fold for intraspecies variability were applied in the setting of the ADI. As indicated above in the PCPA Hazard Characterization section, the 10-fold PCPA factor was retained. This results in a composite assessment factor (CAF) of 1000.

The ADI is calculated according to the following formula:

$$ADI = \frac{NOAEL}{CAF} = \frac{28 \text{ mg/kg bw/day}}{1000} = 0.028 \text{ mg/kg bw/day of etoxazole}$$

The selected ADI provides a margin of 164 to the lowest NOAEL in the database (4.6 mg/kg bw/day in the one-year dog study), a margin of greater than 4000 to the NOAEL (64 mg/kg bw/day) for dental abnormalities in the rat, and a margin of greater than 13000 to the NOAEL (200 mg/kg bw/day) for skeletal variations in the rabbit developmental toxicity study.

3.4. Dietary Exposure Assessment

The qualitative nature of etoxazole in livestock and plants is adequately understood based on the submitted animal metabolism studies for goat and hen, and plant metabolism studies submitted for cotton, orange, eggplant, and apple. The general metabolic pathway in hen and goat involves cleavage of the parent molecule (with further oxidation in hen) to form various metabolites. In plants, photo-oxidation with further opening of the oxazole ring gives rise to an assortment of

metabolites. Based on these studies, the residue definition for etoxazole in/on plant and livestock matrices is outlined in Appendix I, Table 4.

The analytical methods (PMRA No. 1551094; 1551093; 1551092), using either gas chromatography with nitrogen-phosphorous specific flame-ionization detector (GC-NPD) or gas chromatography with mass selective detector (GC-MSD), are adequate to quantitate residues of etoxazole in/on the imported crops. Based on acceptable method validation and independent laboratory validation, these methods are deemed adequate for data gathering and enforcement purposes.

Frozen storage stability of etoxazole was demonstrated in more than five diverse matrices, ranging from 2-17 months, therefore providing confidence that residues will not decline to less than 70% of their original value under the actual storage intervals of the samples.

Crop field trials were conducted in NAFTA representative growing regions on grapes, apples, pears, almonds, pecans, strawberries, and cotton. Trials were conducted at 2-fold maximum label rates since they were completed before the U.S. established that a single application per season would be sufficient. U.S. data on the representative crops required for crop group 11 (pome fruits) and crop group 14 (tree nuts) were provided and summarized in Appendix I, Table 5.

Processing studies were conducted on cotton, apples, and grapes. Concentration was only observed in grape juice (1.2-fold) and raisins (4.7-fold). However, an MRL will only be required for raisins (1.5 ppm); residues in grape juice will be covered by the grape MRL. The processing factors for apple juice and cottonseed oil were 0.01-fold and 0.17-fold, respectively; therefore MRLs will not be required for the processed commodities of cotton and apple.

Based on the residue data provided, MRLs to cover residues of etoxazole in/on imported pome fruits (crop group 11), tree nuts, (crop group 14), grapes, strawberries, and cotton will be recommended as shown in Appendix I, Table 6.

The basic chronic dietary exposure assessment, using consumption estimates coupled with proposed MRLs, demonstrates that consumption of the above imported crops treated with etoxazole as per Good Agricultural Practices (GAP) will not pose a concern to human health for any segment of the population, including infants, children and seniors (Appendix I, Table 7).

Environmental and Value Assessment

Environmental and value assessments are not required for applications to establish import MRLs.

Conclusion

The toxicology database submitted for etoxazole is adequate to define the majority of toxic effects that may result from human exposure to etoxazole. In subchronic and chronic studies conducted with laboratory animals, the primary target was the liver. There was no evidence of carcinogenicity in rats or mice after longer-term dosing. There was no evidence of increased

susceptibility of the developmental toxicity studies, but effects in offspring were considered more serious than effects in parental animals in the reproductive toxicity study. Etoxazole was not considered to be genotoxic or neurotoxic.

Following the review of all available data, the MRLs have been proposed for residues of etoxazole in/on imported cottonseed, strawberries, grapes, apples, pears, pecans and almonds as according to the table below. Residues of etoxazole in/on the above mentioned imported crops will not pose an unacceptable risk to any segment of the population, including infants, children, adults and seniors.

Crop	Proposed MRL (ppm)		
Cottonseed	0.05		
Strawberries	0.50		
Grapes	0.50		
Apples	0.20		
Pears	0.20		
Pecans	0.01		
Almonds	0.01		

Proposed MRL

List of Abbreviations active ingredient a.i. acceptable daily intake ADI acute reference dose ARfD atmosphere atm body weight bw composite assessment factor CAF Chemical Abstracts Service CAS GAP **Good Agricultural Practices** gram(s) g hectare(s) ha IUPAC International Union of Pure and Applied Chemistry kilogram(s) kg octanol-water partition coefficient Kow litre(s) L LD lethal dose LOAEL lowest observed adverse effect level LOD limit of detection LOQ limit of quantitation milligram(s) mg mL millilitre nm nanometre MRL maximum residue limit North American Free Trade Agreement NAFTA no observed adverse effect level NOAEL Pascal Pa PCPA Pest Control Product Act PHI preharvest interval p*K*a dissociation constant Pest Management Regulatory Agency PMRA parts per million ppm technical grade active ingredient TGAI United States of America USA UF uncertainty factor UV ultraviolet

Appendix I Tables

Study Type	Species	Result	Comment	Reference (PMRA #)
Acute Toxicity of	of Etoxazole			(1 1/1/(1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/
Oral	Rat	$LD_{50} > 5000 \text{ mg/kg bw}$	LOW TOXICITY	1550981
Oral	Mouse	$LD_{50} > 5000 \text{ mg/kg bw}$	LOW TOXICITY	1550982
Acute Toxicity of	of Metabolites/Im	purities		
Oral – R3	Rat	$LD_{50} > 5000 \text{ mg/kg bw}$	LOW TOXICITY	1550983
Oral – R7	Rat	$LD_{50} > 5000 \text{ mg/kg bw}$	LOW TOXICITY	1550984
Oral – R7	Rat	$LD_{50} > 5000 \text{ mg/kg bw}$	LOW TOXICITY	1550985

TABLE 1 Acute Oral Toxicity of Etoxazole and its Metabolites

TABLE 2Toxicity Profile of Technical Etoxazole

Study Type	Species	Results ¹ (mg/kg/day in M/F)	Reference (PMRA #)
28-day dietary	Rat	A NOAEL and LOAEL were not established as this was a dose range-finding study and was considered supplemental.	1550994
		No adverse effects were noted at 30/32 mg/kg bw/day in M/F.	
		The following effects were noted at the next highest dose level of 151/161 mg/kg bw/day in M/F: increased triglycerides (F); increased cholesterol (F); increased BUN (M); liver enlargement; increased liver weight; centrilobular hepatocellular hypertrophy; increased adrenal gland weight (M).	
28-day dietary Special study to assess testicular function	Rat	Overall, there did not appear to be a treatment- related effect on testicular function as measured in this study (serum levels of estradiol, prolactin, luteinizing hormone, and testosterone; microscopic examination of the testis and epididymides; cell index of germ cells; proliferative activity of testicular interstitial cells) up to a dose of 64 mg/kg bw/day.	1551005
90-day dietary	Rat	NOAEL (M): 61.8 mg/kg bw/day LOAEL (M): 184 mg/kg bw/day, based on decreased hematocrit and haemoglobin, increased cholesterol, increase liver weight, liver enlargement, and centrilobular hepatocellular hypertrophy	1550998
		NOAEL (F): 205 mg/kg bw/day (HDT) LOAEL (F): not established as no adverse effects were noted up to the highest dose tested	

Study Type	Species	Results ¹ (mg/kg/day in M/F)	Reference (PMRA #)
90-day dietary	Rat	NOAEL: not established as adverse effects were noted at the lowest dose tested LOAEL: 300/337 mg/kg bw/day in M/F, based on decreased hematocrit and mean cell volume (M); decreased prothrombin time (F); increased cholesterol; increased total protein (M) and globulin; increased platelets (F); increased liver weight; and centrilobular hepatocellular hypertrophy	1550993
90-day dietary Special study to assess the proliferative activity of testicular interstitial cells	Rat	No treatment-related effect on the proliferative activity of interstitial cells up to a dose of 184 mg/kg bw/day.	1551000
90-day dietary Special study to assess the induction of liver enzymes	Rat	No induction of liver enzymes (cytochrome P450, ethoxycoumarin-O-dealkylase, pentoxyresorufin-O-dealkylase) up to a dose of 201/134 mg/kg bw/day in M/F.	1550995
28-day dietary	Mouse	 A NOAEL and LOAEL were not established as this was a dose range-finding study and was considered supplemental. No adverse effects were noted at 239/294 mg/kg bw/day in M/F. The following effects were noted at the next highest dose level of 1465/1476 mg/kg bw/day in M/F: decreased body weight and food conversion efficiency (M); increased ALK (M), AST and ALT; increased triglycerides (F); increased liver weight; liver dark in colour, decreased kidney weight (M). 	1550996
90-day dietary	Mouse	NOAEL: 214/251 mg/kg bw/day in M/F LOAEL: 878/995 mg/kg bw/day in M/F, based on increased triglycerides (F); increased ALK, ALT (F), and AST (F); increased liver weight; centrilobular hepatocellular hypertrophy; periportal hepatocellular necrosis; decreased kidney weight (M).∖	1550992

Study Type	Study Type Species Results ¹ (mg/kg/day in M/F)		Reference (PMRA #)	
28-day dietary	Dog	A NOAEL and LOAEL were not established as this was a dose range-finding study and was considered supplemental.	1551001	
		Adverse effects noted at 31/36 mg/kg bw/day in M/F, the lowest dose tested, included: increased ALK, increased liver weight, centrilobular hepatocellular hypertrophy.		
90-day dietary	Dog	NOAEL: 5.3/5.4 mg/kg bw/day in M/F LOAEL: 53.7/55.9 mg/kg bw/day in M/F, based on mucous stool (M); increased triglycerides (M); increased ALK; increased liver weight; centrilobular hepatocellular swelling; decreased prostate weight; and prostate acinar cell atrophy	1551003	
1-year dietary	Dog	NOAEL: 4.6/4.8 mg/kg bw/day in M/F LOAEL: 23.5/23.8 mg/kg bw/day in M/F, based on increased ALK; liver enlargement (F); increased liver weight; and centrilobular hepatocellular swelling	1551002	
Carcinogenicity (18-month dietary)	Mouse	NOAEL: 241/243 mg/kg bw/day in M/F LOAEL: not established as no adverse effects were observed	1551009 1551010 1551011 1551012	
Carcinogenicity (18-month dietary)	Mouse	 NOAEL (M): 243 mg/kg bw/day LOAEL (M): 484 mg/kg bw/day, based on increased liver weight and centrilobular hepatocellular fatty change NOAEL (F): 482 mg/kg bw/day, the highest dose tested 	1551016 1551017	
		LOAEL (F): not established as no adverse effects were observed		
Chronic/ Carcinogenicity (2-year dietary)	Rat	NOAEL: 64.4/64.5 mg/kg bw/day in M/F LOAEL: not established as no adverse effects were noted	1551018 1551019 1001021 1551022 1551024 1551025	

Study Type	Species	Results ¹ (mg/kg/day in M/F)	Reference (PMRA #)
Chronic/ Carcinogenicity (2-year dietary)	Rat	NOAEL: 1.8/2.1 mg/kg bw/day in M/F LOAEL: 187/216 mg/kg bw/day in M/F, based on emaciation (F); dental abnormalities; decreased body weight and body weight gain; decreased hematocrit (F), haemoglobin (F), and mean cell volume (M); increased platelets (F); increased activated partial thromboplastin time (M), increased cholesterol (M); increased total protein and albumin; increased thyroid weight (M); increased liver weight; and abnormal amelogenesis of the upper incisor	1551006 1551008
Two-generation reproduction	amelogenesis of the upper incisor eration Rat Parental toxicity:		1551030
Developmental toxicity	Rat	on reproduction were noted Maternal: NOAEL: 200 mg/kg bw/day LOAEL: 1000 mg/kg bw/day, based on decreased food consumption and body weight gain during treatment Developmental: NOAEL: 1000 mg/kg bw/day LOAEL: not established as no adverse effects were noted	1551032

Study Type	Species	Results ¹ (mg/kg/day in M/F)	Reference (PMRA #)
Developmental toxicity	Rabbit	Maternal: NOAEL: 200 mg/kg bw/day LOAEL: 1000 mg/kg bw/day, based on decreased body weight gain, body weight loss, and liver enlargement	1551036
		Developmental: NOAEL: 200 mg/kg bw/day LOAEL: 1000 mg/kg bw/day, based on increased incidences of skeletal variations (27 th presacral vertebra and 27 th presacral vertebra with 13 th rib)	
Reverse gene mutation assay - TGAI	S. thypimurium, E. Coli	Negative	1551037 1551038
Reverse gene mutation assay - R3	S. thypimurium, E. Coli	Negative	1551040
Reverse gene mutation assay - R7	S. thypimurium, E. Coli	Negative	1551039
Reverse gene mutation assay - 2,5- YI	S. thypimurium, E. Coli	Negative	1551041
Gene mutations in mammalian cells in vitro	Mouse lymphoma cells	Positive in the presence of metabolic activation Equivocal in the absence of metabolic activation	1551042
In vitro/In vivo unscheduled DNA synthesis	Rat hepatocytes	Negative/Positive	1551043
In vitro mammalian chromosomal aberration	Chinese hamster lung cells	Negative/Positive	1551045
In vivo mammalian cytogenetics	Mouse	Negative/Positive	1551044
Metabolism		Absorption Absorption was rapid but moderate at low doses (48-68%) and limited at higher doses (15-19%), indicating saturation of absorption. Systemic absorption was greater in males (2-3x) than in females.	1551046 1551048
		Distribution Radioactivity remaining in tissues and the residual carcass by 168 hours post-dose accounted for 0.06-0.76% of the dose. Maximum concentrations of radioactivity in tissues were observed at 3-6 hours post-dose. Excluding the GIT, concentrations of radioactivity over time were generally highest in the liver, lymph nodes, thyroid, and fat and were	

Study Type	Species	Results ¹ (mg/kg/day in M/F)	Reference (PMRA #)
		lowest in the brain. Concentrations of radioactivity in tissues of males were generally 1.5-2x higher than in females. Repeated dosing	
		of rats indicated some potential for accumulation.	
		Excretion Fecal excretion was the primary route. Excretion	
		was essentially complete by 120 hours post-	
		dose. In the low-dose group, 77-88% of the dose was recovered in the feces and 8-17% recovered	
		in the urine. In the high-dose group, 91-94% of the dose was recovered in the feces and 2-3%	
		was recovered in the urine.	
		Metabolism	
		Etoxazole was eliminated primarily in the feces as parent compound (18-29% of the dose in	
		feces for the low dose and 75-80% for the high dose). Two other minor metabolites were	
		identified in the feces (R13 and R7). Two	
		metabolites were identified in the urine of the rats dosed with the butylphenyl-label (R24 and	
		Met 1); one metabolite was identified in the urine of rats dosed with the oxazole-label (R11).	
		At the low dose, levels of Met 1 were higher in	
		the urine of males than females, whereas levels of R24 were higher in the urine of females than	
		males. Two additional metabolites were	
		identified in the bile (R2 and Met 4). Parent and metabolite R2 were detected in plasma at Tmax	
		(levels of the parent were higher in females, while levels of R2 were higher in males). Parent	
		and five metabolites (R2, R6, R16, R24 and Met	
		1) were identified in the liver (Met 1 and R24 were detected only in the liver of rats dose with	
		the butylphenyl-label).	
		The biotransformation of etoxazole in rats	
		primarily involves the hydroxylation of the 4,5- dihydrooxazole ring, followed by cleavage of	
		the parent molecule, and hydroxylation of the tertiary-butyl side chain.	

TABLE 3	Toxicology Endpoints for Use in Health Risk Assessment for Etoxazole				
Exposure	Dose	Study Endpoint		CAF ¹	
Scenario	(mg/kg bw/day)				
Chronic	NOAEL = 28	Multigeneration	Decreased offspring viability	1000	
Dietary		reproduction	LD 0-4.		
ADI = 0.028 mg/kg bw/day					
1 $CAF =$	Composite Assessmer	nt Factor			

:-alth Diale A t fa E+ .1. TADIE 2 . . 1 • ſ πт тт

Summary of Residue Definition for Etoxazole TABLE 4

Matrix		Dietary Exposure	Enforcement	Reference
		Assessment		(PMRA #)
Plants	Apple, Orange, Eggplant, Cottonseed	Etoxazole	Etoxazole	1551065, 1551067 1551069, 1551070
Livestock -	Muscle, Fat, Milk	Etoxazole	Etoxazole	1551061
Ruminant	Liver, Kidney	Etoxazole, Metabolite 1	Etoxazole	
Livestock -	Muscle, Fat, Eggs	Etoxazole	Etoxazole	1551062
Poultry	Liver, Egg Whites	Etoxazole, Metabolite R-16	Etoxazole	

TABLE 5 Summary of Etoxazole Residue Data from Crop Field Trials

Commodity ¹	Formulation	Total	PHI ² Residue Levels						
		Rate	(days)	n	Min.	Max.	HAFT ³	Mean	Std. Dev.
		(g a.i./ha)							
Po	me Fruit (Crop	Group 11)	US labe	l rate	e: 101-15	1 g a.i./ha	/season; P	HI = 14	
Pear	72% WDG	299-308	28	6	0.032	0.108	0.102	0.058	0.034
Pear	72% WDG	301	14	2	0.135	0.143			
Apple	72% WDG	293-304	27-29	16	0.017	0.070	0.068	0.041	0.016
Apple	72% WDG	302	14	2	0.019	0.048			
Comment: Th	e majority of the	e pome fruit	trials we	re co	nducted a	ccording t	to the origination of the origin	nally reg	sistered US
	day PHI). A lal	•				•	•		
	s after the crop f								
	on in number of a								*
in/on pome fruit harvested 14 days after application would exceed the recommended MRL of 0.20 ppm.									
Therefore, although the majority of the residue data reflect 28-day PHI, the residues following treatment									
at 101-151 g a	.i./ha/season wit	h a 14-day F	PHI will b	be co	vered by t	the propos	ed MRL.		
Tree Nut (Crop Group 14) US label rate: 101-151 g a.i./ha/season; PHI = 28									
Pecan	72% WDG	297-306	28	10	< 0.01	< 0.01			
Almond	72% WDG	302-307	28	10	< 0.01	0.01	0.01		
Grape US label rate: 101-151 g a.i./ha/season; PHI = 14									
Grape	72% WDG	296-310	13-14	24	< 0.005	0.330	0.270	0.058	0.071
	Strawbe	rry US labe	l rate: 1	01-14	51 g a.i./h	a/season;	PHI = 1		
Strawberry	72% WDG	299-305	1	12	0.028	0.318	0.304	0.115	0.105
		Cotton US l	abel rate	e: 33	-50 g a.i./	ha/season	· ·		
Cottonseed	80% WP	99-103	27-28	14	< 0.01	0.017	0.014	< 0.01	0.004
4	data from proces	sed food and	feed (cott	on a	onles gran	es) and cro	n field trials	s (grapes	apples

residue data from processed food and feed (cotton, apples, grapes) and crop field trials (grapes, apples, strawberries, pears, almonds, and pecans): PMRA No. 1551103, 1551104, 1551105, 1551106, 1551107, 1551109 and 1551111

2 Pre-harvest Interval

3 Highest Average Field Trial

Сгор	Formulation	Rate	PHI	n	MRL	U.S.	Proposed
		(g a.i./ha)			Calc.	Tolerance	MRL (ppm)
					(ppm)	(ppm)	
Cottonseed	80% WP	99-103	27-28	14	0.02	0.05	0.05
Strawberries	72% WDG	299-305	0-1	12	0.45	0.50	0.50
Grapes	72% WDG	296-310	13-14	24	0.30	0.50	0.50
Apples	72% WDG	293-304	28-29	16	0.15	Pome Fruits	Pome Fruits
Pears	72% WDG	301-308	28	6	0.20	(CG 11)	(CG 11)
						0.20	0.20
Pecans	72% WDG	297-306	28	10	NA	Tree Nuts	Tree Nuts (CG
Almonds	72% WDG	301-307	28	10	NA	(CG 14)	14)
						0.01 (LOQ)	0.01 (LOQ)

TABLE 6Etoxazole MRL Calculations

TABLE 7 Summary of Chronic Dietary Exposure and Risk for Etoxazole

Population Subgroup	% ADI (Basic)
Total Population	2.6
All Infants (<1 year old)	4.5
Children 1-2 years old	11.8
Children 3-5 years old	8.1
Children 6-12 years old	3.6
Youth 13-19 years old	1.5
Adults 20-49 years old	1.7
Adults 50+ years old	2.0
Females 13-49 years old	1.6

References

A. List of Studies/Information Submitted by Registrant

Chemistry

NumberReference15509542008, Chemistry Requirements for the Registration of Etoxazole Technical, DACO: 2.1,2.2,2.3,2.3,1,2.4,2.5,2.6,2.7,2.8,2.9 CBI15509552008, 2.11.1-Manufacturing Summary, DACO: 2.11.1 CBI15509562000, Product Identity and Composition; Description of Materials Used to Produce	PMRA Document	
 1550954 2008, Chemistry Requirements for the Registration of Etoxazole Technical, DACO: 2.1,2.2,2.3,2.3.1,2.4,2.5,2.6,2.7,2.8,2.9 CBI 1550955 2008, 2.11.1-Manufacturing Summary, DACO: 2.11.1 CBI 1550956 2000, Product Identity and Composition; Description of Materials Used to Produce 		Reference
DACO: 2.1,2.2,2.3,2.3.1,2.4,2.5,2.6,2.7,2.8,2.9 CBI 1550955 2008, 2.11.1-Manufacturing Summary, DACO: 2.11.1 CBI 1550956 2000, Product Identity and Composition; Description of Materials Used to Produce		
 1550955 2008, 2.11.1-Manufacturing Summary, DACO: 2.11.1 CBI 1550956 2000, Product Identity and Composition; Description of Materials Used to Produce 		
	1550955	2008, 2.11.1-Manufacturing Summary, DACO: 2.11.1 CBI
the Product: Description of Production Process for the Technical YI-5301	1550956	2000, Product Identity and Composition; Description of Materials Used to Produce
= = = = = = = = = = = = = = = = = = =		the Product; Description of Production Process for the Technical YI-5301;
Discussion of Formation of Impurities, [CBI REMOVED], DACO:		
2.11.2,2.11.3,2.11.4 CBI		
1550957 2003, Analysis of Etoxazole and its Production Process Impurities in Etoxazole	1550957	
Technical; Certification of Ingredient Limits of Etoxazole Technical; [CBI		U
REMOVED], DACO: 2.12.1,2.13.1,2.13.3,2.13.4 CBI		
1550958 1998, Analysis of S-1283, and its Production Process Impurities in S-1283	1550958	
Technical (830.1700); Certification of Ingredient Limits of S-1283 Technical		C
(830.1750); [CBI REMOVED], DACO 2.13.1,2.13.2,2.13.3,2.13.4 CBI	1 5 5 0 0 5 0	
1550959 1997, S-1283 (Pure) Physicochemical Properties, SMO 455/953146, MRID:	1550959	
45089902, DACO:		
2.14.1,2.14.10,2.14.11,2.14.13,2.14.14,2.14.2,2.14.3,2.14.4,2.14.6,2.14.7,2.14.9 CBI		
1550960 1996, S-1283 (Technical) Physicochemical Properties, SMO 454/951967, MRID:	1550060	
45089903, DACO: 2.14.1,2.14.14,2.14.2,2.14.3,2.14.5,2.14.8 CBI	1550900	
1550961 2000, Elevated Temperature Shelf-Life Storage Stability Characteristics of	1550961	
Etoxazole Technical, V-99-21750, MRID: 45089904, DACO: 2.14.13,2.14.14 CBI	1550701	
1550962 1997, Shelf Life Storage Stability Characteristics of S-1283 Technical Grade, V-	1550962	
96-11542, MRID: 45089906, DACO: 2.14.14 CBI	1000702	
1550963 1997, Physical and Chemical Properties of S-1283, V-97-11541-A, MRID:	1550963	
45089905, DACO: 2.14.12,2.14.6 CBI	10000000	
1550964 Environmental Protection Agency, 2003, Federal Regiser/Vol.68, No. 187/Friday,	1550964	
September 26, 2003/ Rules and Regulations., Etoxazole; Pesticide Tolerance (Final		
Rule), DACO: 2.15,3.6,4.8,6.4,7.8 CBI		
1550965 Environmental Protection Agency, 2005, Federal Register / Vol. 70, No. 138 /	1550965	
Wednesday, July 20, 2005 / Rules and Regulations, pg. 41619-41625, Etoxazole;		Wednesday, July 20, 2005 / Rules and Regulations, pg. 41619-41625, Etoxazole;
Pesticide Tolerance (Final Rule), DACO: 2.15,3.6,4.8,6.4,7.8 CBI		Pesticide Tolerance (Final Rule), DACO: 2.15,3.6,4.8,6.4,7.8 CBI

Human and Animal Health

PMRA Document

Document	
Number	Reference
1550981	1999, Acute Oral Toxicity to Rats of YI-5301, 920136D/YMA 1/AC, MRID:
1550000	45089919, DACO: 4.2.1
1550982	1999, Acute Oral Toxicity to Mice of YI-5301, 920145D/YMA 2/AC, MRID: 45089918, DACO: 4.2.1
1550983	1996, R-3: Acute Oral Toxicity to the Rat, YMA 28a/952617/AC, MRID:
1 = = 0 0 0 4	45089916, DACO: 4.2.1
1550984	1996, R-7 HCl Salt Acute Oral Toxicity to the Rat, YMA 28b/952618/AC, MRID: 45089917, DACO: 4.2.1
1550985	1996, 2,5-YI: Acute Oral Toxicity to the Rat, YMA 28c/952619/AC, MRID:
	45089915, DACO: 4.2.1
1550992	1994, YI-5301: 13-Week Oral Subchronic Toxicity Study in Mice, IET 92-0111, MRID: 45089936, DACO: 4.3.1
1550993	1998, S-1283: 90-Day Subchronic Oral Toxicity Study in Rats, IET 97-0027,
1000770	MRID: 45089931, DACO: 4.3.1
1550994	1995, YI-5301: 13 Week Oral Subchronic Toxicity Study in Rats 4-Week Dose
	Range Finding Study, IET 92-0038, MRID: 45089934, DACO: 4.3.1
1550995	1995, YI-5301: 13-Week Oral Subchronic Toxicity Study in Rats Biochemical
	and Pathological Analyses for Hepatomegaly, IET 94-0095, MRID: 45089940,
	DACO: 4.3.1
1550996	1992, YI-5301: 13-Week Oral Subchronic Toxicity Study in Mice 4-Week Dose
	Range Finding Study, IET 92-0073, MRID: 45089938, DACO: 4.3.1
1550998	1995, YI-5301: 13-Week Oral Subchronic Toxicity Study in Rats, IET 92-0078,
	MRID: 45089935, DACO: 4.3.1
1551000	1996, YI-5301: 13-Week Oral Subchronic Toxicity Study in Rats Additional
	Study of Effect on Proliferative Activity of Testicular Interstitial Cells, IET 95-
	0182, MRID: 45089939, DACO: 4.3.1
1551001	1992, YI-5301: 13-Week Oral Subchronic Toxicity Study In Dogs 4-Week Dose
	Range Finding Study, IET 91-0119, MRID: 45089932, DACO: 4.3.2
1551002	1996, YI-5301: 12-Month Oral Chronic Toxicity Study in Dogs, IET 94-0005,
	MRID: 45089942, DACO: 4.3.2
1551003	1995, YI-5301: 13-Week Oral Subchronic Toxicity Study in Dogs, IET 93-0113,
	MRID: 45089933, DACO: 4.3.2
1551004	1999, 28-Day Repeated Dose Dermal Toxicity Study of S-1283 TG in Rats,
	29830, MRID: 45089941, DACO: 4.3.5
1551005	1996, YI-5301: 4-Week Supplementary Study in Rats, IET 95-0164, MRID:
	45089937, DACO: 4.3.8
1551006	2001, S-1283: 24-Month Oral Chronic Toxicity and Oncogenicity Study in Rats,
1001000	IET 97-0028, MRID: 45571802, DACO: 4.4.1,4.4.2,4.4.4
1551008	2001, S-1283: 24-Month Oral Chronic Toxicity and Oncogenicity Study in Rats,
	IET 97-0028, MRID: 45571802, DACO: 4.4.1,4.4.2,4.4.4
1551009	1996, YI-5301: 18-Month Oral Oncogenicity Study in Mice, IET 93-0023,
	MRID: 45090001, DACO: 4.4.2

1551010	1996, YI-5301: 18-Month Oral Oncogenicity Study in Mice, IET 93-0023,
	MRID: 45090001, DACO: 4.4.2
1551011	1996, YI-5301: 18-Month Oral Oncogenicity Study in Mice, IET 93-0023,
1551012	MRID: 45090001, DACO: 4.4.2 1996, YI-5301: 18-Month Oral Oncogenicity Study in Mice, IET 93-0023,
1551012	MRID: 45090001, DACO: 4.4.2
1551016	2001, S-1283: 18-Month Oral Oncogenicity Study in Mice, IET 98-0045, MRID:
	45571801, DACO: 4.4.2
1551017	2001, S-1283: 18-Month Oral Oncogenicity Study in Mice, IET 98-0045, MRID: 45571801, DACO: 4.4.2
1551018	1996, YI-5301: 24-Month Oral Chronic Toxicity and Oncogenicity Study in Rats,
	IET 92-0148, MRID: 45250903, DACO: 4.4.4
1551019	1996, YI-5301: 24-Month Oral Chronic Toxicity and Oncogenicity Study in Rats,
1551021	IET 92-0148, MRID: 45250903, DACO: 4.4.4 1996, YI-5301: 24-Month Oral Chronic Toxicity and Oncogenicity Study in Rats,
1551021	IET 92-0148, MRID: 45250903, DACO: 4.4.4
1551022	1996, YI-5301: 24-Month Oral Chronic Toxicity and Oncogenicity Study in Rats,
1551024	IET 92-0148, MRID: 45250903, DACO: 4.4.4
1551024	1996, YI-5301: 24-Month Oral Chronic Toxicity and Oncogenicity Study in Rats, IET 92-0148, MRID: 45250903, DACO: 4.4.4
1551025	1996, YI-5301: 24-Month Oral Chronic Toxicity and Oncogenicity Study in Rats,
	IET 92-0148, MRID: 45250903, DACO: 4.4.4
1551028	1999, S-1283: 24-Month Oral Chronic Toxicity and Oncogenicity Study in Rats,
1551030	IET 97-0028, MRID: 45090008, DACO: 4.4.3,4.4.4 1996, YI-5301: Two-Generation Reproduction Study in Rats, IET 93-0047,
1551050	MRID: 45090007, DACO: 4.5.1
1551031	1994, YI-5301: Two-Generation Reproduction Study in Rats Preliminary Study,
1551022	IET 92-0079, MRID: 45090006, DACO: 4.5.1
1551032	1994, YI-5301: Teratogenicity Study in Rats, IET 93-0007, MRID: 45090005, DACO: 4.5.2
1551034	1993, YI-5301: Teratogenicity Study in Rats Preliminary Study, IET 92-0080,
	MRID: 45090004, DACO: 4.5.2
1551035	1994, YI-5301: Teratogenicity Study in Rabbits Preliminary Study, IET 92-0149,
1551036	MRID: 45090002, DACO: 4.5.3 1994, YI-5301: Teratogenicity Study in Rabbits, IET 93-0049, MRID: 45090003,
1001000	DACO: 4.5.3
1551037	1999, Reverse Mutation Test of S-1283 in Salmonella typhimurium Strain
1551020	TA102, 3397, MRID: 45090015, DACO: 4.5.4
1551038	1992, YI-5301: Reverse Mutation Test, IET 92-0017, MRID: 45250905, DACO: 4.5.4
1551039	1996, R-7 HCI Salt Bacterial Mutation Assay, YMA 28B/952786, MRID:
	45090012, DACO: 4.5.4
1551040	1996, R-3 Bacterial Mutation Assay, YMA 29A/952785, MRID: 45090011, DACO: 4.5.4
1551041	1996, 2,5-YI Bacterial Mutation Assay, YMA 29C/952787, MRID: 45090009,
	DACO: 4.5.4
1551042	1996, S-1283 Mammalian Cell Mutation Assay, SMO 519/952604, MRID:

	45090013, DACO: 4.5.5
1551043	1997, S-1283: Measurement of Unscheduled DNA Synthesis in Rat Liver Using
	an in Vivo/in Vitro Procedure, 333/72, MRID: 45090014, DACO: 4.5.6,4.5.7
1551044	1996, Micronucleus Test on S-1283 in CD-1 Mice, 3171, MRID: 45090010,
	DACO: 4.5.7
1551045	1994, YI-5301: In Vitro Cytogenetics Test, IET 93-0116, MRID: 45250904,
	DACO: 4.5.8
1551046	1996, 14C-YI-5301 Metabolism in the Rat, YMA 15/950478, MRID: 45090016,
	DACO: 4.5.9
1551048	1996, 14C-YI-5301 Metabolism in the Rat, YMA 15/950478, MRID: 45090016,
15510(1	DACO: 4.5.9
1551061	1997, S-1283: Metabolism in the Lactating Goat, SMO 510/970907, MRID
1551062	45621812, DACO: 6.2 1999, Nature of Residues: Metabolism of [tert-butylphenyl-14C] and
1331002	[difluorophenyl-14C] S-1283 in Laying Hens, VP-11888, MRID 45621811,
	DACO: 6.2
1551064	2008, List of Etoxazole Metabolites, DACO: 6.3
1551065	2000, Nature of Residues: Metabolism of [tert-butylphenyl-14C] and
	[difluorophenyl-14C] S-1283 by Cotton, V-11876, MRID 45621810, DACO: 6.3
1551066	2002, Validation of the Extraction Efficiency of the Analytical Method for
	Determination of Etoxazole and Metabolite R-3 in Cotton Gin Trash, VP-12104,
	DACO: 6.3
1551067	1996, 14C-YI-5301: The Metabolism of 14C-YI-5301 in Oranges, YMA
	16/950231, MRID 45621807, DACO: 6.3
1551068	1996, 14C-YI-5301: The Metabolism of 14C-YI-5301 in Oranges, YMA
	16/950231, MRID 45621807, DACO: 6.3
1551069	1996, The Metabolism of 14C-YI-5301 In Apples, YMA 12/943276, MRID
1551070	45621808, DACO: 6.3
1551070	1996, The Metabolism of 14C-YI-5301 In Egg Plants, YMA 11/943049, MRID
1551089	45621809, DACO: 6.3 2001, Independent Laboratory Method Validation of Valent Analytical Method
1551089	RM-37GT-1 for Etoxazole and R3 in Cotton Gin Trash, VP-23149, MRID
	45621814, DACO: 7.2.1
1551091	2001, Evaluation of Etoxazole and Etoxazole Metabolite R-3 Through the FDA
	Multiresidues Methods, VP-23131, MRID 45621825, DACO: 7.2.1
1551092	1998, Validation of the Residue Analytical Method for S-1283 in Bovine Fat,
	680556, MRID 45621801, DACO: 7.2.1
1551093	1998, Validation of the Residue Analytical Method for S-1283 in Milk, 680567,
	MRID 45621802, DACO: 7.2.1
1551094	2001, Independent Laboratory Validation of the Analytical Method for
	Determining Residues of Etoxazole in Cottonseed, ML01-0935-VAL, MRID
1 1	45621725, DACO: 7.2.1
1551103	2001, Magnitude of the Residue of Etoxazole on Strawberries, VP-20141, MRID
1551104	45621824, DACO: 7.4.1
1551104	2001, Magnitude of the Residue of Etoxazole on Pears, VP-20132, MRID
1551105	45621805, DACO: 7.4.1 2003, Magnitude of the Residue of Etoxazole on Almonds, V-02-24803, MRID
1001100	2005, magintude of the residue of Etoxazore on Annonas, V-02-24005, WRID

	46018505, DACO: 7.4.1
1551106	2003, Magnitude of the Residues of Etoxazole in Pecans, 24881, MRID
	46018507, DACO: 7.4.1
1551107	2000, Magnitude of the Residue of Etoxazole on Cotton and Its Processed
	Products, 11794, MRID 45621823, DACO: 7.4.1,7.4.5
1551109	2001, Magnitude of the Residue of Etoxazole on Apples and Processed Apple
	Products, V-99-12041, MRID 45621804, DACO: 7.4.1,7.4.5
1551111	2003, Magnitude of the Residues of Etoxazole in Grapes and Grape Processing
	Products, V-02-24820, MRID 46018506, DACO: 7.4.1,7.4.5
1551112	1999, A Confined Accumulation in Rotational Crops Study on [difluorophenyl-
	14C] S-1283 and [tert-butyl-14C] S-1283 using Wheat, Lettuce and Radish, VP-
	12090, MRID 45621724, DACO: 7.4.3
1551113	2003, Magnitude of the Residue of Etoxazole in Dairy Cattle Milk and Meat,
	22921, MRID 45621803, DACO: 7.4.5

ISSN: 1911-8082

Her Majesty the Queen in Right of Canada, represented by the Minister of Public Works and Government Services Canada 2009

All rights reserved. No part of this information (publication or product) may be reproduced or transmitted in any form or by any means, electronic, mechanical photocopying, recording or otherwise, or stored in a retrieval system, without prior written permission of the Minister of Public Works and Government Services Canada, Ottawa, Ontario K1A 0S5.