

**Proposed Registration Decision** 

PRD2022-01

# Tiafenacil, Tiafenacil 70WG Herbicide, Tiafenacil 339SC Herbicide

(publié aussi en français)

6 January 2022

This document is published by the Health Canada Pest Management Regulatory Agency. For further information, please contact:

Publications Pest Management Regulatory Agency Health Canada 2720 Riverside Drive A.L. 6607 D Ottawa, Ontario K1A 0K9 Internet: canada.ca/pesticides pmra.publications-arla@hc-sc.gc.ca Facsimile: 613-736-3758 Information Service: 1-800-267-6315 or 613-736-3799 pmra.info-arla@hc-sc.gc.ca



ISSN: 1925-0878 (print) 1925-0886 (online)

Catalogue number: H113-9/2022-1E (print version) H113-9/2022-1E-PDF (PDF version)

#### © Her Majesty the Queen in Right of Canada, as represented by the Minister of Health Canada, 2022

All rights reserved. No part of this information (publication or product) may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, or stored in a retrieval system, without prior written permission of Health Canada, Ottawa, Ontario K1A 0K9.

### **Table of Contents**

| Overview      |                                                                              | 1    |
|---------------|------------------------------------------------------------------------------|------|
| Proposed regi | stration decision for Tiafenacil                                             | 1    |
| What does He  | ealth Canada consider when making a registration decision?                   | 1    |
|               | nacil?                                                                       |      |
| Health consid | erations                                                                     | 2    |
| Environmenta  | l considerations                                                             | 4    |
|               | erations                                                                     |      |
|               | ninimize risk                                                                |      |
|               | ction measures                                                               |      |
| Next steps    |                                                                              |      |
| 1             | ition                                                                        |      |
|               | nation                                                                       |      |
| 1.0           | The Active Ingredient, Its Properties and Uses                               |      |
| 1.1           | Identity of the Active Ingredient                                            |      |
| 1.2           | Physical and chemical properties of the active ingredient and end-use produc |      |
| 1.3           | Directions for use                                                           |      |
| 1.4           | Mode of action                                                               |      |
| 2.0           | Methods of analysis                                                          |      |
| 2.1           | Methods for analysis of the active ingredient                                |      |
| 2.2           | Method for formulation analysis                                              |      |
| 2.3           | Methods for residue analysis                                                 |      |
| 3.0           | Impact on human and animal health                                            |      |
| 3.1           | Hazard assessment                                                            |      |
| 3.1.1         | Toxicology summary                                                           | . 11 |
| 3.1.2         | Pest Control Products Act Hazard Characterization                            |      |
| 3.2           | Toxicology reference values                                                  | 16   |
| 3.2.1         | Route and duration of exposure                                               |      |
| 3.2.2         | Occupational and residential toxicology reference values                     |      |
| 3.2.3         | Acute reference dose (ARfD)                                                  |      |
| 3.2.4         | Acceptable daily intake (ADI)                                                |      |
| 3.2.5         | Cancer assessment                                                            |      |
| 3.2.6         | Aggregate risk assessment                                                    | . 17 |
| 3.3           | Dermal absorption                                                            | . 17 |
| 3.4           | Occupational and residential exposure assessment                             |      |
| 3.4.1         | Acute hazards of end-use products and mitigation measures                    |      |
| 3.4.2         | Occupational exposure and risk assessment                                    | 18   |
| 3.4.3         | Residential exposure and risk assessment                                     |      |
| 3.4.4         | Bystander exposure and risk assessment                                       |      |
| 3.5           | Dietary exposure and risk assessment                                         |      |
| 3.5.1         | Exposure from residues in foods of plant and animal origin                   | 20   |
| 3.5.2         | Concentrations in drinking water                                             |      |
| 3.5.3         | Dietary risk assessment                                                      | 25   |

| 3.6                  | Aggregate exposure and risk assessment                                             | . 25             |
|----------------------|------------------------------------------------------------------------------------|------------------|
| 3.7                  | Cumulative assessment                                                              |                  |
| 3.8                  | Maximum Residue Limits                                                             | . 26             |
| 3.9                  | Health Incident Reports                                                            | . 26             |
| 4.0                  | Impact on the environment                                                          |                  |
| 4.1                  | Fate and behaviour in the environment                                              |                  |
| 4.2                  | Environmental risk characterization                                                | . 28             |
| 4.2.1                | Risks to terrestrial organisms                                                     |                  |
| 4.2.2                | Risks to aquatic organisms                                                         |                  |
| 4.2.3                | Environmental incident reports                                                     |                  |
| 5.0                  | Value                                                                              |                  |
| 6.0                  | Pest control product policy considerations                                         |                  |
| 6.1                  | Toxic substances management policy considerations                                  |                  |
| 6.2                  | Formulants and contaminants of health or environmental concern                     |                  |
| 7.0                  | Proposed regulatory decision                                                       |                  |
|                      | iations                                                                            |                  |
| Appendix I           | Tables and figures                                                                 |                  |
| Table 1A             | Residue analysis in environmental media                                            |                  |
| Table 1B             | Residue analysis in plant and livestock matrices                                   |                  |
| Table 2              | Identification of select metabolites of Tiafenacil                                 |                  |
| Table 3              | Toxicity profile of end-use product - Tiafenacil 70WG Herbicide - containing       | . 12             |
| 14010 5              | tiafenacil                                                                         | 43               |
| Table 4              | Toxicity profile of end-use product, Tiafenacil 339SC Herbicide, containing        | . 15             |
|                      | tiafenacil                                                                         | 44               |
| Table 5              | Toxicity Profile of Technical Tiafenacil (Tergeo Technical Herbicide)              |                  |
| Table 6              | Toxicology reference values for use in health risk assessment for Tiafenacil       |                  |
| Table 7              | AHETF/PHED unit exposure estimates for mixer/loaders and applicators handl         |                  |
| 10010 /              | Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide ( $\mu$ g/kg a.i.         | <sup>111</sup> 5 |
|                      | handled)                                                                           | 58               |
| Table 8              | Mixer/loader/applicator risk assessment for Tiafenacil 70WG Herbicide              | 60               |
| Table 9              | Mixer/loader/applicator risk assessment for Tiafenacil 339SC Herbicide             | 61               |
| Table 10             | Postapplication worker exposure and risk estimate for Tiafenacil 70WG Herbic       |                  |
|                      | on day 0 after a single application to grapes (0.0504 kg a.i./ha)                  |                  |
| Table 11             | Postapplication worker exposure and risk estimate for Tiafenacil 339SC Herbic      |                  |
|                      | on day 0 after a single application to grapes (0.0502 kg a.i./ha)                  |                  |
| Table 12             | Integrated food residue chemistry summary                                          |                  |
| Table 13             | Food residue chemistry overview of metabolism studies and risk assessment          |                  |
| Table 14             | Fate and behaviour of tiafenacil in the environment                                |                  |
| Table 15             | Major transformation products of tiafenacil and their occurrence                   |                  |
| Table 16             | Effects of tiafenacil on terrestrial species                                       |                  |
| Table 17             | Effects of tiafenacil and transformation products on aquatic species               |                  |
| Table 17<br>Table 18 | Endpoints, uncertainty factors, and levels of concern used in the risk assessmen   |                  |
|                      | for tiafenacil                                                                     |                  |
| Table 19             | Screening level risk from tiafenacil exposure to terrestrial invertebrates and nor |                  |
| 14010 19             |                                                                                    |                  |
|                      | target terrestrial plants (on-field exposure)                                      | 133              |

| Table 20    | Further characterization of risk from tiafenacil to terrestrial invertebrates and non- |
|-------------|----------------------------------------------------------------------------------------|
|             | target terrestrial plants (off-field exposure)                                         |
| Table 21    | Screening level risks to birds exposed to tiafenacil (on-field exposure) 137           |
| Table 22    | Screening level risks to mammals exposed to tiafenacil (on-field exposure) 138         |
| Table 23    | Screening level risk from tiafenacil to aquatic organisms exposed to tiafenacil        |
|             | from direct overspray                                                                  |
| Table 24    | Further characterization of risk from tiafenacil to aquatic organisms exposed to       |
|             | tiafenacil from spray drift141                                                         |
| Table 25    | Further characterization of risk from to aquatic organisms exposed to tiafenacil       |
|             | from runoff                                                                            |
| Table 26    | Toxic Substances Management Policy Considerations - Comparison to TSMP                 |
|             | Track 1 Criteria                                                                       |
| Table 27    | List of Supported Uses                                                                 |
| Appendix II | Supplemental Maximum Residue Limit Information—International Situation and             |
|             | Trade Implications                                                                     |
| Table 1     | Comparison of Canadian MRLs and American Tolerances (where different) 145              |
| References  |                                                                                        |

### Overview

#### Proposed registration decision for Tiafenacil

Health Canada's Pest Management Regulatory Agency (PMRA), under the authority of the <u>Pest</u> <u>Control Products Act</u>, is proposing registration for the sale and use of Tergeo Technical Herbicide, Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide, containing the technical grade active ingredient tiafenacil, to control weeds in field corn, soybean, spring wheat, grapes, summerfallow and non-crop areas.

An evaluation of available scientific information found that, under the approved conditions of use, the health and environmental risks and the value of the pest control products are acceptable.

This Overview describes the key points of the evaluation, while the Science Evaluation provides detailed technical information on the human health, environmental and value assessments of tiafenacil, Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide.

#### What does Health Canada consider when making a registration decision?

The key objective of the *Pest Control Products Act* is to prevent unacceptable risks to people and the environment from the use of pest control products. Health or environmental risk is considered acceptable<sup>1</sup> if there is reasonable certainty that no harm to human health, future generations or the environment will result from use or exposure to the product under its proposed conditions of registration. The Act also requires that products have value<sup>2</sup> when used according to the label directions. Conditions of registration may include special precautionary measures on the product label to further reduce risk.

To reach its decisions, the PMRA applies modern, rigorous risk-assessment methods and policies. These methods consider the unique characteristics of sensitive subpopulations in humans (for example, children) as well as organisms in the environment. These methods and policies also consider the nature of the effects observed and the uncertainties when predicting the impact of pesticides. For more information on how Health Canada regulates pesticides, the assessment process and risk-reduction programs, please visit the <u>Pesticides section</u> of the Canada.ca website.

<sup>&</sup>lt;sup>1</sup> "Acceptable risks" as defined by subsection 2(2) of the *Pest Control Products Act*.

<sup>&</sup>lt;sup>2</sup> "Value" as defined by subsection 2(1) of the *Pest Control Products Act*: "the product's actual or potential contribution to pest management, taking into account its conditions or proposed conditions of registration, and includes the product's (*a*) efficacy; (*b*) effect on host organisms in connection with which it is intended to be used; and (*c*) health, safety and environmental benefits and social and economic impact."

Before making a final registration decision on tiafenacil, Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide, Health Canada's PMRA will consider any comments received from the public in response to this consultation document.<sup>3</sup> Health Canada will then publish a Registration Decision<sup>4</sup> on tiafenacil, Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide, which will include the decision, the reasons for it, a summary of comments received on the proposed registration decision and Health Canada's response to these comments.

For more details on the information presented in this Overview, please refer to the Science Evaluation of this consultation document.

#### What is Tiafenacil?

Tiafenacil is a non-selective, contact herbicide for weed management early in the season in certain crops, and throughout the season in grapes and non-crop areas.

#### Health considerations

#### Can approved uses of tiafenacil affect human health?

# Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide, containing tiafenacil, are unlikely to affect your health when used according to label directions.

Potential exposure to tiafenacil may occur through the diet (food and drinking water), when handling and applying the end-use products, or when coming into contact with treated surfaces. When assessing health risks, two key factors are considered: the levels where no health effects occur and the levels to which people may be exposed. The dose levels used to assess risks are established to protect the most sensitive human population (for example, children and nursing mothers). As such, sex and gender are taken into account in the risk assessment. Only uses for which the exposure is well below levels that cause no effects in animal testing are considered acceptable for registration.

Toxicology studies in laboratory animals describe potential health effects from varying levels of exposure to a chemical and identify the dose levels at which no effects are observed. The health effects noted in animals occur at doses more than 100-fold higher (and often much higher) than levels to which humans are normally exposed when pesticide products are used according to label directions.

In laboratory animals, the technical grade active ingredient tiafenacil was of low acute toxicity by the oral, dermal and inhalation routes of exposure. Tiafenacil was minimally irritating to the eyes and non-irritating to the skin, and did not cause an allergic skin reaction.

<sup>&</sup>lt;sup>3</sup> "Consultation statement" as required by subsection 28(2) of the *Pest Control Products Act*.

<sup>&</sup>lt;sup>4</sup> "Decision statement" as required by subsection 28(5) of the *Pest Control Products Act*.

The acute toxicity of the end-use product Tiafenacil 70WG Herbicide was low by the oral, dermal and inhalation routes of exposure. Tiafenacil 70WG Herbicide was minimally irritating to the eyes and non-irritating to the skin, and did not cause an allergic skin reaction.

The acute toxicity of the end-use product Tiafenacil 339SC Herbicide was low by the oral, dermal and inhalation routes of exposure. Tiafenacil 339SC Herbicide was non-irritating to the eyes and skin, and did not cause an allergic skin reaction.

Registrant-supplied short- and long-term (lifetime) animal toxicity tests were assessed for the potential of tiafenacil to cause neurotoxicity, immunotoxicity, chronic toxicity, cancer, reproductive and developmental toxicity, and various other effects. The most sensitive endpoints for risk assessment were effects on red blood cell parameters and the liver. The overall evidence suggests low concern for young animals and their sensitivity to tiafenacil when compared to adult animals. The risk assessment protects against the effects noted above and other potential effects by ensuring that the level of exposure to humans is well below the lowest dose level at which these effects occurred in animal tests.

# Occupational risks From handling Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide

# Occupational risks are not of health concern when Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide are used according to the proposed label directions, which include protective measures.

Workers mixing, loading or applying Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide, and workers entering recently treated areas can come in direct contact with tiafenacil residues on the skin. Therefore, the labels specify that anyone mixing, loading and applying Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide must wear a long-sleeved shirt, long pants, chemical-resistant gloves, socks and shoes. The labels also require that workers do not enter or be allowed entry into treated crops during the restricted-entry interval (REI) of 12 hours for agricultural areas and until sprays have dried in non-crop areas. Taking into consideration the label statements, the number of applications and the duration of exposure for handlers and postapplication workers, the risks to these individuals are not of health concern.

#### Health risks to bystanders

# Bystander risks are not of health concern when Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide are used according to the proposed label directions and spray drift restrictions are observed.

A standard label statement to protect against drift during application is on the label. Therefore, health risks to bystanders are not of concern.

#### Residues in food and drinking water

#### Dietary risks from food and drinking water are not of health concern.

Animal studies revealed no acute health effects. Consequently, a single dose of tiafenacil is not likely to cause acute health effects in the general population (including infants and children).

Aggregate dietary intake estimates (food plus drinking water) revealed that the general population and infants less than one-year-old, the subpopulation that would ingest the most tiafenacil relative to body weight, are expected to be exposed to less than 92% of the acceptable daily intake (ADI). When the common metabolite trifluoroacetic acid (TFA) is included for rotational crops, the highest exposure estimate is 102% of the ADI (infants less than one-year old). Based on these estimates, the chronic dietary risk from tiafenacil is not of health concern for all population subgroups due to the level of conservatism inherent in the assessment.

The *Food and Drugs Act* prohibits the sale of adulterated food, that is, food containing a pesticide residue that exceeds the established maximum residue limit (MRL). Pesticide MRLs are established for *Food and Drugs Act* purposes through the evaluation of scientific data under the *Pest Control Products Act*. Given that dietary risks from the consumption of foods are shown to be acceptable when tiafenacil is used according to the supported label directions, MRLs are being proposed as a result of this assessment (refer to PMRL2022-01, *Tiafenacil*).

MRLs for tiafenacil determined from the acceptable residue trials conducted throughout Canada and the United States on grapes, corn, soybeans and wheat can be found in the Science Evaluation of this consultation document.

#### **Environmental considerations**

#### What happens when tiafenacil is introduced into the environment?

## When tiafenacil is used according to the label directions, the risks to the environment are acceptable.

When tiafenacil is used in accordance with label directions and the required precautions, the risks associated with tiafenacil are acceptable from the viewpoint of environmental protection.

When tiafenacil is applied as a foliar spray to control grassy and broadleaf weeds, it breaks down very quickly to a number of transformation products in the presence of sunlight in shallow water. Tiafenacil can also break down quickly through the action of microbes in soil and aquatic systems. Many of the transformation products of tiafenacil are formed in significant amounts in the environment. Most of these transformation products can move downward through the soil and reach groundwater. The transformation products can also move off the treatment area to reach surface waters such as ponds, streams, and rivers. However, adverse effects of the transformation products to terrestrial and aquatic life are not expected when the label directions

are followed. Tiafenacil and its transformation products are not likely to accumulate in tissues of organisms.

Tiafenacil can affect non-target plants adjacent to treated fields following application. If it enters bodies of water after it is sprayed, tiafenacil can affect freshwater fish, amphibians and aquatic plants and algae. To minimize exposure to sensitive non-target species, spray buffer zones are required. In addition, precautionary statements and best management practices are required on the label. When tiafenacil is used in accordance with the label and the required precautions, the resulting environmental risk is considered to be acceptable.

#### Value considerations

What is the value of Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide?

Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide are conventional, nonselective, contact herbicides for the control or suppression of certain annual broadleaf weed species when applied in the early season in field corn, soybean and spring wheat, and throughout the season in grapes, summerfallow and non-crop areas.

Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide will serve as additional options for early season weed management and can be included as a component of integrated weed management programs that include tillage and other preplant, pre-emergent and/or postemergent herbicides for season-long weed management.

#### Measures to minimize risk

Labels of registered pesticide products include specific instructions for use. Directions include risk-reduction measures to protect human and environmental health. These directions must be followed by law.

The key risk-reduction measures being proposed on the label of Tergeo Technical Herbicide, Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide to address the potential risks identified in this assessment are as follows.

#### Key risk-reduction measures

#### Human health

To reduce the potential of workers coming into direct contact with tiafenacil on the skin or through inhalation of sprays, workers mixing, loading and applying Tiafenacil 70WG Herbicide or Tiafenacil 339SC Herbicide and performing cleaning and repair activities must wear a long-sleeved shirt, long pants, chemical-resistant gloves, socks and shoes. Additionally, standard label statements to protect against drift during application are on the labels. The labels also require that workers do not enter or be allowed entry into treated agricultural fields during the REI of 12 hours and until sprays have dried in non-crop areas.

#### Environment

With the following risk reduction measures on the label, the risks are considered acceptable:

- Environmental hazard statements for terrestrial plants and aquatic organisms;
- Precautionary label statements for run-off and leaching; and
- Label statements and spray buffer zones to protect non-target aquatic and terrestrial habitats.

#### Next steps

Before making a final registration decision on tiafenacil, Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide, Health Canada's PMRA will consider any comments received from the public in response to this consultation document. Health Canada will accept written comments on this proposal up to 45 days from the date of publication of this document. Please note that, to comply with Canada's international trade obligations, consultation on the proposed MRLs will also be conducted internationally via a notification to the World Trade Organization. Please forward all comments to Publications (contact information on the cover page of this document). Health Canada will then publish a Registration Decision, which will include its decision, the reasons for it, a summary of comments received on the proposed decision and Health Canada's response to these comments.

#### **Other information**

When Health Canada makes its registration decision, it will publish a Registration Decision on tiafenacil, Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide (based on the Science Evaluation of this consultation document). In addition, the test data referenced in this consultation document will be available for public inspection, upon application, in the PMRA's Reading Room.

## **Science Evaluation**

### Tiafenacil, Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide

#### **1.0** The Active Ingredient, Its Properties and Uses

#### **1.1** Identity of the Active Ingredient

| Active substance                       |                                                                                                                                                               |  |  |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Function                               | Herbicide                                                                                                                                                     |  |  |
| Chemical name                          |                                                                                                                                                               |  |  |
| of Pure and Applied                    | methyl 3-{[(2RS)-2-({2-chloro-5-[3-methyl-2,6-dioxo-4-<br>(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl]-4-<br>fluorophenyl}thio)propanoyl]amino}propanoate |  |  |
| 2. Chemical Abstracts<br>Service (CAS) | methyl $N$ -[2-[[2-chloro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-(trifluoromethyl)-1(2 $H$ )-pyrimidinyl]-4-fluorophenyl]thio]-1-oxopropyl]- $\beta$ -alaninate  |  |  |
| CAS number                             | 1220411-29-9                                                                                                                                                  |  |  |
| Molecular formula                      | $C_{19}H_{18}ClF_4N_3O_5S$                                                                                                                                    |  |  |
| Molecular weight                       | 511.88                                                                                                                                                        |  |  |
| Structural formula                     | F<br>$H_3C$<br>N<br>$H_3C$<br>O<br>F<br>Cl<br>O<br>O<br>Cl<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O                                                  |  |  |

Purity of the active 98.2% ingredient

#### **1.2** Physical and chemical properties of the active ingredient and end-use products

| Property                                                      | Result                                                         |                     |                                    |                                   |
|---------------------------------------------------------------|----------------------------------------------------------------|---------------------|------------------------------------|-----------------------------------|
| Colour and physical state                                     | Pale yellow solid                                              |                     |                                    |                                   |
| Odour                                                         | Characteristic                                                 |                     |                                    |                                   |
| Melting range                                                 | 120-123                                                        | °C                  |                                    |                                   |
| Boiling point or range                                        | The prod                                                       | uct starts          | boiling at                         | 342 °C at atmospheric pressure.   |
| Relative density                                              | $D_4^{20} = 1.$                                                | 513                 |                                    |                                   |
| Vapour pressure at 20 °C                                      | ≤1.48 × 1                                                      | 10 <sup>-8</sup> Pa |                                    |                                   |
| Ultraviolet (UV)-visible<br>spectrum                          | <u>Media</u><br>[methano                                       | <u>λ (nm)</u><br>1] | $\varepsilon$ (L*mol <sup>-1</sup> | <u>*cm<sup>-1</sup>)</u>          |
| speed din                                                     | Neutral                                                        | 205                 | 29300                              |                                   |
|                                                               |                                                                | 270                 | 9300                               |                                   |
|                                                               |                                                                | 290                 | 4700                               |                                   |
|                                                               | Acidic                                                         | 204                 | 25500                              |                                   |
|                                                               |                                                                | 268                 | 7200                               |                                   |
|                                                               |                                                                | 290                 | 3400                               |                                   |
|                                                               | Basic                                                          | 218                 | 15400                              |                                   |
|                                                               |                                                                | 254                 | 10000                              |                                   |
|                                                               | NT 1                                                           | 290                 | 2800                               |                                   |
|                                                               | No absor                                                       | -                   | >290 nm.                           |                                   |
| Solubility in water at 20 °C                                  | 110 mg/I                                                       | _                   | <u> </u>                           |                                   |
| Solubility in organic solvents at                             |                                                                |                     | Solubi                             | $\frac{\text{lity}(g/L)}{2}$      |
|                                                               | n-heptane                                                      |                     |                                    | 0.074                             |
|                                                               | xylene<br>dichloroe                                            | thoma               |                                    | 4.3<br>323                        |
|                                                               | acetone                                                        | unane               |                                    | 189                               |
|                                                               | methanol                                                       |                     |                                    | 24                                |
|                                                               | N,N-dime                                                       |                     | namide                             | 227                               |
|                                                               | ethyl acet                                                     | -                   | luiiiide                           | 137                               |
| <i>n</i> -Octanol-water partition<br>coefficient ( $K_{ow}$ ) | $\log K_{\rm ow} =$                                            |                     |                                    |                                   |
| Dissociation constant (p <i>K<sub>a</sub></i> )               | Not appli                                                      | icable              |                                    |                                   |
| Stability (temperature, metal)                                |                                                                |                     | minum. iro                         | n acetate and aluminum acetate at |
|                                                               | 54 °C for 14 days. Stable at ambient conditions for at least 2 |                     |                                    |                                   |
|                                                               | years.                                                         |                     |                                    |                                   |

#### Technical product — Tergeo Technical Herbicide

| End-use product — | - Tiafenacil 70WG Herbicide |
|-------------------|-----------------------------|
|-------------------|-----------------------------|

| Property                           | Result                                                                   |
|------------------------------------|--------------------------------------------------------------------------|
| Colour                             | Beige                                                                    |
| Odour                              | Odourless                                                                |
| Physical state                     | Solid                                                                    |
| Formulation type                   | WD (water dispersible granule)                                           |
| Label concentration                | 700 g/kg                                                                 |
| Container material and description | Plastic bottle or drum, 0.10 – 60 kg                                     |
| Density                            | 0.530–0.587 g/mL                                                         |
| pH of 1% dispersion in water       | 8.1–8.5                                                                  |
| Oxidizing or reducing action       | The product is not an oxidizing agent.                                   |
| Storage stability                  | The product is stable for 14 days when stored at 54 °C in HDPE bottles.  |
| Corrosion characteristics          | No corrosion to HDPE bottles was observed after 2 week storage at 54 °C. |
| Explodability                      | The product did not display explosive properties.                        |

#### End-use product — Tiafenacil 339SC Herbicide

| Property                     | Result                                                   |
|------------------------------|----------------------------------------------------------|
| Colour                       | White                                                    |
| Odour                        | Characteristic                                           |
| Physical state               | Liquid                                                   |
| Formulation type             | SU (suspension)                                          |
| Label concentration          | 339 g/L                                                  |
| Container material and       | Plastic bottle or drum, 0.50–200 L                       |
| description                  |                                                          |
| Density                      | 1.13 g/mL at 20 °C                                       |
| pH of 1% dispersion in water | 4.5-4.6                                                  |
| Oxidizing or reducing action | Compatible with water, monoammonium phosphate, powdered  |
|                              | zinc and kerosene; oxidized by potassium permanganate.   |
| Storage stability            | Stable for 14 days when stored at 54 °C in HDPE bottles. |
| Corrosion characteristics    | No corrosion to HDPE bottles was observed after 14-day   |
|                              | storage at 54 °C.                                        |
| Explodability                | Not explosive                                            |

#### 1.3 Directions for use

Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide are applied as broadcast sprays to field corn, soybean, spring wheat, summerfallow and non-crop areas, and as directed sprays to grape at 25 to 50 g a.i./ha in mixture with methylated seed oil (MSO) adjuvant at 1% v/v (10L/1000L water) using ground application equipment to young emerged weeds. A rate in the upper end of the rate range may be used for more dense weed infestations and/or for larger weeds up to 12.5 cm in height. One application of up to 50 g a.i./ha or two applications of 25 g a.i. ha may be made per year with a minimum reapplication interval of two weeks, except three weeks in grape. In field corn, soybean and spring wheat, application may only be made prior to planting and/or after planting but prior to crop emergence. In the event of a crop failure, field corn, soybean and spring wheat may be replanted immediately. Any crop may be planted after a tiafenacil-treated crop provided that planting is nine or more months after the last application.

#### 1.4 Mode of action

Tiafenacil is a conventional, non-selective, contact herbicide that inhibits protoporphyrinogen oxidase, which in turn inhibits production of important compounds like chlorophyll and ultimately leads to the formation of highly reactive molecules that destroy lipids and proteins in membranes, resulting in tissue death.

The mode of action of tiafenacil is classified as a Group 14 herbicide by the Weed Science Society of America (WSSA) and the Herbicide Resistance Action Committee (HRAC).

#### 2.0 Methods of analysis

#### 2.1 Methods for analysis of the active ingredient

The methods provided for the analysis of the active ingredient and impurities in the technical product have been validated and assessed to be acceptable for the determinations.

#### 2.2 Method for formulation analysis

The method provided for the analysis of the active ingredient in the formulation has been validated and assessed to be acceptable for use as an enforcement analytical method.

#### 2.3 Methods for residue analysis

**Environmental media**: High-performance liquid chromatography methods with tandem mass spectrometric detection (HPLC-MS/MS) were developed and proposed for data generation and enforcement purposes. These methods fulfilled the requirements with regards to selectivity, accuracy and precision at the respective method limit of quantitation. Acceptable recoveries (70-120%) were obtained in environmental media.

**Plant matrices**: A high performance liquid chromatography method with tandem mass spectrometric detection (HPLC-MS/MS; Method IRA15016N) was developed and proposed for data generation and enforcement purposes. A revised version of the method, Method GPL-MTH-113, which includes alternate solid phase extraction (SPE) clean-up procedures recommended by the independent laboratory validation (ILV) as well as discussion of the potential issues pertaining to mass overlap and the choice of the quantitation ions, was subsequently developed and found acceptable. In addition, Method IRA16019N (HPLC-MS/MS) was developed and proposed for data generation in rotational wheat matrices. These method fulfilled the requirements with regards to specificity, accuracy and precision at the respective method limit of quantitation. Acceptable recoveries (70–120%) were obtained in plant matrices. The proposed enforcement method was successfully validated in plant matrices by an independent laboratory. Adequate extraction efficiencies were demonstrated using radiolabelled samples (soybean seed and straw; potato foliage; and wheat grain and straw) analyzed with the enforcement method.

Animal matrices: A high performance liquid chromatography method with tandem mass spectrometric detection (HPLC-MS/MS; Method 035315) was developed and proposed for data generation and enforcement purposes. This method fulfilled the requirements with regards to specificity, accuracy and precision at the respective method limit of quantitation. Acceptable recoveries (70–120%) were obtained in animal matrices. The proposed enforcement method was successfully validated in animal matrices by an independent laboratory. Adequate extraction efficiencies were demonstrated using radiolabelled samples (muscle, fat, liver, kidney, milk and eggs) analyzed with the enforcement method.

Methods for residue analysis are summarized in Appendix I, Tables 1A and 1B.

#### 3.0 Impact on human and animal health

#### 3.1 Hazard assessment

#### 3.1.1 Toxicology summary

Tiafenacil (also known as DCC-3825) is a herbicide belonging to the pyrimidione class of chemicals. The primary pesticidal mode of action (MOA) of tiafenacil is inhibition of protoporphyrinogen IX oxidase (PPO) in plants for nonselective burndown weed control. The PPO inhibitors act by disrupting chlorophyll synthesis and protoporphyrin IX accumulation leading to cell membrane and oxidative damage in plants. The same enzyme is also a component of a similar pathway in animals that is involved in heme biosynthesis. Deficiency of this enzyme is seen in humans as an autosomal dominantly inherited disease known as variegate porphyria.

A detailed review of the toxicology database for tiafenacil was conducted. The database is complete, consisting of the full array of toxicity studies currently required for hazard assessment purposes. The studies were carried out in accordance with currently accepted international testing protocols and Good Laboratory Practices. Supplementary in vitro and in vivo studies included further evaluation of cardiovascular, respiratory toxicity effects and species-specific PPO inhibition studies. In addition, acute oral toxicity and in vitro genotoxicity studies, as well as a quantitative structure-activity relationship (QSAR) analysis were provided on select metabolites of tiafenacil. The human health risk assessment also considered information found in the published scientific literature. The scientific quality of the data is acceptable and the database is considered adequate to characterize the potential health hazards associated with tiafenacil.

The absorption, distribution, metabolism, and elimination profile of tiafenacil was investigated in rats using either [phenyl-<sup>14</sup>C]-tiafenacil or [pyrimidinyl-<sup>14</sup>C]-tiafenacil radiolabels. Bile cannulation experiments were also performed. The toxicokinetic data demonstrated that orally administered tiafenacil was rapidly and extensively absorbed from the gastrointestinal tract, distributed and excreted. Regardless of sex, dose level or radiolabel position, peak concentrations in blood and plasma were reached within one hour of dosing, and declined rapidly in the first 24 hours post-dose. The tissue distribution of radioactivity was consistent with the routes of elimination, being mainly concentrated in the liver and kidneys. By 168 hours post-dosing, excretion was complete with no detectable radioactivity remaining in the carcass or tissues. No radioactivity was present in the expired air of animals in a preliminary study. The major route of excretion representing a greater portion of the administered dose (AD) in females. Following administration to bile duct-cannulated animals, the majority of the radioactivity was excreted via the bile.

The metabolism of tiafenacil was qualitatively similar between the sexes regardless of radiolabel position or dose level. The identification of select metabolites is presented in Appendix I, Table 2. Significant (greater than 5% of the AD) metabolites excreted in urine and feces were M-01, M-05, M-07, M-52, and M-59. The less abundant metabolites in urine and feces were M-10, M-20, M-32, M-33, M-36, M-41, M-53 and M-58, as well as unchanged tiafenacil. The main metabolite in the liver, kidney, plasma, and bile was M-01. The major metabolites were consistent across most matrices with the exception of metabolites in excreta following administration of repeated doses to males. In repeat-dose group males, the main metabolite in feces was M-05.

Tiafenacil was rapidly transformed into metabolite M-01 by cleavage of the methyl ester. M-01 was further metabolized by degradation of the thioalkyl chain (M-12, M-13), oxidation of the sulphur atom (M-36, M-52), and modification of pyrimidine ring through reduction (M-05, M-53), demethylation (M-05, M-58), or ring opening (M-29, M-40, M-41).

Technical tiafenacil was of low acute toxicity via the oral, dermal, and inhalation routes in rats. It was minimally irritating to the rabbit eye and was non-irritating when applied to the rabbit skin. Skin sensitization testing in guinea pigs using the maximization method or in mice using the local lymph node assay (LLNA) did not demonstrate a potential for sensitization.

Both end-use products, Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide, were of low acute toxicity via the oral, dermal and inhalation routes in rats. Tiafenacil 70WG Herbicide was minimally irritating to the rabbit eye, whereas Tiafenacil 339SC Herbicide was nonirritating to the rabbit eye. Both end-use products were non-irritating to the skin of rabbits and neither demonstrated dermal sensitization potential in the LLNA in mice. Repeat-dose, short- and long-term oral toxicity studies with tiafenacil were available in mice (diet), rats (diet) and dogs (capsule). In these studies, the most sensitive species for toxicity was the mouse, followed by the rat and dog. Male mice were more sensitive than female mice. In vitro PPO inhibition studies confirmed these results for sensitivity by demonstrating that mouse PPO was more sensitive than rat, rabbit, or human PPOs. These studies also showed that rat was more sensitive than rabbit and that human PPO inhibition was the least sensitive.

The primary target of toxicity for all species was the hematopoietic system. Alterations in the erythropoietic system were consistently observed in all of the species, affecting red blood cell parameters such as decreases in erythrocyte, hemoglobin, hematocrit, mean cell volume, mean corpuscular hemoglobin or mean corpuscular hemoglobin concentrations and increases in reticulocyte count. These effects were due to the known MOA of tiafenacil, which, as a PPO inhibiting herbicide, generally induces microcytic hypochromic anaemia resulting from hepatic heme synthesis disruption in experimental animals.

The toxicity studies in mice, rats, and dogs exposed to tiafenacil also had common effects such as decreases in body weight and body weight gain. At higher dose levels, all of the species experienced periods of body weight loss as well as clinical signs of toxicity, such as hunched posture, abnormal respiration, piloerection and vomiting.

The other target organs affected by tiafenacil were the liver (mouse, rat and dog), spleen (rat and dog), and bone marrow (rat and dog). The findings in the liver, spleen, and bone marrow indicative of extramedullary hematopoiesis suggest an adaptive response to the reduced circulating red cells brought about by the MOA of tiafenacil. Increases in liver enzymes and liver weight as well as pathology of the liver were observed in mice and dogs. Histopathology changes in the liver included increased incidence of Kupffer cell pigmentation and necrosis in mice, and hepatocyte vacuolation in mice and dogs. Rats, however, had decreased liver weights, with increased liver enzymes but no corresponding liver histology.

The exposure of rats to tiafenacil via the dermal route for 28 days did not result in any toxicologically significant findings up to the limit dose of testing.

Long-term dietary toxicity studies in mice and rats demonstrated systemic toxicity similar to the findings in shorter-term studies. Increases in pigmented Kupffer cells, liver weight and pathology were seen in mice. Hematology parameters were not measured in the long-term mouse study; however, Kupffer cell changes were considered to be an indicator that hematopoietic processes were adversely affected since Kupffer cell changes were only observed in the shorter-term studies in mice in the presence of adverse effects on hematology parameters. Increases in spleen weight and pathology as well as extramedullary hematopoiesis in the bone marrow were observed in rats. In addition, retinal atrophy was observed at high dose levels in female rats. There was no evidence to indicate that tiafenacil was oncogenic in mice or rats.

Tiafenacil was negative in a battery of in vitro and in vivo genotoxicity assays.

There was no evidence of reproductive toxicity in either the range-finding 1-generation or 2generation reproductive dietary toxicity rat studies. Parental and offspring toxicity was evidenced by the increased levels of porphyrin observed in the liver. This effect is consistent with the hematotoxicity observed throughout the database, and the effect was more pronounced in males than females. Additional effects in the offspring included an increase in kidney cysts in the 2generation reproductive dietary toxicity study and decreased body weight and increased spleen weight in the 1-generation reproductive toxicity study. These effects in the 1-generation reproductive toxicity occurred in absence of parental toxicity, however the findings were not replicated in offspring of the more robust 2-generation reproductive toxicity study. Therefore there was no evidence of sensitivity of the young.

There was evidence of increased sensitivity of the young in rats but not rabbits in the gavage developmental toxicity studies. In rats, no maternal effects were observed up to the highest dose level tested, while there was a decrease in fetal weights and increased ossification of the phalanges at the high-dose level in fetuses. The toxicological significance of an increase in ossification is uncertain, however it is not considered to be a serious effect. Decreases in body weight are also not considered a serious effect. No adverse effects were observed in rabbits in the maternal or the fetal animals. Range-finding developmental studies conducted in rats and rabbits demonstrated serious effects which occurred only at doses that were much higher than those in the main studies. Increased post-implantation loss was observed in rats, and decreased live fetuses was observed in rabbits in the absence of maternal toxicity in both cases. The effects in the range-finding studies were not considered relevant to reference value selection as they only occurred at very high doses and were not observed at lower doses in the more robust guideline studies. Overall, there is low concern for effects in the young.

Tiafenacil showed no evidence of selective neurotoxicity in oral acute and 90-day dietary neurotoxicity studies in rats or immune dysregulation in a 28-day dietary immunotoxicity study in mice.

A 30-day oral telemetric evaluation of cardiovascular effects in dogs and a whole-body bias flow plethysmography study measuring respiratory parameters in rats did not reveal any treatment-related effects. An in vitro hERG tail current amplitude assay showed that tiafenacil produced a partial block of the hERG current although an  $IC_{50}$  could not be derived.

Thirteen metabolites of tiafenacil were screened for acute toxicity endpoints using QSAR software TOPKAT 4.5. The majority of metabolites had predicted acute oral toxicities of low to slight acute toxicity. Only metabolite M-69 had a predicted acute oral toxicity of highly acutely toxic. In addition, metabolites M-36 and M-53 were assessed in acute oral toxicity studies in rats, and in both cases, acute oral toxicity was low. Although there was limited information available, for the purposes of risk assessment the metabolites were considered to be of equivalent toxicity to tiafenacil.

Eighteen tiafenacil metabolites were screened for possible genotoxicity or mutagenicity in bacteria and mammals using the DEREK NEXUS system. There were no alerts identified for any of the metabolites. In addition, metabolites M-36 and M-53 were screened for evidence of genotoxicity and mutagenicity using the bacterial reverse mutation assay and both assays were negative.

The identification of select metabolites is presented in Appendix I, Table 2. Results of the toxicology studies conducted on laboratory animals with tiafenacil and its associated end-use products, Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide, are summarized in Appendix I, Tables 3, 4 and 5. The toxicology reference values for use in the human health risk assessment are summarized in Appendix I, Table 6.

#### 3.1.2 Pest Control Products Act Hazard Characterization

For assessing risks from potential residues in food or from products used in or around homes or schools, the *Pest Control Products Act* requires the application of an additional 10-fold factor to threshold effects to take into account completeness of the data with respect to the exposure of, and toxicity to, infants and children, and potential prenatal and postnatal toxicity. A different factor may be determined to be appropriate on the basis of reliable scientific data.

With respect to the completeness of the toxicity database as it pertains to the toxicity to infants and children, the database contains the full complement of required studies including oral gavage developmental toxicity studies in rats and rabbits and a 2-generation reproductive dietary toxicity study in rats.

With respect to potential prenatal and postnatal toxicity, there was no indication of increased sensitivity of fetuses or offspring compared to parental animals in the gavage rabbit prenatal developmental or dietary reproductive toxicity studies. An increased incidence of ossification of phalanges and decreased fetal weight were observed in the rat developmental toxicity study in the absence of maternal toxicity, however, the toxicological significance of the increased ossification is uncertain. The serious effect of post-implantation loss, observed in the rat range-finding study, occurred at a much higher dose level than the dose levels used in the main study. Overall, the database is adequate for determining sensitivity of the young. There is a low level of concern for sensitivity of the young as the effects in the young were well-characterized and the effects in main studies at dose levels relevant for risk assessment are not considered to be serious in nature. On the basis of this information, the *Pest Control Products Act* (PCPA) factor was reduced to onefold.

#### **3.2** Toxicology reference values

#### 3.2.1 Route and duration of exposure

For mixers, loaders and applicators, occupational exposure to Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide is characterized as short- to intermediate-term in duration and is predominantly by the dermal and inhalation routes. For postapplication workers, occupational exposure to Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide is characterized as short-term in duration and is predominantly by the dermal route.

#### 3.2.2 Occupational and residential toxicology reference values

#### Short- and intermediate-term dermal

For the short- and intermediate-term dermal occupational risk assessment, the NOAEL of 1000 mg/kg bw/day from the 28-day dermal toxicity study in rats was selected, which was the highest dose level tested in this study. This study was conducted via the relevant route and was of an appropriate duration of exposure. For occupational and residential scenarios, the target margin of exposure (MOE) is 100, which includes standard uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability. For residential scenarios, the PCPA factor was reduced to onefold as discussed in the *Pest Control Products Act* Hazard Characterization section. The selection of this study and target MOE is considered to be protective of all populations, including nursing infants and unborn children of exposed women.

#### Short-, intermediate-term inhalation

For short- and intermediate-term inhalation risk assessment, a NOAEL of 1.7 mg/kg bw/day from the 90-day dietary toxicity study in mice was selected. A repeat-dose inhalation toxicity study was not available and thus, use of a NOAEL from an oral study was appropriate. At the LOAEL of 13 mg/kg bw/day, liver toxicity was observed.

For occupational scenarios, the target MOE for this endpoint is 100, which includes standard uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability. The selection of this study and target MOE is considered to be protective of all populations, including nursing infants and the unborn children of exposed female workers.

#### 3.2.3 Acute reference dose (ARfD)

#### General population (including females 13-49 years of age)

Establishment of an acute reference dose is not required, as an endpoint of concern attributable to a single exposure was not identified in the oral toxicity studies.

#### 3.2.4 Acceptable daily intake (ADI)

#### General population (including females 13-49 years of age)

To estimate risk following repeated dietary exposure, the NOAEL of 0.35 mg/kg bw/day from the 78-week dietary carcinogenicity study in the male mouse was selected. At the LOAEL of 1.1 mg/kg bw/day, liver effects including increases in pigmented Kupffer cells (as a marker for hematological changes) and hepatocellular hypertrophy were observed. This study provides the lowest NOAEL in the database. Standard uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability were applied. As discussed in the *Pest Control Products Act* Hazard Characterization section, the PCPA factor was reduced to onefold. **The composite assessment factor (CAF) is thus 100.** 

The ADI is calculated according to the following formula:

$$ADI = \frac{NOAEL}{CAF} = \frac{0.35 \text{ mg/kg bw/day}}{100} = 0.004 \text{ mg/kg bw/day of tiafenacil}$$

#### 3.2.5 Cancer assessment

There was no evidence of carcinogenicity and therefore, a cancer risk assessment was not necessary.

#### 3.2.6 Aggregate risk assessment

Aggregate exposure is the total exposure to a single pesticide that may occur from dietary (food and drinking water), residential and other non-occupational sources, and from all known or plausible exposure routes (oral, dermal and inhalation). For tiafenacil, the aggregate assessment consisted of combining food and drinking water exposure only, since residential exposure is not expected. The most relevant toxicology endpoints and assessment factors for acute and chronic oral aggregate exposure are the same as those selected for the ARfD (see section 3.2.3) and ADI (see section 3.2.4), respectively.

#### **3.3 Dermal absorption**

A dermal absorption value is not required in the risk assessment since the dermal toxicology reference value for tiafenacil is based on a dermal toxicity study.

#### 3.4 Occupational and residential exposure assessment

#### 3.4.1 Acute hazards of end-use products and mitigation measures

#### **Tiafenacil 70WG Herbicide**

Tiafenacil 70WG Herbicide is of low acute toxicity in the rats via oral, dermal and inhalation routes of exposure. In rabbits, it is minimally irritating to the eyes and non-irritating to the skin. It is not a skin sensitizer in mice. Based on these acute hazards, a long-sleeved shirt, long pants, chemical-resistant gloves, socks and shoes are required for workers during mixing, loading, application, clean-up and repair.

#### Tiafenacil 339SC Herbicide

Tiafenacil 339SC Herbicide is of low acute oral, dermal and inhalation toxicity in rats. It is considered non-irritating to the eyes and skin of rabbits and is not a dermal sensitizer. Based on these acute hazards, a long-sleeved shirt, long pants, chemical-resistant gloves, socks and shoes are required for workers during mixing, loading, application, clean-up and repair.

#### 3.4.2 Occupational exposure and risk assessment

#### 3.4.2.1 Mixer, loader and applicator exposure and risk assessment

Individuals have potential for exposure to tiafenacil during mixing, loading, application, clean-up and repair. Dermal and inhalation exposure estimates were generated from the Agricultural Handlers Exposure Task Force (AHETF) database and the Pesticide Handlers Exposure Database (PHED) for mixers, loaders and applicators applying Tiafenacil 70WG Herbicide or Tiafenacil 339SC Herbicide as a preplant or pre-emergent burndown treatment to field corn, soybeans and spring wheat; as a directed postemergent burndown treatment to grape canes; and as a postemergent burndown treatment to fallow and bare ground non-crop areas using ground and handheld equipment. The applicant is a member of AHETF and has full access to the data that were used to estimate worker exposure. The unit exposure values in the risk assessment are based on handlers wearing a single layer of clothing and chemical-resistant gloves (Appendix I, Table 7).

Dermal exposure was estimated using the unit exposure values with the amount of product handled per day. Inhalation exposure was estimated by coupling the unit exposure values with the amount of product handled per day with 100% inhalation absorption. Exposure was normalized to mg/kg bw/day by using 80 kg adult body weight.

Calculated MOEs are greater than the target margin of exposure (MOE) of 100 for all chemical handler scenarios in agricultural crops and non-cropland areas, and are therefore not of health concern (Appendix I, Tables 8 and 9).

Taking into account both the acute toxicity of the end-use products and the risk assessment for tiafenacil, workers are required to wear a long-sleeved shirt, long pants, chemical-resistant gloves, socks and shoes. Chemical-resistant gloves are not required during application within a closed cab.

#### 3.4.2.2 Exposure and risk assessment for workers entering treated areas

Postapplication dermal exposure is expected to be negligible for farmers and workers when tiafenacil is applied as a preplant or pre-emergent burndown treatment to field corn, soybeans and spring wheat as well as a postemergent burndown treatment to fallow and bare ground non-crop areas. It is expected that the main postapplication activity, if any, would be scouting for remaining weeds, and this visual inspection does not require the workers to be in close contact to the plants. Consequently, the dermal exposure to workers scouting for weeds would be minimal, and therefore, for these uses, a qualitative postapplication dermal risk assessment was performed for tiafenacil. No health risks of concern are expected at the restricted-entry interval (REI) of 12 hours for agricultural areas and of until sprays have dried for non-cropland areas to protect workers conducting postapplication activities.

There is potential for exposure to workers entering vineyards treated with Tiafenacil 70WG Herbicide or Tiafenacil 339SC Herbicide when applied as a postemergent burndown treatment directed to weeds at the base of grape canes. Given the nature of activities performed (hand-set irrigation, scouting and pruning), exposure should be primarily via the dermal route based on contact with treated foliage. Inhalation exposure is not expected as tiafenacil is considered non-volatile with a vapour pressure  $\leq 1.48 \times 10^{-8}$  Pa (at 20 °C), which is less than the North American Free Trade Agreement (NAFTA) criterion for a non-volatile product for outdoor scenarios of  $1 \times 10^{-4}$  kPa ( $7.5 \times 10^{-4}$  mm Hg) at 20–30 °C. As such, a quantitative postapplication inhalation risk assessment is not required. Inhalation risk is not of health concern for postapplication workers as tiafenacil is considered to be non-volatile and the restricted-entry interval of 12 hours will allow residues to dry, suspended particles to settle and vapours to dissipate.

Dermal exposure to workers entering treated vineyards is estimated using dislodgeable foliar residue (DFR) values with activity-specific transfer coefficients (TCs). Activity TCs are based on data from the Agricultural Re-entry Task Force (ARTF), of which the applicant is a member and has full access to the data used to estimate the worker exposure. As chemical-specific DFR data were not submitted, a default DFR value of 25% of the application rate coupled with 10% daily dissipation of residues were used in the exposure assessment.

Exposure estimates were compared to the toxicology reference value to obtain the margin of exposure (MOE); the target MOE is 100. Only exposures and risks to the activities with the highest TCs are presented as MOEs for these activities exceed the target MOE of 100 (Appendix I, Tables 10 and 11). As such, there are no health risks of concern and the REI of 12 hours is adequate to protect workers entering treated vineyards to conduct postapplication activities.

#### 3.4.3 Residential exposure and risk assessment

#### 3.4.3.1 Handler exposure and risk assessment

Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide are not domestic class products; therefore, a residential handler exposure assessment is not required.

#### 3.4.3.2 Postapplication exposure and risk assessment

Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide are not domestic class products and are not for use in residential settings; therefore, a residential postapplication exposure assessment is not required.

#### 3.4.4 Bystander exposure and risk assessment

Bystander exposure is considered negligible as application is limited when there is low risk of drift beyond the area to be treated, taking into consideration wind speed, wind direction, temperature inversions, application equipment, and sprayer settings. Therefore, bystander exposure and risk are not of health concern since the potential for drift is expected to be minimal.

#### 3.5 Dietary exposure and risk assessment

#### 3.5.1 Exposure from residues in foods of plant and animal origin

#### Commodities of plant origin

The residue definition for enforcement in plants is tiafenacil. In primary crops, the residue definition for risk assessment is tiafenacil for human food commodities; and tiafenacil and the metabolites M-36, M-53 and M-56 for livestock feed commodities. In rotational crops, the residue definition for risk assessment is tiafenacil and the metabolite M-32 (TFA) in human food commodities, and in livestock feed commodities is tiafenacil and the metabolites M-32, M-36, M-53 and M-56. All residue definitions are expressed in parent equivalents.

| Metabolite | Chemical Name                                                                                                   | Structure   |
|------------|-----------------------------------------------------------------------------------------------------------------|-------------|
| M-32 (TFA) | Trifluoroacetic acid                                                                                            | F<br>F<br>F |
| M-36       | 2-(2-chloro-4-fluoro-5-(3-methyl-2,6-<br>dioxo-4-(trifluoromethyl)-2,3-<br>dihydropyrimidin-1(6 <i>H</i> )-yl)- |             |

| Metabolite | Chemical Name                                                                                                                                 | Structure                                                                           |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|            | phenylsulfinyl)propanoic acid                                                                                                                 | $F_{3}C$ $N$ $O$ $Cl$ $CH_{3}$ $OH$ $OH$ $OH$ $OH$ $OH$ $OH$ $OH$ $OH$              |
| M-53       | 2-(2-chloro-4-fluoro-5-(3-methyl-2,6-<br>dioxo-4-<br>(trifluoromethyl)tetrahydropyrimidin-<br>1(2 <i>H</i> )-yl)phenylsulfinyl)propanoic acid | $F_{3}C$ $N$ $O$ $Cl$ $CH_{3}$ $OH$ $H_{3}$ $OH$ $OH$ $OH$ $OH$ $OH$ $OH$ $OH$ $OH$ |
| M-56       | 2-(2-chloro-5-(2,6-dioxo-4-<br>(trifluoromethyl)-2,3-dihydropyrimidin-<br>1(6 <i>H</i> )-yl)-4-<br>fluorophenylsulfinyl)propanoic acid        | $F_{3}C$ $H$ $O$ $H$ $O$                        |

The data gathering/enforcement analytical method, Method IRA15016N (revised version, GPL-MTH-113), is valid for the quantitation of tiafenacil and metabolites M-36, M-53 and M-56 residues in crop matrices. In addition, the data gathering method, Method IRA16019N, is valid for the quantitation of tiafenacil and the metabolites M-36, M-53, M-56, in rotational wheat matrices.

The demonstrated freezer storage stabilities of tiafenacil and the metabolites are as follows:

- Grapes: Tiafenacil, M-36, M-53 and M-56 are stable for 24 months;
- Grape Juice and Raisins: Tiafenacil, M-36, M-53 and M-56 are stable for 12 months;
- Soybean Seed: Tiafenacil is stable for 6 months; M-36 and M-56 are stable for 18 months; and M-53 is stable for 24 months;
- Wheat Forage and straw: Tiafenacil, M-36, M-53 and M-56 are stable for 24 months;
- Wheat grain: Tiafenacil, M-36, M-53 and M-56 are stable for 22 months.

During the grape, corn, wheat and soybean field trials, additional plots were allocated for treatment rates corresponding to 1.50 kg a.i./ha (30-fold of maximum seasonal rate). As residues of tiafenacil were non-quantifiable in/on wheat grain, corn grain and soybean seed, samples were not processed. Tiafenacil residues were non-quantifiable in grapes and processed commodities (in other words, juice and raisins). As such, processing factors could not be calculated for tiafenacil in any processed fractions.

Crop field trials conducted throughout Canada and the United States using end-use products containing tiafenacil at exaggerated rates in or on grapes, corn, wheat and soybean are sufficient to support the proposed MRLs.

Field rotational crop studies were conducted in/on wheat. These data together with the data from the confined crop rotation study are adequate to demonstrate that labeled crops can be planted immediately after application, a 30-day plant-back interval is appropriate for non-labeled roots crops and leafy vegetables, and 90 days for all other non-labeled crops.

#### Commodities of animal origin

The residue definition for risk assessment and enforcement in animal commodities is tiafenacil. The data gathering/enforcement analytical method, Method 035315, is valid for the quantitation of tiafenacil residues in livestock matrices. Quantifiable residues are not expected to occur in livestock matrices with the current use pattern. As such, MRLs are proposed at the limit of quantitation (LOQ) of the enforcement method for animal matrices.

#### 3.5.2 Concentrations in drinking water

#### 3.5.2.1 Surface water

Level 1 Estimated Environmental Concentrations (EECs) were calculated using the Pesticide in Water Calculator model (PWC, version 1.52). Modelling for surface water used a standard Level 1 scenario, a small reservoir adjacent to agricultural fields. All scenarios were run for 50 years.

The following use patterns were considered in the modelling for surface water:

- A single application of 50 g a.i./ha, as would be used on crops and fallow
- Two applications of 25 g a.i./ha with a 21-d interval, corresponding to a maximum annual rate of 50 g a.i./ha, as would be used on grapes
- Two applications of 25 g a.i./ha with a 14-d interval, corresponding to a maximum annual rate of 50 g a.i./ha, as would be used on fallow and crops other than grapes

The modelling used a combined residue approach for initial application dates ranging from early April to late October (for fallow) and from early April to late June (for crops). The modelling was conducted with and without trifluoroacetic acid (TFA, identified as M-32 in the fate studies), in the form of two separate combined residue groupings. Residue Definition 1 consisted of tiafenacil plus 24 transformation products (without M-32) and Residue Definition 2 consisted of tiafenacil plus 25 transformation products (with M-32). Transformation products included in the residue definition were as follows: M-01, M-06, M-07, M-12, M-13, M-16, M-20, M-26, M-28, M-29, M-30, M-35, M-36, M-39, M-40, M-49, M-53, M-63, M-69, M-71, M-72, M-73, M-85, M-86 (and M-32).

Fate input parameters for modelling of the combined residue approach are listed in Table 3.5.2.1-1.

| Fate Parameter       | Value                                                           |  |
|----------------------|-----------------------------------------------------------------|--|
| Residues modelled    | Residue Definition 1: Combined residue of Parent + 24TPs        |  |
|                      | Residue Definition 2: Combined residue of Parent + 24TPs + M-32 |  |
| K <sub>d</sub>       | 0.063 L/kg                                                      |  |
| Water half-life      | ter half-life Residue Definition 1: 462 d at 20 °C              |  |
|                      | Residue Definition 2: 485 d at 20 °C                            |  |
| Sediment half-life   | Stable at 20 °C                                                 |  |
| Photolysis half-life | 151 d                                                           |  |
| Hydrolysis           | Stable at 20 °C                                                 |  |
| Soil half-life       | Residue Definition 1: 2004 d at 20 °C                           |  |
|                      | Residue Definition 2: 2319 d at 20 °C                           |  |

Table 3.5.2.1-1 Fate input parameters for the drinking water modelling for surface water

Table 3.5.2.1-2 reports the surface water EECs obtained with the standard Level 1 scenario, covering all regions of Canada.

| Table 3.5.2.1-2         Level 1         Estimated         Environmental         Concentrations of tiafenacil         combined |
|-------------------------------------------------------------------------------------------------------------------------------|
| residues in surface water, reported as parent equivalent                                                                      |

| Use pattern       | Residues Modelled | Sur                | Surface Water (µg a.i./L) |                      |  |  |
|-------------------|-------------------|--------------------|---------------------------|----------------------|--|--|
|                   |                   | Daily <sup>1</sup> | Yearly <sup>2</sup>       | Overall <sup>3</sup> |  |  |
| Fallow            |                   |                    |                           |                      |  |  |
| 1 × 50 g a.i./ha  | P + 24 TPs        | 3.6                | 0.54                      | 0.28                 |  |  |
|                   | P + 24 TPs + M-32 | 3.6                | 0.54                      | 0.28                 |  |  |
| 2 × 25 g a.i./ha  | P + 24 TPs        | 2.6                | 0.48                      | 0.26                 |  |  |
|                   | P + 24 TPs + M-32 | 2.6                | 0.48                      | 0.27                 |  |  |
| Crops             |                   |                    |                           |                      |  |  |
| $1 \times 50 = 1$ | P + 24 TPs        | 3.5                | 0.56                      | 0.23                 |  |  |
| 1 × 50 g a.i./ha  | P + 24 TPs + M-32 | 3.5                | 0.56                      | 0.23                 |  |  |
| 2 × 25 g a.i./ha  | P + 24 TPs        | 2.3                | 0.49                      | 0.23                 |  |  |
| 2 ^ 25 g a.i./iia | P + 24 TPs + M-32 | 2.3                | 0.49                      | 0.23                 |  |  |

<sup>1</sup> 90<sup>th</sup> percentile of the highest 1-day average concentration from each year

 $^{2}$  90<sup>th</sup> percentile of yearly average concentrations

<sup>3</sup> Average of all yearly average concentrations

#### 3.5.2.2 Groundwater

Level 1 EECs were calculated using the Pesticide in Water Calculator model (PWC, version 1.52). The model was run for 50 years using all possible combinations of scenarios, degradation parameters, and application dates for a single application of 50 g a.i./ha, as would be used on crops and fallow. The following was used:

- A set of standard scenarios representing the soil and climate in different regions of Canada,
- A set of soil degradation parameters taken from all four soils in which degradation of tiafenacil was studied, and
- A set of six initial application dates between 1 April and 28 October.

The groundwater modelling used a parent-daughter-granddaughter modelling approach. Residues relevant for the groundwater modelling were tiafenacil, M-01, M-12, M-13, M-16, M-29, M-30, M-35, M-36, M-53, M-63, M-69, M-72, M-73, and optionally M-32 (trifluoroacetic acid). Other compounds in the residue definition were not observed during the soil degradation of tiafenacil and are therefore not expected in groundwater.

Fate input parameters for groundwater modelling of the parent-daughter-granddaughter approach are listed in Table 3.5.2.2-1.

|                                 | <b>Combined Parent</b> | Combined          | Granddaughter | Granddaughter |  |
|---------------------------------|------------------------|-------------------|---------------|---------------|--|
|                                 |                        | Daughter          |               |               |  |
| Residues                        | Tiafenacil, M-01,      | M-29, M-30, M-35, | M-32          | M-69          |  |
| Modelled                        | M-12, M-13, and        | M-36, M-53, M-63, |               |               |  |
|                                 | M-16                   | M-72, and M-73    |               |               |  |
| K <sub>oc</sub> (L/kg)          |                        |                   |               |               |  |
| CA                              | 15                     | 10                | 1             | 10            |  |
| LAD                             | 15                     | 2.1               | 1             | 2.1           |  |
| MCL                             | 14                     | 1.8               | 1             | N/A           |  |
| MSL                             | 17                     | 3.5               | 1             | N/A           |  |
| Hydrolysis                      | Stable                 |                   |               |               |  |
| (at 20 °C)                      | Stable                 |                   |               |               |  |
| Soil half-life (days, at 20 °C) |                        |                   |               |               |  |
| CA                              | 5.5                    | 3.62e+03          | 1.6e+06       | 3.62e+03      |  |
| LAD                             | 4.8                    | 2.88              | 1.7e+11       | 288           |  |
| MCL                             | 0.74                   | 5.22e+03          | 730           | N/A           |  |
| MSL                             | 1.7                    | 1.20e+07          | 7.5           | N/A           |  |

Table 3.5.2.2-1 Fate input parameters for the drinking water modelling for groundwater

CA = loamy sand from California; LAD = clay from Wyoming; MCL = clay loam from North Dakota; MSL = sandy clay loam from North Dakota.

The highest groundwater EECs obtained across all modelling combinations are provided in Table 3.5.2.2-2, covering all regions of Canada. The highest groundwater EECs obtained across all modelling combinations are the same with and without M-32.

# Table 3.5.2.2-2 Level 1 Estimated environmental concentrations of tiafenacil combined residues in groundwater, reported as parent equivalent

| Use pattern                        | Groundwater (µg a.i./L) |                     |  |
|------------------------------------|-------------------------|---------------------|--|
|                                    | Daily <sup>1</sup>      | Yearly <sup>2</sup> |  |
| Single application of 50 g a.i./ha | 46                      |                     |  |

<sup>1</sup> 90<sup>th</sup> percentile of daily concentrations

<sup>2</sup> 90<sup>th</sup> percentile of 365-day moving average concentrations

#### 3.5.3 Dietary risk assessment

A chronic dietary risk assessment was conducted using the Dietary Exposure Evaluation Model (DEEM-FCID<sup>TM</sup>, Version 4.02, 05-10-c), which incorporates consumption data from the National Health and Nutrition Examination Survey/What We Eat in America (NHANES/WWEIA) for the year 2005-2010.

#### 3.5.3.1 Acute dietary exposure results and characterization

No appropriate toxicological reference value attributable to a single dose for the general population (including children and infants) was identified.

#### 3.5.3.2 Chronic dietary exposure results and characterization

The following criteria were applied to the basic chronic analysis for tiafenacil: proposed MRLs and American tolerances, including imported commodities, 100% crop treated, default processing factors, and inclusion of the common metabolite trifluoroacetic acid (TFA) for rotational crops. Aggregate exposure from food and drinking water is considered acceptable. The PMRA estimates that chronic dietary exposure to tiafenacil from food and drinking water is 26.7% (0.001 mg/kg bw/day) of the ADI for the total population. The highest exposure and risk estimate is for all infants (< 1 year) at 92.0% (0.004 mg/kg bw/day) of the ADI. When TFA in rotational crops is added, the exposure estimate is 31.7% (0.001 mg/kg bw/day) of the ADI for the total population and the highest exposure and risk estimate is at 101.5% (0.004 mg/kg bw/day) for all infants (< 1 year).

#### 3.6 Aggregate exposure and risk assessment

For tiafenacil, the aggregate assessment consisted of combining food and drinking water exposure only, since residential exposure is not expected.

#### 3.7 Cumulative assessment

The *Pest Control Products Act* requires Health Canada's PMRA to consider the cumulative effects of pest control products that have a common mechanism of toxicity. Tiafenacil belongs to a class of herbicides known as protoporphyrinogen IX oxidase (PPO) inhibitors. Within this class, there are several herbicides registered in Canada and internationally that all have the same MOA, namely the inhibition of a key enzyme in the chlorophyll synthesis pathway, protoporphyrinogen oxidase (also referred to as Protox). The same enzyme and pathway are also involved in heme biosynthesis in mammals resulting in changes in hematopoietic parameters. Overall, based on the similar MOA of these compounds, further consideration for potential cumulative health effects is warranted. A cumulative health risk assessment will be conducted separately.

Trifluoroacetic acid (TFA), a metabolite of tiafenacil (metabolite M-32), is a common environmental degradate from both pesticide sources such as tiafenacil, flufenacet, or saflufenacil, and non-pesticide sources, such as industrial chemicals (for example chlorofluorocarbons). Levels of TFA released into the environment from current agricultural uses of tiafenacil in Canada are generally minor compared to other sources, therefore a cumulative assessment for TFA is not required at this time. Health Canada will continue to monitor the status of pesticide-related contributions of TFA to the environment.

#### 3.8 Maximum Residue Limits

| MRL (ppm) | Food Commodity                                              |  |
|-----------|-------------------------------------------------------------|--|
| 0.01      | Dry soybeans; eggs; fat, meat and meat byproducts of        |  |
|           | cattle, goats, hogs, horses, poultry and sheep; field corn; |  |
|           | grapes: milk: popcorn grain: wheat                          |  |

#### **Table 3.8-1 Recommended Maximum Residue Limits**

For additional information on Maximum Residue Limits (MRLs) in terms of the international situation and trade implications, refer to Appendix II.

The nature of the residues in animal and plant matrices, analytical methodologies, field trial data, and chronic dietary risk estimates are summarized in Appendix I, Tables 1B, 12 and 13.

#### 3.9 Health Incident Reports

Tiafenacil is a new active ingredient pending registration for use in Canada, and as of 30 April 2021, no incident reports had been submitted to the PMRA.

#### 4.0 Impact on the environment

#### 4.1 Fate and behaviour in the environment

Environmental fate properties of tiafenacil and its transformation products are summarized in Appendix I, Tables 14 and 15.

Tiafenacil has low vapour pressure ( $\leq 1.48 \times 10^{-8}$  Pa at 20 °C), low Henry's law constant (H  $\leq 6.89 \times 10^{-8}$  Pa-m<sup>3</sup>/mol), and it is soluble in water (110 mg/L at 20 °C). These intrinsic physico-chemical properties suggest that tiafenacil is unlikely to volatilize from moist soil or water surfaces under field conditions.

Laboratory studies of abiotic processes indicate that hydrolysis is temperature- and pHdependant, and not an important route of transformation under neutral and acidic conditions. However, under alkaline conditions (for example, a marine environment), tiafenacil is expected to undergo rapid hydrolysis (DT<sub>50</sub> of less than 1 to 4 days). Eight major transformation products are formed from hydrolysis (M-01, M-06, M-07, M-33, M-39, M-40, M-49, and M-50).

Phototransformation on soil is not a major route of transformation of tiafenacil (half-life of 405 days adjusted to equivalent summer sunlight). However, phototransformation in water is considered to be an important route of transformation for tiafenacil, with a half-life of 5.9 days adjusted to equivalent summer sunlight, and three major transformation products were formed (M-71, M-72 and M-85).

Laboratory studies of biotic transformation processes indicate that tiafenacil is not persistent in aerobic soil (DT<sub>50</sub>s of  $\leq 0.116$  days) or anaerobic soil (DT<sub>50</sub>s of  $\leq 1.37$  days). The thirteen major transformation products formed in soil under aerobic conditions include M-01, M-12, M-13, M-29, M-30, M-32, M-35, M-36, M-53, M-63, M-69, M-72, and M-73. Under anaerobic conditions, the ten major transformation products formed include M-01, M-07, M-12, M-16, M-20, M-26, M-33, M-34, M-39, and M-86. Observations from terrestrial field dissipation studies complement the interpretation of the laboratory results. Two studies on bare soil in Canadian-relevant ecoregions resulted in DT<sub>50</sub>s of  $\leq 0.61$  days, suggesting that tiafenacil rapidly dissipates under field conditions. In aquatic systems under both aerobic and anaerobic conditions, tiafenacil is not expected to be persistent (DT<sub>50</sub> ranging from 2.5 to 7.8 days). Nine major transformation products were formed under aerobic aquatic conditions, including M-01, M-06, M-07, M-12, M-13, M-16, M-20, M-32, and M-40. Under anaerobic aquatic conditions, nine major transformation products were also formed, however some differed from the aerobic study: M-01, M-06, M-07, M-20, M-26, M-33, M-34, M-39 and M-49.

Overall, 25 major transformation products were identified that may be present in the terrestrial environment (for details, see Appendix I, Table 15). The amounts of several of these transformation products were observed to be increasing at the end of hydrolysis, phototransformation, and aerobic and anaerobic biotransformation studies in at least one sample measured. In terrestrial field dissipation studies, however, transformation of tiafenacil occurred rapidly and resulted in the formation of several identified transformation products. Under field conditions, transformation products of tiafenacil were last detected at day 10 of 60 in Washington (M-36 and M-72), and day 310 of 366 in North Dakota (M-36 and M-53). Tiafenacil is not considered persistent in the terrestrial environment, and while the total amount of applied residue may remain high in laboratory studies, under field conditions nearly all transformation products of tiafenacil are shown to dissipate over the course of a growing season. Overall, it is not expected that the residue of tiafenacil will carry-over to the next season under field conditions, and as such a label statement pertaining to carry-over is not required.

Tiafenacil is not considered persistent in the aquatic environment. A large number of transformation products were also identified in aquatic systems, which include 15 of the major transformation products identified in the terrestrial environment, as well as M-71 and M-85. As in the terrestrial environment, the amounts of several of these transformation products were observed to be increasing during the various laboratory studies.

Tiafenacil has low mobility in soil due to its strong adsorption onto soil particles ( $K_{oc} = 1965$ ). Although tiafenacil is not classified as a leaching compound, most of the 14 major (and 1 minor) transformation products evaluated for adsorption/desorption in soil demonstrate high mobility, with low  $K_{oc}$  values ranging from 1.76 to 60.8, and may therefore leach to groundwater.

The log octanol/water partitioning coefficient for tiafenacil (log  $K_{ow} \leq 2$ ) suggests that it is not expected to bioaccumulate in aquatic organisms or animal tissue.

#### 4.2 Environmental risk characterization

The environmental risk assessment integrates the environmental exposure and ecotoxicology information to estimate the potential for adverse effects on non-target species. This integration is achieved by comparing exposure concentrations with concentrations at which adverse effects occur. EECs are concentrations of pesticide in various environmental media, such as food, water, soil and air. The EECs are estimated using standard models which take into consideration the application rate(s), chemical properties and environmental fate properties, including the dissipation of the pesticide between applications. Ecotoxicology information includes acute and chronic toxicity data for various organisms or groups of organisms from both terrestrial and aquatic habitats including invertebrates, vertebrates, and plants. Toxicity endpoints used in risk assessments may be adjusted to account for potential differences in species sensitivity as well as varying protection goals (in other words, protection at the community, population, or individual level).

Initially, a screening level risk assessment is performed to identify pesticides and/or specific uses that do not pose a risk to non-target organisms, and to identify those groups of organisms for which there may be a potential risk. The screening level risk assessment uses simple methods, conservative exposure scenarios (for example, direct application at a maximum cumulative application rate) and sensitive toxicity endpoints. A risk quotient (RQ) is calculated by dividing the exposure estimate by an appropriate toxicity value (RQ = exposure/toxicity), and the risk quotient is then compared to the level of concern (LOC). If the screening level risk quotient is below the level of concern, the risk is considered negligible and no further risk characterization

is necessary. If the screening level risk quotient is equal to or greater than the level of concern, then a refined risk assessment is performed to further characterize the risk. A refined assessment takes into consideration more realistic exposure scenarios (such as drift to non-target habitats) and might consider different toxicity endpoints. Refinements may include further characterization of risk based on exposure modelling, monitoring data, results from field or mesocosm studies, and probabilistic risk assessment methods. Refinements to the risk assessment may continue until the risk is adequately characterized or no further refinements are possible.

#### 4.2.1 Risks to terrestrial organisms

Terrestrial organisms, such as earthworms, honeybees, beneficial arthropods, birds, mammals, and terrestrial non-target vascular plants can be exposed to tiafenacil through direct contact with spray, spray drift, run-off, contact with sprayed surfaces, or from ingestion of contaminated food. A risk assessment of tiafenacil, its transformation products, and the associated end-use products, Tiafenacil 70WG and Tiafenacil 339SC, was undertaken based on available toxicity data for these organisms. A summary of the effects metrics for terrestrial organisms considered in the selection of toxicity endpoints is provided in Appendix I, Table 16. The most sensitive terrestrial endpoints used in the risk assessment are provided in Appendix I, Table 18.

When used according to the proposed label directions, risks associated with the use of tiafenacil are acceptable for the following terrestrial organisms:

- Pollinators
- Non-target arthropods
- Earthworms and soil-dwelling invertebrates
- Wild birds and mammals

The LOC is exceeded for the following organisms potentially exposed to tiafenacil:

• Terrestrial vascular plants

With the observance of preventative measures and use-restrictions to reduce exposure, including a buffer zone of 4 metres, the risks towards terrestrial vascular plants associated with the use of tiafenacil are acceptable.

#### 4.2.1.1 Terrestrial invertebrates

At the screening level, the LOC was not exceeded for pollinators (adult and larval honeybees) or soil-dwelling invertebrates (earthworms, springtails, and predatory mites). The LOC was exceeded for foliar-dwelling invertebrates (predatory mites and parasitic wasps) based on chronic exposure (RQs of 3.80 and 3.04, respectively). The screening-level risk results are presented in Appendix I, Table 19. The potential risk to non-target terrestrial invertebrates was further characterized.

Based on off-field exposure from spray drift, the LOC was not exceeded for foliar-dwelling invertebrates (predatory mites and parasitic wasps) for any of the endpoints considered. The results from the further characterization of risk are presented in Appendix I, Table 20. Overall, the risks associated with the application of tiafenacil are considered acceptable for terrestrial invertebrates when label guidance is followed.

#### 4.2.1.2 Terrestrial vertebrates

At the screening level, the LOCs were not exceeded for wild birds or mammals for any feeding guild or size. The screening-level risk results are presented in Appendix I, Tables 21 and 22. Overall, the risks to birds and mammals associated with application of tiafenacil are considered acceptable when label guidance is followed.

#### 4.2.1.3 Non-target terrestrial plants

At the screening level, the LOC was exceeded for effects of the formulated product Tiafenacil 70WG Herbicide on non-target vascular plants. Based on the HR5 (hazardous rate for 5% of species) for vegetative vigor, the resulting RQ was found to be 114. The screening-level results are presented in Appendix I, Table 19. The potential risk to non-target plants was further characterized.

Based on off-field exposure from spray drift, the LOC was exceeded for vegetative vigor effects to terrestrial vascular plants (based on the HR5), with an RQ of 7.00. The results from the further characterization of risk are presented in Appendix I, Table 20. As such, hazard statements and buffer zones of 4 m will be required to mitigate the risk from tiafenacil to non-target plants adjacent to the application site. When label directions are followed the risk to non-target terrestrial plants associated with the use of tiafenacil is considered acceptable.

#### 4.2.2 Risks to aquatic organisms

Aquatic organisms, such as invertebrates, fish, amphibians, and aquatic plants can be exposed to tiafenacil via spray drift or through runoff entering aquatic habitats. The aquatic risk assessment was conducted following a tiered approach, with a conservative screening assessment based on direct overspray, followed by refinements for spray drift and runoff if concerns were identified at the screening level. A summary of the effects on aquatic organisms considered in the selection of toxicity endpoints is provided in Appendix I, Table 17. The most sensitive aquatic endpoints used in the risk assessment are provided in Appendix I, Table 18.

When used according to approved label directions, the risks are acceptable to the following aquatic organisms from the use of tiafenacil:

- Freshwater and marine invertebrates
- Marine fish

The LOC was exceeded for the following aquatic organisms:

- Freshwater fish and amphibians
- Freshwater and marine algae
- Aquatic vascular plants

With the observance of preventative measures and use restrictions to reduce exposure, which include a buffer zone of 1 metre, the risks to these organisms are acceptable.

#### 4.2.2.1 Aquatic invertebrates

At the screening level, RQs for freshwater and marine invertebrates did not exceed the LOC. Therefore, the risks to aquatic invertebrates from the use of tiafenacil are acceptable and no further refinement was necessary. The screening-level risk results are presented in Appendix I, Table 23.

#### 4.2.2.2 Aquatic vertebrates

Tiafenacil is a light-dependent peroxidizing herbicide (LDPH). There is potential for increased sensitivity of fish to LDPHs under enhanced lighting conditions (in other words, clear, shallow waterbodies in direct sunlight) due to the mechanism of action of these chemicals. The use of the molar equivalency-adjusted chronic NOEC provides an additional safety factor to the chronic fish assessment, and is based on the United States Environmental Protection Agency (USEPA) guidance memo for LDPH chemicals (USEPA, 2016). The guidance suggests conducting the risk assessment using the laboratory-derived NOEC endpoint under standard lighting conditions as well as using the molar equivalency adjusted NOEC. The latter accounts for the potential enhanced toxicity of LDPH chemicals under natural sunlight. The molar threshold approach is based on the observation that regardless of the NOEC value determined under standard laboratory lighting for a test suite of three representative LDPH chemicals, the effect level under high intensity UV lighting conditions was relatively consistent (in other words, 0.002 to 0.02 µmol/L). Thus, 0.002 µmol/L is considered the molar threshold, regardless of the chemical. It is noted that the data supporting the molar threshold are limited to a single species (in other words, fathead minnows; *Pimephales promelas*) and three representative LDPH chemicals and may not reflect the extent of variability in UV-enhanced toxicity across species and chemicals. For tiafenacil, the molar equivalency NOEC was calculated as the molecular weight of tiafenacil multiplied by the molar threshold (511.9 g/mol  $\times$  0.002 µmol/L = 1.02 µg a.i./L).

At the screening level, for freshwater fish, the LOC was not exceeded for acute exposure, however the chronic LOC was exceeded (RQ of 6.10). For marine fish, the LOC was not exceeded for acute or chronic exposures. For amphibians, freshwater fish endpoints were used as surrogates and the LOC was exceeded on a chronic exposure basis (RQ of 2.08). The screening-level risk results are presented in Appendix I, Table 23. The potential risk to non-target freshwater fish and amphibians was further characterized.

Based on exposure from spray drift, the chronic LOCs were not exceeded for freshwater fish or amphibians. However, RQs were slightly above the LOC for run-off (1.19 and 3.82 for amphibians and fish, respectively). The risk results from further characterization on spray drift and runoff are presented in Appendix I, Tables 24 and 25, respectively. Spray drift buffer zones of 1 m are required to mitigate the potential risk of tiafenacil to freshwater environments.

### 4.2.2.3 Algae and aquatic plants

At the screening level, the LOC was exceeded for aquatic plants. The RQs for freshwater vascular plants, freshwater algae and marine algae range from 2.15 to 4.31 (see Appendix I, Table 23). The potential risk to non-target aquatic plants and algae was further characterized.

Based on exposure from spray drift, no LOCs were exceeded for freshwater vascular plants, freshwater algae, or marine algae. However, the LOCs were slightly exceeded for runoff (RQs ranged from 1.38 to 2.11). The risk results from further characterization on spray drift and runoff are presented in Appendix I, Tables 24 and 25, respectively. Spray drift buffer zones of 1 m are required to mitigate the potential risk of tiafenacil to freshwater environments.

### 4.2.3 Environmental incident reports

Tiafenacil is a new active ingredient pending registration for use in Canada and, as of April 30, 2021, no incident reports had been submitted to the PMRA.

### 5.0 Value

Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide may be applied to small, emerged weeds prior to planting and/or postplanting but prior to emergence of field corn, soybean and spring wheat to reduce early-season weed competition. In grape, summerfallow and non-crop areas, these herbicides may be used to manage small-sized weeds throughout the season.

Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide will serve as additional weed management options that can be included as a component of integrated weed management programs that include tillage and other preplant, pre-emergent and/or postemergent herbicides.

Value information was submitted as efficacy and crop tolerance data generated in small-scale research trials, in addition to scientific rationales. Field and laboratory trials were conducted on a variety of weed species that were growing in either the absence or presence of a crop. It was demonstrated that single or sequential applications of Tiafenacil 70WG Herbicide or Tiafenacil 339SC Herbicide at 25 to 50 g a.i./ha (higher rates within this range for dense and/or more mature weed infestations) in combination with a methylated seed oil (MSO) adjuvant at 1% v/v to small weeds can be expected to provide early-season suppression of redroot pigweed, tall waterhemp, common lamb's-quarters, prickly lettuce and wild buckwheat and early-season control of velvetleaf, kochia and Russian thistle.

Crop phytotoxicity data demonstrated that field corn, soybean and spring wheat were tolerant of tiafenacil applied prior to planting or crop emergence. Furthermore, as tiafenacil has limited residual soil activity, crop injury is not likely unless application is made too late, in other words, at crop emergence. Grape was also demonstrated to be tolerant of Tiafenacil 70WG Herbicide or Tiafenacil 339SC Herbicide applied as a directed application, such as to avoid contact of the spray with grape plants.

Value information in the form of a rationale, soil dissipation studies and metabolite efficacy studies demonstrated that in the event of a crop failure, field corn, soybean and spring wheat can be safely planted immediately after application of Tiafenacil 70WG Herbicide or Tiafenacil 339SC Herbicide. Based on this same information, all other crops may be safely grown following a tiafenacil-treated crop, provided that nine or more months have elapsed since the last application.

Supported uses are summarized in Appendix I, Table 27.

### 6.0 Pest control product policy considerations

#### 6.1 Toxic substances management policy considerations

The *Toxic Substances Management Policy* (TSMP) is a federal government policy developed to provide direction on the management of substances of concern that are released into the environment. The TSMP calls for the virtual elimination of Track 1 substances, in other words, those that meet all four criteria outlined in the policy: persistent (in air, soil, water and/or sediment), bio-accumulative, primarily a result of human activity, and toxic as defined by the *Canadian Environmental Protection Act*. The *Pest Control Products Act* requires that the TSMP be given effect in evaluating the risks of a product.

During the review process, tiafenacil and its transformation products were assessed in accordance with the PMRA Regulatory Directive DIR99-03<sup>5</sup> and evaluated against the Track 1 criteria. The PMRA has reached the conclusion that tiafenacil and its transformation products do not meet all of the TSMP Track 1 criteria.

Please refer to Appendix I, Table 26 for further information on the TSMP assessment.

<sup>&</sup>lt;sup>5</sup> DIR99-03, The Pest Management Regulatory Agency's Strategy for Implementing the Toxic Substances Management Policy.

### 6.2 Formulants and contaminants of health or environmental concern

During the review process, contaminants in the active ingredient as well as formulants and contaminants in the end-use products are compared against Parts 1 and 3 of the *List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern*,<sup>6</sup> The list is used as described in the PMRA Science Policy Note SPN2020-01<sup>7</sup> and is based on existing policies and regulations, including the *Toxic Substances Management Policy*<sup>8</sup> and *Formulants Policy*<sup>9</sup>, and taking into consideration the *Ozone-depleting Substances and Halocarbon Alternatives Regulations* under the *Canadian Environmental Protection Act, 1999* (substances designated under the Montreal Protocol).

The PMRA has reached the conclusion that tiafenacil and its end-use products, Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide, do not contain any formulants or contaminants identified in the *List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern*.

The use of formulants in registered pest control products is assessed on an ongoing basis through PMRA formulant initiatives and Regulatory Directive DIR2006-02.

### 7.0 Proposed regulatory decision

Health Canada's PMRA, under the authority of the *Pest Control Products Act*, is proposing registration for the sale and use of Tergeo Technical Herbicide, Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide containing the technical grade active ingredient tiafenacil, to control weeds in field corn, soybean, spring wheat, grapes, summerfallow and non-crop areas.

An evaluation of available scientific information found that, under the approved conditions of use, the health and environmental risks and the value of the pest control products are acceptable.

<sup>&</sup>lt;sup>6</sup> SI/2005-114, last amended on June 24, 2020. See Justice Laws website, Consolidated Regulations, *List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern.* 

<sup>&</sup>lt;sup>7</sup> PMRA's Science Policy Note SPN2020-01, Policy on the List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern under paragraph 43(5)(b) of the Pest Control Products Act.

<sup>&</sup>lt;sup>8</sup> DIR99-03, *The Pest Management Regulatory Agency's Strategy for Implementing the Toxic Substances Management Policy.* 

<sup>&</sup>lt;sup>9</sup> DIR2006-02, Formulants Policy and Implementation Guidance Document.

### List of abbreviations

| ↑                | increased                                                       |
|------------------|-----------------------------------------------------------------|
|                  | decreased                                                       |
| *                | male                                                            |
| 0                | female                                                          |
| ↓<br>℃<br>℃      | degree Celsius                                                  |
| μg               | microgram(s)                                                    |
| μg<br>μM or μmol | micromole(s)                                                    |
| a.i.             | active ingredient                                               |
| abs              | absolute                                                        |
| AD               | administered dose                                               |
| ADI              | acceptable daily intake                                         |
| A/G              | albumin/globulin ratio                                          |
| AHETF            | Agricultural Handler Exposure Task Force                        |
| ALP              | alkaline phosphatase                                            |
| ALS              | acetolactate synthase                                           |
| ALT              | alanine aminotransferase                                        |
| APTT             | activated partial thromboplastin time                           |
| AR               | applied radioactivity                                           |
| ARfD             | acute reference dose                                            |
| ARTF             | Agricultural Re-entry Task Force                                |
| ASAE             | American Society of Agricultural Engineers                      |
| AST              | aspartate aminotransferase                                      |
| atm              | atmosphere                                                      |
| ATPD             | area treated per day                                            |
| AUC              | area under the curve                                            |
| BAF              | bioaccumulation factor                                          |
| BBCH             | Biologishe Bundesanstalt, Bundessortenamt and Chemical industry |
| BCF              | bioconcentration Factor                                         |
| bili             | bilirubin                                                       |
| BUN              | blood urea nitrogen                                             |
| BW               | body weight                                                     |
| bwg              | body weight gain                                                |
| CAF              | composite assessment factor                                     |
| CAS              | Chemical Abstracts Service                                      |
| CEPA             | Canadian Environmental Protection Act                           |
| chol             | cholesterol                                                     |
| cm               | centimetre(s)                                                   |
| cm <sup>3</sup>  | cubic centimetre(s)                                             |
| CR               | chemical-resistant                                              |
| d                | day(s)                                                          |
| DAP              | days after planting                                             |
| DAT              | days after treatment                                            |
| DEEM             | Dietary Exposure Evaluation Model                               |
| DFOP             | double first-order in parallel                                  |
|                  | 1                                                               |

| DED              | diala dagabla falian nasi dag                                                  |
|------------------|--------------------------------------------------------------------------------|
| DFR<br>DIR       | dislodgeable foliar residue<br>Directive                                       |
|                  |                                                                                |
| DT50             | dissipation time 50% (the time required to observe a 50% decline in            |
| DТ               | concentration)                                                                 |
| $DT_{90}$        | dissipation time 90% (the time required to observe a 90% decline in            |
| 1                | concentration)                                                                 |
| dw               | dry weight                                                                     |
| $E_bC_{50}$      | effective concentration on 50% of the population (algae biomass)               |
| EC <sub>50</sub> | effective concentration on 50% of the population                               |
| ECG              | electrocardiogram                                                              |
| EDE              | estimated daily exposure                                                       |
| EEC              | estimated environmental concentration                                          |
| ELS              | early life stage                                                               |
| Eos              | eosinophils                                                                    |
| ER <sub>50</sub> | effective rate on 50% of the population                                        |
| $E_rC_{50}$      | effective concentration on 50% of the population (algae growth rate)           |
| $E_yC_{50}$      | effective concentration on 50% of the population (algae yield)                 |
| F1               | first generation                                                               |
| F2               | second generation                                                              |
| fc               | food consumption                                                               |
| FCID             | Food Commodity Intake Database                                                 |
| fe               | food efficiency                                                                |
| FIR              | food ingestion rate                                                            |
| g                | gram(s)                                                                        |
| GD               | gestation day                                                                  |
| GHS              | Globally Harmonized System (of Classification and Labeling of Chemicals)       |
| gluc             | glucose                                                                        |
| GI               | gastrointestinal                                                               |
| ha               | hectare(s)                                                                     |
| HAFT             | highest average field trial                                                    |
| Hb               | hemoglobin                                                                     |
| Hct              | hematocrit                                                                     |
| HDPE             | high density polyethylene                                                      |
| hERG             | the human Ether-à-go-go-Related Gene                                           |
| Hg               | mercury                                                                        |
| HPLC             | high performance liquid chromatography                                         |
| hr(s) or h       | hour(s)                                                                        |
| HR5              | hazardous rate for 5% of species                                               |
| HRAC             | Herbicide Resistance Action Committee                                          |
| IC <sub>50</sub> | Median Inhibition Concentration (concentration that reduces the effect by 50%) |
| ILV              | independent laboratory validation                                              |
| IORE             | indeterminate order rate equation                                              |
| IUPAC            | International Union of Pure and Applied Chemistry                              |
| JMAFF            | Japanese Ministry of Agriculture, Forestry, and Fisheries                      |
| Κ                | potassium                                                                      |
| $K_{ m d}$       | soil adsorption coefficient                                                    |
|                  | -                                                                              |

| 1            | 1.11 ()                                          |
|--------------|--------------------------------------------------|
| kg           | kilogram(s)                                      |
| $K_{\rm oc}$ | adsorption quotient normalized to organic carbon |
| Kow          | octanol water partition coefficient              |
| kPa          | kilopascal(s)                                    |
| L            | litre(s)                                         |
| LAFT         | lowest average field trial                       |
| LC           | liquid chromatography                            |
| $LC_{50}$    | lethal concentration 50%                         |
| LD           | lactation day                                    |
| $LD_{50}$    | lethal dose 50%                                  |
| LDH          | lactate dehydrogenase                            |
| LDPH         | light-dependent peroxidizing herbicide           |
| LLNA         | local lymph node assay                           |
| LOAEL        | lowest observed adverse effect level             |
| LOC          | level of concern                                 |
| LOQ          | limit of quantitation                            |
| $LR_{50}$    | lethal rate 50%                                  |
| Lymp         | lymphocytes                                      |
| $m^3$        | cubic metres                                     |
| mol          | mole(s)                                          |
| MAS          | maximum average score for 24, 48 and 72 hours    |
| MCH          | mean corpuscular hemoglobin                      |
| MCHC         | mean corpuscular hemoglobin concentration        |
| MCV          | mean corpuscular volume                          |
| MIS          | maximum irritation score                         |
| mg           | milligram(s)                                     |
| min          | minute(s)                                        |
| mL           | millilitre(s)                                    |
| M/L/A        | Mixer/Loader/Applicator                          |
| mmHg         | Millimeter of mercury                            |
| MOA          | mode of action                                   |
| MOE          | margin of exposure                               |
| MRL          | maximum residue limit                            |
| MS           | mass spectrometry                                |
| MS/MS        | tandem mass spectrometry                         |
| MSO          | methylated seed oil                              |
| N/A or NA    | not applicable                                   |
| NAFTA        | North American Free Trade Agreement              |
| NC           | not calculated                                   |
| ND           | not detected                                     |
| Neut         | neutrophils                                      |
| NHANES       | National Health and Nutrition Examination Survey |
| nm           | nanometre(s)                                     |
| NOAEL        | no observed adverse effect level                 |
| NOALL        | no observed adverse effect level                 |
| NOEL         | no observed effect level                         |
| NULL         |                                                  |

| ND               | n of non-out-o-l                                      |
|------------------|-------------------------------------------------------|
| NR<br>NZW        | not reported<br>New Zealand white                     |
|                  |                                                       |
| OC               | organic carbon content                                |
| OECD             | Organization for Economic Cooperation and Development |
| OM               | organic matter content                                |
| Р                | parent or parental generation                         |
| Pa               | Pascal(s)                                             |
| PBI              | plant-back interval                                   |
| PCP              | pest control product                                  |
| PCPA             | Pest Control Products Act                             |
| ph               | phenyl label                                          |
| PHED             | Pesticide Handler Exposure Database                   |
| PHI              | preharvest interval                                   |
| p <i>K</i> a     | dissociation constant                                 |
| PMRA             | Pest Management Regulatory Agency                     |
| PND              | postnatal day                                         |
| ppb              | parts per billion                                     |
| PPE              | personal protective equipment                         |
| ppm              | parts per million                                     |
| PPO              | protoporphyrinogen IX oxidase                         |
| PWC              | Pesticide in Water Calculator                         |
|                  | pyrimidinyl label                                     |
| pyr<br>OS A P    |                                                       |
| QSAR<br>RAC      | quantitative structure-activity relationship          |
|                  | raw agricultural commodity                            |
| RBC              | red blood cells                                       |
| RD               | residue definition                                    |
| RDW              | red cell distribution width                           |
| rel              | relative                                              |
| REI              | restricted-entry interval                             |
| Reti             | reticulocytes                                         |
| ROW              | right-of-way                                          |
| RQ               | risk quotient                                         |
| RTI              | retreatment interval                                  |
| S9               | mammalian metabolic activation system                 |
| SC               | suspension concentrate                                |
| SDEV             | standard deviation                                    |
| SFO              | single first order                                    |
| SI               | stimulation index                                     |
| SPE              | solid phase extraction                                |
| STMdR            | supervised trial median residue                       |
| T <sub>1/2</sub> | half-life of elimination                              |
| T3               | tri-iodothyronine                                     |
| TC               | transfer coefficient                                  |
| TFA              | trifuoroacetic acid                                   |
| Tmax             | time of maximum plasma concentration                  |
| TP               | transformation product                                |
|                  | 1                                                     |

| TRR        | total radioactive residue                     |
|------------|-----------------------------------------------|
| TSMP       | Toxic Substances Management Policy            |
| USEPA      | United States Environmental Protection Agency |
| UV         | ultraviolet                                   |
| v/v        | volume per volume dilution                    |
| WA         | Washington                                    |
| WBC        | white blood cells                             |
| WG         | water dispersible granules                    |
| wk(s) or w | week(s)                                       |
| WSSA       | Weed Science Society of America               |
| wt         | weight                                        |
| WWEIA      | What We Eat in America                        |
| yr(s)      | year(s)                                       |

### Appendix I Tables and figures

| Matrix   | Analyte      | Method type | LOQ      | Reference              |
|----------|--------------|-------------|----------|------------------------|
| Soil     | Active       | HPLC-MS/MS  | 0.1 ppm  | PMRA #2866129, 2866081 |
|          | DCC3825-M-01 | HPLC-MS/MS  | 0.1 ppm  | PMRA #2866129, 2866081 |
|          | DCC3825-M-12 | HPLC-MS/MS  | 0.1 ppm  | PMRA #2866129, 2866081 |
|          | DCC3825-M-13 | HPLC-MS/MS  | 0.1 ppm  | PMRA #2866129, 2866081 |
|          | DCC3825-M-36 | HPLC-MS/MS  | 0.1 ppm  | PMRA #2866129, 2866081 |
|          | DCC3825-M-53 | HPLC-MS/MS  | 0.1 ppm  | PMRA #2866129, 2866081 |
|          | DCC3825-M-20 | HPLC-MS/MS  | 0.1 ppm  | PMRA #2866129, 2866081 |
|          | DCC3825-M-29 | HPLC-MS/MS  | 0.1 ppm  | PMRA #2866129, 2866081 |
|          | DCC3825-M-30 | HPLC-MS/MS  | 0.1 ppm  | PMRA #2866129, 2866081 |
|          | DCC3825-M-63 | HPLC-MS/MS  | 0.1 ppm  | PMRA #2866129, 2866081 |
|          | DCC3825-M-69 | HPLC-MS/MS  | 0.1 ppm  | PMRA #2866129, 2866081 |
|          | DCC3825-M-72 | HPLC-MS/MS  | 0.1 ppm  | PMRA #2866129, 2866081 |
|          | DCC3825-M-73 | HPLC-MS/MS  | 0.1 ppm  | PMRA #2866129, 2866081 |
| Sediment | Active       | HPLC-MS/MS  | 0.01 ppm | PMRA #2866085, 2866086 |
|          | DCC3825-M-01 | HPLC-MS/MS  | 0.01 ppm | PMRA #2866085, 2866086 |
|          | DCC3825-M-12 | HPLC-MS/MS  | 0.01 ppm | PMRA #2866085, 2866086 |
|          | DCC3825-M-13 | HPLC-MS/MS  | 0.01 ppm | PMRA #2866085, 2866086 |
|          | DCC3825-M-36 | HPLC-MS/MS  | 0.01 ppm | PMRA #2866085, 2866086 |
|          | DCC3825-M-53 | HPLC-MS/MS  | 0.01 ppm | PMRA #2866085, 2866086 |
| Water    | Active       | HPLC-MS/MS  | 0.1 ppb  | PMRA #2866083, 2866084 |
|          | DCC3825-M-01 | HPLC-MS/MS  | 0.1 ppb  | PMRA #2866083, 2866084 |
|          | DCC3825-M-12 | HPLC-MS/MS  | 0.1 ppb  | PMRA #2866083, 2866084 |
|          | DCC3825-M-13 | HPLC-MS/MS  | 0.1 ppb  | PMRA #2866083, 2866084 |
|          | DCC3825-M-36 | HPLC-MS/MS  | 0.1 ppb  | PMRA #2866083, 2866084 |
|          | DCC3825-M-53 | HPLC-MS/MS  | 0.1 ppb  | PMRA #2866083, 2866084 |

### Table 1A Residue analysis in environmental media

| Analytical<br>methods                              | Matrix                                                                                                                                                                                                                                                       | Analytes                                                                                     | Method ID/<br>Type                                                                                                                                                                           | LOQ                 | Reference                                                                                                          |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------|
| Livestock comm                                     | odities                                                                                                                                                                                                                                                      |                                                                                              |                                                                                                                                                                                              |                     |                                                                                                                    |
| Enforcement<br>Method/Data-<br>Gathering<br>Method | Bovine<br>muscle, fat,<br>liver, kidney<br>and milk;<br>hen eggs                                                                                                                                                                                             | Tiafenacil<br>and the<br>metabolites<br>M-01 and<br>M-36                                     | 035315/<br>HPLC-MS/MS                                                                                                                                                                        | 0.01<br>ppm/analyte | PMRA<br>#2866121,<br>2866122                                                                                       |
| ILV of<br>Enforcement<br>Method                    | Bovine liver,<br>kidney,<br>muscle, fat<br>and milk;<br>hen eggs                                                                                                                                                                                             | Tiafenacil<br>and the<br>metabolites<br>M-01 and<br>M-36                                     | 035315/<br>HPLC-MS/MS                                                                                                                                                                        | 0.01<br>ppm/analyte | PMRA<br>#2866122                                                                                                   |
| Radiovalidation                                    | Goat muscle,<br>fat, liver,<br>kidney and<br>milk; and<br>hen yolks<br>and whites                                                                                                                                                                            | Metabolites<br>M-01, M-<br>36, M-87<br>and M-88                                              | N/A                                                                                                                                                                                          | N/A                 | PMRA<br>#2886815                                                                                                   |
| Plant Commodi                                      |                                                                                                                                                                                                                                                              | [                                                                                            | [                                                                                                                                                                                            | [                   |                                                                                                                    |
| Enforcement<br>Method/<br>Data-Gathering<br>Method | Grape,<br>soybean,<br>apple<br>[original<br>method<br>validation]<br>Field corn<br>[forage,<br>grain and<br>stover];<br>grapes,<br>raisins and<br>grape juice;<br>soybean<br>[forage, hay<br>and seed];<br>and wheat<br>[forage, hay,<br>grain and<br>straw] | Tiafenacil<br>and the<br>metabolites<br>M-01, M-<br>10, M-36,<br>M-52, M-<br>53 and M-<br>56 | IRA15016N/<br>HPLC-MS/MS<br>[A revised<br>version of the<br>method (GPL-<br>MTH-113;<br>HPLC-<br>MS/MS)<br>includes<br>alternate SPE<br>clean-up<br>procedures<br>recommended<br>by the ILV] | 0.01<br>ppm/analyte | PMRA<br>#2886816,<br>2865973,<br>2865971,<br>2865972,<br>2865970,<br>2865970,<br>2865975,<br>3040422 or<br>3040405 |

### Table 1B Residue analysis in plant and livestock matrices

| Analytical<br>methods           | Matrix                                                                           | Analytes                                                                                                              | Method ID/<br>Type       | LOQ                 | Reference        |
|---------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------|------------------|
| ILV of<br>Enforcement<br>Method | Grapes,<br>soybean seed<br>and wheat<br>forage, grain<br>and straw               |                                                                                                                       | IRA15016N/<br>HPLC-MS/MS | 0.01<br>ppm/analyte | PMRA<br>#2886816 |
| Radiovalidation                 | Soybean<br>seed and<br>straw, potato<br>foliage and<br>wheat grain<br>and straw. |                                                                                                                       | N/A                      | N/A                 | PMRA<br>#2865782 |
| Data-Gathering<br>Method        | Wheat<br>forage, hay,<br>straw and<br>grain                                      | Tiafenacil<br>and the<br>metabolites<br>M-01, M-<br>10, M-36,<br>M-52, M-<br>53, M-56,<br>M-63, M-<br>72 and M-<br>73 | IRA16019N/<br>LC-MS/MS   | 0.01<br>ppm/analyte | PMRA<br>#2865975 |

### Table 2 Identification of select metabolites of Tiafenacil

| Code        | Chemical name                                                                     |
|-------------|-----------------------------------------------------------------------------------|
| Tiafenacil  | methyl N-[2-[[2-chloro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-(trifluoromethyl)-     |
|             | 1(2H)-pyrimidinyl]-4-fluorophenyl]thio]-1-oxopropyl]-β-alaninate                  |
| <b>M-01</b> | 3-(2-(2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-(trifluoromethyl)-2,3-            |
|             | dihydropyrimidin-1(6H)-yl)phenylthio)propanamido)propanoic acid                   |
| M-05        | Similar to M-01 (+ 2H)                                                            |
| <b>M-06</b> | methyl 3-(2-((2-chloro-4-fluoro-5-(3-                                             |
|             | methylureido)phenyl)thio)propanamido)propanoate                                   |
| <b>M-07</b> | 3-[2-({2-chloro-4-fluoro-5-                                                       |
|             | [(methylcarbamoyl)amino]phenyl}sulfanyl)propanamido]propanoic acid                |
| <b>M-10</b> | methyl 3-(2-(2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-(trifluoromethyl)-2,3-     |
|             | dihydropyrimidin-1(6H)-yl)phenylsulfinyl)propanamido)propanoate                   |
| M-12        | 3-(2-(2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-(trifluoromethyl)-2,3-            |
|             | dihydropyrimidin-1(6H)-yl)phenylthio)propanoic acid                               |
| M-13        | 2-((2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-(trifluoromethyl)-3,6-              |
|             | dihydropyrimidin-1(2H)-yl)phenyl)thio)propanamide                                 |
| M-20        | 2-((2-chloro-4-fluoro-5-(3-methylureido)phenyl)thio)propanoic acid                |
| M-29        | 3-(3-(5-(1-carboxyethylsulfinyl)-4-chloro-2-fluorophenyl)-1-methyl ureido)-4,4,4- |
|             | trifluoro butanoic acid                                                           |

| Code        | Chemical name                                                                     |  |
|-------------|-----------------------------------------------------------------------------------|--|
| M-30        | 3-(3-(5-(1-carboxyethylsulfonyl)-4-chloro-2-fluorophenyl)-1-methyl ureido)-4,4,4- |  |
|             | trifluoro butanoic acid                                                           |  |
| M-32        | 2,2,2-trifluoroacetic acid                                                        |  |
| M-33        | 1,1,1-trifluoropropan-2-one                                                       |  |
| M-35        | 2-((2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-(trifluoromethyl)-3,6-              |  |
|             | dihydropyrimidin-1(2H)-yl)phenyl)sulfonyl)propanoic acid                          |  |
| <b>M-36</b> | 2-(2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-(trifluoromethyl)-2,3-               |  |
|             | dihydropyrimidin-1(6H)-yl)phenylsulfinyl)propanoic acid                           |  |
| M-39        | 3-(2-((2-chloro-4-fluoro-5-(4,4,4-trifluoro-3-                                    |  |
|             | oxobutanamido)phenyl)thio)propanamido)propanoic acid                              |  |
| <b>M-40</b> | Z)-3-(3-(5-((1-((2-carboxyethyl)amino)-1-oxopropan-2-yl)thio)-4-chloro-2-         |  |
|             | fluorophenyl)-1-methylureido)-4,4,4-trifluorobut-2-enoic acid                     |  |
| <b>M-41</b> | None given                                                                        |  |
| M-52        | 3-(2-(2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-(trifluoromethyl)-2,3-            |  |
|             | dihydropyrimidin-1(6H)-yl)phenylsulfinyl)propanamido)propanoic acid               |  |
| M-53        | 2-(2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-(trifluoromethyl)-                   |  |
|             | tetrahydropyrimidin-1(2H)-yl)phenylsulfinyl)propanoic acid                        |  |
| <b>M-56</b> | 2-(2-chloro-5-(2,6-dioxo-4-(trifluoromethyl)-2,3-dihydropyrimidin-1(6H)-yl)-4-    |  |
|             | fluorophenylsulfinyl)propanoic acid                                               |  |
| M-58        | None given                                                                        |  |
| M-59        | None given                                                                        |  |
| M-63        | 2-(2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-(trifluoromethyl)tetra-              |  |
|             | hydropyrimidin-1(2H)-yl)phenyl-sulfonyl)propanoic acid                            |  |
| <b>M-69</b> | 2-((2-chloro-4-fluoro-5-(3-methylureido)phenyl)sulfinyl)propanoic acid            |  |
| <b>M-72</b> | 2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-(trifluoromethyl)-3,6-                  |  |
|             | dihydropyrimidin-1(2H)-yl)benzenesulfonic acid                                    |  |
| <b>M-73</b> | 2-chloro-4-fluoro-5-[3-methyl-2,6-dioxo-4-(trifluoromethyl)-1,3-diazinan-1-       |  |
|             | yl]benzene-1-sulfonic acid                                                        |  |

### Table 3 Toxicity profile of end-use product - Tiafenacil 70WG Herbicide - containing tiafenacil

Effects are known or assumed to occur in both sexes unless otherwise noted.

| Study<br>type/Animal/PMRA # | Study results                                                                                               |
|-----------------------------|-------------------------------------------------------------------------------------------------------------|
| (gavage)                    | $LD_{50} \ge 2000 \text{ mg/kg bw } (\bigcirc)$<br>Low acute toxicity<br>No clinical signs                  |
| Sprague-Dawley rats         | LD <sub>50</sub> ≥2000 mg/kg bw (♂/♀)<br>Low acute toxicity<br>Clinical signs: very slight erythema (Day 2) |

| Study<br>type/Animal/PMRA # | Study results                                                      |
|-----------------------------|--------------------------------------------------------------------|
| Acute Inhalation Toxicity   | LC <sub>50</sub> > 5.29 mg/L (♂/♀)                                 |
| (nose-only)                 | Low acute toxicity                                                 |
| Sprague-Dawley rats         | No clinical signs                                                  |
| PMRA# 2865962               |                                                                    |
| Eye Irritation              | MAS = 0.33/110 (unwashed eyes)                                     |
| NZW rabbits                 | MIS = 3.5/110 at 1 hr (unwashed eyes)                              |
| PMRA# 2865964               | Minimally irritating                                               |
| Dermal Irritation           | MAS = 0/8                                                          |
| NZW rabbits                 | MIS = 0/8                                                          |
| PMRA# 2865963               | Non-irritating                                                     |
| Dermal Sensitization        | SI = 0.9, 1.0, 1.0 at dose levels of 7%, 17.5%, and 35% of end-use |
| (LLNA)                      | product                                                            |
| CBA/J mice                  |                                                                    |
| PMRA# 2866002               | Negative                                                           |

## Table 4 Toxicity profile of end-use product, Tiafenacil 339SC Herbicide, containing tiafenacil

Effects are known or assumed to occur in both sexes unless otherwise noted.

| Study<br>type/Animal/PMRA #                                             | Study results                                                                          |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Acute Oral Toxicity<br>(gavage)<br>Sprague-Dawley rats<br>PMRA# 2866786 | LD <sub>50</sub> ≥ 2000 mg/kg bw (♀)<br>Low toxicity<br>No clinical signs              |
| Acute Dermal Toxicity                                                   | LD <sub>50</sub> ≥ 2000 mg/kg bw ( $3/2$ )                                             |
| Sprague-Dawley rats                                                     | Low toxicity                                                                           |
| PMRA# 2866787                                                           | No clinical signs                                                                      |
| Acute Inhalation Toxicity                                               | LC <sub>50</sub> > 4.75 mg/L ( $\mathcal{O}/\mathcal{Q}$ )                             |
| (nose-only)                                                             | Low toxicity                                                                           |
| Sprague-Dawley rats                                                     | Clinical signs: ↓ respiratory rate, hunched posture, pilo-erection, wet                |
| PMRA# 2866788                                                           | fur, stained fur (Day 1) ( $\mathcal{O}/\mathcal{Q}$ ); ↓ bw; ↓ bwg (2 $\mathcal{Q}$ ) |

| Study<br>type/Animal/PMRA #    | Study results                                                            |
|--------------------------------|--------------------------------------------------------------------------|
| Eye Irritation                 | MAS = 0/110 (unwashed eyes)                                              |
| NZW rabbits                    | MIS = 0/110 (unwashed eyes)                                              |
| PMRA# 2866789                  | Non-irritating                                                           |
| Dermal Irritation              | MAS = 0/8                                                                |
| NZW rabbits                    | MIS = 0/8                                                                |
| PMRA# 2866790                  |                                                                          |
|                                | Non-irritating                                                           |
| Dermal Sensitization<br>(LLNA) | SI = 1.0, 1.3, 1.3 at dose levels of 10%, 25% and 100% of test substance |
| CBA/J mice                     |                                                                          |
| PMRA# 2866791                  | Negative                                                                 |

### Table 5 Toxicity Profile of Technical Tiafenacil (Tergeo Technical Herbicide)

Effects observed in both sexes are presented first followed by sex-specific effects in males, then females, each separated by semi-colons. Organ weight effects reflect both absolute organ weights and relative organ to bodyweights unless otherwise noted. Effects seen above the LOAEL(s) have not been reported in this table for most studies for reasons of brevity.

| Study<br>type/Animal/PMRA #                                                                                                       | Study results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Toxicokinetic and metabo<br>3825)                                                                                                 | lism studies – Tiafenacil Technical Grade Active Ingredient (DCC-                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Absorption, distribution,<br>excretion and metabolism<br>(gavage)                                                                 | <b>Absorption:</b> Tiafenacil (DCC-3825) was rapidly and extensively absorbed from the GI tract for both labels [Pyrimidinyl-4- <sup>14</sup> C] and [Phenyl- <sup>14</sup> C], in both sexes following a single- or repeat low-dose or a single high-dose. In bile duct-cannulated animals, most of the radioactivity                                                                                                                                                                         |
| Han Wistar rats                                                                                                                   | was excreted via the bile. The absorption rate was calculated to be 86% in $\Im$ and 92% in $\Im$ for the single low-dose. Total radioactivity concentrations were higher in plasma than in whole blood. The maximum blood levels                                                                                                                                                                                                                                                              |
| Single dose of<br>[Pyrimidinyl-4- <sup>14</sup> C] or<br>[Phenyl- <sup>14</sup> C] at a dose of<br>10 mg/kg bw or 100 mg/kg<br>bw | $(T_{max})$ were achieved 30 min after the single- or repeat low-dose in both<br>sexes for both labels and the single high-dose for [phenyl- <sup>14</sup> C] label. The<br>$T_{max}$ of the single high-dose for [pyrimidinyl- <sup>14</sup> C] label was 75 min for $\bigcirc$<br>and 45 min for $\bigcirc$ . The half-life (T <sub>1/2</sub> ) of the [pyrimidinyl- <sup>14</sup> C] label was<br>longer than the [phenyl- <sup>14</sup> C] label at the low dose in both sexes; 40 hrs vs. |
| For excretion kinetics,<br>DCC-3825 was                                                                                           | 16 hrs for $\mathcal{J}$ , and 43 hrs vs. 27 hrs for $\mathcal{Q}$ . In general, in single- or repeat low-dose or single high-dose groups for each label, the C <sub>max</sub> values were                                                                                                                                                                                                                                                                                                     |

| Study                                                                                                                                                           | Study results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type/Animal/PMRA #                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| administered orally daily<br>for 13 days, followed by a<br>single dose of<br>[Pyrimidinyl-4- <sup>14</sup> C] or<br>[Phenyl- <sup>14</sup> C] at 10 mg/kg<br>bw | higher for $\bigcirc$ than $\bigcirc$ . The area-under-the-curve (AUC) was also higher in<br>the [pyrimidinyl- <sup>14</sup> C] label. Following the repeat low-dose of tiafenacil,<br>the T <sub>1/2</sub> and AUC of the [pyrimidinyl- <sup>14</sup> C] label were similar to values<br>observed after a single AD, suggesting that there is no change to the<br>absorption or elimination pathways in the animal. The T <sub>1/2</sub> and AUC of the<br>[phenyl- <sup>14</sup> C] label increased up to approximately twofold in the repeat<br>low-dose group.                                                                                                                                                                                                                                                                                                                                                                                                     |
| PMRA# 2866029                                                                                                                                                   | <b>Distribution:</b> The tissue distribution was similar between the sexes and labels, with the highest concentrations of radioactivity observed in the liver and kidneys (cortex) as well as increased levels observed in fat, lungs, adrenal gland, stomach, small intestine, and blood. Levels of total radioactivity decreased quickly in all tissues and the mean recovery of radioactivity in tissues/carcasses at sacrifice (at 168 hrs postdosing) was below 1% of the AD for both labels in single- or repeat low-dose or single high-dose groups indicating little potential for tissue retention.                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                 | <b>Elimination:</b> Regardless of sex, dose level, or radiolabeled position, the majority of the radioactivity administered to rats was excreted via the feces (>80%). Elimination was rapid, with most of the AD (>90%) excreted within 48 hrs post-dose from the single- or repeat low-dose or single high-dose groups with [pyrimidinyl-4- <sup>14</sup> C] or with [phenyl- <sup>14</sup> C] labels. By 168 hrs, excretion was complete with no detectable radioactivity remaining in the carcass or tissues. No radioactivity was present in the expired air of animals in a preliminary study. A sex difference was noted in the urinary excretion of total radioactivity, with a higher amount being excreted in the urine of $Q$ in each dose group (7%-12% for $Z$ and 14%-17% for $Q$ respectively). Following low-dose administration to bile duct-cannulated rats, excretion was fairly rapid, with 86.4-91.7% of the AD recovered after 24 hrs post-dose. |
|                                                                                                                                                                 | <b>Metabolism:</b> The majority of the administered tiafenacil was rapidly transformed into M-01 by the cleavage of methyl ester. M01 was further metabolized by the degradation of thioalkyl chain (for example M-12 and M-13), the oxidation of sulphur atom (for example M-36 and M-52), the modification of pyrimidine ring (for example, reduction: M-05 and M-53, demethylation: M-05 and M-58, ring opening: M-29, M-40 and M-41) and the combination of these. M-12 is transformed into M-58 and M-59 following the methylation of free thiol and its oxidation. Metabolism of tiafenacil was qualitatively similar between $\Im$ and $\Im$ rats, however slight quantitative differences were noted. The main metabolite in the feces. Metabolites accounting >5% of the AD in the excreta were M-01, M-05, M-07, M-52 and M-59. Minor components                                                                                                             |
|                                                                                                                                                                 | detected in the excreta were M-10, M-12, M-13, M-20, M-29, M-32, M-<br>33, M-36, M-39, M-40, M-41, M-53 and M-58. Unidentified metabolites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Study<br>type/Animal/PMRA #          | Study results                                                                                                                                                                                                                                                                                  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | in feces accounted for ≤4.9% of the AD with no single region exceeding 2.4% of the AD. No significant differences in the excreted metabolite profile were observed between labeled forms.                                                                                                      |
|                                      | Metabolite M05 was only detected in repeat-dosed rats and accounted for 35.7 and 8.5% of the AD in $\bigcirc$ and $\bigcirc$ respectively. The distribution of radioactivity in the feces of rats that had received phenyl labelled tiafenacil was consistent with the pyrimidinyl dosed rats. |
|                                      | No significant differences were observed between the labeled forms of $[^{14}C]$ -tiafenacil. The major metabolites were consistent across most matrices except for metabolites in excreta following repeated dosing to $3^{\circ}$ .                                                          |
| Acute toxicity studies – Ti          | afenacil Technical Grade Active Ingredient (DCC-3825)                                                                                                                                                                                                                                          |
| Acute Oral Toxicity                  | $LD_{50} > 2000 \text{ mg/kg bw } (\bigcirc)$                                                                                                                                                                                                                                                  |
| (gavage)                             | Low toxicity                                                                                                                                                                                                                                                                                   |
| Sprague Dawley rats<br>PMRA# 2865996 | Clinical signs: salivation after dosing                                                                                                                                                                                                                                                        |
| Acute Dermal Toxicity                | $LD_{50} > 2000 \text{ mg/kg/bw}$                                                                                                                                                                                                                                                              |
| Sprague Dawley rats                  | Low toxicity                                                                                                                                                                                                                                                                                   |
| PMRA# 2865997                        | Clinical signs: slight erythema (resolved by Day 10); brown staining on the head; wt loss                                                                                                                                                                                                      |
| Acute Inhalation Toxicity            | $LC_{50} > 5.38 \text{ mg/L}$                                                                                                                                                                                                                                                                  |
| (nose-only)                          | Low toxicity                                                                                                                                                                                                                                                                                   |
| Wistar rats                          | No clinical signs                                                                                                                                                                                                                                                                              |
| PMRA# 2865998                        |                                                                                                                                                                                                                                                                                                |
| Eye Irritation                       | $MAS^a = 0.7/110$ (unwashed eyes)                                                                                                                                                                                                                                                              |
| NZW rabbits                          | $MIS^{b} = 2.7/110$ at 1 hr (unwashed eyes)                                                                                                                                                                                                                                                    |
| PMRA# 2865998                        | Minimally irritating                                                                                                                                                                                                                                                                           |
| Dermal Irritation                    | $MAS^a = 0/8$                                                                                                                                                                                                                                                                                  |
| NZW rabbits                          | $MIS^b = 0/8$                                                                                                                                                                                                                                                                                  |
| PMRA# 2866000                        | Non-irritating                                                                                                                                                                                                                                                                                 |
| Dermal Sensitization                 | Negative                                                                                                                                                                                                                                                                                       |
| (Maximization Method)                |                                                                                                                                                                                                                                                                                                |
| Dunkin Hartley guinea pigs           |                                                                                                                                                                                                                                                                                                |
| PMRA# 2866001                        |                                                                                                                                                                                                                                                                                                |
| Dermal Sensitization<br>(LLNA)       | SI = 1.8, 2.0, 2.0 at dose levels of 10%, 25% and 50% a.i.                                                                                                                                                                                                                                     |
| CBA/J mice                           | Negative                                                                                                                                                                                                                                                                                       |
| PMRA# 2866002                        | ~                                                                                                                                                                                                                                                                                              |

| Study<br>type/Animal/PMRA #                     | Study results                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                 | ies - Tiafenacil Technical Grade Active Ingredient (DCC-3825)                                                                                                                                                                                                                                                                  |
| 14-Day Oral Toxicity                            | Supplemental                                                                                                                                                                                                                                                                                                                   |
| (dietary)<br>(Range-finding study)<br>CD-1 mice | ≥ 139/132 mg/kg bw/day: $\uparrow$ liver wt, $\uparrow$ lung wt ( $\Diamond$ )                                                                                                                                                                                                                                                 |
| PMRA# 2866005                                   | <b>958/969 mg/kg bw/day:</b> bw loss, $\uparrow$ prominent lobular architecture in the liver $(\Im/\Im)$ ; $\downarrow$ prostate wt, $\uparrow$ testes wt $(\Im)$ ; $\uparrow$ liver wt, $\uparrow$ pale liver, $\uparrow$ spleen wt, $\uparrow$ enlarged spleen, $\downarrow$ adrenal wt, $\downarrow$ uterus wt $(\bigcirc)$ |
| 28-Day Oral Toxicity<br>(dietary)               | NOAEL = could not be established<br>LOAEL = $75/79 \text{ mg/kg bw/day} \left( \sqrt[6]{+} \right)$                                                                                                                                                                                                                            |
| CD-1 mice                                       | Effects at LOAEL: $\downarrow$ Hb, $\downarrow$ Hct, $\uparrow$ ALT, $\uparrow$ RDW ( $\eth/\Diamond$ ); $\downarrow$ MCH, $\downarrow$ MCV ( $\eth$ ); $\downarrow$ bw, $\downarrow$ bwg, $\downarrow$ RBC, $\uparrow$ AST, $\uparrow$ LDH, $\uparrow$ K ( $\diamondsuit$ )                                                   |
| PMRA# 2866007                                   |                                                                                                                                                                                                                                                                                                                                |
| 90-Day Oral Toxicity<br>(dietary)               | NOAEL = could not be established/13 mg/kg bw/day ( $\partial/Q$ )<br>LOAEL = 11/43 mg/kg bw/day ( $\partial/Q$ )                                                                                                                                                                                                               |
| CD-1 mice                                       | Effects at LOAEL: $\uparrow$ platelets, $\uparrow$ liver wt, $\uparrow$ prominent lobular architecture (liver), $\uparrow$ centrilobular hypertrophy, $\uparrow$ centrilobular vacuolation, $\uparrow$ necrosis (hepatocytes) ( $\eth/\diamondsuit$ ); $\uparrow$ ALT, $\uparrow$ LDH ( $\circlearrowright$ )                  |
| PMRA# 2866010                                   |                                                                                                                                                                                                                                                                                                                                |
| 90-Day Oral Toxicity<br>(dietary)               | NOAEL = 1.7/14 mg/kg bw/day ( $\Im/\Im$ )<br>LOAEL = 13/47 mg/kg bw/day ( $\Im/\Im$ )                                                                                                                                                                                                                                          |
| CD-1 mice                                       | Effects at LOAEL: $\uparrow$ liver wt, $\uparrow$ centrilobular hypertrophy, $\uparrow$ centrilobular vacuolation, $\uparrow$ prominent lobular architecture of the liver ( $\Diamond/ \bigcirc$ )                                                                                                                             |
| PMRA# 2866011                                   |                                                                                                                                                                                                                                                                                                                                |
| 14-Day Oral toxicity<br>(dietary)               | Supplemental                                                                                                                                                                                                                                                                                                                   |
| (Range-finding study)<br>Han Wistar rats        | ≥ 132/137 mg/kg bw/day: $\downarrow$ bwg, $\downarrow$ fc (days 1-4), $\uparrow$ rel liver wt, rel spleen wt ( $\Diamond/\Diamond$ ); $\uparrow$ thyroid wt ( $\Diamond$ )                                                                                                                                                     |
| PMRA# 2866004                                   | ≥456/432 mg/kg bw/day: $\downarrow$ bw, $\downarrow$ rel liver, $\uparrow$ rel spleen wt ( $\Diamond/ \bigcirc$ ); $\uparrow$ rel epididymides wt, $\uparrow$ thyroid wt ( $\Diamond$ )                                                                                                                                        |
|                                                 | 512/720 mg/kg bw/day: bw loss, dark discolored livers (3/5) (3)                                                                                                                                                                                                                                                                |

| Study<br>type/Animal/PMRA #                          | Study results                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 28-Day Oral Toxicity<br>(dietary)                    | NOAEL could not be established.<br>LOAEL = $87/92 \text{ mg/kg bw/day} (3/2)$                                                                                                                                                                                                                                                                                      |
| Han Wistar rats                                      | Effects at LOAEL: $\downarrow$ bw, $\downarrow$ bwg, bw loss, $\downarrow$ fc, $\downarrow$ Hb, $\downarrow$ Hct, $\uparrow$ RDW, $\uparrow$<br>WBC, $\uparrow$ platelets, $\downarrow$ gluc ( $\Diamond/\Diamond$ ); $\downarrow$ RBC, $\downarrow$ spleen wt, $\uparrow$ erythroid<br>cellularity of the sternum ( $\Diamond$ ); $\downarrow$ A/G ( $\Diamond$ ) |
| PMRA# 2866006                                        | 10  A FL = 25/29  (1 + 1)  (2/0)                                                                                                                                                                                                                                                                                                                                   |
| 90-Day Oral Toxicity<br>(dietary)                    | NOAEL = 25/28 mg/kg bw/day ( $\Im/\Im$ )<br>LOAEL = 84/94 mg/kg bw/day ( $\Im/\Im$ )                                                                                                                                                                                                                                                                               |
| Han wistar rats                                      | Effects at LOAEL: $\downarrow$ bwg, $\downarrow$ Hct, $\downarrow$ MCV, $\uparrow$ RDW, $\uparrow$ Reti, $\uparrow$ WBC, $\uparrow$ Lymp, $\uparrow$ ALP, $\uparrow$ ALT, $\uparrow$ AST ( $\Diamond/ \uparrow \uparrow$ ); $\downarrow$ bw, $\downarrow$ fe, $\downarrow$ abs liver wt, $\uparrow$                                                                |
| PMRA# 2866009                                        | spleen wt, $\uparrow$ extramedullary haemopoiesis (spleen), $\uparrow$ erythroid cellularity (sternum and femur) ( $\circlearrowleft$ )                                                                                                                                                                                                                            |
| 28-Day Oral Toxicity<br>(capsule)                    | Supplemental                                                                                                                                                                                                                                                                                                                                                       |
| (Range-finding study)                                | ≥ 50 mg/kg bw/day: ↑ Reti, ↑ bili, ↓ chol (♂/♀)                                                                                                                                                                                                                                                                                                                    |
| Beagle dogs                                          | ≥ 250 mg/kg bw/day: ↓ bw, ↓ bwg, ↓ fc, ↓ Hb, ↓ Hct, ↓ Reti, ↑ monocytes, ↓ AST, ↓ creatinine, ↑ bili (Urine), ↓ A/G ( $\mathcal{O}/\mathcal{Q}$ ); ↑ liver wt ( $\mathcal{O}$ )                                                                                                                                                                                    |
| PMRA# 2866008                                        | <b>500 mg/kg bw/day:</b> bw loss ( $\bigcirc$ ), $\downarrow$ activity, hunched posture, vomiting (1 $\bigcirc$ on Day 14)                                                                                                                                                                                                                                         |
| 30-Day Oral Toxicity for<br>Telemetric Evaluation of | Supplemental                                                                                                                                                                                                                                                                                                                                                       |
| Cardiovascular Effects                               | No adverse toxicology effects were observed in this study. There were no                                                                                                                                                                                                                                                                                           |
| (capsule)                                            | effects on arterial blood pressure, heart rate or lead II ECG intervals or<br>morphology observed in the treated animals at any dose level.                                                                                                                                                                                                                        |
| Beagle dogs                                          |                                                                                                                                                                                                                                                                                                                                                                    |
| PMRA# 2988674                                        |                                                                                                                                                                                                                                                                                                                                                                    |
| 90-Day Oral Toxicity                                 | NOAEL = 10 mg/kg bw/day ( $^{<}_{<}$ )                                                                                                                                                                                                                                                                                                                             |
| (capsule)                                            | $LOAEL = 50 \text{ mg/kg bw/day} (\text{C/}^{\square})$                                                                                                                                                                                                                                                                                                            |
| Beagle dogs                                          | Effects at LOAEL: $\uparrow$ anisocytosis, $\uparrow$ microcytosis, $\uparrow$ bili, $\downarrow$ chol, $\downarrow$ spleen wt, $\uparrow$ pigmented macrophages ( $\Diamond/ \heartsuit$ ); $\downarrow$ bw, $\downarrow$ bwg ( $\Diamond$ )                                                                                                                      |
| PMRA# 2866012                                        |                                                                                                                                                                                                                                                                                                                                                                    |

| Study                                      | Study results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type/Animal/PMRA #<br>1-year Oral Toxicity | NOAEL = 20 mg/kg bw/day ( $\Im/\Im$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (capsule)                                  | LOAEL = 120  mg/kg bw/day (3/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Beagle dogs                                | Effects at LOAEL: ↓ bw, ↓ Hb, ↓ Hct, ↓ MCV, ↓ MCH, ↓ MCHC, ↑ platelets, ↑ anisocytosis, ↑ microcytosis, ↑ hypochromasis                                                                                                                                                                                                                                                                                                                                                                               |
| PMRA# 2866017                              | (Weeks 13-26), $\uparrow$ extramedullary haematopoiesis (spleen) ( $\mathcal{O}/\mathcal{Q}$ ); thin<br>appearance, $\uparrow$ liver wt, $\uparrow$ adrenal gland wt, $\downarrow$ spleen wt, $\downarrow$ thymus wt, $\downarrow$<br>thymus size, $\uparrow$ glycogen vacuolation (liver) ( $\mathcal{O}$ ); $\downarrow$ bwg, $\uparrow$<br>prothrombin time, $\uparrow$ APTT, $\uparrow$ urea, $\downarrow$ abs liver wt, $\uparrow$ cellularity in the bone<br>marrow (sternum) ( $\mathcal{Q}$ ) |
| 28-Day Dermal Toxicity                     | NOAEL = 1000 mg/kg bw/day ( $\partial/\Box$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                            | LOAEL = could not be established                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Han Wistar rats                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                            | No treatment-related effects were observed in this study.                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PMRA# 2866013                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 90-Day Inhalation Toxicity                 | Waiver granted on the basis of physical-chemical properties and overall                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Waiver Request                             | toxicity profile.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PMRA #2866014                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Chronic Toxicity/Oncoge<br>3825)           | nicity studies - Tiafenacil Technical Grade Active Ingredient (DCC-                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 78-Week Carcinogenicity                    | NOAEL = $0.35/1.3 \text{ mg/kg bw/day} \left( \frac{3}{7} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (dietary)                                  | LOAEL =1.1/9.7 mg/kg bw/day ( $^{\wedge}/^{\circ}_{+}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CD-1 mice                                  | Effects at LOAEL: $\uparrow$ pigmented Kupffer cells* (liver) ( $3/2$ ); $\uparrow$ rel spleen wt,                                                                                                                                                                                                                                                                                                                                                                                                    |
| PMRA# 2866018                              | ↑ centrilobular hepatocellular hypertrophy (♂); ↑ centrilobular hepatocellular vacuolation ( $♀$ )                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                            | No evidence of tumourigenicity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                            | *Kupffer cells were a marker for changes in hematological parameters not assessed in the study and not considered adverse in and of themselves.                                                                                                                                                                                                                                                                                                                                                       |
| 52/104-Week Chronic                        | NOAEL = $8/4 \text{ mg/kg bw/day} (3/2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Toxicity/Oncogenicity<br>(dietary)         | LOAEL = 28/18  mg/kg bw/day (3/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| II Winter and                              | Note: unless otherwise stated, the changes were seen at both 52 wks and                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Han Wistar rats                            | 104 wks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Study<br>type/Animal/PMRA #          | Study results                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PMRA# 2866016                        | Effects at LOAEL: $\downarrow$ bw, $\downarrow$ bwg, $\downarrow$ MCV, $\uparrow$ WBC (104 wks), $\uparrow$ Lymph, $\uparrow$ RDW, $\uparrow$ Neut, $\uparrow$ Reti, $\uparrow$ biliary hyperplasia (liver) ( $\eth/ \Im$ ); $\downarrow$ Eos, $\uparrow$ Eos infiltration (liver) ( $\eth$ ); $\downarrow$ Hb, $\downarrow$ Hct, $\downarrow$ MCH (52 wks) ( $\Im$ ) |
|                                      | No evidence of tumourigenicity.                                                                                                                                                                                                                                                                                                                                       |
| Developmental/Reproduc<br>(DCC-3825) | ctive toxicity studies - Tiafenacil Technical Grade Active Ingredient                                                                                                                                                                                                                                                                                                 |
| 1-Generation Reproductive            | e Supplemental                                                                                                                                                                                                                                                                                                                                                        |
| Toxicity (dietary)                   |                                                                                                                                                                                                                                                                                                                                                                       |
| (Range-finding study)                | Parental Toxicity                                                                                                                                                                                                                                                                                                                                                     |
| Sprague-Dawley rats                  | <b>69/81 mg/kg bw/day:</b> $\uparrow$ liver porphyrins ( $\eth/ \heartsuit$ ); $\uparrow$ mortality (2), $\downarrow$ bw, $\downarrow$                                                                                                                                                                                                                                |
| PMRA# 2866023                        | bwg, $\downarrow$ fc, $\downarrow$ RBC, $\downarrow$ Hb, $\downarrow$ Hct, $\uparrow$ Reti, $\uparrow$ AST, $\uparrow$ ALT, $\uparrow$ ALP, $\uparrow$ BUN ( $\circlearrowleft$ )                                                                                                                                                                                     |
| PMRA# 2800025                        | Offspring Toxicity                                                                                                                                                                                                                                                                                                                                                    |
|                                      | ≥ 0.7/0.9 mg/kg bw/day: $\uparrow$ spleen wt (F1♂/♀); $\downarrow$ bw (PND 0-4) (♂)                                                                                                                                                                                                                                                                                   |
|                                      | $-0.770.5 \text{ mg/kg b w/day.} + spicen with (1107+), \downarrow bw (1105 0 4) (0)$                                                                                                                                                                                                                                                                                 |
| 2-Generational                       | Parental Toxicity                                                                                                                                                                                                                                                                                                                                                     |
| Reproductive Toxicity                | NOAEL = $2.6/4.3 \text{ mg/kg bw/day} (3/2)$                                                                                                                                                                                                                                                                                                                          |
| (dietary)                            | LOAEL = 8.0/13  mg/kg bw/day (0/9)                                                                                                                                                                                                                                                                                                                                    |
| Sprague-Dawley rats                  | Effects at LOAEL: ↑ liver porphyrins (P/F1 ♂/♀)                                                                                                                                                                                                                                                                                                                       |
|                                      | Offerencies Torrisity                                                                                                                                                                                                                                                                                                                                                 |
| PMRA# 2866024                        | Offspring Toxicity<br>NOAEL = 4.3 mg/kg bw/day (F1/F2 $\bigcirc$ )                                                                                                                                                                                                                                                                                                    |
| 1 WIGH 200002 1                      | LOAEL = 13 mg/kg bw/day (F1/F2 $\updownarrow$ )                                                                                                                                                                                                                                                                                                                       |
|                                      | $Lorrel = 15 \operatorname{mg/kg} \operatorname{ow/day} (11/12 +)$                                                                                                                                                                                                                                                                                                    |
|                                      | Effects at LOAEL: $\uparrow$ kidney cysts (F1/F2), $\uparrow$ liver porphyrins (F1) ( $\Im/ \bigcirc$ )                                                                                                                                                                                                                                                               |
|                                      | Reproductive Toxicity                                                                                                                                                                                                                                                                                                                                                 |
|                                      | NOAEL = $8.0/13 \text{ mg/kg bw/day} (3/2)$                                                                                                                                                                                                                                                                                                                           |
|                                      | LOAEL could not be established                                                                                                                                                                                                                                                                                                                                        |
|                                      |                                                                                                                                                                                                                                                                                                                                                                       |
|                                      | No evidence of sensitivity of the young                                                                                                                                                                                                                                                                                                                               |
|                                      | No evidence of reproductive toxicity                                                                                                                                                                                                                                                                                                                                  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                       |
| Developmental toxicity               | Supplemental                                                                                                                                                                                                                                                                                                                                                          |
| (gavage)                             | Matamal Taxiaita                                                                                                                                                                                                                                                                                                                                                      |
| (Range-finding study)                | Maternal Toxicity                                                                                                                                                                                                                                                                                                                                                     |
| Sprague-Dawley rats                  | ≥ 80 mg/kg bw/day: ↓ gravid uterine wt (Note: not enough live implants for calculation at 150 or 300 mg/kg bw/day)                                                                                                                                                                                                                                                    |
| oprague-Dawley lais                  | por carculation at 150 or 500 mg/kg 0w/day)                                                                                                                                                                                                                                                                                                                           |

| Study<br>type/Animal/PMRA #                                 | Study results                                                                                                                                             |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| PMRA# 2866019                                               | ≥ 150 mg/kg bw/day: ↑ viscous fluid in uterus, ↑ vaginal discharge, ↑ post-implantation loss                                                              |
|                                                             | Developmental Toxicity<br>≥80 mg/kg bw/day: ↓ gravid uterine wt, ↓ mean litter fetal wt, one fetus<br>with whole body oedema, two litters with small size |
|                                                             | ≥ <b>150 mg/kg bw/day</b> : ↑ post-implantation loss                                                                                                      |
| Developmental toxicity<br>(gavage)                          | Maternal Toxicity<br>NOAEL = 50 mg/kg bw/day<br>LOAEL could not be established                                                                            |
| Sprague-Dawley rats                                         | Developmental Toxicity<br>NOAEL = 20 mg/kg bw/day                                                                                                         |
| PMRA# 2866021                                               | LOAEL = 50  mg/kg bw/day                                                                                                                                  |
|                                                             | Effects at LOAEL: ↓ fetal wt, ↑ ossification of phalanges                                                                                                 |
|                                                             | No evidence of treatment-related malformations<br>Evidence of sensitivity of the young                                                                    |
| Developmental toxicity<br>(gavage)<br>(Range-finding study) | Supplemental: Two-Phase study for maternal toxicity (the first unmated phase determined dose level range for the mated phase)                             |
| NZW rabbits                                                 | Maternal Toxicity<br>Unmated phase:<br>800 mg/kg bw/day: ↑ mortality (1)                                                                                  |
| PMRA# 2866020                                               | Mated phase:<br>≥100 mg/kg bw/day: ↑ discoloration of amniotic sacs                                                                                       |
|                                                             | <b>≥300 mg/kg bw/day</b> : ↓ fc (GD 8 to 14)                                                                                                              |
|                                                             | <b>800 mg/kg bw/day</b> : ↓ bwg, ↑ mortality (2)                                                                                                          |
|                                                             | Developmental Toxicity (Mated phase)                                                                                                                      |
|                                                             | <b>≥300 mg/kg bw/day</b> : ↓ litters, ↓ live fetuses (due to maternal toxicity)                                                                           |

| (gavage)       NOAEL = 300 mg/kg bw/day<br>LOAEL could not be established         NZW rabbits       Developmental Toxicity<br>NOAEL = 300 mg/kg bw/day<br>LOAEL could not be established         PMRA# 2866022       Developmental Toxicity<br>NOAEL = 300 mg/kg bw/day<br>LOAEL could not be established         No evidence of treatment-related malformations.<br>No evidence of sensitivity of the young.         Genotoxicity studies - Tiafenacil Technical Grade Active Ingredient (DCC-3825)         Bacterial Reverse Mutation<br>Assay         S. typhimurium (TA98,<br>TA100, TA1535, TA1537)         E. coli (WP2 uvrA, pKM<br>101)         PMRA# 2866025         Mammalian Cell Forward<br>Gene Mutation Assay         Mouse lymphoma L5178Y         PMRA# 2866026         In vitro Mammalian<br>Clastogenicity<br>(chromosomal aberration<br>assay)         Human lymphocytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Study<br>type/Animal/PMRA #         | Study results                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------|
| LOAEL could not be established         NZW rabbits         Developmental Toxicity         NOAEL = 300 mg/kg bw/day         LOAEL could not be established         No evidence of treatment-related malformations.<br>No evidence of sensitivity of the young.         Genotoxicity studies - Tiafenacil Technical Grade Active Ingredient (DCC-3825)         Bacterial Reverse Mutation         Negative ± metabolic activation         Assay         S. typhimurium (TA98,<br>TA100, TA1535, TA1537)         E. coli (WP2 uvrA, pKM<br>101)         PMRA# 2866025         Mammalian Cell Forward<br>Gene Mutation Assay         Mouse lymphoma L5178Y         PMRA# 2866026         In vitro Mammalian<br>Clastogenicity<br>(chromosomal aberration<br>assay)         Human lymphocytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Developmental toxicity              | Maternal Toxicity                                         |
| NZW rabbits<br>PMRA# 2866022Developmental Toxicity<br>NOAEL = 300 mg/kg bw/day<br>LOAEL could not be establishedNo evidence of treatment-related malformations.<br>No evidence of sensitivity of the young.Genotoxicity studies - Tiafenacil Technical Grade Active Ingredient (DCC-3825)Bacterial Reverse Mutation<br>AssayS. typhimurium (TA98,<br>TA100, TA1535, TA1537)E. coli (WP2 uvrA, pKM<br>101)PMRA# 2866025Mammalian Cell Forward<br>Gene Mutation AssayMouse lymphoma L5178YPMRA# 2866026In vitro Mammalian<br>Clastogenicity<br>(chromosomal aberration<br>assay)Human lymphocytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (gavage)                            |                                                           |
| PMRA# 2866022Developmental Toxicity<br>NOAEL = 300 mg/kg bw/day<br>LOAEL could not be establishedNo evidence of treatment-related malformations.<br>No evidence of sensitivity of the young.Genotoxicity studies - Tiafenacil Technical Grade Active Ingredient (DCC-3825)Bacterial Reverse Mutation<br>AssayS. typhimurium (TA98,<br>TA100, TA1535, TA1537)E. coli (WP2 uvrA, pKM<br>101)PMRA# 2866025Mammalian Cell Forward<br>Gene Mutation AssayMouse lymphoma L5178YPMRA# 2866026In vitro Mammalian<br>Clastogenicity<br>(chromosomal aberration<br>assay)Human lymphocytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | LOAEL could not be established                            |
| PMRA# 2866022       NOAEL = 300 mg/kg bw/day<br>LOAEL could not be established         No evidence of treatment-related malformations.<br>No evidence of sensitivity of the young.         Genotoxicity studies - Tiafenacil Technical Grade Active Ingredient (DCC-3825)         Bacterial Reverse Mutation<br>Assay         S. typhimurium (TA98,<br>TA100, TA1535, TA1537)         E. coli (WP2 uvrA, pKM<br>101)         PMRA# 2866025         Mammalian Cell Forward<br>Gene Mutation Assay         Mouse lymphoma L5178Y         PMRA# 2866026         In vitro Mammalian<br>Clastogenicity<br>(chromosomal aberration<br>assay)         Human lymphocytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NZW rabbits                         |                                                           |
| PMRA# 2866022       LOAEL could not be established         No evidence of treatment-related malformations.<br>No evidence of sensitivity of the young.         Genotoxicity studies - Tiafenacil Technical Grade Active Ingredient (DCC-3825)         Bacterial Reverse Mutation         Assay         S. typhimurium (TA98,<br>TA100, TA1535, TA1537)         E. coli (WP2 uvrA, pKM<br>101)         PMRA# 2866025         Mammalian Cell Forward<br>Gene Mutation Assay         Mouse lymphoma L5178Y         PMRA# 2866026         In vitro Mammalian<br>Clastogenicity<br>(chromosomal aberration<br>assay)         Human lymphocytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                                                           |
| DALL could not be established         No evidence of treatment-related malformations.<br>No evidence of sensitivity of the young.         Genotoxicity studies - Tiafenacil Technical Grade Active Ingredient (DCC-3825)         Bacterial Reverse Mutation<br>Assay         S. typhimurium (TA98,<br>TA100, TA1535, TA1537)         E. coli (WP2 uvrA, pKM<br>101)         PMRA# 2866025         Mammalian Cell Forward<br>Gene Mutation Assay         Mouse lymphoma L5178Y         PMRA# 2866026         In vitro Mammalian<br>Clastogenicity<br>(chromosomal aberration<br>assay)         Human lymphocytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DMD 4 # 2866022                     |                                                           |
| No evidence of sensitivity of the young.Genotoxicity studies – Tiafenacil Technical Grade Active Ingredient (DCC-3825)Bacterial Reverse Mutation<br>AssayNegative ± metabolic activation<br>Tested up to limit concentrationS. typhimurium (TA98,<br>TA100, TA1535, TA1537)Fested up to limit concentrationPMRA# 2866025Negative ± metabolic activation<br>Gene Mutation Assay<br>Mouse lymphoma L5178YPMRA# 2866026Negative ± metabolic activation<br>Tested up to limit of solubility under culture conditionsIn vitro Mammalian<br>Clastogenicity<br>(chromosomal aberration<br>assay)Negative ± metabolic activation<br>Tested up to limit of solubility under culture conditionsHuman lymphocytesNegative ± metabolic activation<br>Tested up to limit of solubility under culture conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FMRA# 2800022                       | LOAEL could not be established                            |
| No evidence of sensitivity of the young.Genotoxicity studies – Tiafenacil Technical Grade Active Ingredient (DCC-3825)Bacterial Reverse Mutation<br>AssayNegative ± metabolic activation<br>Tested up to limit concentrationS. typhimurium (TA98,<br>TA100, TA1535, TA1537)Fested up to limit concentrationPMRA# 2866025Negative ± metabolic activation<br>Gene Mutation Assay<br>Mouse lymphoma L5178YPMRA# 2866026Negative ± metabolic activation<br>Tested up to limit of solubility under culture conditionsIn vitro Mammalian<br>Clastogenicity<br>(chromosomal aberration<br>assay)Negative ± metabolic activation<br>Tested up to limit of solubility under culture conditionsHuman lymphocytesNegative ± metabolic activation<br>Tested up to limit of solubility under culture conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                                                           |
| Genotoxicity studies – Tiafenacil Technical Grade Active Ingredient (DCC-3825)         Bacterial Reverse Mutation         Assay         Styphimurium (TA98, TA100, TA1535, TA1537)         E. coli (WP2 uvrA, pKM 101)         PMRA# 2866025         Mammalian Cell Forward         Gene Mutation Assay         Mouse lymphoma L5178Y         PMRA# 2866026         In vitro Mammalian Clastogenicity (chromosomal aberration assay)         Human lymphocytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |                                                           |
| Bacterial Reverse Mutation       Negative ± metabolic activation         Assay       Tested up to limit concentration         S. typhimurium (TA98, TA100, TA1535, TA1537)       Tested up to limit concentration         E. coli (WP2 uvrA, pKM 101)       Negative ± metabolic activation         PMRA# 2866025       Negative ± metabolic activation         Gene Mutation Assay       Tested up to limit of solubility under culture conditions         Mouse lymphoma L5178Y       Tested up to limit of solubility under culture conditions         PMRA# 2866026       Negative ± metabolic activation         In vitro Mammalian Clastogenicity (chromosomal aberration assay)       Negative ± metabolic activation         Human lymphocytes       Tested up to limit of solubility under culture conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     | No evidence of sensitivity of the young.                  |
| Bacterial Reverse Mutation       Negative ± metabolic activation         Assay       Tested up to limit concentration         S. typhimurium (TA98, TA100, TA1535, TA1537)       Tested up to limit concentration         E. coli (WP2 uvrA, pKM 101)       Negative ± metabolic activation         PMRA# 2866025       Negative ± metabolic activation         Gene Mutation Assay       Tested up to limit of solubility under culture conditions         Mouse lymphoma L5178Y       Tested up to limit of solubility under culture conditions         PMRA# 2866026       Negative ± metabolic activation         In vitro Mammalian Clastogenicity (chromosomal aberration assay)       Negative ± metabolic activation         Human lymphocytes       Tested up to limit of solubility under culture conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                           |
| AssayTested up to limit concentrationS. typhimurium (TA98,<br>TA100, TA1535, TA1537)Tested up to limit concentrationPMRA# 2866025Negative ± metabolic activationPMRA# 2866025Negative ± metabolic activationMouse lymphoma L5178YTested up to limit of solubility under culture conditionsPMRA# 2866026Negative ± metabolic activationIn vitro Mammalian<br>Clastogenicity<br>(chromosomal aberration<br>assay)Negative ± metabolic activation<br>Tested up to limit of solubility under culture conditionsHuman lymphocytesNegative ± metabolic activation<br>Tested up to limit of solubility under culture conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Genotoxicity studies – Tia          | fenacil Technical Grade Active Ingredient (DCC-3825)      |
| S. typhimurium (TA98, TA100, TA1535, TA1537)         E. coli (WP2 uvrA, pKM 101)         PMRA# 2866025         Mammalian Cell Forward Gene Mutation Assay         Mouse lymphoma L5178Y         PMRA# 2866026         In vitro Mammalian Clastogenicity (chromosomal aberration assay)         Human lymphocytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bacterial Reverse Mutation<br>Assay | Negative $\pm$ metabolic activation                       |
| S. typhimurium (TA98, TA100, TA1535, TA1537)         E. coli (WP2 uvrA, pKM 101)         PMRA# 2866025         Mammalian Cell Forward Gene Mutation Assay         Mouse lymphoma L5178Y         PMRA# 2866026         In vitro Mammalian Clastogenicity (chromosomal aberration assay)         Human lymphocytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | Tested up to limit concentration                          |
| TA100, TA1535, TA1537)         E. coli (WP2 uvrA, pKM         101)         PMRA# 2866025         Mammalian Cell Forward         Gene Mutation Assay         Mouse lymphoma L5178Y         PMRA# 2866026         In vitro Mammalian         Clastogenicity         (chromosomal aberration assay)         Human lymphocytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     | 1                                                         |
| 101)       PMRA# 2866025         Mammalian Cell Forward<br>Gene Mutation Assay       Negative ± metabolic activation         Mouse lymphoma L5178Y       Tested up to limit of solubility under culture conditions         PMRA# 2866026       Negative ± metabolic activation         In vitro Mammalian<br>Clastogenicity<br>(chromosomal aberration<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TA100, TA1535, TA1537)              |                                                           |
| 101)       PMRA# 2866025         Mammalian Cell Forward<br>Gene Mutation Assay       Negative ± metabolic activation         Mouse lymphoma L5178Y       Tested up to limit of solubility under culture conditions         PMRA# 2866026       Negative ± metabolic activation         In vitro Mammalian<br>Clastogenicity<br>(chromosomal aberration<br>assay)       Negative ± metabolic activation         Human lymphocytes       Tested up to limit of solubility under culture conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>E. coli</i> (WP2 uvrA, pKM       |                                                           |
| PMRA# 2866025         Mammalian Cell Forward<br>Gene Mutation Assay       Negative ± metabolic activation         Mouse lymphoma L5178Y       Tested up to limit of solubility under culture conditions         PMRA# 2866026       Negative ± metabolic activation         In vitro Mammalian<br>Clastogenicity<br>(chromosomal aberration<br>assay)       Negative ± metabolic activation         Human lymphocytes       Tested up to limit of solubility under culture conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · ·                               |                                                           |
| Mammalian Cell Forward<br>Gene Mutation AssayNegative ± metabolic activationMouse lymphoma L5178YTested up to limit of solubility under culture conditionsPMRA# 2866026Negative ± metabolic activationIn vitro Mammalian<br>Clastogenicity<br>(chromosomal aberration<br>assay)Negative ± metabolic activation<br>Tested up to limit of solubility under culture conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                           |
| Gene Mutation AssayTested up to limit of solubility under culture conditionsMouse lymphoma L5178YTested up to limit of solubility under culture conditionsPMRA# 2866026Negative ± metabolic activationIn vitro Mammalian<br>Clastogenicity<br>(chromosomal aberration<br>assay)Negative ± metabolic activation<br>Tested up to limit of solubility under culture conditionsHuman lymphocytesHuman lymphocytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PMRA# 2866025                       |                                                           |
| Mouse lymphoma L5178YTested up to limit of solubility under culture conditionsPMRA# 2866026Negative ± metabolic activationIn vitro Mammalian<br>Clastogenicity<br>(chromosomal aberration<br>assay)Negative ± metabolic activation<br>Tested up to limit of solubility under culture conditionsHuman lymphocytesImage: Classic condition<br>Human lymphocytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mammalian Cell Forward              | Negative $\pm$ metabolic activation                       |
| Mouse lymphoma L5178Y         PMRA# 2866026         In vitro Mammalian         Clastogenicity         (chromosomal aberration assay)         Human lymphocytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gene Mutation Assay                 |                                                           |
| Mouse lymphoma L5178Y         PMRA# 2866026         In vitro Mammalian         Clastogenicity         (chromosomal aberration assay)         Human lymphocytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | Tested up to limit of solubility under culture conditions |
| PMRA# 2866026       In vitro Mammalian         In vitro Mammalian       Negative ± metabolic activation         Clastogenicity       Chromosomal aberration         (chromosomal aberration assay)       Tested up to limit of solubility under culture conditions         Human lymphocytes       Image: Comparison of the solubility of the solution of the solubility of the solution of the soluticon of the solution of the soluticon of the so |                                     | rested up to mint of solubility under culture conditions  |
| In vitro Mammalian<br>Clastogenicity<br>(chromosomal aberration<br>assay)Negative ± metabolic activation<br>Tested up to limit of solubility under culture conditionsHuman lymphocytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                           |
| In vitro Mammalian<br>Clastogenicity<br>(chromosomal aberration<br>assay)Negative ± metabolic activation<br>Tested up to limit of solubility under culture conditionsHuman lymphocytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                           |
| Clastogenicity<br>(chromosomal aberration<br>assay)<br>Human lymphocytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PMRA# 2866026                       |                                                           |
| Clastogenicity<br>(chromosomal aberration<br>assay)<br>Human lymphocytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | In vitro Momeralian                 | Nagativa I matchalia activation                           |
| (chromosomal aberration<br>assay)<br>Human lymphocytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     | negative ± metabolic activation                           |
| Assay)<br>Human lymphocytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>e</b> .                          |                                                           |
| Human lymphocytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | Tested up to limit of solubility under culture conditions |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | assay)                              |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TT 1 1                              |                                                           |
| PMRA# 2866027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Human lymphocytes                   |                                                           |
| PMRA# 2866027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PMRA# 2866027                       |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                                                           |

| Study<br>type/Animal/PMRA #      | Study results                                                                                |
|----------------------------------|----------------------------------------------------------------------------------------------|
| In vivo Micronucleus<br>Assay    | Negative                                                                                     |
| CD1 mouse bone marrow            | No signs of toxicity at any dose level.                                                      |
| PMRA# 2866028                    |                                                                                              |
| Neurotoxicity studies - Ti       | afenacil Technical Grade Active Ingredient (DCC-3825)                                        |
| Acute Neurotoxicity              | NOAEL = 2000 mg/kg bw/day $(3/2)$                                                            |
| (gavage)                         | LOAEL could not be established                                                               |
| Han Wistar rats                  |                                                                                              |
| PMRA# 2866003                    | No evidence of selective neurotoxicity.                                                      |
| Acute neurotoxicity study (oral) | Supplemental                                                                                 |
|                                  | follows Japanese guideline JMAFF 2-2-1                                                       |
| Han wistar rats                  |                                                                                              |
|                                  | No adverse toxicological effects were observed in this study.                                |
| PMRA# 2988672                    |                                                                                              |
| 90-Day Subchronic                | NOAEL = $9/29 \text{ mg/kg bw/day} (3/2)$                                                    |
| Neurotoxicity                    | LOAEL = 26/105  mg/kg bw/day (3/2)                                                           |
| (dietary)                        |                                                                                              |
| Han wistar rats                  | Effects at LOAEL: ↓ bw (♂/♀)                                                                 |
|                                  | No evidence of selective neurotoxicity.                                                      |
| PMRA# 2866015                    |                                                                                              |
|                                  | Tiafenacil Technical Grade Active Ingredient (DCC-3825)                                      |
| 28-Day Oral Toxicity             | NOAEL = $3.9 \text{ mg/kg bw/day}$ ( $3$ )                                                   |
| (dietary)                        | LOAEL = 31  mg/kg bw/day (3)                                                                 |
| CD1 mice                         | Effects at LOAEL: ↑ liver wt, ↑ thymus wt, ↑ prominent lobular architecture of the liver (♂) |
| PMRA# 2866030                    | No evidence of immune dysregulation.                                                         |

| Study<br>type/Animal/PMRA #                           | Study results                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                       | cil Technical Grade Active Ingredient (DCC-3825)                                                                                                                                                                                                                                                                                                           |
| QSAR software TOPKAT                                  | Predicted $LD_{50} = 3361 \text{ mg/kg bw}$                                                                                                                                                                                                                                                                                                                |
| 4.5                                                   | Experimental value > 2000 mg/kg bw                                                                                                                                                                                                                                                                                                                         |
| PMRA# 2866130                                         | GHS Category 5                                                                                                                                                                                                                                                                                                                                             |
|                                                       | Actual and predicted LD <sub>50</sub> varies by factor of up to 5.1 within similar structures (similarity: 34-38%)                                                                                                                                                                                                                                         |
| In vitro Neutral Red<br>Uptake Phototoxicity<br>Assay | Negative                                                                                                                                                                                                                                                                                                                                                   |
| Азбау                                                 | No signs of cytotoxicity or phototoxicity.                                                                                                                                                                                                                                                                                                                 |
| BALB/c 3T3 mouse<br>fibroblasts                       | Tested up to limit of solubility under culture conditions. Solubility evaluation revealed a solubility limit of 316 µg/mL.                                                                                                                                                                                                                                 |
| PMRA# 2988676                                         |                                                                                                                                                                                                                                                                                                                                                            |
| In vitro hERG tail current<br>amplitude assay         | The concentration-response curve showed that tiafenacil produced only a partial block of hERG current (29.00%) at 124 $\mu$ M. IC <sub>50</sub> could not be derived.                                                                                                                                                                                      |
| HEK-293 cells                                         |                                                                                                                                                                                                                                                                                                                                                            |
| PMRA# 2988673                                         |                                                                                                                                                                                                                                                                                                                                                            |
| Whole Body Bias Flow<br>Plethysmography (oral)        | Negative                                                                                                                                                                                                                                                                                                                                                   |
| Han Wistar rats                                       | There were no statistically significant or biologically relevant effects on any of the respiratory parameters.                                                                                                                                                                                                                                             |
| PMRA# 2988673                                         |                                                                                                                                                                                                                                                                                                                                                            |
| 14-day oral MOA study                                 | Supplemental – non-guideline                                                                                                                                                                                                                                                                                                                               |
| ICR mice                                              | ≥ 10 mg/kg bw/day: ↓ BUN ( $\eth/ ♀$ ); ↓ Hb, ↑ platelets, ↑ CYP2B10 ( $\eth$ ); ↑ WBC, ↓ Mono ( $♀$ )                                                                                                                                                                                                                                                     |
| PMRA# 3129070                                         | ≥ 100 mg/kg bw/day: $\uparrow$ CAR, $\uparrow$ CYP4A ( $\eth/ \Diamond$ ); $\uparrow$ WBC, $\downarrow$ Mono, $\uparrow$ ALT,<br>$\uparrow$ AST, $\uparrow$ liver wt, $\uparrow$ centrilobular hypertrophy, cytoplasmic vacuolation<br>and mixed inflammatory cell infiltration (liver) ( $\eth$ ); $\downarrow$ HDW, $\uparrow$ CYP2B10<br>( $\Diamond$ ) |
|                                                       | MOA: ↑ CYP2B via the CAR signaling pathway in males; minor ↑<br>CYP4A expression via PPARα signaling pathway.                                                                                                                                                                                                                                              |

| Study                                               | Study results                                                               |  |  |  |  |  |
|-----------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|
| type/Animal/PMRA #<br>In vitro PPO inhibition       |                                                                             |  |  |  |  |  |
| assay                                               | Supplemental – non-guideline                                                |  |  |  |  |  |
| 5                                                   | Mouse $IC_{50} = 53.6 \pm 3.3 \text{ nM}$ (Tiafenacil)                      |  |  |  |  |  |
| Mouse and Human PPOs                                | Human $IC_{50} = 1,012.9 \pm 40.4$ nM (Tiafenacil)                          |  |  |  |  |  |
|                                                     | Mouse $IC_{50} = 116.4 \pm 5.5$ nM (Saflufenacil)                           |  |  |  |  |  |
| PMRA# 3129070                                       | Human IC <sub>50</sub> = 1,774.5 $\pm$ 102.5 nM (Saflufenacil)              |  |  |  |  |  |
|                                                     | Limitations: no positive control                                            |  |  |  |  |  |
| In vitro PPO inhibition                             | Supplemental – non-guideline                                                |  |  |  |  |  |
| assay                                               | Mouse $IC_{50} = 47 \pm 2.7$ nM (Tiafenacil)                                |  |  |  |  |  |
| Mouse, Rat, Rabbit and                              | Rat $IC_{50} = 92 \pm 14 \text{ nM}$ (Tiafenacil)                           |  |  |  |  |  |
| Human PPOs                                          | Rabbit $IC_{50} = 666 \pm 41 \text{ nM}$ (Tiafenacil)                       |  |  |  |  |  |
|                                                     | Human IC <sub>50</sub> = $934\pm25$ nM (Tiafenacil)                         |  |  |  |  |  |
| PMRA# 3129071                                       | Positive Control: Flumioxazin                                               |  |  |  |  |  |
|                                                     | Mouse $IC_{50} = 76 \pm 18 nM$                                              |  |  |  |  |  |
|                                                     | Rat $IC_{50} = 148 \pm 27 \text{ nM}$                                       |  |  |  |  |  |
|                                                     | Rabbit $IC_{50} = 604 \pm 81 \text{ nM}$                                    |  |  |  |  |  |
|                                                     | Human IC <sub>50</sub> = $755\pm66$ nM                                      |  |  |  |  |  |
| Special studies – metabolit                         | te DCC-3825 M-36                                                            |  |  |  |  |  |
| QSAR software TOPKAT                                | Predicted $LD_{50} = 917 \text{ mg/kg bw}$                                  |  |  |  |  |  |
| 4.5                                                 | Experimental value > 2000 mg/kg bw                                          |  |  |  |  |  |
|                                                     | GHS Category 4 or moderately acutely toxic                                  |  |  |  |  |  |
| PMRA# 2866130                                       | Actual and predicted $LD_{50}$ varies by factor of up to 5.8 within similar |  |  |  |  |  |
|                                                     | structures (similarity: 35-40%)                                             |  |  |  |  |  |
| Acute Oral Toxicity                                 | $LD_{50} \ge 2000 \text{ mg/kg bw} (\bigcirc)$                              |  |  |  |  |  |
| (gavage)                                            | Low toxicity                                                                |  |  |  |  |  |
| Sprague-Dawley rats                                 | No clinical signs                                                           |  |  |  |  |  |
| PMRA# 2866031                                       |                                                                             |  |  |  |  |  |
| Bacterial Reverse Mutation                          | Negative ± metabolic activation                                             |  |  |  |  |  |
| Assay                                               |                                                                             |  |  |  |  |  |
| <i>S. typhimurium</i> (TA98, TA100, TA1535, TA1537) | Tested up to limit of solubility.                                           |  |  |  |  |  |
| E. coli (WP2 uvrA)                                  |                                                                             |  |  |  |  |  |
| PMRA# 2866033                                       |                                                                             |  |  |  |  |  |

| Study<br>type/Animal/PMRA #                                           | Study results                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Special studies – metaboli                                            | te DCC-3825 M-53                                                                                                                                                                                                                                                                                    |
| QSAR software TOPKAT                                                  | Predicted $LD_{50} = 1261 \text{ mg/kg bw}$                                                                                                                                                                                                                                                         |
| 4.5                                                                   | Experimental value > 2000 mg/kg bw                                                                                                                                                                                                                                                                  |
|                                                                       | GHS Category 4 or slightly acutely toxic                                                                                                                                                                                                                                                            |
| PMRA# 2866130                                                         | Actual and predicted LD <sub>50</sub> varies by factor of up to 5.8 within similar structures (similarity: 35-40%)                                                                                                                                                                                  |
| Acute Oral Toxicity                                                   | $LD_{50} \ge 2000 \text{ mg/kg bw } (\bigcirc)$                                                                                                                                                                                                                                                     |
| (gavage)                                                              | Low toxicity                                                                                                                                                                                                                                                                                        |
| Sprague-Dawley rats<br>PMRA# 2866032                                  | No clinical signs                                                                                                                                                                                                                                                                                   |
| Bacterial Reverse Mutation<br>Assay                                   | Negative $\pm$ metabolic activation                                                                                                                                                                                                                                                                 |
| S. typhimurium (TA98,<br>TA100, TA1535, TA1537)<br>E. coli (WP2 uvrA) | Tested up to limit of solubility.                                                                                                                                                                                                                                                                   |
| PMRA# 2866034                                                         |                                                                                                                                                                                                                                                                                                     |
| Special studies – metaboli                                            | tes of tiafenacil (DCC-3825)                                                                                                                                                                                                                                                                        |
| QSAR software TOPKAT<br>4.5<br>PMRA# 2866130                          | The predicted acute oral toxicity of metabolite M-69 led to classification<br>as GHS category 3 or highly acutely toxic. The predicted acute oral<br>toxicities of metabolites M-12, M-13, M-29, M-30, M-32, M-35, M-36,<br>and M-53 led to classification of these substances as GHS category 4 or |
|                                                                       | slight to moderate acute toxicity.<br>The predicted acute oral toxicities of metabolites M-01 and M-63 are<br>classified as GHS category 5 or low acute toxicity.                                                                                                                                   |
|                                                                       | The predicted acute oral toxicities of metabolites M-72 and M-73 were both >5000 mg/kg bw and therefore not subject to GHS categorization.                                                                                                                                                          |
| DEREK NEXUS (version<br>4.1.0, Lhasa Limited)<br>evaluation on        | No trigger for any alerts for genotoxicity or mutagenicity in bacteria or<br>mammals for DCC-3825 metabolites M-01, M-06, M-07, M-10, M-12, M-<br>13, M-20, M-29, M-30, M-32, M-35, M-36, M-39, M-53, M-63, M-69, M-<br>72, M-73                                                                    |
| PMRA# 2866130                                                         |                                                                                                                                                                                                                                                                                                     |

| Exposure<br>Scenario                                         | Study                                  | Point of Departure and Endpoint                                                                                                | CAF <sup>1</sup> or<br>Target<br>MOE |  |  |  |  |
|--------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|
| Acute dietary                                                | -                                      | An endpoint of concern attributable to a single exposure was not identified<br>in the oral toxicity studies                    |                                      |  |  |  |  |
|                                                              | ARfD was not establis                  | hed                                                                                                                            |                                      |  |  |  |  |
| Repeated<br>dietary                                          | 78-week mouse<br>carcinogenicity study | NOAEL = 0.35 mg/kg bw/day<br>Based on increased hepatocyte<br>hypertrophy, and increase in<br>pigmented Kupffer cells (liver)* | 100                                  |  |  |  |  |
|                                                              | ADI = 0.004  mg/kg by                  | v/day                                                                                                                          |                                      |  |  |  |  |
| Short-term,<br>intermediate-<br>term dermal                  | 28-day dermal toxicity study in rats   | NOAEL = 1000 mg/kg bw/day<br>No adverse effects up to the highest<br>dose tested                                               | 100                                  |  |  |  |  |
| Short-term,<br>intermediate-<br>term inhalation <sup>2</sup> | 90-day oral toxicity study in mice     | NOAEL = 1.7 mg/kg bw/day<br>Based on increased liver weight,<br>increased hepatocyte centrilobular<br>vacuolation and necrosis | 100                                  |  |  |  |  |
| Cancer                                                       | A cancer risk assessmen                | nt was not required                                                                                                            |                                      |  |  |  |  |

### Table 6 Toxicology reference values for use in health risk assessment for Tiafenacil

<sup>1</sup> CAF (composite assessment factor) refers to a total of uncertainty and PCPA factors for dietary assessments; MOE refers to a target MOE for occupational assessments.

<sup>2</sup> Since an oral NOAEL was selected, an inhalation absorption factor of 100% (default value) was used in route-to-route extrapolation.

\*Kupffer cells were a marker for changes in hematological parameters not assessed in the study and not considered adverse in and of themselves.

# Table 7AHETF/PHED unit exposure estimates for mixer/loaders and applicators<br/>handling Tiafenacil 70WG Herbicide and Tiafenacil 339SC Herbicide (µg/kg a.i.<br/>handled)

|                              | Exposure scenario & PPE                                           | Dermal <sup>1</sup> | Inhalation <sup>2</sup> |  |  |  |  |  |  |
|------------------------------|-------------------------------------------------------------------|---------------------|-------------------------|--|--|--|--|--|--|
| PPE f                        | PPE for all scenarios: Single layer and chemical-resistant gloves |                     |                         |  |  |  |  |  |  |
| Mixer/loader AHETF estimates |                                                                   |                     |                         |  |  |  |  |  |  |
| Α                            | Open Mix/Load Dry Flowable                                        | 84.1                | 21.8                    |  |  |  |  |  |  |
| В                            | Open Mix/Load Liquid                                              | 58.5                | 0.63                    |  |  |  |  |  |  |
| Appli                        | cator AHETF/PHED estimates                                        |                     |                         |  |  |  |  |  |  |
| С                            | Open Cab Groundboom (AHETF)                                       | 25.4                | 1.68                    |  |  |  |  |  |  |
| D                            | Right-of-Way Sprayer (PHED)                                       | 872.5               | 5.00                    |  |  |  |  |  |  |
| Mixe                         | Mixer/loader + applicator AHETF/PHED estimates (WG formulation)   |                     |                         |  |  |  |  |  |  |
| A+C                          | Open Mix/Load Dry Flowable +                                      | 109.5               | 23.5                    |  |  |  |  |  |  |

|      | Exposure scenario & PPE                                                                                                             | Dermal <sup>1</sup>      | Inhalation <sup>2</sup> |
|------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|
|      | Open Cab Groundboom (AHETF)                                                                                                         |                          |                         |
| A+E  | Open Mix/Load Dry Flowable<br>(AHETF) + M/L/A Liquid Low<br>Pressure Handwand<br>(for manually-pressurized<br>handwand) (PHED)      | 1027.5                   | 67.0                    |
| A+F  | Open Mix/Load Dry Flowable<br>(AHETF) + M/L/A Liquid<br>Backpack (PHED)                                                             | 5530.0                   | 83.9                    |
| A+G  | Open Mix/Load Dry Flowable<br>(AHETF) + M/L/A Liquid High<br>Pressure Handwand<br>(for mechanically-pressurized<br>handwand) (PHED) | 5669.6                   | 172.8                   |
| A+D  | Open Mix/Load Dry Flowable<br>(AHETF) + Right-of-Way Sprayer<br>(PHED)                                                              | 956.7                    | 26.8                    |
| Mixe | c/loader + applicator AHETF/PHE                                                                                                     | D estimates (SC formulat | ion)                    |
| B+C  | Open Mix/Load Liquid + Open<br>Cab Groundboom (AHETF)                                                                               | 83.9                     | 2.31                    |
| Е    | Open Mix/Load Liquid (AHETF),<br>Low Pressure Handwand<br>(for manually-pressurized<br>handwand) (PHED)                             | 943.4                    | 45.2                    |
| F    | Open Mix/Load Liquid (AHETF)<br>Backpack (PHED)                                                                                     | 5445.9                   | 62.1                    |
| G    | Open Mix/Load Liquid (AHETF),<br>High Pressure Handwand<br>(for mechanically-pressurized<br>handwand) (PHED)                        | 5585.5                   | 151                     |
| B+D  | Open Mix/Load Liquid (AHETF)<br>+ Right-of-Way Sprayer (PHED)                                                                       | 931.0                    | 5.63                    |

<sup>1</sup> No adjustment since the dermal reference value is based on a dermal study (refer to Section 3.3). <sup>2</sup> Light inhalation rate (except for backpack = moderate inhalation rate)

| Exposure<br>scenario                                                                                              | Unit exposure<br>(µg/kg a.i. handled) <sup>1</sup>                |            | ATPD                  | Rate<br>(kg |          | Daily exposure (mg/kg<br>bw/day) <sup>3</sup> |                        | IOE <sup>4</sup>       |  |  |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------|-----------------------|-------------|----------|-----------------------------------------------|------------------------|------------------------|--|--|
| scenario                                                                                                          | Dermal                                                            | Inhalation | (ha/day) <sup>2</sup> | a.i./ha)    | Dermal   | Inhalation                                    | Dermal                 | Inhalation             |  |  |
| PPE for all scenar                                                                                                | PPE for all scenarios: Single layer and chemical-resistant gloves |            |                       |             |          |                                               |                        |                        |  |  |
| Open Mix/Load<br>Dry Flowable +<br>Open Cab                                                                       | 109.5                                                             | 23.5       | 107                   | 0.050       | 0.0073   | $1.57 \times 10^{-3}$                         | $1.37 \times 10^4$     | 1083                   |  |  |
| Groundboom                                                                                                        |                                                                   |            | 360                   | -           | 0.0246   | 5.28 × 10 <sup>-3</sup>                       | 4060                   | 322                    |  |  |
| Open Mix/Load<br>Dry Flowable +<br>Low Pressure<br>Handwand<br>(for manually-<br>pressurized<br>handwand)         | 1027.5                                                            | 67.0       | 1.07                  | 0.050       | 0.000687 | 4.48 × 10 <sup>-5</sup>                       | 1.46 × 10 <sup>6</sup> | 3.79 × 10 <sup>4</sup> |  |  |
| Open Mix/Load<br>Dry Flowable +<br>Backpack                                                                       | 5530.0                                                            | 83.9       | 1.07                  | 0.050       | 0.00370  | 5.61 × 10 <sup>-5</sup>                       | $2.70 \times 10^5$     | $3.03 \times 10^4$     |  |  |
| Open Mix/Load<br>Dry Flowable +<br>High Pressure<br>Handwand<br>(for<br>mechanically-<br>pressurized<br>handwand) | 5669.6                                                            | 172.8      | 27.1                  | 0.050       | 0.0960   | 2.93 × 10 <sup>-3</sup>                       | 1.04 × 10 <sup>4</sup> | 581                    |  |  |
| Open Mix/Load                                                                                                     | 956.7                                                             | 26.8       | 27.1                  | 0.050       | 0.0462   | $4.54 \times 10^{-4}$                         | $6.17 \times 10^{4}$   | 3750                   |  |  |

#### Table 8 Mixer/loader/applicator risk assessment for Tiafenacil 70WG Herbicide

| Exposure       | Unit exposure<br>(µg/kg a.i. handled) <sup>1</sup> |            | $(ug/kg a i handled)^1$ AIPD | ATPD<br>(ha/day) <sup>2</sup> | (1/0   | Daily exposure (mg/kg<br>bw/day) <sup>3</sup> |        | MOE <sup>4</sup> |  |
|----------------|----------------------------------------------------|------------|------------------------------|-------------------------------|--------|-----------------------------------------------|--------|------------------|--|
| scenario       | Dermal                                             | Inhalation | (na/uay)-                    | a.i./ha)                      | Dermal | Inhalation                                    | Dermal | Inhalation       |  |
| Dry Flowable + |                                                    |            |                              |                               |        |                                               |        |                  |  |
| Right-of-Way   |                                                    |            |                              |                               |        |                                               |        |                  |  |
| Sprayer        |                                                    |            |                              |                               |        |                                               |        |                  |  |

ATPD = Area treated per day; MOE = Margin of exposure

<sup>1</sup> Unit exposure based on AHETF/PHED from Table 1.

<sup>2</sup> Default Area Treated per Day table (2017-09-20), ATPDs for handheld and ROW equipment were calculated using the formula ATPD (ha/day) = Liters applied per day (3800 L/day for mechanically pressurized handwand and ROW sprayer and 150 L/day for manually pressurized handwand and backpack sprayer) ÷ Labelled spray volume (140 L/ha) <sup>3</sup> Daily exposure = (Unit exposure × ATPD × Rate) / (80 kg bw × 1000  $\mu$ g/mg)

<sup>4</sup> Based on dermal NOAEL = 1000 mg/kg bw/day; inhalation NOAEL = 1.7 mg/kg bw/day; and target MOE = 100 for all exposure scenarios.

#### Table 9 Mixer/loader/applicator risk assessment for Tiafenacil 339SC Herbicide

| Exposure<br>Scenario | Unit Exposure<br>(μg/kg a.i. handled) <sup>1</sup> |                | ATPD<br>(ha/day) <sup>2</sup> |          |          | osure (mg/kg<br>/day) <sup>3</sup> | М                    | OE <sup>4</sup>      |
|----------------------|----------------------------------------------------|----------------|-------------------------------|----------|----------|------------------------------------|----------------------|----------------------|
| Scenario             | Dermal                                             | Inhalation     | (na/uay)-                     | a.i./ha) | Dermal   | Inhalation                         | Dermal               | Inhalation           |
| PPE for all scenar   | rios: Single l                                     | ayer and chemi | cal-resistant g               | gloves   |          |                                    |                      |                      |
| Open Mix/Load        | 83.9                                               | 2.31           | 107                           | 0.050    | 0.00561  | $1.54 \times 10^{-4}$              | $1.78 \times 10^{5}$ | $1.1 \times 10^{4}$  |
| Liquid + Open        |                                                    |                |                               |          |          |                                    |                      |                      |
| Cab                  |                                                    |                | 360                           |          | 0.01890  | $5.20 \times 10^{-4}$              | $5.3 \times 10^4$    | 3300                 |
| Groundboom           |                                                    |                |                               |          |          |                                    |                      |                      |
| Open Mix/Load        | 943.4                                              | 45.2           | 27.1                          | 0.050    | 0.000631 | $3.20 \times 10^{-5}$              | $1.59 \times 10^{6}$ | $5.62 \times 10^{4}$ |
| Liquid + Low         |                                                    |                |                               |          |          |                                    |                      |                      |
| Pressure             |                                                    |                |                               |          |          |                                    |                      |                      |
| Handwand             |                                                    |                |                               |          |          |                                    |                      |                      |
| (for manually-       |                                                    |                |                               |          |          |                                    |                      |                      |
| pressurized          |                                                    |                |                               |          |          |                                    |                      |                      |
| handwand)            |                                                    |                |                               |          |          |                                    |                      |                      |
| Open Mix/Load        | 5445.9                                             | 62.1           | 1.07                          | 0.050    | 0.00363  | $4.15 \times 10^{-5}$              | $2.75 \times 10^5$   | $4.1 \times 10^{4}$  |
| Liquid +             |                                                    |                |                               |          |          |                                    |                      |                      |
| Backpack             |                                                    |                |                               |          |          |                                    |                      |                      |
| Open Mix/Load        | 5585.5                                             | 151            | 27.1                          | 0.050    | 0.0946   | $2.56 \times 10^{-3}$              | $1.06 \times 10^4$   | 665                  |

| Exposure<br>Scenario | Unit Exposure<br>(µg/kg a.i. handled) <sup>1</sup> |            | ATPD                  | Rate<br>(kg | Daily Exposure (mg/kg<br>bw/day) <sup>3</sup> |                       | MOE <sup>4</sup>     |                      |
|----------------------|----------------------------------------------------|------------|-----------------------|-------------|-----------------------------------------------|-----------------------|----------------------|----------------------|
| Scenario             | Dermal                                             | Inhalation | (ha/day) <sup>2</sup> | a.i./ha)    | Dermal                                        | Inhalation            | Dermal               | Inhalation           |
| Liquid + High        |                                                    |            |                       |             |                                               |                       |                      |                      |
| Pressure             |                                                    |            |                       |             |                                               |                       |                      |                      |
| Handwand             |                                                    |            |                       |             |                                               |                       |                      |                      |
| (for                 |                                                    |            |                       |             |                                               |                       |                      |                      |
| mechanically-        |                                                    |            |                       |             |                                               |                       |                      |                      |
| pressurized          |                                                    |            |                       |             |                                               |                       |                      |                      |
| handwand)            |                                                    |            |                       |             |                                               |                       |                      |                      |
| Open Mix/Load        | 931.0                                              | 5.63       | 27.1                  | 0.050       | 0.0158                                        | $9.54 \times 10^{-5}$ | $6.34 \times 10^{4}$ | $1.78 \times 10^{4}$ |
| Liquid + Right-      |                                                    |            |                       |             |                                               |                       |                      |                      |
| of-Way Sprayer       |                                                    |            |                       |             |                                               |                       |                      |                      |

ATPD = Area treated per day; MOE = Margin of exposure

<sup>1</sup> Unit exposure based on AHETF/PHED from Table 1.

<sup>2</sup> Default Area Treated per Day table (2017-09-20), ATPDs for handheld and ROW equipment were calculated using the formula ATPD (ha/day) = Liters applied per day (3800 L/day for mechanically pressurized handwand and ROW sprayer and 150 L/day for manually pressurized handwand and backpack sprayer) ÷ Labelled spray volume (140 L/ha) <sup>3</sup> Daily exposure = (Unit exposure × ATPD × Rate) / (80 kg bw × 1000 µg/mg)

<sup>4</sup> Based on dermal NOAEL = 1000 mg/kg bw/day; inhalation NOAEL = 1.7 mg/kg bw/day; and target MOE = 100 for all exposure scenarios.

### Table 10Postapplication worker exposure and risk estimate for Tiafenacil 70WG Herbicide on day 0 after a single<br/>application to grapes (0.0504 kg a.i./ha)

| Postapplication Activity     | Peak DFR<br>(μg/cm <sup>2</sup> ) <sup>1</sup> | Transfer Coefficient<br>(TC) (cm <sup>2</sup> /hr) <sup>2</sup> | Dermal Exposure<br>(mg/kg bw/day) <sup>3</sup> | MOE <sup>4</sup>     | REI <sup>5</sup> |
|------------------------------|------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------|----------------------|------------------|
| Hand-set irrigation (grapes) | 0.125                                          | 1750                                                            | 0.0219                                         | $4.57 \times 10^{4}$ | 12 hrs           |
| Scouting, pruning (grapes)   | 0.125                                          | 640                                                             | 0.0080                                         | $1.25 \times 10^{5}$ | 12 hrs           |

DFR = Dislodgeable foliar residue; TC = Transfer Coefficient; MOE = Margin of exposure; REI = Restricted-entry interval

<sup>1</sup> Calculated using the default 25% dislodgeable on the day of application and 10% dissipation per day (outdoor scenario)

<sup>2</sup> Transfer coefficients obtained from PMRA Agricultural TCs Table (last updated on 02-24-2021)

<sup>3</sup> Exposure = (Peak DFR [ $\mu$ g/cm<sup>2</sup>] × TC [cm<sup>2</sup>/hr] × 8 hours) / (80 kg bw × 1000  $\mu$ g/mg)

<sup>4</sup> Based on a dermal NOAEL of 1000 mg/kg bw/day, Target MOE = 100

<sup>5</sup> Minimum REI is 12 hours to allow residues to dry, suspended particles to settle and vapours to dissipate.

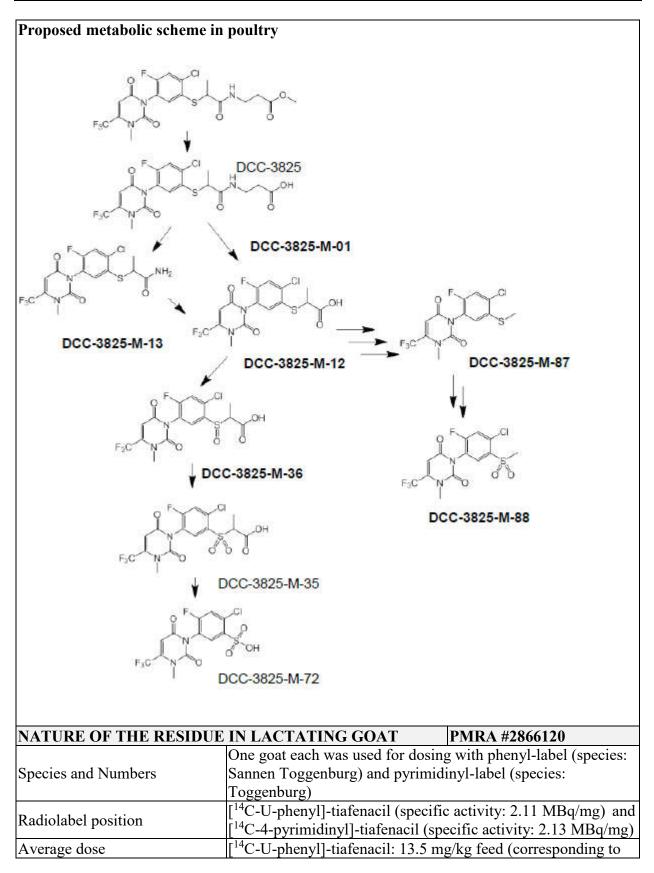
### Table 11 Postapplication worker exposure and risk estimate for Tiafenacil 339SC Herbicide on day 0 after a single application to grapes (0.0502 kg a.i./ha)

| Postapplication<br>Activity | Peak Transfer<br>DFR Coefficient (TC)<br>(µg/cm <sup>2</sup> ) <sup>1</sup> (cm <sup>2</sup> /hr) <sup>2</sup> |      | Dermal<br>Exposure<br>(mg/kg<br>bw/day) <sup>3</sup> | MOE <sup>4</sup> | REI <sup>5</sup> |
|-----------------------------|----------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------|------------------|------------------|
| Hand-set irrigation         | 0.126                                                                                                          | 1750 | 0.0220                                               | $4.55 \times$    | 12 hrs           |
| (grapes)                    |                                                                                                                |      |                                                      | 104              |                  |
| Scouting, pruning           | 0.126                                                                                                          | 640  | 0.0080                                               | 1.25 ×           | 12 hrs           |
| (grapes)                    |                                                                                                                |      |                                                      | 10 <sup>5</sup>  |                  |

DFR = Dislodgeable foliar residue; TC = Transfer Coefficient; MOE = Margin of exposure; REI = Restricted-entry interval <sup>1</sup> Calculated using the default 25% dislodgeable on the day of application and 10% dissipation per day (outdoor scenario)

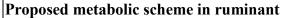
<sup>2</sup> Transfer coefficients obtained from PMRA Agricultural TCs Table (last updated on 02-24-2021)

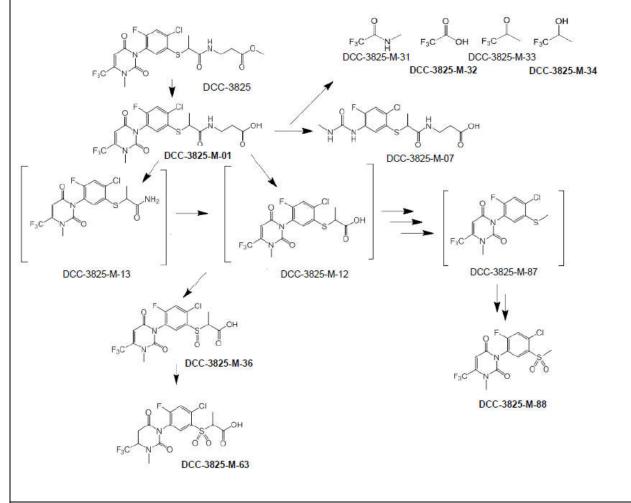
<sup>3</sup> Exposure = (Peak DFR [ $\mu$ g/cm<sup>2</sup>] × TC [cm<sup>2</sup>/hr] × 8 hours) / (80 kg bw × 1000  $\mu$ g/mg)


<sup>4</sup> Based on a dermal NOAEL of 1000 mg/kg bw/day, Target MOE = 100

<sup>5</sup> Minimum REI is 12 hours to allow residues to dry, suspended particles to settle and vapours to dissipate.

#### Table 12 Integrated food residue chemistry summary


| NATURE OF THE RESID                  | UE IN LAYING HEN PMRA #2866119                                                                                                                                                                                                                                      |  |  |  |  |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Species and Numbers                  | Five laying hens (species not reported)                                                                                                                                                                                                                             |  |  |  |  |
| Radiolabel position                  | [ <sup>14</sup> C-U-phenyl]-tiafenacil (specific activity: 2.09 MBq/mg) and<br>[ <sup>14</sup> C-4-pyrimidinyl]-tiafenacil (specific activity: 2.20 MBq/mg)                                                                                                         |  |  |  |  |
| Average dose                         | <ul> <li>[<sup>14</sup>C-U-phenyl]-tiafenacil: 11.7 mg/kg feed (corresponding to 0.875 mg/kg bw/day)</li> <li>[<sup>14</sup>C-4-pyrimidinyl]-tiafenacil: 11.6 mg/kg feed (corresponding to 0.902 mg/kg bw/day)</li> </ul>                                           |  |  |  |  |
| Treatment Regimen                    | Animals were dosed once daily via capsule                                                                                                                                                                                                                           |  |  |  |  |
| Study period                         | 14 consecutive days                                                                                                                                                                                                                                                 |  |  |  |  |
| Collection time                      | Eggs were collected twice daily and separated into yolks and<br>whites. Excreta were collected prior to the initial dose and at 24-<br>hour intervals thereafter until sacrifice.                                                                                   |  |  |  |  |
| Tissues collected                    | Liver, kidneys, muscle (leg plus thigh and breast), fat (peritoneal fat and skin plus fat), bile, partially formed eggs in oviduct, GI tract and GI tract contents.                                                                                                 |  |  |  |  |
| Interval from last dose to sacrifice | Approximately 6 hours.                                                                                                                                                                                                                                              |  |  |  |  |
| Plateau of residues in eggs          | Residues in egg yolk increased throughout the dosing period for<br>the pyrimidinyl-label, reaching a maximum on Day 14; whereas,<br>residues in egg yolk from the phenyl-label plateaued by Day 9.<br>Residues in egg white from both labels plateaued by Days 3-4. |  |  |  |  |
| Extraction solvents                  | Liver, kidney, muscle, egg white and excreta were extracted<br>sequentially with acetonitrile/water. Samples of pooled fat and<br>egg yolk were extracted sequentially with dichloromethane and<br>acetonitrile/water.                                              |  |  |  |  |

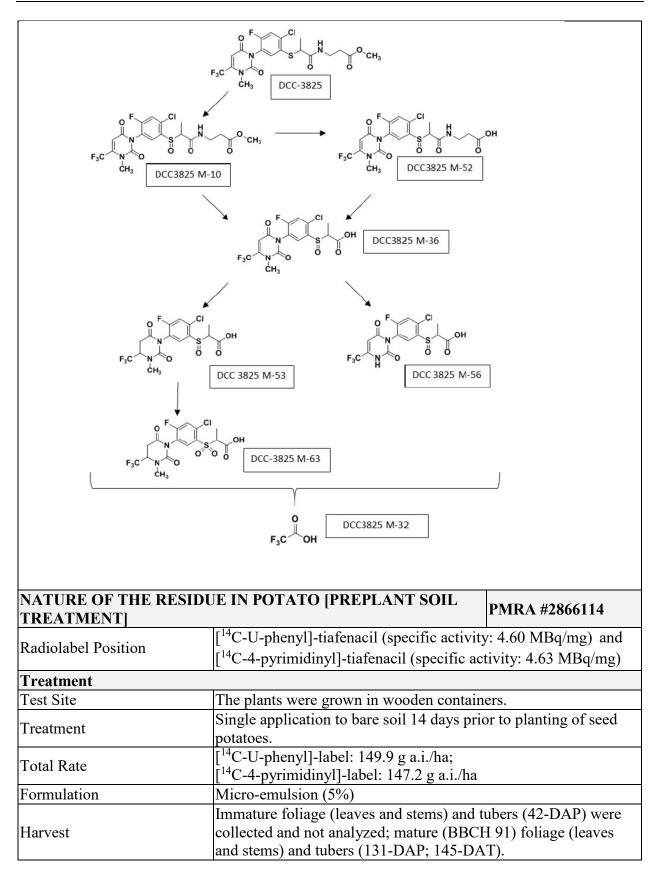

|                                 |                 | <sup>14</sup> C-U-phenyl] |                              |            | [ <sup>14</sup> C-4-pyrimidinyl] |                              |  |
|---------------------------------|-----------------|---------------------------|------------------------------|------------|----------------------------------|------------------------------|--|
| Matrices                        |                 |                           | % of<br>Administered<br>dose | TR         | Rs (ppm)                         | % of<br>Administered<br>dose |  |
| Excreta                         | N/.             | A                         | 74.5                         |            | N/A                              | 76.8                         |  |
| Cage Wash                       | N/.             | A                         | 11.0                         |            | N/A                              | 9.0                          |  |
| GI Tract & Contents             | N/.             | A                         | 0.9                          |            | N/A                              | 0.12                         |  |
| Pooled Egg Yolk (Day 9-<br>13)  | 0.0′            | 75                        | <0.1                         |            | 0.084                            | 0.1                          |  |
| Pooled Egg White (Day 9-<br>13) | 0.036           |                           | 0.1                          |            | 0.041                            | 0.1                          |  |
| Partly Formed Eggs              | 0.074           |                           | < 0.1                        | 0.092      |                                  | < 0.1                        |  |
| Liver                           | 0.208           |                           | < 0.1                        | 0.279      |                                  | < 0.1                        |  |
| Kidney                          | 0.289           |                           | < 0.1                        | 0.332      |                                  | < 0.1                        |  |
| Fat (pooled)                    | 0.194           |                           | < 0.1                        | 0.164      |                                  | < 0.1                        |  |
| Muscle (pooled)                 | 0.048           |                           | < 0.1                        | 0.040      |                                  | < 0.1                        |  |
| Summary of major                | identifie       | d metab                   | olites in hen ma             | trices     |                                  |                              |  |
| <b>Radiolabel</b> position      | olabel position |                           | [ <sup>14</sup> C-U-phenyl]  |            | [ <sup>14</sup> C-4-pyrimidinyl] |                              |  |
| Metabolites identifi            | ed              | Major metabolit           |                              | es         | Major m                          | etabolites                   |  |
| Liver                           |                 | M-01, M-12, M-8           |                              | 88         | M-01, M-12, M-88                 |                              |  |
| Kidney                          |                 | M-12, M-13, M             |                              | 88         | M-12, M-                         | -13, M-88                    |  |
| Muscle                          |                 | M-88                      |                              |            | M-01, M-88                       |                              |  |
| Fat                             |                 | M-87, M-88                |                              |            | M-87, M-88                       |                              |  |
| Egg white                       |                 |                           | M-36, M-88                   | M-36, M-88 |                                  | M-88                         |  |
| Egg yolk                        |                 | M-88                      |                              |            | M-87, M-88                       |                              |  |
| Excreta                         |                 | Tiafenacil, M-01, M-12,   |                              | 2, M-36    | M-01, M-                         | -12, M-36                    |  |



|                                   | [ <sup>14</sup> C-4           | 0.281 mg/kg bw/day)<br>[ <sup>14</sup> C-4-pyrimidinyl]-tiafenacil:<br>to 0.256 mg/kg bw/day)                                                                                                                                                                                             |                                  | 31.1 mg/kg feed (corresponding |  |  |  |
|-----------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------|--|--|--|
| Treatment Regimen                 |                               | Animals were dosed once daily via capsule.                                                                                                                                                                                                                                                |                                  |                                |  |  |  |
| Study period                      |                               | 7-8 consecutive days                                                                                                                                                                                                                                                                      |                                  |                                |  |  |  |
| Collection time                   |                               | Milk was collected twice daily, and just prior to sacrifice.<br>Composited milk samples from Day 6-7 were centrifuged to<br>obtain cream and skim milk samples. Urine and feces were<br>collected prior to initial dose and at 24-hour intervals thereafter<br>until sacrifice.           |                                  |                                |  |  |  |
| Tissues collected                 |                               | Liver; kidneys; loin and flank muscle; omental, perirenal, and subcutaneous fat; GI tract and contents; and bile.                                                                                                                                                                         |                                  |                                |  |  |  |
| Interval from last dose sacrifice | to Appro                      | Approximately 6 hours                                                                                                                                                                                                                                                                     |                                  |                                |  |  |  |
| Plateau of residues in r          | pyrim<br>nilk sampl<br>platea | Residues in milk increased throughout the dosing period for the pyrimidinyl label, reaching a maximum on Day 7 in the PM sample, whereas residues in milk from the phenyl-label plateaued by Day 3. For both labels, residues concentrated in cream by 1.6-2.1-fold.                      |                                  |                                |  |  |  |
| Extraction solvents               | seque:<br>extrac<br>acetor    | Liver, kidney, pooled muscle and feces were extracted<br>sequentially with acetonitrile/water. Pooled fat samples were<br>extracted sequentially with dichloromethane and<br>acetonitrile/water. Milk samples were extracted sequentially<br>with hexane, acetonitrile/water and acetone. |                                  |                                |  |  |  |
|                                   |                               | C-U-phenyl]                                                                                                                                                                                                                                                                               | [ <sup>14</sup> C-4-pyrimidinyl] |                                |  |  |  |
| Matrices                          | TRRs (ppm)                    | % of Administered                                                                                                                                                                                                                                                                         | TRRs (ppm)                       | % of<br>Administere<br>d Dose  |  |  |  |
| Urine                             | N/A                           | 11.9                                                                                                                                                                                                                                                                                      | N/A                              | 22.3                           |  |  |  |
| Feces                             | N/A                           | 60.8                                                                                                                                                                                                                                                                                      | N/A                              | 46.9                           |  |  |  |
| Cage Wash                         | N/A                           | 7.5                                                                                                                                                                                                                                                                                       | N/A                              | 1.6                            |  |  |  |
| GI Tract & Contents               | N/A                           | 10.6                                                                                                                                                                                                                                                                                      | N/A                              | 19.8                           |  |  |  |
| Pooled Milk<br>(Day 2-3)          | N/A                           | N/A                                                                                                                                                                                                                                                                                       | 0.017                            | <0.1                           |  |  |  |
| Pooled Milk<br>(Day 4-6)          | 0.007                         | <0.1                                                                                                                                                                                                                                                                                      | 0.033                            | <0.1                           |  |  |  |
| Cream (Day 6-7)                   | 0.017                         | N/A                                                                                                                                                                                                                                                                                       | 0.075                            | N/A                            |  |  |  |
| Skim Milk (Day 6-7)               | 0.007                         | N/A                                                                                                                                                                                                                                                                                       | 0.041                            | N/A                            |  |  |  |
| Liver                             | 0.222                         | 0.2                                                                                                                                                                                                                                                                                       | 0.551                            | 0.2                            |  |  |  |
| Kidney                            | 0.141                         | < 0.1                                                                                                                                                                                                                                                                                     | 0.162                            | <0.1                           |  |  |  |
| Fat (Pooled)                      | 0.012                         | <0.1                                                                                                                                                                                                                                                                                      | 0.019                            | <0.1                           |  |  |  |
| Muscle (Pooled)                   | 0.009                         | <0.1                                                                                                                                                                                                                                                                                      | 0.021                            | <0.1                           |  |  |  |

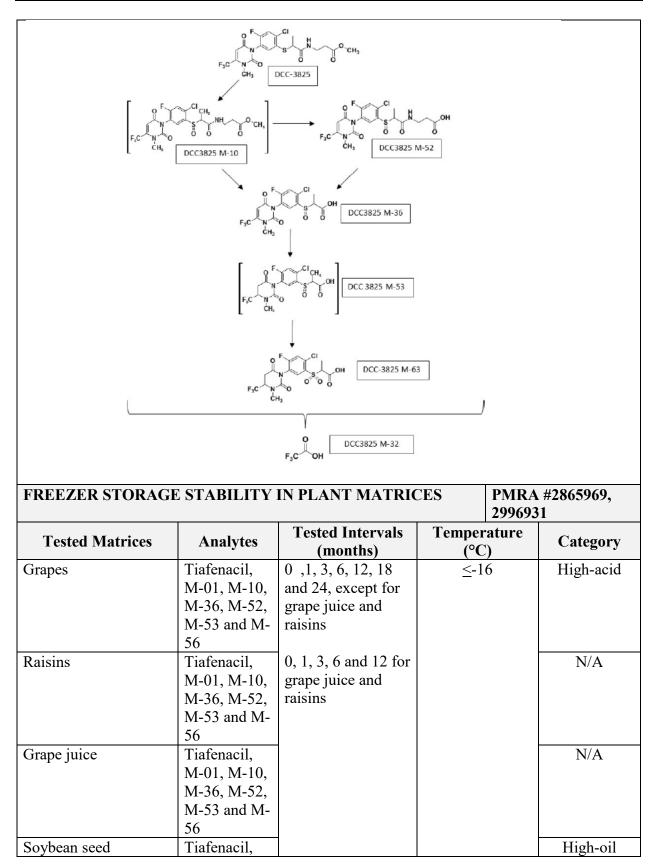
| Summary of major identified metabolites in goat matrices |                             |                                           |  |  |  |  |
|----------------------------------------------------------|-----------------------------|-------------------------------------------|--|--|--|--|
| Radiolabel position                                      | [ <sup>14</sup> C-U-phenyl] | [ <sup>14</sup> C-4-pyrimidinyl]          |  |  |  |  |
| Metabolites identified                                   | Major metabolites           | Major metabolites                         |  |  |  |  |
| Liver                                                    | M-01, M-63                  | M-01, M-34                                |  |  |  |  |
| Kidney                                                   | M-01, M-36                  | M-01, M-32 (TFA,<br>trifluoroacetic acid) |  |  |  |  |
| Muscle                                                   | M-01, M-36, M-88            | M-32, M-34                                |  |  |  |  |
| Fat                                                      | M-88                        | M-88                                      |  |  |  |  |
| Milk (Day 2-3)                                           | None                        | None                                      |  |  |  |  |
| Milk (Day 4-6)                                           | None                        | M-32                                      |  |  |  |  |
| Urine                                                    | M-01, M-07                  | M-01, M-32, M-33                          |  |  |  |  |
| Feces                                                    | Tiafenacil, M-01            | Tiafenacil, M-01, M-63                    |  |  |  |  |






### LIVESTOCK FEEDING – Dairy cattle

A feeding study was not required based on the low dietary burden. Therefore, the goat metabolism study was used to estimate the anticipated residues in the relevant livestock matrices.


| Anticipated Residues I                                                                                                                                                                        | n Animal Matrices                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Matrices                                                                                                                                                                                      | <b>Residue Definition</b>                                                                                                                                                                                                                                                             | Dietary Burd<br>(ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | en Anticipated<br>Residues<br>(ppm)                                                                                         |
|                                                                                                                                                                                               | Beef/Dairy C                                                                                                                                                                                                                                                                          | attle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                             |
| Whole milk                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $<3.9 \times 10^{-6}$                                                                                                       |
| Fat                                                                                                                                                                                           | Tiafenacil                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                          |
| Liver                                                                                                                                                                                         | I latellacti                                                                                                                                                                                                                                                                          | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $5.3 \times 10^{-5}$                                                                                                        |
| Kidney                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $6.2 \times 10^{-5}$                                                                                                        |
| Muscle                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                          |
|                                                                                                                                                                                               | Swine                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                             |
| Fat                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                          |
| Liver                                                                                                                                                                                         | Tiafenacil                                                                                                                                                                                                                                                                            | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $4.4 \times 10^{-6}$                                                                                                        |
| Kidney                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                       | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $5.2 \times 10^{-6}$                                                                                                        |
| Muscle                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                          |
| ND = Not Detected                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                             |
| -                                                                                                                                                                                             | in which tiafenacil was dete                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                           |
| milk (<0.001 ppm, Day                                                                                                                                                                         | 2-3; pyrimidinyl label), live                                                                                                                                                                                                                                                         | r (0.006 ppm; pheny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /l label) and kidney                                                                                                        |
| (0.007 ppm; phenyl labe                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                             |
| LIVESTOCK FEEDIN                                                                                                                                                                              | NG – Laying hens                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                             |
|                                                                                                                                                                                               | required on the low dietary                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                             |
|                                                                                                                                                                                               | ate the anticipated residues i                                                                                                                                                                                                                                                        | n the relevant livest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ock matrices.                                                                                                               |
| Anticipated Residues in                                                                                                                                                                       | n Poultry Matrices                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                             |
| Matrices                                                                                                                                                                                      | <b>Residue Definition</b>                                                                                                                                                                                                                                                             | Dietary Burd<br>(ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Residues                                                                                                                    |
|                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                             |
| Faas                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ppm)                                                                                                                       |
| Eggs                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                          |
| Fat                                                                                                                                                                                           | <br>                                                                                                                                                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<br>ND                                                                                                                    |
| Fat<br>Liver                                                                                                                                                                                  | Tiafenacil                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND<br>ND<br>ND                                                                                                              |
| Fat<br>Liver<br>Muscle                                                                                                                                                                        | Tiafenacil                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND<br>ND                                                                                                                    |
| Fat<br>Liver<br>Muscle<br>ND = Not Detected                                                                                                                                                   | _                                                                                                                                                                                                                                                                                     | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<br>ND<br>ND<br>ND                                                                                                        |
| Fat<br>Liver<br>Muscle<br>ND = Not Detected<br>Note: Tiafenacil was not                                                                                                                       | t detected in any matrix from                                                                                                                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<br>ND<br>ND<br>ND                                                                                                        |
| Fat<br>Liver<br>Muscle<br>ND = Not Detected<br>Note: Tiafenacil was not<br><b>NATURE OF THE RE</b>                                                                                            | _                                                                                                                                                                                                                                                                                     | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<br>ND<br>ND<br>ND                                                                                                        |
| Fat<br>Liver<br>Muscle<br>ND = Not Detected<br>Note: Tiafenacil was not<br><b>NATURE OF THE RE</b><br><b>TREATMENT</b> ]                                                                      | t detected in any matrix from<br>SIDUE IN CORN [PREPI                                                                                                                                                                                                                                 | 0.01<br>n the hen metabolism<br>ANT SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND<br>ND<br>ND<br>ND<br>n study.<br>PMRA # 2866113                                                                          |
| Fat<br>Liver<br>Muscle<br>ND = Not Detected<br>Note: Tiafenacil was not<br>NATURE OF THE REATMENT]                                                                                            | t detected in any matrix from<br>SIDUE IN CORN [PREPI<br>[ <sup>14</sup> C-U-phenyl]-tiafena                                                                                                                                                                                          | 0.01<br>n the hen metabolist<br>ANT SOIL<br>acil (specific activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND<br>ND<br>ND<br>ND<br>n study.<br>PMRA # 2866113<br>y: 2.21 MBq/mg) and                                                   |
| Fat<br>Liver<br>Muscle<br>ND = Not Detected<br>Note: Tiafenacil was not<br><b>NATURE OF THE RE</b><br><b>TREATMENT</b> ]<br>Radiolabel Position                                               | t detected in any matrix from<br>SIDUE IN CORN [PREPI                                                                                                                                                                                                                                 | 0.01<br>n the hen metabolist<br>ANT SOIL<br>acil (specific activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND<br>ND<br>ND<br>ND<br>n study.<br>PMRA # 2866113<br>y: 2.21 MBq/mg) and                                                   |
| Fat<br>Liver<br>Muscle<br>ND = Not Detected<br>Note: Tiafenacil was not<br><b>NATURE OF THE RE</b><br><b>TREATMENT</b> ]<br>Radiolabel Position<br><b>Treatment</b>                           | t detected in any matrix from<br><b>SIDUE IN CORN [PREPI</b><br>[ <sup>14</sup> C-U-phenyl]-tiafena<br>[ <sup>14</sup> C-4-pyrimidinyl]-tia                                                                                                                                           | 0.01<br>n the hen metabolism<br>ANT SOIL<br>acil (specific activity<br>afenacil (specific ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND<br>ND<br>ND<br>ND<br>n study.<br>PMRA # 2866113<br>y: 2.21 MBq/mg) and                                                   |
| Fat<br>Liver<br>Muscle<br>ND = Not Detected<br>Note: Tiafenacil was not<br><b>NATURE OF THE REATMENT</b> ]<br>Radiolabel Position<br><b>Treatment</b><br>Test Site                            | t detected in any matrix from<br><b>SIDUE IN CORN [PREPI</b><br>[ <sup>14</sup> C-U-phenyl]-tiafena<br>[ <sup>14</sup> C-4-pyrimidinyl]-tia<br>Corn plants were grow                                                                                                                  | 0.01<br>n the hen metabolism<br>ANT SOIL<br>acil (specific activity<br>afenacil (specific ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND<br>ND<br>ND<br>ND<br>n study.<br>PMRA # 2866113<br>y: 2.21 MBq/mg) and<br>tivity: 2.14 MBq/mg)                           |
| Fat<br>Liver<br>Muscle<br>ND = Not Detected<br>Note: Tiafenacil was not<br><b>NATURE OF THE RE</b><br><b>TREATMENT</b> ]<br>Radiolabel Position<br><b>Treatment</b>                           | t detected in any matrix from<br><b>SIDUE IN CORN [PREPI</b><br>[ <sup>14</sup> C-U-phenyl]-tiafena<br>[ <sup>14</sup> C-4-pyrimidinyl]-tia<br>Corn plants were grow<br>Single application to b                                                                                       | 0.01<br>n the hen metabolism<br>ANT SOIL<br>acil (specific activity<br>afenacil (specific ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND<br>ND<br>ND<br>ND<br>n study.<br>PMRA # 2866113<br>y: 2.21 MBq/mg) and<br>tivity: 2.14 MBq/mg)                           |
| Fat<br>Liver<br>Muscle<br>ND = Not Detected<br>Note: Tiafenacil was not<br><b>NATURE OF THE RE</b><br><b>TREATMENT</b> ]<br>Radiolabel Position<br><b>Treatment</b><br>Test Site<br>Treatment | t detected in any matrix from<br><b>SIDUE IN CORN [PREPI</b><br>[ <sup>14</sup> C-U-phenyl]-tiafena<br>[ <sup>14</sup> C-4-pyrimidinyl]-tia<br>Corn plants were grow<br>Single application to b<br>seed.                                                                              | 0.01<br>n the hen metabolism<br>ANT SOIL<br>acil (specific activity<br>afenacil (specific ac<br>yn in pots.<br>bare soil 14 days prio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND<br>ND<br>ND<br>ND<br>n study.<br>PMRA # 2866113<br>y: 2.21 MBq/mg) and<br>tivity: 2.14 MBq/mg)                           |
| Fat<br>Liver<br>Muscle<br>ND = Not Detected<br>Note: Tiafenacil was not<br><b>NATURE OF THE REATMENT</b> ]<br>Radiolabel Position<br><b>Treatment</b><br>Test Site                            | t detected in any matrix from<br><b>SIDUE IN CORN [PREPI</b><br>[ <sup>14</sup> C-U-phenyl]-tiafena<br>[ <sup>14</sup> C-4-pyrimidinyl]-tia<br>Corn plants were grow<br>Single application to b<br>seed.<br>[ <sup>14</sup> C-U-phenyl]-label:                                        | 0.01<br>n the hen metabolism<br>ANT SOIL<br>acil (specific activity<br>afenacil (specific activity<br>afenacil (specific activity<br>are soil 14 days prior<br>153.3 g a.i./ha;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND<br>ND<br>ND<br>ND<br>n study.<br>PMRA # 2866113<br>y: 2.21 MBq/mg) and<br>tivity: 2.14 MBq/mg)                           |
| FatLiverMuscleND = Not DetectedNote: Tiafenacil was notNATURE OF THE REATMENT]Radiolabel PositionTreatmentTest SiteTreatmentTotal Rate                                                        | t detected in any matrix from<br><b>SIDUE IN CORN [PREPI</b><br>[ <sup>14</sup> C-U-phenyl]-tiafena<br>[ <sup>14</sup> C-4-pyrimidinyl]-tia<br>Corn plants were grow<br>Single application to b<br>seed.<br>[ <sup>14</sup> C-U-phenyl]-label:<br>[ <sup>14</sup> C-4-pyrimidinyl]-la | 0.01<br>n the hen metabolism<br>ANT SOIL<br>acil (specific activity<br>afenacil (specific activity<br>afenacil (specific activity<br>are soil 14 days prior<br>153.3 g a.i./ha;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND<br>ND<br>ND<br>ND<br>n study.<br>PMRA # 2866113<br>y: 2.21 MBq/mg) and<br>tivity: 2.14 MBq/mg)                           |
| FatLiverMuscleND = Not DetectedNote: Tiafenacil was notNATURE OF THE REATMENT]Radiolabel PositionTreatmentTest SiteTreatment                                                                  | t detected in any matrix from<br><b>SIDUE IN CORN [PREPI</b><br>[ <sup>14</sup> C-U-phenyl]-tiafena<br>[ <sup>14</sup> C-4-pyrimidinyl]-tia<br>Corn plants were grow<br>Single application to b<br>seed.<br>[ <sup>14</sup> C-U-phenyl]-label:                                        | 0.01<br>n the hen metabolism<br>ANT SOIL<br>acil (specific activity<br>afenacil (specific activity<br>bare soil 14 days prid | ND<br>ND<br>ND<br>ND<br>m study.<br>PMRA # 2866113<br>y: 2.21 MBq/mg) and<br>tivity: 2.14 MBq/mg)<br>or to planting of corn |

|                                                           | plantir             | ig, DA       | P; 159 days after treatment, 1 | DAT); mature (BBCH               |  |  |
|-----------------------------------------------------------|---------------------|--------------|--------------------------------|----------------------------------|--|--|
|                                                           | -                   | <b>U</b> .   | ain and cobs (173-DAP; 187     |                                  |  |  |
| Extraction solvent                                        | /                   |              | water containing 0.1% formi    | ,                                |  |  |
| Matrices                                                  | Har<br>Inter<br>(da | vest<br>vals | [ <sup>14</sup> C-U-phenyl]    | [ <sup>14</sup> C-4-pyrimidinyl] |  |  |
|                                                           | DAP                 | DAT          | TRR (ppm)                      | TRR (ppm)                        |  |  |
| Immature Forage                                           |                     |              | 0.014                          | 0.025                            |  |  |
| Immature Grain                                            | 145                 | 159          | 0.001                          | 0.002                            |  |  |
| Immature Cob                                              |                     |              | < 0.001                        | 0.002                            |  |  |
| Mature Stover                                             |                     |              | 0.010                          | 0.039                            |  |  |
| Mature Grain                                              | 173                 | 187          | 0.001                          | 0.002                            |  |  |
| Mature Cob                                                |                     |              | 0.001                          | 0.005                            |  |  |
| Note: Samples of cobs and gr<br>low radioactivity levels. | ain wer             | e not s      | ubjected to extraction and an  | alysis procedures due to         |  |  |
| Summary of Major Identifi                                 | ed Meta             | abolite      | es in Corn Matrices            |                                  |  |  |
| <b>Radiolabel Position</b>                                |                     | [14          | C-U-phenyl] [                  | <sup>14</sup> C-4-pyrimidinyl]   |  |  |
| Metabolites Identified                                    |                     | Majo         | or Metabolites                 | Major Metabolites                |  |  |
| Forage                                                    |                     | M-30         | 6, M-52, M-56                  | M-32                             |  |  |
| Stover                                                    |                     | M-30         | 6, M-52, M-56                  | M-32                             |  |  |
| Proposed Metabolic Scheme                                 | e in Coi            | rn: Pro      | eplant Soil Application        |                                  |  |  |



| Har                         |                                                                                                                                                                                      | ter containing 0.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |  |  |  |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|--|
|                             | VUSL I                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |  |  |  |  |  |
| Inter                       | vals                                                                                                                                                                                 | [ <sup>14</sup> C-U-phenyl]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [ <sup>14</sup> C-4-pyrimidinyl]                       |  |  |  |  |  |
| (da                         |                                                                                                                                                                                      | l F - J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |  |  |  |  |  |
| DAP                         | DAT                                                                                                                                                                                  | TRR (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TRR (ppm)                                              |  |  |  |  |  |
| 121                         | 145                                                                                                                                                                                  | 0.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.267                                                  |  |  |  |  |  |
| 131                         | 145                                                                                                                                                                                  | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.001                                                  |  |  |  |  |  |
| ers were n                  | ot subje                                                                                                                                                                             | ected to extraction an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sis procedures due to                                  |  |  |  |  |  |
|                             |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |  |  |  |  |  |
| ied Meta                    |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |  |  |  |  |  |
|                             |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |  |  |  |  |  |
|                             |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ajor Metabolites                                       |  |  |  |  |  |
|                             |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -32, M-36, M-52                                        |  |  |  |  |  |
| e in Pota                   | toes: P                                                                                                                                                                              | replant Soil Applic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |  |  |  |  |  |
| сн <sub>з</sub><br>К<br>осн |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ОН                                                     |  |  |  |  |  |
| CI<br>S                     |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                      |  |  |  |  |  |
|                             | $131$ ers were n ied Metal e in Pota $F_{3}C$ | 131 145<br>ers were not subjective<br>ied Metabolites in<br>$I^{14}C-I$<br>Major<br>M-36, I<br>e in Potatoes: Pro-<br>$F_{3}C$<br>$H_{-0}$<br>$G_{H_{3}}$<br>M-10<br>$F_{3}C$<br>$H_{-0}$<br>$G_{H_{3}}$<br>M-10<br>$F_{3}C$<br>$H_{-0}$<br>$CH_{3}$<br>M-10<br>CI<br>$F_{3}C$<br>$CH_{3}$<br>DCC-3<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI | 131 145 0.058<br>0.002<br>ers were not subjected to extraction and<br>ied Metabolites in Potato Matrices<br>I 14C-U-phenyl]<br>Major Metabolites<br>M-36, M-52, M-56<br>e in Potatoes: Preplant Soil Applic<br>$f_{s_{3}} \leftarrow f_{s_{3}} \leftarrow f_{s_$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |  |  |  |  |  |

| NATURE OF THE RESII<br>TREATMENT] |                        |          |                                  | PMRA #2866115                    |  |  |  |  |
|-----------------------------------|------------------------|----------|----------------------------------|----------------------------------|--|--|--|--|
|                                   | [ <sup>14</sup> C-U-pl | nenyl]-t | tiafenacil (specific activity    | : 4.28 MBq/mg) and               |  |  |  |  |
| Radiolabel Position               |                        |          | yl]-tiafenacil (specific act     |                                  |  |  |  |  |
| Treatment                         |                        |          |                                  |                                  |  |  |  |  |
| Test Site                         | Mandarir               | trees v  | vere grown in containers.        |                                  |  |  |  |  |
|                                   |                        |          | on to bare soil around the b     | ase of the tree. For each        |  |  |  |  |
| Treatment                         | <b>U</b> 1             | 1        | ree was treated 30 days be       |                                  |  |  |  |  |
|                                   |                        | ,        | treated 60 days before har       | -                                |  |  |  |  |
|                                   |                        |          | label: 476.2 g a.i./ha;          |                                  |  |  |  |  |
| Total Rate                        |                        |          | yl]-label: 432.5 g a.i./ha       |                                  |  |  |  |  |
| Formulation                       | Micro-en               |          |                                  |                                  |  |  |  |  |
|                                   |                        |          | e and fruit were harvested       | once from each tree at           |  |  |  |  |
| ~ ~                               |                        |          | or the 30-day PHI, or 40-D       |                                  |  |  |  |  |
| Harvest                           |                        |          | nd fruit were harvested at       |                                  |  |  |  |  |
|                                   |                        |          | ed into peel and pulp.           |                                  |  |  |  |  |
| Extraction solvent                |                        |          | er containing 0.1% formic        | acid                             |  |  |  |  |
|                                   | Harv                   |          |                                  |                                  |  |  |  |  |
| Matrices                          | Interval               | (days)   | [ <sup>14</sup> C-U-phenyl]      | [ <sup>14</sup> C-4-pyrimidinyl] |  |  |  |  |
|                                   | PHI                    | DAT      | TRR (ppm)                        | TRR (ppm)                        |  |  |  |  |
| Foliage - immature                |                        | 10       | 0.001                            | 0.002                            |  |  |  |  |
| Fruit - immature                  |                        | 10 - 30  | < 0.001                          | < 0.001                          |  |  |  |  |
| Foliage - mature                  | 30                     |          | 0.002                            | 0.028                            |  |  |  |  |
| Peel - mature                     |                        |          | < 0.001                          | 0.004                            |  |  |  |  |
| Pulp - mature                     |                        | -        | < 0.001                          | 0.001                            |  |  |  |  |
| Foliage - immature                |                        | 10       | 0.001                            | 0.013                            |  |  |  |  |
| Fruit - immature                  |                        | 40       | < 0.001                          | 0.001                            |  |  |  |  |
| Foliage - mature                  | 60                     |          | 0.002                            | 0.036                            |  |  |  |  |
| Peel - mature                     |                        | 60       | 0.001                            | 0.002                            |  |  |  |  |
| Pulp - mature                     |                        |          | < 0.001                          | < 0.001                          |  |  |  |  |
| Note: Samples of all phenyl       | -label matri           | ces and  | l pyrimidinyl-label matrice      | es, except foliage from          |  |  |  |  |
| 30-, 40- and 60-DAT, were         |                        |          |                                  |                                  |  |  |  |  |
| radioactivity levels.             |                        |          |                                  |                                  |  |  |  |  |
| Summary of Major Iden             | tified Meta            | bolites  | in Mandarin Matrices             |                                  |  |  |  |  |
| <b>Radiolabel Position</b>        |                        |          | [ <sup>14</sup> C-4-pyrimidinyl] |                                  |  |  |  |  |
| <b>Metabolites Identified</b>     |                        |          | <b>Major Metabolites</b>         |                                  |  |  |  |  |
| Foliage – mature [30-             |                        |          | M 22                             |                                  |  |  |  |  |
| DAT]                              |                        |          | M-32                             |                                  |  |  |  |  |
| Foliage – mature [40-             |                        |          | M-32                             |                                  |  |  |  |  |
| DAT]                              |                        |          | 101-32                           |                                  |  |  |  |  |
| Foliage – mature [60-             | N/ 20                  |          |                                  |                                  |  |  |  |  |
| DAT]                              |                        |          | M-32                             |                                  |  |  |  |  |
| Proposed Metabolic Sche           | eme in Mar             | darin:   | Soil Treatment                   |                                  |  |  |  |  |



|              | M-01, M-10, |             |
|--------------|-------------|-------------|
|              | M-36, M-52, |             |
|              | M-53 and M- |             |
|              | 56          |             |
| Wheat forage | Tiafenacil, | High-water  |
| e            | M-01, M-10, |             |
|              | M-36, M-52, |             |
|              | M-53, M-56, |             |
|              | M-63, M-72  |             |
|              | and M-73    |             |
| Wheat straw  | Tiafenacil, | N/A         |
|              | M-01, M-10, |             |
|              | M-36, M-52, |             |
|              | M-53, M-56, |             |
|              | M-63, M-72  |             |
|              | and M-73    |             |
| Wheat grain  | Tiafenacil, | High-starch |
| -            | M-01, M-10, |             |
|              | M-36, M-52, |             |
|              | M-53, M-56, |             |
|              | M-63, M-72  |             |
|              | -           |             |

CROP FIELD TRIALS & RESIDUE DECLINE ON GRAPESPMRA # 2865973Crop field trials were conducted in 2015 and 2016 in Canada and the United States. Trials were

Crop field trials were conducted in 2015 and 2016 in Canada and the United States. Trials were conducted in North American growing regions 1 (2 trials), 5 (3 trials), 10 (8 trials) and 11 (2 trials) for a total of 15 trials. A 70% WG formulation of tiafenacil was applied to grapes (BBCH 81-89) once as a spray directed under the vines at a rate of 145-154 g a.i./ha. Adjuvants (methylated seed oil and ammonium sulfate) were added to the spray mixture for all applications. At one trial, samples were collected at additional PHIs of 0, 14 and 21 days to assess residue decline.

In the decline trial, residues of tiafenacil were below the LOQ (in other words, <0.01 ppm) in/on grapes at all sampling intervals. Therefore, no decline trend could be determined.

|                         | Total                              |               |                    | Residue Levels (ppm) |            |                  |               |            |      |  |  |
|-------------------------|------------------------------------|---------------|--------------------|----------------------|------------|------------------|---------------|------------|------|--|--|
| Сгор                    | Application<br>Rate<br>(g a.i./ha) | PHI<br>(days) | Analyte            | n                    | LAFT       | HAFT             | Median        | Mean       | SDEV |  |  |
| Grapes                  | 145-154                            | 6-7           | Tiafenacil         | 15                   | < 0.010    | < 0.010          | < 0.010       | < 0.010    | 0    |  |  |
| n = number of deviation | of independent tri                 | als, LAFT =   | = lowest average f | field trial,         | HAFT = hig | hest average fie | eld trial, SD | EV = stand | lard |  |  |

## CROP FIELD TRIALS & RESIDUE DECLINE ON CORN PMRA #2865970

Crop field trials were conducted in 2015 and 2016 in the United States, including growing regions representative of Canada. Trials were conducted in North American growing regions 1 (1 trial), 2 (1 trial), 5 (17 trials) and 6 (1 trial) for a total of 20 trials for field corn, and for popcorn trials were conducted in North American growing regions 5 (3 trials). A 70% WG formulation of tiafenacil was applied as a single preplant or pre-emergence broadcast application to the soil at a rate of 148-154 g a.i./ha for field corn and 150-151 g a.i./ha for popcorn. Adjuvants (methylated seed oil and ammonium sulfate) were added to the spray mixture for all applications. At two field corn trials, additional RAC samples were harvested 7 days before, and 7 and 13-14 days after harvest to assess residue decline.

In the decline trials, residues of tiafenacil were below the LOQ (in other words, <0.01 ppm) in/on field corn forage, grain and stover at all sampling intervals. Therefore, no decline trend could be determined.

|               | Total                              |               |                   |            | ]          | Residue Lev      | els (ppm)     | )          |      |  |
|---------------|------------------------------------|---------------|-------------------|------------|------------|------------------|---------------|------------|------|--|
| Crop          | Application<br>Rate<br>(g a.i./ha) | PHI<br>(days) | Analyte           | n          | LAFT       | HAFT             | Median        | Mean       | SDEV |  |
| Field         |                                    | 77-           |                   |            |            |                  |               |            |      |  |
| corn          | 148-154                            | 108           | Tiafenacil        | 20         | < 0.010    | < 0.010          | < 0.010       | < 0.010    | 0    |  |
| forage        |                                    | 108           |                   |            |            |                  |               |            |      |  |
| Field         |                                    | 115-          | 115-              |            |            |                  |               |            |      |  |
| corn          | 148-154                            | 159           | Tiafenacil        | 20         | < 0.010    | < 0.010          | < 0.010       | < 0.010    | 0    |  |
| grain         |                                    | 139           |                   |            |            |                  |               |            |      |  |
| Field         |                                    | 115           | 115-              |            |            |                  |               |            |      |  |
| corn          | 148-154                            | 159           | Tiafenacil        | 20         | < 0.010    | < 0.010          | < 0.010       | < 0.010    | 0    |  |
| stover        |                                    | 139           |                   |            |            |                  |               |            |      |  |
| Popcorn       | 150-151                            | 132-          | Tiafenacil        | 3          | < 0.010    | < 0.010          | < 0.010       | <0.010     | 0    |  |
| grain         | 150-151                            | 140           | Tatenach          | 3          | ~0.010     | ~0.010           | ~0.010        | ~0.010     | U    |  |
| n = number of | f independent trials               | , LAFT =      | lowest average fi | eld trial, | HAFT = hig | hest average fie | eld trial, SD | EV = stand | lard |  |

deviation

CROP FIELD TRIALS & RESIDUE DECLINE ON WHEAT PMR

PMRA # 2865972

Crop field trials were conducted in 2015 and 2016 in Canada and the United States. Trials were conducted in North American growing regions 5 (2 trials), 7 (7 trials), 7A (1 trial), 11 (1 trial) and 14 (9 trials) for a total of 20 trials on spring wheat, and for winter wheat trials were conducted in North American growing regions 2 (1 trial), 4 (1 trial), 5 (4 trials), 6 (2 trials) and 8 (4 trials) for a total of 12 trials on winter wheat. A 70% WG formulation of tiafenacil was applied as a single preplant or pre-emergence broadcast application to the soil at a rate of 141-156 g a.i./ha. Adjuvants (methylated seed oil and ammonium sulfate) were added to the spray mixture for all applications. In two trials (one spring wheat and one winter wheat), samples were collected at additional time intervals to monitor residue decline (7 days prior to normal maturity, 7 days after normal maturity, 11-14 days after normal maturity).

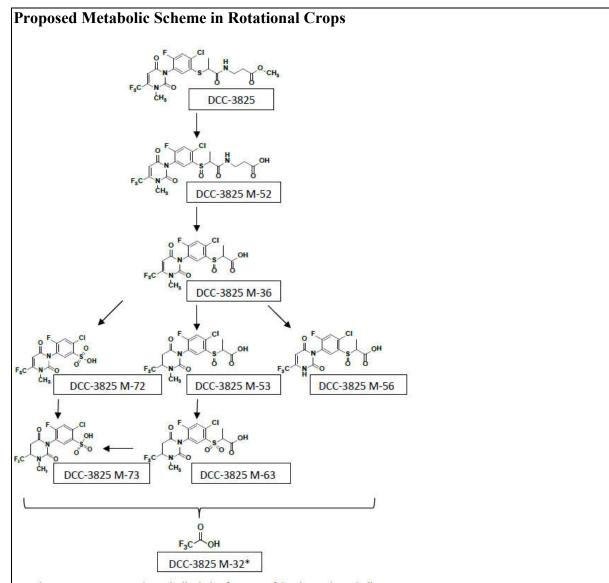
In the decline trials, residues of tiafenacil were below the LOQ (in other words, <0.01 ppm) in/on wheat forage, hay, grain and straw at all sampling intervals. Therefore, no decline trend could be determined.

| Сгор            | Total<br>Application<br>Rate<br>(g a.i./ha) | PHI<br>(days) | Analyte |          |     |    | Re      | esidue Leve | ls (ppm) |         |      |
|-----------------|---------------------------------------------|---------------|---------|----------|-----|----|---------|-------------|----------|---------|------|
| _               |                                             |               |         |          |     | n  | LAFT    | HAFT        | Median   | Mean    | SDEV |
| Wheat<br>forage | 141-136                                     | 29-1          | .97     | Tiafenao | cil | 32 | < 0.010 | < 0.010     | < 0.010  | < 0.010 | 0    |
| Wheat<br>hay    | 141-156                                     | 50-2          | 247     | Tiafenao | cil | 32 | <0.010  | < 0.010     | < 0.010  | < 0.010 | 0    |
| Wheat<br>straw  | 141-156                                     | 87-2          | 279     | Tiafenao | cil | 32 | <0.010  | < 0.010     | < 0.010  | < 0.010 | 0    |
| Wheat<br>grain  | 141-156                                     | 87-2          | 279     | Tiafenao | cil | 32 | <0.010  | <0.010      | < 0.010  | < 0.010 | 0    |

n = number of independent trials, LAFT = lowest average field trial, HAFT = highest average field trial, SDEV = standard deviation

# CROP FIELD TRIALS & RESIDUE DECLINE ON SOYBEAN

PMRA # 2865971


Crop field trials were conducted in 2015 and 2016 in the United States, including growing regions representative of Canada. Trials were conducted in North American growing regions 2 (2 trials), 4 (4 trials) and 5 (15 trials) for a total of 21 trials. A 70% WG formulation of tiafenacil was applied as a single preplant or pre-emergence broadcast application to the soil at a rate of 148-155 g a.i./ha. Adjuvants (methylated seed oil and ammonium sulfate) were added to the spray mixture for all applications. At three trials, additional RAC samples were harvested 6-8 days before, and 6-8 and 14-15 days after nominal harvest to access residue decline; at one trial, seed samples were not collected as the crop was destroyed by a hurricane.

In the decline trials, residues of tiafenacil were below the LOQ (<0.01 ppm) in/on soybean forage, hay and seed at all sampling intervals. Therefore, no decline trend could be determined.

| Сгор                    | Tota<br>Applica<br>Rate<br>(g a.i./l | lication PH<br>Rate (day |       |        | Analyte    |          | Residue Levels (ppm) |             |               |               |               |  |
|-------------------------|--------------------------------------|--------------------------|-------|--------|------------|----------|----------------------|-------------|---------------|---------------|---------------|--|
|                         |                                      |                          |       |        |            | n        | LAFT                 | HAFT        | Median        | Mean          | SDEV          |  |
| Soybean forage          |                                      | 33-                      | -71   | Tia    | Tiafenacil |          | < 0.010              | < 0.010     | < 0.010       | <0.010        | 0             |  |
| Soybean<br>hay          | 148-155                              | 42-                      | 92    | Tia    | fenacil    | 21       | < 0.010              | < 0.010     | <0.010        | <0.010        | 0             |  |
| Soybean seed            |                                      | 10<br>17                 |       | Tia    | fenacil    | 20       | < 0.010              | < 0.010     | < 0.010       | < 0.010       | 0             |  |
| n = number of deviation | f independent                        | trials,                  | , LAF | T = lo | west avera | ge field | d trial, HAF         | T = highest | t average fie | eld trial, SD | EV = standard |  |

| ROCESSED FOOD ANI<br>VHEAT, and SOYBEAN                                                                | D FEED –                                                                       | GRAPE, CORN,                                                    |            | A # 2865973, 2865970,<br>72, 2865971 |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------|------------|--------------------------------------|--|--|--|--|--|--|--|
| ouring the grape, corn, whe                                                                            |                                                                                | bean field trials, additional j<br>kg a.i./ha (30-fold of maxim | olots w    | vere allocated for                   |  |  |  |  |  |  |  |
|                                                                                                        |                                                                                | on wheat grain, corn grain, a                                   |            |                                      |  |  |  |  |  |  |  |
|                                                                                                        |                                                                                | s were non-quantifiable in g                                    |            |                                      |  |  |  |  |  |  |  |
|                                                                                                        |                                                                                | l raisins). As such, processi                                   | ng fact    | ors could not be                     |  |  |  |  |  |  |  |
| alculated for tiafenacil in a                                                                          |                                                                                |                                                                 |            |                                      |  |  |  |  |  |  |  |
|                                                                                                        |                                                                                | IN ROTATIONAL CROP                                              | <b>S</b> – | PMRA # 2865974                       |  |  |  |  |  |  |  |
| Lettuce, radish and wheat                                                                              |                                                                                |                                                                 | •••        |                                      |  |  |  |  |  |  |  |
| Radiolabel Position                                                                                    |                                                                                | J- <sup>14</sup> C]tiafenacil (specific act                     | •          |                                      |  |  |  |  |  |  |  |
|                                                                                                        | pyrimidi                                                                       | nyl-4-14C]tiafenacil (specifi                                   | c activ    | ity: 2.23 MBq/mg)                    |  |  |  |  |  |  |  |
| Treatment                                                                                              |                                                                                |                                                                 |            |                                      |  |  |  |  |  |  |  |
| Test SiteRotational crops were grown in a greenhouse in open plastic-sided<br>crates filled with soil. |                                                                                |                                                                 |            |                                      |  |  |  |  |  |  |  |
| Soil Type                                                                                              | Sandy loa                                                                      |                                                                 |            |                                      |  |  |  |  |  |  |  |
| Treatment                                                                                              | nent Application to bare soil at a rate of 144.7 g a.i./ha or 145.8 g a.i./ha. |                                                                 |            |                                      |  |  |  |  |  |  |  |
| Formulation                                                                                            | 5% micro-emulsion formulation                                                  |                                                                 |            |                                      |  |  |  |  |  |  |  |
| Plant-back interval (PBI)                                                                              | back interval (PBI) 30, 120 or 180 (lettuce) and 365 days                      |                                                                 |            |                                      |  |  |  |  |  |  |  |
| Extraction solvent Acetonitrile/water containing 0.1% formic acid                                      |                                                                                |                                                                 |            |                                      |  |  |  |  |  |  |  |
| Matrices                                                                                               | PBI                                                                            | [ <sup>14</sup> C-U-phenyl]                                     |            | <sup>14</sup> C-4-pyrimidinyl]       |  |  |  |  |  |  |  |
|                                                                                                        | (days)                                                                         | TRR (ppm)                                                       |            | TRR (ppm)                            |  |  |  |  |  |  |  |
|                                                                                                        | 30                                                                             | 0.011                                                           |            | 0.011                                |  |  |  |  |  |  |  |
| Radish root                                                                                            | 120                                                                            | < 0.010                                                         |            | < 0.010                              |  |  |  |  |  |  |  |
|                                                                                                        | 365                                                                            | < 0.010                                                         |            | < 0.010                              |  |  |  |  |  |  |  |
|                                                                                                        | 30                                                                             | 0.048                                                           |            | 0.103                                |  |  |  |  |  |  |  |
| Radish tops                                                                                            | 120                                                                            | 0.024                                                           |            | 0.054                                |  |  |  |  |  |  |  |
|                                                                                                        | 365                                                                            | 0.014                                                           | 0.048      |                                      |  |  |  |  |  |  |  |
|                                                                                                        | 30                                                                             | 0.020                                                           |            | 0.052                                |  |  |  |  |  |  |  |
| Immature lettuce                                                                                       | 180                                                                            | < 0.010                                                         |            | 0.030                                |  |  |  |  |  |  |  |
|                                                                                                        | 365                                                                            | 0.011                                                           |            | 0.038                                |  |  |  |  |  |  |  |
|                                                                                                        | 30                                                                             | 0.013                                                           |            | 0.038                                |  |  |  |  |  |  |  |
| Mature lettuce                                                                                         | 180                                                                            | < 0.010                                                         |            | 0.041                                |  |  |  |  |  |  |  |
|                                                                                                        | 365                                                                            | <0.010                                                          |            | 0.021                                |  |  |  |  |  |  |  |
|                                                                                                        | 30                                                                             | 0.106                                                           |            | 0.104                                |  |  |  |  |  |  |  |
| Wheat forage                                                                                           | 120                                                                            | 0.111                                                           |            | 0.081                                |  |  |  |  |  |  |  |
|                                                                                                        | 365                                                                            | 0.023                                                           |            | 0.052                                |  |  |  |  |  |  |  |
|                                                                                                        | 30                                                                             | 0.089                                                           |            | 0.169                                |  |  |  |  |  |  |  |
| Wheat hay                                                                                              | 120                                                                            | 0.036                                                           |            | 0.074                                |  |  |  |  |  |  |  |
|                                                                                                        | 365                                                                            | 0.029                                                           |            | 0.073                                |  |  |  |  |  |  |  |
|                                                                                                        | 30                                                                             | 0.491                                                           |            | 0.626                                |  |  |  |  |  |  |  |
| Wheat straw                                                                                            | 120                                                                            | 0.454                                                           |            | 0.413                                |  |  |  |  |  |  |  |
|                                                                                                        | 365                                                                            | 0.232                                                           |            | 0.342                                |  |  |  |  |  |  |  |

|                               | 30                              |                                          | 0.369                           |                                     |    | 0.532                           | 2                                        |  |  |
|-------------------------------|---------------------------------|------------------------------------------|---------------------------------|-------------------------------------|----|---------------------------------|------------------------------------------|--|--|
| Wheat chaff                   | 120                             |                                          | 0.254                           |                                     |    | 0.390                           | )                                        |  |  |
|                               | 365                             |                                          | 0.128                           |                                     |    | 0.306                           | )                                        |  |  |
|                               | 30                              |                                          | 0.093                           |                                     |    | 0.068                           |                                          |  |  |
| Wheat grain                   | 120                             |                                          | 0.051                           |                                     |    | 0.047                           |                                          |  |  |
|                               | 365                             |                                          | 0.026                           |                                     |    | 0.067                           | 1                                        |  |  |
| Summary of Major Ide          | entified Meta                   | bolites in Ro                            |                                 |                                     |    |                                 |                                          |  |  |
| Plant-back Intervals<br>(PBI) |                                 | on (30-day<br>BI)                        |                                 | otation<br>-day PB                  | I) |                                 | on (365-day<br>BI)                       |  |  |
| Radiolabel Position           | [ <sup>14</sup> C-U-<br>phenyl] | [ <sup>14</sup> C-4-<br>pyrimidinyl<br>] | [ <sup>14</sup> C-U-<br>phenyl] | [ <sup>14</sup> C-4<br>pyrimid<br>] |    | [ <sup>14</sup> C-U-<br>phenyl] | [ <sup>14</sup> C-4-<br>pyrimidinyl<br>] |  |  |
| Metabolites Identified        | Major<br>Metabolite<br>s        | Major<br>Metabolites                     | Major<br>Metabolite<br>s        | Majo<br>Metabo                      |    | Major<br>Metabolite<br>s        | Major<br>Metabolites                     |  |  |
|                               | M-36                            | M-32                                     |                                 |                                     |    |                                 |                                          |  |  |
| Radish root                   | M-52<br>M-72                    | M-36<br>M-72                             | None                            | Non                                 | e  | None                            | None                                     |  |  |
|                               | M-36                            | M-32                                     | M-36                            | M-3                                 | 2  | M-36                            |                                          |  |  |
| Radish tops                   | M-52                            | M-52                                     | M-52                            | M-72                                | 2  | M-52                            | M-32                                     |  |  |
|                               | M-72                            |                                          | M-72                            |                                     |    | M-72                            |                                          |  |  |
|                               | M-36                            | M-32                                     |                                 |                                     |    | M-36                            |                                          |  |  |
| Lettuce, immature             | M-52                            | M-36                                     | None                            | M-3                                 | 2  | M-52                            | M-32                                     |  |  |
|                               | M-53                            | M-52<br>M-53                             |                                 |                                     |    | M-53                            |                                          |  |  |
|                               |                                 | M-32                                     |                                 |                                     |    |                                 |                                          |  |  |
|                               | M-36                            | M-32<br>M-36                             |                                 | M-3                                 |    |                                 |                                          |  |  |
| Lettuce, mature               | M-52                            | M-50<br>M-52                             | None                            | M-3                                 |    | None                            | M-32                                     |  |  |
|                               | M-53                            | M-53                                     |                                 | M-52                                |    |                                 |                                          |  |  |
|                               |                                 |                                          |                                 | M-3                                 | 2  | M-36                            |                                          |  |  |
|                               | M-36                            | M-36                                     | M-36                            | M-3                                 | 6  | M-50<br>M-52                    | M-32                                     |  |  |
| Wheat forage                  | M-52                            | M-52                                     | M-52                            | M-52                                |    | M-52<br>M-53                    | M-36                                     |  |  |
|                               | 111 52                          | M-53                                     | M-53                            | M-5                                 |    | M-63                            | M-53                                     |  |  |
|                               |                                 | 16.22                                    | 1626                            | M-6                                 |    |                                 | 16.22                                    |  |  |
| W71 4 1                       | M-36                            | M-32                                     | M-36                            | M-3                                 |    | M-36                            | M-32                                     |  |  |
| Wheat hay                     | M-52                            | M-36<br>M-52                             | M-52<br>M-53                    | M-3<br>M-5                          |    | M-53                            | M-36<br>M-53                             |  |  |
|                               |                                 | IVI-32                                   | IVI-33                          | M-3                                 |    |                                 | IVI-33                                   |  |  |
|                               | M-36                            | M-36                                     | M-36                            | M-3                                 |    | M-36                            | M-32                                     |  |  |
| Wheat straw                   | M-52                            | M-52                                     | M-52                            | M-5                                 |    | M-53                            | M-36                                     |  |  |
|                               | M-53                            | M-53                                     | M-53                            | M-5                                 |    |                                 | M-53                                     |  |  |
|                               | M-36                            | M 22                                     | M-36                            | M-3                                 |    | M 26                            | M 22                                     |  |  |
| Wheat chaff                   | M-52                            | M-32                                     | M-52                            | M-3                                 |    | M-36                            | M-32                                     |  |  |
|                               | M-53                            | M-36                                     | M-53                            | M-52                                | 2  | M-53                            | M-36                                     |  |  |
| Wheat grain                   | M-36                            | M-32                                     | M-36                            | M-3                                 |    | M-36                            | M-32                                     |  |  |
|                               | 101-30                          | M-36                                     | M-56                            | M-3                                 | 6  | 101-30                          | M-36                                     |  |  |



\* DCC-3825 M-32 can theoretically derive from any of the observed metabolites

## **RESIDUE DATA IN ROTATIONAL CROPS - WheatPMRA #2865975**

Six trials were conducted during the 2015-2017 growing seasons in North American growing region 2 (1 trial), 5 (1 trial), 7A (1 trial), 8 (1 trial) and 14 (2 trials). A single broadcast application was made to bare soil with a 70% WG formulation of tiafenacil at a rate of 145-152 g a.i./ha. No adjuvant was used.

|               | Total                               |               | Tiafenacil Residue Levels (ppm) |         |         |         |         |      |  |  |  |
|---------------|-------------------------------------|---------------|---------------------------------|---------|---------|---------|---------|------|--|--|--|
| Commodit<br>y | Applicatio<br>n Rate<br>(g a.i./ha) | PBI<br>(days) | n                               | LAFT    | HAFT    | Median  | Mean    | SDEV |  |  |  |
| Wheat         |                                     | 28-30         | 6                               | < 0.010 | < 0.010 | < 0.010 | < 0.010 | 0    |  |  |  |
| forage        | 145-152                             | 90-120        | 6                               | < 0.010 | < 0.010 | < 0.010 | < 0.010 | 0    |  |  |  |
| Wheat hay     | 145-152                             | 28-30         | 6                               | < 0.010 | < 0.010 | < 0.010 | < 0.010 | 0    |  |  |  |
| wheat hay     |                                     | 90-120        | 6                               | < 0.010 | < 0.010 | < 0.010 | < 0.010 | 0    |  |  |  |

| Wheat<br>straw                                                                                                                     |  | 28-30 | 6 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | 0 |
|------------------------------------------------------------------------------------------------------------------------------------|--|-------|---|---------|---------|---------|---------|---|
| Wheat<br>grain                                                                                                                     |  | 28-30 | 6 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | 0 |
| n = number of independent trials, LAFT = lowest average field trial, HAFT = highest average field trial, SDEV = standard deviation |  |       |   |         |         |         |         |   |

## Table 13 Food residue chemistry overview of metabolism studies and risk assessment

| PLANT STU                                                                                                                              | JDIES                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| <b>RESIDUE DEFINITION FOR ENFORCEMENT</b><br>Primary crops (Preplant soil treatment: corn,<br>potato and mandarin)<br>Rotational crops | Tiafenacil                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| <b>RESIDUE DEFINITION FOR RISK<br/>ASSESSMENT<br/>Primary crops (Preplant soil treatment only)</b>                                     | Tiafenacil [Human food];<br>Tiafenacil and metabolites M-36, M-53 and<br>M-56, expressed as parent equivalents<br>[Livestock feed]                                                                                                                                                                                                                                                                    |  |  |  |  |
| Rotational crops                                                                                                                       | Tiafenacil + M-32 (TFA) , expressed as parent<br>equivalents [Human food];<br>Tiafenacil, and metabolites M-36, M-53 and<br>M-56, expressed as parent equivalents [Livestoc<br>feed]                                                                                                                                                                                                                  |  |  |  |  |
| METABOLIC PROFILE IN DIVERSE CROPS                                                                                                     | Preplant soil application: Corn (OECD crop<br>category cereal/grass), potato (OECD crop<br>category root crop) and mandarin (OECD<br>crop category fruit). As similar metabolism<br>(similar metabolic pathways and resulting<br>metabolites) has been demonstrated in 3<br>dissimilar crops, then the metabolism data can<br>be extended to all plant commodities for<br>preplant soil applications. |  |  |  |  |
| ANIMAL ST                                                                                                                              | UDIES                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| ANIMALS                                                                                                                                | Ruminant and Poultry                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| <b>RESIDUE DEFINITION FOR ENFORCEMENT</b>                                                                                              | Tiafenacil                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| RESIDUE DEFINITION FOR RISK<br>ASSESSMENT                                                                                              | Tiafenacil                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| METABOLIC PROFILE IN ANIMALS<br>(goat, hen, rat)                                                                                       | Similar metabolic profile in goat, rat and hen.                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |

| FAT SOLUBLE RESIDUE                                       |                        |                                                         | Ye                     | es             |                            |  |  |
|-----------------------------------------------------------|------------------------|---------------------------------------------------------|------------------------|----------------|----------------------------|--|--|
| DIETARY RISK FROM FOOI                                    | O AND DRINKING         | WATER                                                   |                        |                |                            |  |  |
|                                                           |                        | ESTIMATED RISK<br>% of ACCEPTABLE DAILY INTAKE<br>(ADI) |                        |                |                            |  |  |
|                                                           | POPULATION             | Food                                                    | Alone                  |                | Food and Drinking<br>Water |  |  |
|                                                           |                        | Tiafenacil                                              | Tiafenacil<br>+<br>TFA | Tiafenac<br>il | Tiafenacil<br>+<br>TFA     |  |  |
| Basic chronic dietary exposure analysis                   | All infants <1 year    | 5.2                                                     | 14.7                   | 92.0           | 101.5                      |  |  |
|                                                           | Children 1–2 years     | 15.8                                                    | 29.9                   | 47.8           | 61.8                       |  |  |
| ADI = 0.004  mg/kg bw/day                                 | Children 3–5 years     | 10.3                                                    | 21.9                   | 36.3           | 47.9                       |  |  |
| Estimated chronic drinking<br>water concentration = 0.046 | Children 6–12<br>years | 6.1                                                     | 13.8                   | 25.4           | 33.2                       |  |  |
| ppm                                                       | Youth 13–19 years      | 3.3                                                     | 8.2                    | 19.6           | 24.6                       |  |  |
|                                                           | Adults 20–49<br>years  | 2.4                                                     | 6.6                    | 25.5           | 29.7                       |  |  |
|                                                           | Adults 50+ years       | 2.1                                                     | 5.4                    | 24.5           | 27.9                       |  |  |
|                                                           | Females 13-49<br>years | 2.4                                                     | 6.4                    | 25.1           | 29.1                       |  |  |
|                                                           | Total population       | 3.5                                                     | 8.5                    | 26.7           | 31.7                       |  |  |

## Table 14 Fate and behaviour of tiafenacil in the environment

| Fate          | Substance  | Conditions      | Degradation<br>Characteristics |                          |       | Major                | Commonto | PMR         |
|---------------|------------|-----------------|--------------------------------|--------------------------|-------|----------------------|----------|-------------|
| Process       | Substance  | Conditions      | DT <sub>50</sub><br>(d)        | DT <sub>9</sub><br>0 (d) | Model | TPs <sup>1</sup>     | Comments | <b>A #</b>  |
| Abiotic trans | formation  | -               |                                | -                        | -     | -                    |          |             |
| Hydrolysis    | Tiafenacil | pH 4 (50<br>°C) |                                | Stable                   | 2     | N/A                  |          |             |
|               |            | pH 7 (45<br>°C) | 5.86                           | NC                       | SFO   | M-01                 |          |             |
|               |            | pH 7 (40<br>°C) | 12.7                           | NC                       | SFO   | M-06<br>M-07<br>M-33 |          | 28660<br>88 |
|               |            | pH 7 (35<br>°C) | 24.0                           | NC                       | SFO   | M-49                 |          |             |
|               |            | pH 7 (25<br>°C; | 111                            | NC                       | SFO   | N/A                  |          |             |

| Fate    |           |                                                                                                                              |                              | egrada<br>aracter |                          | Major                                                |                                                                                                                                                                                                                                          | PMR   |
|---------|-----------|------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------|--------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Process | Substance | Conditions                                                                                                                   | DT <sub>50</sub><br>(d)      | DT9<br>0 (d)      | Model                    | TPs <sup>1</sup>                                     | Comments                                                                                                                                                                                                                                 | A #   |
|         |           | Arrhenius<br>estimate)<br>pH 7 (20<br>°C;<br>Arrhenius<br>estimate)<br>pH 9 (25<br>°C)<br>pH 9 (20<br>°C)<br>pH 9 (15<br>°C) | 245<br>0.973<br>1.99<br>4.33 | NC<br>NC<br>NC    | SFO<br>SFO<br>SFO        | M-01<br>M-06<br>M-07<br>M-33<br>M-39<br>M-40<br>M-50 | Hydrolysis<br>is<br>temperature<br>and pH-<br>dependent<br>(base-<br>catalyzed):<br>stable at pH<br>4, predicted<br>to be only<br>slightly<br>susceptible<br>to<br>hydrolysis<br>at pH 7 at<br>20°C, and<br>fairly rapid<br>transformati |       |
|         | M-01      | рН 7 (50<br>°С)                                                                                                              | 7.0                          | 23.3              | Linear<br>regressi<br>on | NC                                                   | on at pH 9<br>Endpoints<br>were<br>determined                                                                                                                                                                                            |       |
|         | M-12      | pH 7 (50<br>°C)                                                                                                              | 8.0                          | 26.7              | Linear<br>regressi<br>on | NC                                                   | by the study<br>author. No<br>half-life                                                                                                                                                                                                  |       |
|         | M-13      | pH 7 (50<br>°C)                                                                                                              | 4.6                          | 15.2              | Linear<br>regressi<br>on | NC                                                   | information<br>is available<br>at                                                                                                                                                                                                        |       |
|         | M-36      | pH 7 (50<br>°C)                                                                                                              | 5.6                          | 18.5              | Linear<br>regressi<br>on | NC                                                   | environmen<br>tally<br>relevant                                                                                                                                                                                                          | 31410 |
|         | M-53      | pH 7 (50<br>°C)                                                                                                              | 4.8                          | 16.1              | Linear<br>regressi<br>on | NC                                                   | temperature<br>s because<br>test was                                                                                                                                                                                                     | 69    |
|         | M-63      | pH 7 (50<br>°C)                                                                                                              | 3.6                          | 11.8              | Linear<br>regressi<br>on | NC                                                   | conducted<br>at only one<br>temperature<br>(50°C).<br>Study did<br>not identify<br>the products<br>of<br>hydrolysis.                                                                                                                     |       |

| Fate                               | Substance  | Conditions                                                    |                         | egrada<br>aracter |       | Major                                | Comments                                             | PMR         |
|------------------------------------|------------|---------------------------------------------------------------|-------------------------|-------------------|-------|--------------------------------------|------------------------------------------------------|-------------|
| Process                            |            |                                                               | DT <sub>50</sub><br>(d) | DT9<br>0 (d)      | Model | TPs <sup>1</sup>                     | Comments                                             | <b>A</b> #  |
| Phototransfo<br>rmation on<br>soil | Tiafenacil | 20 °C<br>Corrected<br>for<br>equivalent<br>summer<br>sunlight | 197<br>405              | NC                | SFO   | N/A                                  | Not a major<br>route of<br>transformati<br>on        | 28660<br>90 |
| Phototransfo                       | Tiafenacil | 20 °C                                                         | 6.46                    | 21.5              | SFO   |                                      | Expected to                                          |             |
| rmation in<br>water                |            | Corrected<br>for<br>equivalent<br>summer<br>sunlight          | 5.89                    | NC                | SFO   | M-71<br>M-72<br>M-85                 | be an<br>important<br>route of<br>transformati<br>on | 28660<br>89 |
| Biotransform                       | ation      |                                                               | •                       |                   |       | •                                    |                                                      |             |
| Aerobic soil                       | Tiafenacil | MSL-PF<br>(20 °C; pH<br>6.6-6.8;<br>sandy clay<br>loam)       | 0.0247                  | 0.74<br>6         | IORE  | M-01<br>M-12<br>M-13                 |                                                      |             |
|                                    |            | MCL-PF<br>(20 °C; pH<br>7.1-7.4;<br>light clay)               | 0.0336                  | 0.11 2            | DFOP  | M-29<br>M-30<br>M-32<br>M-35<br>M-36 | Not<br>persistent                                    | 28660<br>91 |
|                                    |            | LAD-SCL-<br>PF (20 °C;<br>pH 8.0-8.1;<br>light clay)          | 0.0433                  | 0.14<br>4         | SFO   | M-53<br>M-63<br>M-69<br>M-72         |                                                      |             |
|                                    |            | CA-SL (20<br>°C; pH 6.7-<br>7.5; sand)                        | 0.116                   | 0.62<br>1         | IORE  | M-73                                 |                                                      |             |
|                                    | M-20       | MSL-PF <sup>2</sup>                                           | 3.93                    | 13.1              | SFO   | M-69                                 | Endnainta                                            |             |
|                                    |            | MCL-PF <sup>2</sup>                                           | 5.43                    | 18                | SFO   | M-69                                 | Endpoints<br>were                                    | 31290       |
|                                    |            | LAD-SCL-<br>PF <sup>2</sup>                                   | 14.0                    | 46.4              | SFO   | M-69                                 | determined                                           | 73          |
|                                    |            | CA-SL <sup>2</sup>                                            | 8.79                    | 19.2              | SFO   | M-69                                 | by the study authors.                                |             |
|                                    | M-36       | MSL-PF <sup>2</sup>                                           | 127                     | >1 y              | SFO   | N/A                                  | Major TPs                                            |             |
|                                    |            | MCL-PF <sup>2</sup>                                           | 87.7                    | 291               | SFO   | N/A                                  | formed                                               | 31290       |
|                                    |            | LAD-SCL-<br>PF <sup>2</sup>                                   | 70.1                    | 233               | SFO   | M-69                                 | from TPs<br>tested                                   | 74          |
|                                    |            | CA-SL <sup>2</sup>                                            | 354                     | >1 y              | SFO   | N/A                                  | determined                                           |             |
|                                    | M-63       | MSL-PF <sup>2</sup>                                           | 637                     | 212<br>0          | SFO   | N/A                                  | based on<br>observation                              | 21200       |
|                                    |            | MCL-PF <sup>2</sup>                                           | 97.4                    | 324               | SFO   | N/A                                  | s of $\geq 10\%$                                     | 31290<br>75 |
|                                    |            | LAD-SCL-<br>PF <sup>2</sup>                                   | 40.7                    | 135               | SFO   | M-30                                 | AR.                                                  | 15          |

| Fate                                      | Substance  |                                                           |                         | egrada<br>aracter        |        | Major                                              |                                  | PMR         |
|-------------------------------------------|------------|-----------------------------------------------------------|-------------------------|--------------------------|--------|----------------------------------------------------|----------------------------------|-------------|
| Process                                   | Substance  | Conditions                                                | DT <sub>50</sub><br>(d) | DT <sub>9</sub><br>0 (d) | Model  | TPs <sup>1</sup>                                   | Comments                         | A #         |
|                                           |            | CA-SL <sup>2</sup>                                        | 508                     | 169<br>0                 | SFO    | M-30                                               |                                  |             |
| Anaerobic<br>soil                         | Tiafenacil | MSL-PF<br>(20 °C; pH<br>6.3; sandy<br>clay loam)          | 0.277                   | 1.86                     | DFOP   | M-01                                               |                                  |             |
|                                           |            | MCL-PF<br>(20 °C; pH<br>7.2; light<br>clay)               | 0.344                   | 1.64                     | IORE   | <b>M-07</b><br>M-12<br>M-16<br><b>M-20</b>         | Not                              | 28660<br>92 |
|                                           |            | LAD-SCL-<br>PF (20 °C;<br>pH 8.1;<br>light clay)          | 0.342                   | 2.3                      | DFOP   | M-26<br>M-33<br>M-34<br>M-39                       | persistent                       |             |
|                                           |            | CA-SL (20<br>°C; pH 7.4;<br>loamy<br>sand)                | 1.37                    | 8.93                     | DFOP   | M-86                                               |                                  |             |
| Aerobic<br>water/<br>sediment<br>system   | Tiafenacil | Calwich<br>Abbey<br>Lake (20<br>°C; pH 7.9;<br>silt loam) | 3.16                    | 10.5                     | SFO    | M-01<br>M-06<br>M-07<br>M-12<br>M-13               | Not<br>persistent                | 28660<br>93 |
|                                           |            | Swiss Lake<br>(20 °C; pH<br>5.9; sand)                    | 7.79                    | 27.1                     | SFO    | M-16<br>M-20<br>M-32<br>M-40                       | persistent                       |             |
| Anaerobic<br>aquatic<br>(total<br>system) | Tiafenacil | Calwich<br>Abbey<br>Lake (20<br>°C; pH 7.5;<br>silt loam) | 2.52                    | 8.36                     | SFO    | M-01<br>M-06<br>M-07<br><b>M-20</b><br><b>M-26</b> | Not                              | 28660       |
|                                           |            | Swiss Lake<br>(20 °C; pH<br>6.6; sand)                    | 4.88                    | 16.2                     | SFO    | M-33<br>M-34<br>M-39<br>M-49                       | persistent                       | 94          |
| Mobility                                  |            |                                                           |                         |                          |        |                                                    |                                  |             |
| Adsorption/<br>desorption                 | Tiafenacil | -                                                         | K                       | Xoc = 19                 | 965    | N/A                                                | Low<br>mobility                  | 28660<br>96 |
| in soil                                   | M-01       | -                                                         | Кос                     | = 14.1                   | - 25.4 | N/A                                                | High to<br>very high<br>mobility | 29655<br>67 |

| Fate                         |            | C III           |                         | egrada<br>aracter         |        | Major            |                                                     | PMR         |
|------------------------------|------------|-----------------|-------------------------|---------------------------|--------|------------------|-----------------------------------------------------|-------------|
| Process                      | Substance  | Conditions      | DT <sub>50</sub><br>(d) | DT <sub>9</sub><br>0 (d)  | Model  | TPs <sup>1</sup> | Comments                                            | A #         |
|                              | M-07       | -               | Koc                     | c = 60.8                  | - 320  | N/A              | Low to very<br>high<br>mobility                     | 29655<br>60 |
|                              | M-10       | -               | Кос                     | <i>K</i> oc = 18.5 - 59.4 |        | N/A              | Moderate to<br>very high<br>mobility                | 29655<br>71 |
|                              | M-12       | -               | Koo                     | = 5.8 -                   | 21.9   | N/A              | Very high<br>mobility                               | 29655<br>68 |
|                              | M-13       | -               | K <sub>oc</sub>         | = 44.0                    | - 75.5 | N/A              | Moderate to<br>very high<br>mobility                | 29655<br>69 |
|                              | M-20       | -               | Koc                     | = 39.3                    | - 127  | N/A              | Moderate to<br>very high<br>mobility                | 29655<br>61 |
|                              | M-29       | -               | Koc                     | = 5.79                    | - 22.2 | N/A              | Very high<br>mobility                               | 29655<br>62 |
|                              | M-30       | -               | Koc                     | = 2.20                    | - 19.1 | N/A              | Very high<br>mobility                               | 29655<br>75 |
|                              | M-35       | -               | Koc                     | = 4.10                    | - 16.1 | N/A              | Very high<br>mobility                               | 29655<br>63 |
|                              | M-36       | -               | Koc                     | = 3.29                    | - 21.4 | N/A              | Very high<br>mobility                               | 29655<br>74 |
|                              | M-53       | -               | Koc                     | = 13.8                    | - 19.4 | N/A              | High to<br>very high<br>mobility                    | 29655<br>70 |
|                              | M-63       | -               | K <sub>oc</sub>         | = 17.8                    | - 50.8 | N/A              | High to<br>very high<br>mobility                    | 29655<br>72 |
|                              | M-69       | -               | K <sub>oc</sub>         | = 46.6                    | - 155  | N/A              | Moderate to<br>very high<br>mobility                | 29655<br>64 |
|                              | M-72       | -               | K <sub>oc</sub>         | = 1.76                    | - 36.0 | N/A              | Very high<br>mobility                               | 29655<br>65 |
|                              | M-73       | -               | K <sub>oc</sub>         | = 3.3 -                   | - 45.1 | N/A              | High to<br>very high<br>mobility                    | 29655<br>66 |
| Bioaccumula                  |            |                 |                         |                           |        |                  |                                                     |             |
| Bioconcentr<br>ation in fish | Tiafenacil | Not requ        | uired (Log              | g K <sub>ow</sub> 1.      | 95-2)  | N/A              | Not<br>expected to<br>bioaccumul<br>ate.            | N/A         |
| <b>Field Studies</b>         |            |                 |                         | 1                         |        | 1                |                                                     |             |
| Field<br>dissipation         | Tiafenacil | Ephrata,<br>WA, | 0.0007<br>4             | 2.43                      | IORE   | tiafenac         | lissipation of<br>il under field<br>ns (last detect | 28659<br>77 |

| Fate    |           | ~                                                                                               |                         | egrada<br>aracter |       | Major                                                                                                                                 |                                                                                                                                                                                                                                                                                                                             | PMR         |
|---------|-----------|-------------------------------------------------------------------------------------------------|-------------------------|-------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Process | Substance | Conditions                                                                                      | DT <sub>50</sub><br>(d) | DT9<br>0 (d)      | Model | TPs <sup>1</sup>                                                                                                                      | Comments                                                                                                                                                                                                                                                                                                                    | <b>A</b> #  |
|         |           | United<br>States<br>(pH 8.2 –<br>8.7; sand to<br>loamy<br>sand)                                 |                         |                   |       | applica<br>depth<br>Severa<br>(%<br>dete<br>Last TI<br>days aft<br>(M-36)                                                             | days after<br>tion; greatest<br>detect of 7.5<br>cm).<br>1 TPs formed<br>6AR not<br>ermined):<br>M-01<br>M-12<br>M-13<br>M-36<br>M-72<br>P detect at 10<br>er application<br>o and greatest<br>etect of 90 cm                                                                                                               |             |
|         |           | Northwood,<br>ND, United<br>States<br>(pH 6.4 –<br>8.4; sandy<br>loam to<br>sandy clay<br>loam) | 0.61                    | 8.42              | DFOP  | Fai<br>diss<br>tiafenac<br>conditio<br>at 14<br>applica<br>depth<br>Severa<br>(%<br>dete<br>Last TP<br>days aft<br>(M-53)<br>depth de | M-36).<br>irly rapid<br>ipation of<br>cil under field<br>ons (last detect<br>days after<br>tion; greatest<br>detect of 7.5<br>cm).<br>1 TPs formed<br>6AR not<br>ermined):<br>M-01<br>M-12<br>M-13<br>M-36<br>M-53<br>M-63<br>M-69<br>M-72<br>detect at 310<br>er application<br>o and greatest<br>etect of 30 cm<br>M-53). | 28659<br>78 |

 Image: Image

#### Table 15 Major transformation products of tiafenacil and their occurrence

| ТР      | Fate Process<br>(Bold if<br>Major)                 | Study<br>PMRA<br>No. | Study Characteristics                                   | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|---------|----------------------------------------------------|----------------------|---------------------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
| M-01 De | tails                                              | o F                  |                                                         | •                 |                                    | · · · · · · · · · · · · · · · · · · ·                        |
|         | F                                                  |                      | M-01                                                    |                   |                                    |                                                              |
|         | ar Structure:                                      | 5 (1)                |                                                         |                   |                                    |                                                              |
|         | ar Formula: C <sub>18</sub> H<br>ar Weight: 497.85 |                      | S                                                       |                   |                                    |                                                              |
| M-01    | Hydrolysis                                         | 2866088              | pH 4, 50 °C                                             | ph                | ND (NR)                            | ND (NR)                                                      |
|         |                                                    |                      | pH 4, 50 °C                                             | pyr               | ND (NR)                            | ND (NR)                                                      |
|         |                                                    |                      | рН 7, 35 °C                                             | ph                | 20.8 (30)                          | 20.8 (30)                                                    |
|         |                                                    |                      | рН 7, 35 °С                                             | pyr               | 21.2 (30)                          | 21.2 (30)                                                    |
|         |                                                    |                      | pH 7, 40 °C                                             | ph                | 16.3 (20)                          | 16.2 (30)                                                    |
|         |                                                    |                      | рН 7, 40 °С                                             | pyr               | 16.4 (30)                          | 16.4 (30)                                                    |
|         |                                                    |                      | рН 7, 45 °С                                             | ph                | 16.7 (7)                           | 15.2 (10)                                                    |
|         |                                                    |                      | рН 7, 45 °С                                             | pyr               | 17.1 (10)                          | 17.1 (10)                                                    |
|         |                                                    |                      | рН 9, 15 °С                                             | ph                | 20.7 (14)                          | 20.7 (14)                                                    |
|         |                                                    |                      | рН 9, 15 °С                                             | pyr               | 21.1 (10)                          | 18.8 (14)                                                    |
|         |                                                    |                      | рН 9, 20 °С                                             | ph                | 21.2 (6)                           | 21.2 (6)                                                     |
|         |                                                    |                      | рН 9, 20 °С                                             | pyr               | 19.9 (6)                           | 19.9 (6)                                                     |
|         |                                                    |                      | рН 9, 25 °С                                             | ph                | 18.6 (2)                           | 14.8 (5)                                                     |
|         |                                                    |                      | рН 9, 25 °С                                             | pyr               | 29.2 (3)                           | 19 (5)                                                       |
| M-01    | Aerobic soil                                       | 2866091              | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2$ °C)       | ph                | 51 (0.5)                           | ND (180)                                                     |
|         |                                                    |                      | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2$ °C)       | pyr               | 53.9 (0.5)                         | ND (180)                                                     |
|         |                                                    |                      | LAD-SCL-PF (light clay to clay; pH 8; $20 \pm 2$ °C)    | ph                | 67.3 (0.25)                        | ND (180)                                                     |
|         |                                                    |                      | LAD-SCL-PF (light clay to clay; pH 8; $20 \pm 2$ °C)    | pyr               | 62.9 (0.25)                        | ND (180)                                                     |
|         |                                                    |                      | MCL-PF (light clay to clay loam; pH 7.4; $20 \pm 2$ °C) | ph                | 42.5 (0.25)                        | ND (180)                                                     |

| ТР   | Fate Process<br>(Bold if<br>Major) | Study<br>PMRA<br>No. | Study Characteristics                                            | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|------|------------------------------------|----------------------|------------------------------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
|      |                                    |                      | MCL-PF (light clay to clay loam; pH 7.4; $20 \pm 2$ °C)          | pyr               | 45.2 (0.25)                        | ND (180)                                                     |
|      |                                    |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.8$ ; $20 \pm 2$ °C) | ph                | 62.7 (0.25)                        | ND (180)                                                     |
|      |                                    |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.8$ ; $20 \pm 2$ °C) | pyr               | 63.4 (0.25)                        | ND (180)                                                     |
| M-01 | Anaerobic soil                     | 2866092              | CA-SL (sand to loamy sand; pH 7.4; $20 \pm 2$ °C)                | ph                | 55.3 (7)                           | 3.2 (180)                                                    |
|      |                                    |                      | CA-SL (sand to loamy sand; pH 7.4; $20 \pm 2$ °C)                | pyr               | 66.3 (7)                           | 18.9 (180)                                                   |
|      |                                    |                      | LAD-SCL-PF (light clay to clay; pH 8.1; 20 ± 2 °C)               | ph                | 62.5 (2)                           | 10.3 (180)                                                   |
|      |                                    |                      | LAD-SCL-PF (light clay to clay; pH 8.1; 20 ± 2 °C)               | pyr               | 73.1 (2)                           | 18 (180)                                                     |
|      |                                    |                      | MCL-PF (light clay to clay loam; pH 7.2; $20 \pm 2$ °C)          | ph                | 51.4 (7)                           | 10.1 (180)                                                   |
|      |                                    |                      | MCL-PF (light clay to clay loam; pH 7.2; $20 \pm 2$ °C)          | pyr               | 66.1 (2)                           | 12.6 (180)                                                   |
|      |                                    |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.3$ ; $20 \pm 2$ °C) | ph                | 79.9 (7)                           | 2.7 (180)                                                    |
|      |                                    |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.3$ ; $20 \pm 2$ °C) | pyr               | 99.2 (7)                           | 17.8 (180)                                                   |
| M-01 | Aerobic<br>aquatic                 | 2866093              | Calwich Abbey Lake (silt loam; pH 7.9)<br>Sediment               | ph                | 8.6 (10)                           | ND (100)                                                     |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.9)<br>Sediment               | pyr               | 11.6 (14)                          | 1.3 (100)                                                    |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.9) Total                     | ph                | 43.2 (10)                          | ND (100)                                                     |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.9) Total                     | pyr               | 40.3 (7)                           | 1.8 (100)                                                    |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.9) Water                     | ph                | 34.6 (10)                          | ND (100)                                                     |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.9) Water                     | pyr               | 37.1 (7)                           | 0.5 (100)                                                    |
|      |                                    |                      | Swiss lake (sand; pH 6.7) Sediment                               | ph                | 3.8 (7)                            | ND (100)                                                     |
|      |                                    |                      | Swiss lake (sand; pH 6.7) Sediment                               | pyr               | 9.7 (14)                           | 1.9 (100)                                                    |
|      |                                    |                      | Swiss lake (sand; pH 6.7) Total                                  | ph                | 65.2 (0.5)                         | ND (100)                                                     |
|      |                                    |                      | Swiss lake (sand; pH 6.7) Total                                  | pyr               | 62.1 (28)                          | 1.9 (100)                                                    |

| ТР   | Fate Process<br>(Bold if<br>Major) | Study<br>PMRA<br>No. | Study Characteristics                                  | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|------|------------------------------------|----------------------|--------------------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
|      |                                    |                      | Swiss lake (sand; pH 6.7) Water                        | ph                | 65.2 (0.5)                         | ND (100)                                                     |
|      |                                    |                      | Swiss lake (sand; pH 6.7) Water                        | pyr               | 53.7 (28)                          | ND (100)                                                     |
| M-01 | Anaerobic<br>aquatic               | 2866094              | Calwich Abbey Lake (silt loam; pH 7.5)<br>Sediment     | ph                | 7.3 (28)                           | 2.8 (100)                                                    |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5)<br>Sediment     | pyr               | 10.1 (50)                          | 3.8 (100)                                                    |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5) Total           | ph                | 28.7 (28)                          | 4.1 (100)                                                    |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5) Total           | pyr               | 26.7 (7)                           | 4.7 (100)                                                    |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5) Water           | ph                | 21.4 (28)                          | 1.3 (100)                                                    |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5) Water           | pyr               | 24.9 (7)                           | 1.2 (100)                                                    |
|      |                                    |                      | Swiss lake (sand; pH 6.6) Sediment                     | ph                | 5.4 (14)                           | 4.1 (100)                                                    |
|      |                                    |                      | Swiss lake (sand; pH 6.6) Sediment                     | pyr               | 7.5 (14)                           | 3.8 (100)                                                    |
|      |                                    |                      | Swiss lake (sand; pH 6.6) Total                        | ph                | 27.4 (14)                          | 7 (100)                                                      |
|      |                                    |                      | Swiss lake (sand; pH 6.6) Total                        | pyr               | 36.4 (28)                          | 7.3 (100)                                                    |
|      |                                    |                      | Swiss lake (sand; pH 6.6) Water                        | ph                | 22.6 (14)                          | 2.9 (100)                                                    |
|      |                                    |                      | Swiss lake (sand; pH 6.6) Water                        | pyr               | 30.1 (28)                          | 3.5 (100)                                                    |
| M-01 | Field studies<br>(250 g a.i./ha    | 2865977              | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June     | 0-3 inches        | 109 ppb<br>(0.04)                  | ND (60)                                                      |
|      | bare ground)                       |                      | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June     | 12-18<br>inches   | ()                                 | ND (60)                                                      |
|      |                                    |                      | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June     | 30-36<br>inches   | ()                                 | (60)                                                         |
|      |                                    |                      | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June     | 3-6 inches        | 12.1 ppb (1)                       | ND (60)                                                      |
|      |                                    |                      | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June     | 6-12 inches       | ND ()                              | ND (60)                                                      |
| M-01 | Field studies<br>(250 g a.i./ha    | 2865976              | Kerman, California; sandy loam (0.05-0.4<br>%OM); July | 0-3 inches        | 62.2 ppb (1)                       | (92)                                                         |
|      | bare ground)                       |                      | Kerman, California; sandy loam (0.05-0.4 %OM); July    | 12-18<br>inches   | ()                                 | (92)                                                         |
|      |                                    |                      | Kerman, California; sandy loam (0.05-0.4 %OM); July    | 30-36<br>inches   | ()                                 | (92)                                                         |

| ТР          | Fate Process<br>(Bold if<br>Major)    | Study<br>PMRA<br>No. | Study Characteristics                                        | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|-------------|---------------------------------------|----------------------|--------------------------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
|             |                                       |                      | Kerman, California; sandy loam (0.05-0.4<br>%OM); July       | 3-6 inches        | 19.2 ppb (1)                       | (92)                                                         |
|             |                                       |                      | Kerman, California; sandy loam (0.05-0.4 %OM); July          | 6-12 inches       | ()                                 | (92)                                                         |
| <b>M-01</b> | Field studies<br>(250 g a.i./ha       | 2865978              | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June | 0-3 inches        | 132 ppb (2)                        | (366)                                                        |
|             | bare ground)                          |                      | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June | 12-18<br>inches   | ()                                 | (366)                                                        |
|             |                                       |                      | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June | 30-36<br>inches   | ()                                 | (366)                                                        |
|             |                                       |                      | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June | 3-6 inches        | ()                                 | (366)                                                        |
|             |                                       |                      | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June | 6-12 inches       | ()                                 | (366)                                                        |
| <b>M-01</b> | Field studies<br>(250 g a.i./ha       | 2865979              | Seven Springs, North Carolina (0.13-0.56 % OM); July         | 0-3 inches        | 117.2 ppb<br>(0.04)                | (90)                                                         |
|             | bare ground)                          |                      | Seven Springs, North Carolina (0.13-0.56 % OM); July         | 12-18<br>inches   | ()                                 | (90)                                                         |
|             |                                       |                      | Seven Springs, North Carolina (0.13-0.56 % OM); July         | 30-36<br>inches   | ()                                 | (90)                                                         |
|             |                                       |                      | Seven Springs, North Carolina (0.13-0.56 % OM); July         | 3-6 inches        | ()                                 | (90)                                                         |
|             |                                       |                      | Seven Springs, North Carolina (0.13-0.56 % OM); July         | 6-12 inches       | ()                                 | (90)                                                         |
| M-06 De     | etails<br><sub>H3</sub> C、            | NH NH                |                                                              |                   |                                    |                                                              |
|             | ar Structure:                         | M-06                 |                                                              |                   |                                    |                                                              |
|             | ar Formula: C15H<br>ar Weight: 391.85 |                      |                                                              |                   |                                    |                                                              |
| M-06        | Hydrolysis                            | 2866088              | pH 4, 50 °C                                                  | ph                | Parent stable                      | Parent stable                                                |

| ТР   | Fate Process<br>(Bold if<br>Major) | Study<br>PMRA<br>No. | Study Characteristics                                            | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|------|------------------------------------|----------------------|------------------------------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
|      |                                    |                      | рН 7, 35 °С                                                      | ph                | 36.6 (30)                          | 36.6 (30)                                                    |
|      |                                    |                      | pH 7, 40 °C                                                      | ph                | 30.9 (30)                          | 30.9 (30)                                                    |
|      |                                    |                      | рН 7, 45 °С                                                      | ph                | 33.6 (7)                           | 31.8 (10)                                                    |
|      |                                    |                      | рН 9, 15 °С                                                      | ph                | 24.4 (10)                          | 23.3 (14)                                                    |
|      |                                    |                      | рН 9, 20 °С                                                      | ph                | 26.3 (6)                           | 26.3 (6)                                                     |
|      |                                    |                      | рН 9, 25 °С                                                      | ph                | 26.6 (2)                           | 23.3 (5)                                                     |
| M-06 | Anaerobic soil                     | 2866092              | CA-SL (sand to loamy sand; pH 7.4; $20 \pm 2$ °C)                | ph                | 5.3 (7)                            | ND (180)                                                     |
|      |                                    |                      | LAD-SCL-PF (light clay to clay; pH 8.1; 20 ± 2 °C)               | ph                | 2.1 (60)                           | ND (180)                                                     |
|      |                                    |                      | MCL-PF (light clay to clay loam; pH 7.2; $20 \pm 2$ °C)          | ph                | 2.9 (30)                           | ND (180)                                                     |
|      |                                    |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.3$ ; $20 \pm 2$ °C) | ph                | NA (NA)                            | NA (NA)                                                      |
| M-06 | Aerobic<br>aquatic                 | 2866093              | Calwich Abbey Lake (silt loam; pH 7.9)<br>Sediment               | ph                | ND                                 | (100)                                                        |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.9) Total                     | ph                | 10.2 (7)                           | ND (100)                                                     |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.9) Water                     | ph                | 10.2 (7)                           | ND (100)                                                     |
|      |                                    |                      | Swiss lake (sand; pH 6.7) Sediment                               | ph                | ND                                 | (100)                                                        |
|      |                                    |                      | Swiss lake (sand; pH 6.7) Total                                  | ph                | ND                                 | (100)                                                        |
|      |                                    |                      | Swiss lake (sand; pH 6.7) Water                                  | ph                | ND                                 | (100)                                                        |
| M-06 | Anaerobic<br>aquatic               | 2866094              | Calwich Abbey Lake (silt loam; pH 7.5)<br>Sediment               | ph                | 0.6 (14)                           | ND (100)                                                     |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5) Total                     | ph                | 25.5 (7)                           | ND (100)                                                     |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5) Water                     | ph                | 25.5 (7)                           | ND (100)                                                     |
|      |                                    |                      | Swiss lake (sand; pH 6.6) Sediment                               | ph                | 1.1 (28)                           | ND (100)                                                     |
|      |                                    |                      | Swiss lake (sand; pH 6.6) Total                                  | ph                | 25.6 (7)                           | ND (100)                                                     |
|      |                                    |                      | Swiss lake (sand; pH 6.6) Water                                  | ph                | 25.6 (7)                           | ND (100)                                                     |

| ТР          | Fate Process<br>(Bold if<br>Major)   | Study<br>PMRA<br>No. | Study Characteristics                                            | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|-------------|--------------------------------------|----------------------|------------------------------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
| M-07 De     | etails                               |                      | ·                                                                | ·                 | -                                  | · · · · · · · · · · · · · · · · · · ·                        |
|             | H <sub>3</sub> C、                    | NH NH                | S NH OH                                                          |                   |                                    |                                                              |
| Molecula    | ar Structure:                        | M-07                 |                                                                  |                   |                                    |                                                              |
| Molecula    | <b>ar Formula:</b> C <sub>14</sub> H | 16ClFN3O4S           | 1<br>)                                                           |                   |                                    |                                                              |
|             | ar Weight: 377.82                    |                      |                                                                  |                   | T                                  |                                                              |
| M-07        | Hydrolysis                           | 2866088              | рН 4, 50 °С                                                      | ph                | Parent stable                      | Parent stable                                                |
|             |                                      |                      | рН 7, 35 °С                                                      | ph                | 8.9 (30)                           | 8.9 (30)                                                     |
|             |                                      |                      | pH 7, 40 °C                                                      | ph                | 19.4 (30)                          | 19.4 (30)                                                    |
|             |                                      |                      | рН 7, 45 °С                                                      | ph                | 11.9 (7)                           | 9.2 (10)                                                     |
|             |                                      |                      | рН 9, 15 °С                                                      | ph                | 28.1 (14)                          | 28.1 (14)                                                    |
|             |                                      |                      | рН 9, 20 °С                                                      | ph                | 21.6 (6)                           | 21.6 (6)                                                     |
|             |                                      |                      | рН 9, 25 °С                                                      | ph                | 32.3 (5)                           | 32.3 (5)                                                     |
| <b>M-07</b> | Anaerobic soil                       | 2866092              | CA-SL (sand to loamy sand; pH 7.4; $20 \pm 2$ °C)                | ph                | 48.8 (60)                          | 10.4 (180)                                                   |
|             |                                      |                      | LAD-SCL-PF (light clay to clay; pH 8.1; 20 ± 2 °C)               | ph                | 48.4 (90)                          | 22.2 (180)                                                   |
|             |                                      |                      | MCL-PF (light clay to clay loam; pH 7.2; $20 \pm 2$ °C)          | ph                | 37.8 (120)                         | 24.5 (180)                                                   |
|             |                                      |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.3$ ; $20 \pm 2$ °C) | ph                | 40.9 (180)                         | 40.9 (180)                                                   |
| <b>M-07</b> | Aerobic<br>aquatic                   | 2866093              | Calwich Abbey Lake (silt loam; pH 7.9)<br>Sediment               | ph                | 4.7 (50)                           | 1.6 (100)                                                    |
|             |                                      |                      | Calwich Abbey Lake (silt loam; pH 7.9) Total                     | ph                | 14.3 (14)                          | 1.6 (100)                                                    |
|             |                                      |                      | Calwich Abbey Lake (silt loam; pH 7.9) Water                     | ph                | 10 (14)                            | ND (100)                                                     |
|             |                                      |                      | Swiss lake (sand; pH 6.7) Sediment                               | ph                | ND                                 | ND                                                           |
|             |                                      |                      | Swiss lake (sand; pH 6.7) Total                                  | ph                | ND                                 | ND                                                           |
|             |                                      |                      | Swiss lake (sand; pH 6.7) Water                                  | ph                | ND                                 | ND                                                           |
| <b>M-07</b> | Anaerobic<br>aquatic                 | 2866094              | Calwich Abbey Lake (silt loam; pH 7.5)<br>Sediment               | ph                | 10.6 (50)                          | 8.2 (100)                                                    |
|             | -                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5) Total                     | ph                | 52.3 (28)                          | 36.7 (100)                                                   |

| ТР               | Fate Process<br>(Bold if<br>Major) | Study<br>PMRA<br>No. | Study Characteristics                                            | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|------------------|------------------------------------|----------------------|------------------------------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
|                  |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5) Water                     | ph                | 44.8 (14)                          | 28.7 (100)                                                   |
|                  |                                    |                      | Swiss lake (sand; pH 6.6) Sediment                               | ph                | 9.8 (75)                           | 8.8 (100)                                                    |
|                  |                                    |                      | Swiss lake (sand; pH 6.6) Total                                  | ph                | 58.1 (50)                          | 52.6 (100)                                                   |
|                  |                                    |                      | Swiss lake (sand; pH 6.6) Water                                  | ph                | 49.6 (50)                          | 43.8 (100)                                                   |
|                  | ar Structure: الم                  | F<br>IIICIF4N2O4     | M-12                                                             |                   |                                    |                                                              |
| Molecula<br>M-12 | ar Weight: 426.77<br>Aerobic soil  | 2866091              | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2$ °C)                | ph                | 37.8 (3)                           | ND (180)                                                     |
| vi-1 <i>2</i>    | Act oble som                       | 2000071              | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2^{\circ}$ C)         | pir               | 42.4 (3)                           | ND (180)                                                     |
|                  |                                    |                      | LAD-SCL-PF (light clay to clay; pH 8; $20 \pm 2^{\circ}$ °C)     | ph                | 47.3 (3)                           | ND (180)                                                     |
|                  |                                    |                      | LAD-SCL-PF (light clay to clay; pH 8; $20 \pm 2$ °C)             | pyr               | 52.2 (3)                           | ND (180)                                                     |
|                  |                                    |                      | MCL-PF (light clay to clay loam; pH 7.4; $20 \pm 2$ °C)          | ph                | 24.7 (0.5)                         | ND (180)                                                     |
|                  |                                    |                      | MCL-PF (light clay to clay loam; pH 7.4; $20 \pm 2$ °C)          | pyr               | 22.6 (0.5)                         | ND (180)                                                     |
|                  |                                    |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.8$ ; $20 \pm 2$ °C) | ph                | 15.9 (1)                           | ND (180)                                                     |
|                  |                                    |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.8$ ; $20 \pm 2$ °C) | pyr               | 18.2 (1)                           | ND (180)                                                     |
| M-12             | Anaerobic soil                     | 2866092              | CA-SL (sand to loamy sand; pH 7.4; $20 \pm 2$ °C)                | ph                | 15.1 (7)                           | ND (180)                                                     |
|                  |                                    |                      | CA-SL (sand to loamy sand; pH 7.4; $20 \pm 2$ °C)                | pyr               | 19.5 (7)                           | ND (180)                                                     |
|                  |                                    |                      | LAD-SCL-PF (light clay to clay; pH 8.1; 20 ± 2 °C)               | ph                | 19.4 (2)                           | ND (180)                                                     |
|                  |                                    |                      | LAD-SCL-PF (light clay to clay; pH 8.1; 20 ± 2 °C)               | pyr               | 14.7 (30)                          | ND (180)                                                     |

| ТР   | Fate Process<br>(Bold if<br>Major) | Study<br>PMRA<br>No. | Study Characteristics                                            | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|------|------------------------------------|----------------------|------------------------------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
|      |                                    |                      | MCL-PF (light clay to clay loam; pH 7.2; $20 \pm 2$ °C)          | ph                | 33.8 (30)                          | ND (180)                                                     |
|      |                                    |                      | MCL-PF (light clay to clay loam; pH 7.2; $20 \pm 2$ °C)          | pyr               | 41.1 (7)                           | 1.6 (180)                                                    |
|      |                                    |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.3$ ; $20 \pm 2$ °C) | ph                | 21.8 (14)                          | 6.4 (180)                                                    |
|      |                                    |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.3$ ; $20 \pm 2$ °C) | pyr               | 22.4 (14)                          | 3.4 (180)                                                    |
| M-12 | Aerobic<br>aquatic                 | 2866093              | Calwich Abbey Lake (silt loam; pH 7.9)<br>Sediment               | ph                | 6.6 (28)                           | 4.1 (100)                                                    |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.9)<br>Sediment               | pyr               | 8.2 (50)                           | 6.9 (100)                                                    |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.9) Total                     | ph                | 22.2 (28)                          | 13 (100)                                                     |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.9) Total                     | pyr               | 22.4 (50)                          | 21.6 (100)                                                   |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.9) Water                     | ph                | 15.6 (28)                          | 9.7 (100)                                                    |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.9) Water                     | pyr               | 17.4 (50)                          | 14.7 (100)                                                   |
|      |                                    |                      | Swiss lake (sand; pH 6.7) Sediment                               | ph                | 8.5 (50)                           | 8.1 (100)                                                    |
|      |                                    |                      | Swiss lake (sand; pH 6.7) Sediment                               | pyr               | 8.7 (75)                           | 8.5 (100)                                                    |
|      |                                    |                      | Swiss lake (sand; pH 6.7) Total                                  | ph                | 56.7 (50)                          | 45.5 (100)                                                   |
|      |                                    |                      | Swiss lake (sand; pH 6.7) Total                                  | pyr               | 56.7 (75)                          | 39.2 (100)                                                   |
|      |                                    |                      | Swiss lake (sand; pH 6.7) Water                                  | ph                | 48.2 (50)                          | 39 (100)                                                     |
|      |                                    |                      | Swiss lake (sand; pH 6.7) Water                                  | pyr               | 49.4 (75)                          | 32.5 (100)                                                   |
| M-12 | Anaerobic<br>aquatic               | 2866094              | Calwich Abbey Lake (silt loam; pH 7.5)<br>Sediment               | ph                | 2.2 (28)                           | 1 (100)                                                      |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5)<br>Sediment               | pyr               | 3.3 (50)                           | 0.9 (100)                                                    |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5) Total                     | ph                | 5.2 (28)                           | 2.4 (100)                                                    |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5) Total                     | pyr               | 5.4 (50)                           | 2.3 (100)                                                    |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5) Water                     | ph                | 3 (28)                             | 1.4 (100)                                                    |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5) Water                     | pyr               | 2.1 (50)                           | 1.4 (100)                                                    |
|      |                                    |                      | Swiss lake (sand; pH 6.6) Sediment                               | ph                | 0.6 (28)                           | 0.3 (100)                                                    |
|      |                                    |                      | Swiss lake (sand; pH 6.6) Sediment                               | pyr               | 0.6 (28)                           | 0.5 (100)                                                    |

| ТР   | Fate Process<br>(Bold if<br>Major)              | Study<br>PMRA<br>No. | Study Characteristics                                        | Label or<br>Depth              | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|------|-------------------------------------------------|----------------------|--------------------------------------------------------------|--------------------------------|------------------------------------|--------------------------------------------------------------|
|      |                                                 |                      | Swiss lake (sand; pH 6.6) Total                              | ph                             | 3.1 (28)                           | 0.9 (100)                                                    |
|      |                                                 |                      | Swiss lake (sand; pH 6.6) Total                              | pyr                            | 2.5 (28)                           | 1.2 (100)                                                    |
|      |                                                 |                      | Swiss lake (sand; pH 6.6) Water                              | ph                             | 2.1 (14)                           | 0.6 (100)                                                    |
|      |                                                 |                      | Swiss lake (sand; pH 6.6) Water                              | pyr                            | 1.9 (28)                           | 1 (100)                                                      |
| M-12 | Field studies<br>(250 g a.i./ha                 | 2865977              | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June           | 0-3 inches                     | ND ()                              | ND (60)                                                      |
|      | bare ground)                                    |                      | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June           | 12-18<br>inches                | ND (10)                            | ND (60)                                                      |
|      |                                                 |                      | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June           | 30-36<br>inches                | (10)                               | (60)                                                         |
|      |                                                 |                      | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June           | 3-6 inches                     | 11.1 ppb (7)                       | ND (60)                                                      |
|      |                                                 |                      | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June           | 6-12 inches                    | ND (10)                            | ND (60)                                                      |
| M-12 | Field studies<br>(250 g a.i./ha<br>bare ground) | 2865976              | Kerman, California; sandy loam (0.05-0.4 %OM); July          | All depths<br>when<br>measured | ()                                 | (92)                                                         |
| M-12 | Field studies<br>(250 g a.i./ha                 | 2865978              | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June | 0-3 inches                     | 17.6 ppb (9)                       | (366)                                                        |
|      | bare ground)                                    |                      | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June | 12-18<br>inches                | ()                                 | (366)                                                        |
|      |                                                 |                      | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June | 30-36<br>inches                | ()                                 | (366)                                                        |
|      |                                                 |                      | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June | 3-6 inches                     | ()                                 | (366)                                                        |
|      |                                                 |                      | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June | 6-12 inches                    | ()                                 | (366)                                                        |
| M-12 | Field studies<br>(250 g a.i./ha<br>bare ground) | 2865979              | Seven Springs, North Carolina (0.13-0.56 % OM); July         | All depths<br>when<br>measured | ()                                 | (90)                                                         |

| ТР       | Fate Process<br>(Bold if<br>Major) | Study<br>PMRA<br>No. | Study Characteristics                                            | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|----------|------------------------------------|----------------------|------------------------------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
| M-13 De  | etails                             |                      | •                                                                |                   | •                                  |                                                              |
|          | F                                  |                      |                                                                  |                   |                                    |                                                              |
| Molecula | ar Structure:                      | F                    | M-13                                                             |                   |                                    |                                                              |
| Molecula | ar Formula: C <sub>15</sub> H      | 12ClF4N3O3           | S                                                                |                   |                                    |                                                              |
| Molecula | ar Weight: 425.79                  | )                    |                                                                  |                   |                                    |                                                              |
| M-13     | Aerobic soil                       | 2866091              | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2$ °C)                | ph                | 35.9 (1)                           | ND (180)                                                     |
|          |                                    |                      | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2$ °C)                | pyr               | 34.7 (3)                           | ND (180)                                                     |
|          |                                    |                      | LAD-SCL-PF (light clay to clay; pH 8; $20 \pm 2$                 | ph                | 38.4 (1)                           | ND (180)                                                     |
|          |                                    |                      | °C)                                                              |                   |                                    |                                                              |
|          |                                    |                      | LAD-SCL-PF (light clay to clay; pH 8; $20 \pm 2$                 | pyr               | 33.2 (1)                           | ND (180)                                                     |
|          |                                    |                      | °C)                                                              |                   |                                    |                                                              |
|          |                                    |                      | MCL-PF (light clay to clay loam; pH 7.4; $20 \pm 2$ °C)          | ph                | 25.3 (0.5)                         | ND (180)                                                     |
|          |                                    |                      | MCL-PF (light clay to clay loam; pH 7.4; $20 \pm 2$ °C)          | pyr               | 24.8 (0.5)                         | ND (180)                                                     |
|          |                                    |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.8$ ; $20 \pm 2$ °C) | ph                | 19.7 (0.5)                         | ND (180)                                                     |
|          |                                    |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.8$ ; $20 \pm 2$ °C) | pyr               | 18.5 (0.5)                         | ND (180)                                                     |
| M-13     | Anaerobic soil                     | 2866092              | CA-SL (sand to loamy sand; pH 7.4; $20 \pm 2$ °C)                | ph                | 2(1)                               | ND (180)                                                     |
|          |                                    |                      | CA-SL (sand to loamy sand; pH 7.4; $20 \pm 2$ °C)                | pyr               | 8.4 (14)                           | ND (180)                                                     |
|          |                                    |                      | LAD-SCL-PF (light clay to clay; pH 8.1; $20 \pm 2$               | ph                | 5.3 (1)                            | ND (180)                                                     |
|          |                                    |                      | °C)                                                              | -                 |                                    |                                                              |
|          |                                    |                      | LAD-SCL-PF (light clay to clay; pH 8.1; 20 ± 2 °C)               | pyr               | 5.3 (1)                            | ND (180)                                                     |
|          |                                    |                      | MCL-PF (light clay to clay loam; pH 7.2; $20 \pm 2$ °C)          | ph                | 3.4 (2)                            | 1.7 (180)                                                    |
|          |                                    |                      | MCL-PF (light clay to clay loam; pH 7.2; $20 \pm 2 \degree$ C)   | pyr               | 3.4 (1)                            | ND (180)                                                     |

| ТР   | Fate Process<br>(Bold if<br>Major) | Study<br>PMRA<br>No. | Study Characteristics                                            | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|------|------------------------------------|----------------------|------------------------------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
|      |                                    |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.3$ ; $20 \pm 2$ °C) | ph                | 3.6 (14)                           | ND (180)                                                     |
|      |                                    |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.3$ ; $20 \pm 2$ °C) | pyr               | 3.4 (2)                            | ND (180)                                                     |
| M-13 | Aerobic<br>aquatic                 | 2866093              | Calwich Abbey Lake (silt loam; pH 7.9)<br>Sediment               | ph                | 3.7 (14)                           | 0.3 (100)                                                    |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.9)<br>Sediment               | pyr               | 5.8 (10)                           | ND (100)                                                     |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.9) Total                     | ph                | 16.2 (14)                          | 0.3 (100)                                                    |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.9) Total                     | pyr               | 16.8 (10)                          | 0.6 (100)                                                    |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.9) Water                     | ph                | 13.3 (14)                          | ND (100)                                                     |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.9) Water                     | pyr               | 11.5 (10)                          | 0.6 (100)                                                    |
|      |                                    |                      | Swiss lake (sand; pH 6.7) Sediment                               | ph                | 4.8 (28)                           | 1.6 (100)                                                    |
|      |                                    |                      | Swiss lake (sand; pH 6.7) Sediment                               | pyr               | 3.8 (14)                           | ND (100)                                                     |
|      |                                    |                      | Swiss lake (sand; pH 6.7) Total                                  | ph                | 26.1 (28)                          | 9.6 (100)                                                    |
|      |                                    |                      | Swiss lake (sand; pH 6.7) Total                                  | pyr               | 28.7 (14)                          | 2.5 (100)                                                    |
|      |                                    |                      | Swiss lake (sand; pH 6.7) Water                                  | ph                | 21.3 (28)                          | 8 (100)                                                      |
|      |                                    |                      | Swiss lake (sand; pH 6.7) Water                                  | pyr               | 24.9 (14)                          | 2.5 (100)                                                    |
| M-13 | Field studies<br>(250 g a.i./ha    | 2865977              | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June               | 0-3 inches        | ND ()                              | ND (60)                                                      |
|      | bare ground)                       |                      | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June               | 12-18<br>inches   | ()                                 | ND (60)                                                      |
|      |                                    |                      | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June               | 30-36<br>inches   | ()                                 | (60)                                                         |
|      |                                    |                      | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June               | 3-6 inches        | 9.6 ppb (7)                        | ND (60)                                                      |
|      |                                    |                      | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June               | 6-12 inches       | ND (10)                            | ND (60)                                                      |
| M-13 | Field studies<br>(250 g a.i./ha    | 2865976              | Kerman, California; sandy loam (0.05-0.4<br>%OM); July           | 0-3 inches        | 11.1 ppb (10)                      | (92)                                                         |
|      | bare ground)                       |                      | Kerman, California; sandy loam (0.05-0.4 %OM); July              | 12-18<br>inches   | ()                                 | (92)                                                         |

| ТР               | Fate Process<br>(Bold if<br>Major)             | Study<br>PMRA<br>No. | Study Characteristics                                        | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|------------------|------------------------------------------------|----------------------|--------------------------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
|                  |                                                |                      | Kerman, California; sandy loam (0.05-0.4                     | 30-36             | ()                                 | (92)                                                         |
|                  |                                                |                      | %OM); July                                                   | inches            |                                    |                                                              |
|                  |                                                |                      | Kerman, California; sandy loam (0.05-0.4 %OM); July          | 3-6 inches        | ()                                 | (92)                                                         |
|                  |                                                |                      | Kerman, California; sandy loam (0.05-0.4 %OM); July          | 6-12 inches       | ()                                 | (92)                                                         |
| M-13             | Field studies<br>(250 g a.i./ha                | 2865978              | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June | 0-3 inches        | 13.1 ppb (9)                       | (366)                                                        |
|                  | bare ground)                                   |                      | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June | 12-18<br>inches   | ()                                 | (366)                                                        |
|                  |                                                |                      | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June | 30-36<br>inches   | ()                                 | (366)                                                        |
|                  |                                                |                      | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June | 3-6 inches        | ()                                 | (366)                                                        |
|                  |                                                |                      | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June | 6-12 inches       | ()                                 | (366)                                                        |
| M-13             | Field studies                                  | 2865979              | Seven Springs, North Carolina (0.13-0.56 %                   | All depths        | ()                                 | (90)                                                         |
|                  | (250 g a.i./ha                                 |                      | OM); July                                                    | when              |                                    |                                                              |
|                  | bare ground)                                   |                      |                                                              | measured          |                                    |                                                              |
| M-16 De          | etails                                         |                      |                                                              |                   |                                    |                                                              |
|                  | F                                              |                      | S OH                                                         |                   |                                    |                                                              |
| Molooul          | ar Structure: F                                | F                    | M-16                                                         |                   |                                    |                                                              |
|                  | ar Structure:<br>ar Formula: C <sub>15</sub> H |                      | 3                                                            |                   |                                    |                                                              |
|                  | ar Weight: 428.79                              |                      |                                                              |                   |                                    |                                                              |
| Molecula<br>M-16 | Aerobic soil                                   | 2866091              | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2$ °C)            | ph                | 1.4 (0.25)                         | ND (180)                                                     |
|                  |                                                |                      | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2$ °C)            | pyr               | ND                                 | ND                                                           |
|                  |                                                |                      | LAD-SCL-PF (light clay to clay; pH 8; $20 \pm 2$ °C)         | ph                | 1.4 (0.5)                          | ND (180)                                                     |

| ТР      | Fate Process<br>(Bold if<br>Major) | Study<br>PMRA<br>No. | Study Characteristics                                            | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|---------|------------------------------------|----------------------|------------------------------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
|         |                                    |                      | LAD-SCL-PF (light clay to clay; pH 8; 20 ± 2 °C)                 | pyr               | ND                                 | ND                                                           |
|         |                                    |                      | MCL-PF (light clay to clay loam; pH 7.4; $20 \pm 2$ °C)          | ph                | 4 (0.5)                            | ND (180)                                                     |
|         |                                    |                      | MCL-PF (light clay to clay loam; pH 7.4; $20 \pm 2$ °C)          | pyr               | 4.9 (0.5)                          | ND (180)                                                     |
|         |                                    |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.8$ ; $20 \pm 2$ °C) | ph                | 2.7 (0.5)                          | ND (180)                                                     |
|         |                                    |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.8$ ; $20 \pm 2$ °C) | pyr               | 1.9 (0.5)                          | ND (180)                                                     |
| M-16 An | Anaerobic soil                     | 2866092              | CA-SL (sand to loamy sand; pH 7.4; $20 \pm 2$ °C)                | ph                | NA (NA)                            | NA (NA)                                                      |
|         |                                    |                      | CA-SL (sand to loamy sand; pH 7.4; $20 \pm 2$ °C)                | pyr               | NA (NA)                            | NA (NA)                                                      |
|         |                                    |                      | LAD-SCL-PF (light clay to clay; pH 8.1; $20 \pm 2$ °C)           | ph                | NA (NA)                            | NA (NA)                                                      |
|         |                                    |                      | LAD-SCL-PF (light clay to clay; pH 8.1; $20 \pm 2$ °C)           | pyr               | NA (NA)                            | NA (NA)                                                      |
|         |                                    |                      | MCL-PF (light clay to clay loam; pH 7.2; $20 \pm 2$ °C)          | ph                | 5.9 (7)                            | ND (180)                                                     |
|         |                                    |                      | MCL-PF (light clay to clay loam; pH 7.2; $20 \pm 2$ °C)          | pyr               | 6.3 (14)                           | ND (180)                                                     |
|         |                                    |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.3$ ; $20 \pm 2$ °C) | ph                | 5.6 (14)                           | 2.4 (180)                                                    |
|         |                                    |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.3$ ; $20 \pm 2$ °C) | pyr               | 11.9 (60)                          | ND (180)                                                     |
| M-16    | Aerobic<br>aquatic                 | 2866093              | Calwich Abbey Lake (silt loam; pH 7.9)<br>Sediment               | ph                | ND                                 | ND                                                           |
|         |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.9)<br>Sediment               | pyr               | ND                                 | ND                                                           |
|         |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.9) Total                     | ph                | 1.6 (50)                           | ND (100)                                                     |
|         |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.9) Total                     | pyr               | 1.5 (100)                          | 1.5 (100)                                                    |
|         |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.9) Water                     | ph                | 1.6 (50)                           | ND (100)                                                     |
|         |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.9) Water                     | pyr               | 1.5 (100)                          | 1.5 (100)                                                    |

| ТР      | Fate Process<br>(Bold if<br>Major)                                     | Study<br>PMRA<br>No. | Study Characteristics                                            | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|---------|------------------------------------------------------------------------|----------------------|------------------------------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
|         |                                                                        |                      | Swiss lake (sand; pH 6.7) Sediment                               | ph                | ND                                 | ND                                                           |
|         |                                                                        |                      | Swiss lake (sand; pH 6.7) Sediment                               | pyr               | 3.4 (100)                          | 3.4 (100)                                                    |
|         |                                                                        |                      | Swiss lake (sand; pH 6.7) Total                                  | ph                | 8.2 (75)                           | 7.5 (100)                                                    |
|         |                                                                        |                      | Swiss lake (sand; pH 6.7) Total                                  | pyr               | 14.3 (100)                         | 14.3 (100)                                                   |
|         |                                                                        |                      | Swiss lake (sand; pH 6.7) Water                                  | ph                | 8.2 (75)                           | 7.5 (100)                                                    |
|         |                                                                        |                      | Swiss lake (sand; pH 6.7) Water                                  | pyr               | 10.9 (100)                         | 10.9 (100)                                                   |
| M-20 D  |                                                                        | NH NH                | CI CH <sub>3</sub><br>S OH                                       |                   |                                    |                                                              |
| Molecul | lar Structure:<br>lar Formula: C <sub>11</sub> H<br>lar Weight: 306.74 |                      |                                                                  |                   |                                    |                                                              |
| M-20    | Anaerobic soil                                                         | ic soil 2866092      | CA-SL (sand to loamy sand; pH 7.4; $20 \pm 2$ °C)                | ph                | 67.8 (90)                          | 64.6 (180)                                                   |
|         |                                                                        |                      | LAD-SCL-PF (light clay to clay; pH 8.1; 20 ± 2 °C)               | ph                | 63.7 (180)                         | 63.7 (180)                                                   |
|         |                                                                        |                      | MCL-PF (light clay to clay loam; pH 7.2; $20 \pm 2$ °C)          | ph                | 40.4 (180)                         | 40.4 (180)                                                   |
|         |                                                                        |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.3$ ; $20 \pm 2$ °C) | ph                | 21 (180)                           | 21 (180)                                                     |
| M-20    | Aerobic<br>aquatic                                                     | 2866093              | Calwich Abbey Lake (silt loam; pH 7.9)<br>Sediment               | ph                | 18.2 (75)                          | 15.9 (100)                                                   |
|         |                                                                        |                      | Calwich Abbey Lake (silt loam; pH 7.9) Total                     | ph                | 47.1 (75)                          | 41.9 (100)                                                   |
|         |                                                                        |                      | Calwich Abbey Lake (silt loam; pH 7.9) Water                     | ph                | 30.1 (50)                          | 26 (100)                                                     |
|         |                                                                        |                      | Swiss lake (sand; pH 6.7) Sediment                               | ph                | 2.4 (100)                          | 2.4 (100)                                                    |
|         |                                                                        |                      | Swiss lake (sand; pH 6.7) Total                                  | ph                | 11.3 (50)                          | 5.4 (100)                                                    |
|         |                                                                        |                      | Swiss lake (sand; pH 6.7) Water                                  | ph                | 8.9 (50)                           | 3 (100)                                                      |
| M-20    | Anaerobic<br>aquatic                                                   | 2866094              | Calwich Abbey Lake (silt loam; pH 7.5)<br>Sediment               | ph                | 11.9 (100)                         | 11.9 (100)                                                   |
|         | aquatic                                                                |                      |                                                                  |                   |                                    |                                                              |
|         | aquatic                                                                |                      | Calwich Abbey Lake (silt loam; pH 7.5) Total                     | ph                | 32.9 (100)                         | 32.9 (100)                                                   |

| ТР      | Fate Process<br>(Bold if<br>Major) | Study<br>PMRA<br>No. | Study Characteristics                                   | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|---------|------------------------------------|----------------------|---------------------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
|         |                                    |                      | Swiss lake (sand; pH 6.6) Sediment                      | ph                | 5.7 (100)                          | 5.7 (100)                                                    |
|         |                                    |                      | Swiss lake (sand; pH 6.6) Total                         | ph                | 24.6 (100)                         | 24.6 (100)                                                   |
|         |                                    |                      | Swiss lake (sand; pH 6.6) Water                         | ph                | 18.9 (100)                         | 18.9 (100)                                                   |
| M-20    | Field studies                      | 2865977              | Ephrata, Washington; sand (0.1-0.23 % OM);              | All depths        | ND                                 | (60)                                                         |
|         | (250 g a.i./ha                     |                      | June                                                    | when              |                                    |                                                              |
|         | bare ground)                       |                      |                                                         | measured          |                                    |                                                              |
| M-20    | Field studies                      | 2865976              | Kerman, California; sandy loam (0.05-0.4                | All depths        | ND                                 | (92)                                                         |
|         | (250 g a.i./ha                     |                      | %OM); July                                              | when              |                                    |                                                              |
|         | bare ground)                       |                      |                                                         | measured          |                                    |                                                              |
| M-20    | Field studies                      | 2865978              | Northwood, North Dakota; sandy loam (0.42-              | All depths        | ND                                 | (310)                                                        |
|         | (250 g a.i./ha                     |                      | 1.7% OM); June                                          | when              |                                    |                                                              |
|         | bare ground)                       |                      |                                                         | measured          |                                    |                                                              |
| M-20    | Field studies                      | 2865979              | Seven Springs, North Carolina (0.13-0.56 %              | All depths        | ND                                 | (90)                                                         |
|         | (250 g a.i./ha                     |                      | OM); July                                               | when              |                                    |                                                              |
|         | bare ground)                       |                      |                                                         | measured          |                                    |                                                              |
| Molecul | F                                  |                      |                                                         |                   |                                    |                                                              |
| M-26    | Anaerobic soil                     | 2866092              | CA-SL (sand to loamy sand; pH 7.4; $20 \pm 2$ °C)       | ph                | 6.6 (180)                          | 6.6 (180)                                                    |
|         |                                    |                      | CA-SL (sand to loamy sand; pH 7.4; $20 \pm 2$ °C)       | pyr               | NA (NA)                            | NA (NA)                                                      |
|         |                                    |                      | LAD-SCL-PF (light clay to clay; pH 8.1; 20 ± 2 °C)      | ph                | 7.2 (180)                          | 7.2 (180)                                                    |
|         |                                    |                      | LAD-SCL-PF (light clay to clay; pH 8.1; 20 ± 2 °C)      | pyr               | NA (NA)                            | NA (NA)                                                      |
|         |                                    |                      | MCL-PF (light clay to clay loam; pH 7.2; $20 \pm 2$ °C) | ph                | 5.6 (180)                          | 5.6 (180)                                                    |

| ТР      | Fate Process<br>(Bold if<br>Major) | Study<br>PMRA<br>No.                    | Study Characteristics                                            | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|---------|------------------------------------|-----------------------------------------|------------------------------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
|         |                                    |                                         | MCL-PF (light clay to clay loam; pH 7.2; $20 \pm 2 \degree$ C)   | pyr               | NA (NA)                            | NA (NA)                                                      |
|         |                                    |                                         | MSL-PF (sandy clay loam to sandy loam; pH $6.3$ ; $20 \pm 2$ °C) | ph                | 9.3 (180)                          | 9.3 (180)                                                    |
|         |                                    |                                         | MSL-PF (sandy clay loam to sandy loam; pH $6.3$ ; $20 \pm 2$ °C) | pyr               | NA (NA)                            | NA (NA)                                                      |
| M-26    | Anaerobic<br>aquatic               | 2866094                                 | Calwich Abbey Lake (silt loam; pH 7.5)<br>Sediment               | ph                | ND                                 | ND (100)                                                     |
|         |                                    |                                         | Calwich Abbey Lake (silt loam; pH 7.5)<br>Sediment               | pyr               | ND                                 | ND (100)                                                     |
|         |                                    |                                         | Calwich Abbey Lake (silt loam; pH 7.5) Total                     | pyr               | 8.1 (100)                          | 8.1 (100)                                                    |
|         |                                    |                                         | Calwich Abbey Lake (silt loam; pH 7.5) Total                     | ph                | 6.1 (100)                          | 6.1 (100)                                                    |
|         |                                    |                                         | Calwich Abbey Lake (silt loam; pH 7.5) Water                     | ph                | 7 (100)                            | 7 (100)                                                      |
|         |                                    |                                         | Calwich Abbey Lake (silt loam; pH 7.5) Water                     | pyr               | 8.1 (100)                          | 8.1 (100)                                                    |
|         |                                    |                                         | Swiss lake (sand; pH 6.6) Sediment                               | ph                | ND                                 | ND (100)                                                     |
|         |                                    |                                         | Swiss lake (sand; pH 6.6) Sediment                               | pyr               | ND                                 | ND (100)                                                     |
|         |                                    |                                         | Swiss lake (sand; pH 6.6) Total                                  | ph                | 9.1 (100)                          | 9.1 (100)                                                    |
|         |                                    |                                         | Swiss lake (sand; pH 6.6) Total                                  | pyr               | 8.9 (100)                          | 8.9 (100)                                                    |
|         |                                    |                                         | Swiss lake (sand; pH 6.6) Water                                  | ph                | 9.1 (100)                          | 9.1 (100)                                                    |
|         |                                    |                                         | Swiss lake (sand; pH 6.6) Water                                  | pyr               | 8.9 (100)                          | 8.9 (100)                                                    |
| M-29 De | etails                             |                                         | • • • • •                                                        |                   | · · ·                              | , ,                                                          |
|         | HO<br>F                            |                                         |                                                                  |                   |                                    |                                                              |
|         | ar Structure:                      | F                                       | M-29                                                             |                   |                                    |                                                              |
|         | ar Formula: C <sub>15</sub> H      | $_{15}\text{CIF}_4\text{N}_2\text{O}_6$ | 8                                                                |                   |                                    |                                                              |
|         | ar Weight: 462.8                   | 20((001                                 |                                                                  | 1                 | 2 4 (190)                          | 2.4 (100)                                                    |
| M-29    | Aerobic soil                       | 2866091                                 | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2$ °C)                | ph                | 3.4 (180)                          | 3.4 (180)                                                    |
|         |                                    |                                         | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2$ °C)                | pyr               | ND                                 | (180)                                                        |
|         |                                    |                                         | LAD-SCL-PF (light clay to clay; pH 8; $20 \pm 2$ °C)             | ph                | 23.4 (120)                         | 17.3 (180)                                                   |

| ТР     | Fate Process<br>(Bold if<br>Major)                                                        | Study<br>PMRA<br>No. | Study Characteristics                                            | Label or<br>Depth              | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|--------|-------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------|--------------------------------|------------------------------------|--------------------------------------------------------------|
|        |                                                                                           |                      | LAD-SCL-PF (light clay to clay; pH 8; 20 ± 2 °C)                 | pyr                            | 17.2 (120)                         | 16.1 (180)                                                   |
|        |                                                                                           |                      | MCL-PF (light clay to clay loam; pH 7.4; $20 \pm 2$ °C)          | ph                             | ND                                 | (180)                                                        |
|        |                                                                                           |                      | MCL-PF (light clay to clay loam; pH 7.4; $20 \pm 2$ °C)          | pyr                            | ND                                 | (180)                                                        |
|        |                                                                                           |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.8$ ; $20 \pm 2$ °C) | ph                             | ND                                 | (180)                                                        |
|        |                                                                                           |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.8$ ; $20 \pm 2$ °C) | pyr                            | ND                                 | (180)                                                        |
| M-29   | Field studies<br>(250 g a.i./ha<br>bare ground)                                           | 2865977              | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June               | All depths<br>when<br>measured | ND                                 | (60)                                                         |
| M-29   | Field studies<br>(250 g a.i./ha<br>bare ground)                                           | 2865976              | Kerman, California; sandy loam (0.05-0.4 %OM); July              | All depths<br>when<br>measured | ND                                 | (92)                                                         |
| M-29   | Field studies<br>(250 g a.i./ha<br>bare ground)                                           | 2865978              | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June     | All depths<br>when<br>measured | ND                                 | (366)                                                        |
| M-29   | Field studies<br>(250 g a.i./ha<br>bare ground)                                           | 2865979              | Seven Springs, North Carolina (0.13-0.56 % OM); July             | All depths<br>when<br>measured | ND                                 | (90)                                                         |
| Molecu | etails<br>Ho<br>F<br>ar Structure:<br>lar Formula: C <sub>15</sub> H<br>lar Weight: 478.8 | F                    | M-30                                                             |                                |                                    |                                                              |

| ТР   | Fate Process<br>(Bold if<br>Major)              | Study<br>PMRA<br>No. | Study Characteristics                                            | Label or<br>Depth              | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|------|-------------------------------------------------|----------------------|------------------------------------------------------------------|--------------------------------|------------------------------------|--------------------------------------------------------------|
| M-30 | Aerobic soil                                    | 2866091              | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2$ °C)                | ph                             | 2.7 (180)                          | 2.7 (180)                                                    |
|      |                                                 |                      | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2$ °C)                | pyr                            | ND                                 | ND (180)                                                     |
|      |                                                 |                      | LAD-SCL-PF (light clay to clay; pH 8; $20 \pm 2$ °C)             | ph                             | 7.9 (120)                          | 7.8 (180)                                                    |
|      |                                                 |                      | LAD-SCL-PF (light clay to clay; pH 8; $20 \pm 2$ °C)             | pyr                            | 7.3 (180)                          | 7.3 (180)                                                    |
|      |                                                 |                      | MCL-PF (light clay to clay loam; pH 7.4; $20 \pm 2$ °C)          | ph                             | ND                                 | ND (180)                                                     |
|      |                                                 |                      | MCL-PF (light clay to clay loam; pH 7.4; $20 \pm 2$ °C)          | pyr                            | ND                                 | ND (180)                                                     |
|      |                                                 |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.8$ ; $20 \pm 2$ °C) | ph                             | ND                                 | ND (180)                                                     |
|      |                                                 |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.8$ ; $20 \pm 2$ °C) | pyr                            | ND                                 | ND (180)                                                     |
| M-30 | Field studies<br>(250 g a.i./ha<br>bare ground) | 2865977              | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June               | All depths<br>when<br>measured | ()                                 | (60)                                                         |
| M-30 | Field studies<br>(250 g a.i./ha<br>bare ground) | 2865976              | Kerman, California; sandy loam (0.05-0.4 %OM); July              | All depths<br>when<br>measured | ()                                 | (92)                                                         |
| M-30 | Field studies<br>(250 g a.i./ha<br>bare ground) | 2865978              | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June     | All depths<br>when<br>measured | ()                                 | (366)                                                        |
| M-30 | Field studies<br>(250 g a.i./ha<br>bare ground) | 2865979              | Seven Springs, North Carolina (0.13-0.56 % OM); July             | All depths<br>when<br>measured | ()                                 | (90)                                                         |

| ТР      | Fate Process<br>(Bold if<br>Major) | Study<br>PMRA<br>No. | Study Characteristics                                            | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|---------|------------------------------------|----------------------|------------------------------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
| M-32 De | tails                              |                      |                                                                  |                   |                                    |                                                              |
|         | F                                  | ОН                   |                                                                  |                   |                                    |                                                              |
| Molecul | ar Structure:                      | M-32                 |                                                                  |                   |                                    |                                                              |
|         | ar Formula: C <sub>2</sub> HF      | $F_2O_2$             |                                                                  |                   |                                    |                                                              |
|         | ar Weight: 114.02                  |                      |                                                                  |                   |                                    |                                                              |
| M-32    | Aerobic soil                       | 2866091              | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2$ °C)                | pyr               | 30.1 (150)                         | 15.7 (180)                                                   |
|         |                                    |                      | LAD-SCL-PF (light clay to clay; pH 8; $20 \pm 2$                 | pyr               | 21.2 (180)                         | 21.2 (180)                                                   |
|         |                                    |                      | °C)                                                              | 1.5               |                                    |                                                              |
|         |                                    |                      | MCL-PF (light clay to clay loam; pH 7.4; $20 \pm$                | pyr               | 5.5 (30)                           | 4.7 (180)                                                    |
|         |                                    |                      | 2 °C)                                                            |                   |                                    |                                                              |
|         |                                    |                      | MSL-PF (sandy clay loam to sandy loam; pH                        | pyr               | 3 (180)                            | 3 (180)                                                      |
|         |                                    |                      | 6.8; 20 ± 2 °C)                                                  |                   |                                    |                                                              |
| M-32    | Anaerobic soil                     | 2866092              | CA-SL (sand to loamy sand; pH 7.4; $20 \pm 2$ °C)                | pyr               | 8.1 (120)                          | 1.6 (180)                                                    |
|         |                                    |                      | LAD-SCL-PF (light clay to clay; pH 8.1; 20 ± 2 °C)               | pyr               | 3.2 (180)                          | 3.2 (180)                                                    |
|         |                                    |                      | MCL-PF (light clay to clay loam; pH 7.2; $20 \pm 2$ °C)          | pyr               | 4.3 (180)                          | 4.3 (180)                                                    |
|         |                                    |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.3$ ; $20 \pm 2$ °C) | pyr               | 2.2 (180)                          | 2.2 (180)                                                    |
| M-32    | Aerobic<br>aquatic                 | 2866093              | Calwich Abbey Lake (silt loam; pH 7.9)<br>Sediment               | pyr               | 11.4 (50)                          | 5.3 (100)                                                    |
|         | -                                  |                      | Calwich Abbey Lake (silt loam; pH 7.9) Total                     | pyr               | 20.9 (50)                          | 16.4 (100)                                                   |
|         |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.9) Water                     | pyr               | 15.6 (14)                          | 14.3 (100)                                                   |
|         |                                    |                      | Swiss lake (sand; pH 6.7) Sediment                               | pyr               | 1 (100)                            | 1 (100)                                                      |
|         |                                    |                      | Swiss lake (sand; pH 6.7) Total                                  | pyr               | 6.7 (100)                          | 6.7 (100)                                                    |
|         |                                    |                      | Swiss lake (sand; pH 6.7) Water                                  | pyr               | 5.7 (100)                          | 5.7 (100)                                                    |
| M-32    | Anaerobic<br>aquatic               | 2866094              | Calwich Abbey Lake (silt loam; pH 7.5)<br>Sediment               | pyr               | 0.8 (50)                           | 0.5 (100)                                                    |
|         |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5) Total                     | pyr               | 0.8 (50)                           | 0.5 (100)                                                    |

| ТР     | Fate Process<br>(Bold if<br>Major)                  | Study<br>PMRA<br>No. | Study Characteristics                                                                        | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|--------|-----------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
|        |                                                     |                      | Calwich Abbey Lake (silt loam; pH 7.5) Water                                                 | pyr               | ND                                 | ND (100)                                                     |
|        |                                                     |                      | Swiss lake (sand; pH 6.6) Sediment                                                           | pyr               | 0.7 (75)                           | 0.3 (100)                                                    |
|        |                                                     |                      | Swiss lake (sand; pH 6.6) Total                                                              | ph                | ND                                 | ND (100)                                                     |
|        |                                                     |                      | Swiss lake (sand; pH 6.6) Total                                                              | pyr               | 0.7 (75)                           | 0.3 (100)                                                    |
|        |                                                     |                      | Swiss lake (sand; pH 6.6) Water                                                              | pyr               | ND                                 | ND (100)                                                     |
| M-33 D | etails                                              |                      |                                                                                              |                   |                                    |                                                              |
|        |                                                     | F<br>F<br>F          | °CH <sub>3</sub>                                                                             |                   |                                    |                                                              |
|        | lar Structure: M-3                                  |                      |                                                                                              |                   |                                    |                                                              |
|        | lar Formula: C <sub>3</sub> H<br>lar Weight: 112.06 |                      |                                                                                              |                   |                                    |                                                              |
| M-33   | Hydrolysis                                          | 2866088              | pH 4, 50 °C                                                                                  | pyr               | ND                                 | ND (30)                                                      |
|        | <i>v v</i>                                          |                      | pH 7, 35 °C                                                                                  | pyr               | 40.5 (30)                          | 40.5 (30)                                                    |
|        |                                                     |                      | pH 7, 40 °C                                                                                  | pyr               | 47.1 (30)                          | 47.1 (30)                                                    |
|        |                                                     |                      | рН 7, 45 °С                                                                                  | pyr               | 47.1 (10)                          | 47.1 (10)                                                    |
|        |                                                     |                      | pH 9, 15 °C                                                                                  | pyr               | 44.3 (14)                          | 44.3 (14)                                                    |
|        |                                                     |                      | pH 9, 20 °C                                                                                  | pyr               | 44.3 (6)                           | 44.3 (6)                                                     |
|        |                                                     |                      | pH 9, 25 °C                                                                                  | pyr               | 61.6 (5)                           | 61.6 (5)                                                     |
| M-33   | Anaerobic soil                                      | 2866092              | CA-SL (sand to loamy sand; pH 7.4; $20 \pm 2$ °C)                                            | pyr               | 27.7 (30)                          | ND (180)                                                     |
|        |                                                     |                      | LAD-SCL-PF (light clay to clay; pH 8.1; 20 ± 2 °C)                                           | pyr               | 33.7 (7)                           | 11.3 (180)                                                   |
|        |                                                     |                      | MCL-PF (light clay to clay loam; pH 7.2; $20 \pm 2$ °C)                                      | pyr               | 6.3 (7)                            | ND (180)                                                     |
|        |                                                     |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.3$ ; $20 \pm 2$ °C)                             | pyr               | ND                                 | ND (180)                                                     |
| M-33   | Aerobic<br>aquatic                                  | 2866093              | Calwich Abbey Lake (silt loam; pH 7.9)<br>Sediment                                           | pyr               | 2.1 (7)                            | ND (100)                                                     |
|        |                                                     | 1                    |                                                                                              | 1                 | 10.2 (20)                          | 2.0 (100)                                                    |
|        | •                                                   |                      | Calwich Abbey Lake (silt loam; pH 7.9) Total                                                 | pyr               | 10.3 (28)                          | 3.9 (100)                                                    |
|        | *                                                   |                      | Calwich Abbey Lake (silt loam; pH 7.9) Total<br>Calwich Abbey Lake (silt loam; pH 7.9) Water | pyr<br>pyr        | <b>10.3 (28)</b><br>8.6 (28)       | 3.9 (100)                                                    |

| ТР     | Fate Process<br>(Bold if<br>Major)                                 | Study<br>PMRA<br>No. | Study Characteristics                                                                                                                                                                                                                                                                                                                          | Label or<br>Depth                             | Max %AR<br>(d) or ppb <sup>1</sup>                                                                           | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup>             |
|--------|--------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|        |                                                                    |                      | Swiss lake (sand; pH 6.7) Total                                                                                                                                                                                                                                                                                                                | pyr                                           | ND                                                                                                           | ND (100)                                                                 |
|        |                                                                    |                      | Swiss lake (sand; pH 6.7) Water                                                                                                                                                                                                                                                                                                                | pyr                                           | ND                                                                                                           | ND (100)                                                                 |
| M-33   | Anaerobic<br>aquatic                                               | 2866094              | Calwich Abbey Lake (silt loam; pH 7.5)<br>Sediment                                                                                                                                                                                                                                                                                             | pyr                                           | 6 (50)                                                                                                       | 1.7 (100)                                                                |
|        |                                                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5) Total                                                                                                                                                                                                                                                                                                   | pyr                                           | 40.6 (14)                                                                                                    | 5.3 (100)                                                                |
|        |                                                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5) Water                                                                                                                                                                                                                                                                                                   | pyr                                           | 38.6 (14)                                                                                                    | 3.6 (100)                                                                |
|        |                                                                    |                      | Swiss lake (sand; pH 6.6) Sediment                                                                                                                                                                                                                                                                                                             | pyr                                           | 4.1 (28)                                                                                                     | 0.5 (100)                                                                |
|        |                                                                    |                      | Swiss lake (sand; pH 6.6) Total                                                                                                                                                                                                                                                                                                                | pyr                                           | 35.5 (28)                                                                                                    | 6.2 (100)                                                                |
|        |                                                                    |                      | Swiss lake (sand; pH 6.6) Water                                                                                                                                                                                                                                                                                                                | pyr                                           | 31.4 (28)                                                                                                    | 5.7 (100)                                                                |
| Molecu | llar Structure: M-3<br>llar Formula: C <sub>3</sub> H <sub>4</sub> |                      |                                                                                                                                                                                                                                                                                                                                                |                                               |                                                                                                              |                                                                          |
| M-34   | lar Weight: 113.07                                                 | 7                    |                                                                                                                                                                                                                                                                                                                                                |                                               |                                                                                                              |                                                                          |
| 171-34 | Anaerobic soil                                                     | 2866092              | CA-SL (sand to loamy sand; pH 7.4; $20 \pm 2$ °C)                                                                                                                                                                                                                                                                                              | pyr                                           | 16.5 (60)                                                                                                    | 3.5 (180)                                                                |
| 11-34  | U                                                                  |                      | LAD-SCL-PF (light clay to clay; pH 8.1; 20 ± 2 °C)                                                                                                                                                                                                                                                                                             | pyr<br>pyr                                    | 16.5 (60)<br>11.7 (60)                                                                                       | 3.5 (180)<br>4.9 (180)                                                   |
| 191-34 | U                                                                  |                      | LAD-SCL-PF (light clay to clay; pH 8.1; 20 ± 2<br>°C)<br>MCL-PF (light clay to clay loam; pH 7.2; 20 ± 2 °C)                                                                                                                                                                                                                                   |                                               |                                                                                                              |                                                                          |
| 1v1-34 | U                                                                  |                      | LAD-SCL-PF (light clay to clay; pH 8.1; $20 \pm 2$<br>°C)<br>MCL-PF (light clay to clay loam; pH 7.2; $20 \pm 2$ °C)<br>MSL-PF (sandy clay loam to sandy loam; pH 6.3; $20 \pm 2$ °C)                                                                                                                                                          | pyr                                           | 11.7 (60)                                                                                                    | 4.9 (180)         ND (180)         1.5 (180)                             |
| M-34   | U                                                                  |                      | LAD-SCL-PF (light clay to clay; pH 8.1; $20 \pm 2$<br>°C)<br>MCL-PF (light clay to clay loam; pH 7.2; $20 \pm 2$ °C)<br>MSL-PF (sandy clay loam to sandy loam; pH<br>6.3; $20 \pm 2$ °C)<br>Calwich Abbey Lake (silt loam; pH 7.9)<br>Sediment                                                                                                 | pyr<br>pyr                                    | 11.7 (60)         9.2 (90)         17.9 (60)         1.3 (10)                                                | 4.9 (180)<br>ND (180)                                                    |
|        | Anaerobic soil Aerobic                                             | 2866092              | LAD-SCL-PF (light clay to clay; pH 8.1; $20 \pm 2$<br>°C)<br>MCL-PF (light clay to clay loam; pH 7.2; $20 \pm 2$ °C)<br>MSL-PF (sandy clay loam to sandy loam; pH 6.3; $20 \pm 2$ °C)<br>Calwich Abbey Lake (silt loam; pH 7.9)<br>Sediment<br>Calwich Abbey Lake (silt loam; pH 7.9) Total                                                    | pyr<br>pyr<br>pyr                             | 11.7 (60)         9.2 (90)         17.9 (60)         1.3 (10)         1.7 (100)                              | 4.9 (180)         ND (180)         1.5 (180)                             |
|        | Anaerobic soil Aerobic                                             | 2866092              | LAD-SCL-PF (light clay to clay; pH 8.1; $20 \pm 2$<br>°C)<br>MCL-PF (light clay to clay loam; pH 7.2; $20 \pm 2$ °C)<br>MSL-PF (sandy clay loam to sandy loam; pH<br>6.3; $20 \pm 2$ °C)<br>Calwich Abbey Lake (silt loam; pH 7.9)<br>Sediment                                                                                                 | pyr<br>pyr<br>pyr<br>pyr                      | 11.7 (60)         9.2 (90)         17.9 (60)         1.3 (10)                                                | 4.9 (180)<br>ND (180)<br>1.5 (180)<br>ND (100)<br>1.7 (100)<br>1.7 (100) |
|        | Anaerobic soil Aerobic                                             | 2866092              | LAD-SCL-PF (light clay to clay; pH 8.1; $20 \pm 2$<br>°C)<br>MCL-PF (light clay to clay loam; pH 7.2; $20 \pm 2$ °C)<br>MSL-PF (sandy clay loam to sandy loam; pH 6.3; $20 \pm 2$ °C)<br>Calwich Abbey Lake (silt loam; pH 7.9)<br>Sediment<br>Calwich Abbey Lake (silt loam; pH 7.9) Total                                                    | pyr<br>pyr<br>pyr<br>pyr<br>pyr               | 11.7 (60)         9.2 (90)         17.9 (60)         1.3 (10)         1.7 (100)         1.7 (100)         ND | 4.9 (180)<br>ND (180)<br>1.5 (180)<br>ND (100)<br>1.7 (100)<br>ND (100)  |
|        | Anaerobic soil Aerobic                                             | 2866092              | LAD-SCL-PF (light clay to clay; pH 8.1; $20 \pm 2$<br>°C)<br>MCL-PF (light clay to clay loam; pH 7.2; $20 \pm 2$ °C)<br>MSL-PF (sandy clay loam to sandy loam; pH<br>6.3; $20 \pm 2$ °C)<br>Calwich Abbey Lake (silt loam; pH 7.9)<br>Sediment<br>Calwich Abbey Lake (silt loam; pH 7.9) Total<br>Calwich Abbey Lake (silt loam; pH 7.9) Water | pyr<br>pyr<br>pyr<br>pyr<br>pyr<br>pyr<br>pyr | 11.7 (60)         9.2 (90)         17.9 (60)         1.3 (10)         1.7 (100)         1.7 (100)            | 4.9 (180)<br>ND (180)<br>1.5 (180)<br>ND (100)<br>1.7 (100)<br>1.7 (100) |

| ТР       | Fate Process<br>(Bold if<br>Major)                                  | Study<br>PMRA<br>No. | Study Characteristics                                            | Label or<br>Depth              | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|----------|---------------------------------------------------------------------|----------------------|------------------------------------------------------------------|--------------------------------|------------------------------------|--------------------------------------------------------------|
| M-34     | Anaerobic                                                           | 2866094              | Calwich Abbey Lake (silt loam; pH 7.5)                           | pyr                            | 7.9 (50)                           | 1.4 (100)                                                    |
|          | aquatic                                                             |                      | Sediment                                                         |                                |                                    |                                                              |
|          |                                                                     |                      | Calwich Abbey Lake (silt loam; pH 7.5) Total                     | pyr                            | 17.2 (50)                          | 6.5 (100)                                                    |
|          |                                                                     |                      | Calwich Abbey Lake (silt loam; pH 7.5) Water                     | pyr                            | 9.3 (50)                           | 5.1 (100)                                                    |
|          |                                                                     |                      | Swiss lake (sand; pH 6.6) Sediment                               | pyr                            | 2.2 (28)                           | 0.5 (100)                                                    |
|          |                                                                     |                      | Swiss lake (sand; pH 6.6) Total                                  | pyr                            | 8.1 (50)                           | 1.4 (100)                                                    |
|          |                                                                     |                      | Swiss lake (sand; pH 6.6) Water                                  | pyr                            | 6.3 (50)                           | 1 (100)                                                      |
| M-35 De  | etails                                                              |                      | · · · · · · · · · · · · · · · · · · ·                            | • <u>-</u> •                   |                                    |                                                              |
| Molecula | ar Structure:<br>ar Formula: C <sub>15</sub> H<br>ar Weight: 458.77 |                      | M-35<br>S                                                        |                                |                                    |                                                              |
| M-35     | Aerobic soil                                                        | 2866091              | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2$ °C)                | ph                             | 11.4 (120)                         | 8.8 (180)                                                    |
|          |                                                                     |                      | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2$ °C)                | pyr                            | 10.5 (150)                         | 9.3 (180)                                                    |
|          |                                                                     |                      | LAD-SCL-PF (light clay to clay; pH 8; 20 ± 2 °C)                 | ph                             | 4.9 (7)                            | 1.4 (180)                                                    |
|          |                                                                     |                      | LAD-SCL-PF (light clay to clay; pH 8; $20 \pm 2$ °C)             | pyr                            | 6.6 (14)                           | 1 (180)                                                      |
|          |                                                                     |                      | MCL-PF (light clay to clay loam; pH 7.4; $20 \pm 2$ °C)          | ph                             | 3.9 (1)                            | 0.3 (180)                                                    |
|          |                                                                     |                      | MCL-PF (light clay to clay loam; pH 7.4; $20 \pm 2$ °C)          | pyr                            | 3.5 (1)                            | 0.1 (180)                                                    |
|          |                                                                     |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.8$ ; $20 \pm 2$ °C) | ph                             | 1.7 (14)                           | 0.6 (180)                                                    |
|          |                                                                     |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.8$ ; $20 \pm 2$ °C) | pyr                            | 1.6 (14)                           | 0.5 (180)                                                    |
| M-35     | Field studies<br>(250 g a.i./ha<br>bare ground)                     | 2865977              | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June               | All depths<br>when<br>measured | ND                                 | (60)                                                         |

| ТР      | Fate Process<br>(Bold if<br>Major)                     | Study<br>PMRA<br>No. | Study Characteristics                                        | Label or<br>Depth              | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|---------|--------------------------------------------------------|----------------------|--------------------------------------------------------------|--------------------------------|------------------------------------|--------------------------------------------------------------|
| M-35    | Field studies<br>(250 g a.i./ha<br>bare ground)        | 2865976              | Kerman, California; sandy loam (0.05-0.4 %OM); July          | All depths<br>when<br>measured | ND                                 | (92)                                                         |
| M-35    | Field studies<br>(250 g a.i./ha<br>bare ground)        | 2865978              | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June | All depths<br>when<br>measured | ND                                 | (366)                                                        |
| M-35    | Field studies<br>(250 g a.i./ha<br>bare ground)        | 2865979              | Seven Springs, North Carolina (0.13-0.56 % OM); July         | All depths<br>when<br>measured | ND                                 | (90)                                                         |
| Molecul | ar Structure:<br>ar Formula: C15H<br>ar Weight: 442.77 |                      | о ö<br>м-36<br>S                                             |                                |                                    |                                                              |
| M-36    | Aerobic soil                                           | 2866091              | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2$ °C)            | ph                             | 60.3 (30)                          |                                                              |

| ТР   | Fate Process<br>(Bold if<br>Major) | Study<br>PMRA<br>No. | Study Characteristics                                        | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|------|------------------------------------|----------------------|--------------------------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
| M-36 | Field studies<br>(250 g a.i./ha    | 2865977              | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June           | 0-3 inches        | ND ()                              | ND (60)                                                      |
|      | bare ground)                       |                      | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June           | 12-18<br>inches   | ND ()                              | ND (60)                                                      |
|      |                                    |                      | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June           | 30-36<br>inches   | ()                                 | (60)                                                         |
|      |                                    |                      | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June           | 3-6 inches        | 7.87 ppb (7)                       | ND (60)                                                      |
|      |                                    |                      | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June           | 6-12 inches       | 6.69 ppb (10)                      | ND (60)                                                      |
| M-36 | Field studies<br>(250 g a.i./ha    | 2865976              | Kerman, California; sandy loam (0.05-0.4 %OM); July          | 0-3 inches        | 27.6 ppb (15)                      | 9.4 ppb (92)                                                 |
|      | bare ground)                       |                      | Kerman, California; sandy loam (0.05-0.4 %OM); July          | 12-18<br>inches   | ND ()                              | ND (92)                                                      |
|      |                                    |                      | Kerman, California; sandy loam (0.05-0.4<br>%OM); July       | 30-36<br>inches   | ()                                 | (92)                                                         |
|      |                                    |                      | Kerman, California; sandy loam (0.05-0.4 %OM); July          | 3-6 inches        | 16.8 ppb (22)                      | ND (92)                                                      |
|      |                                    |                      | Kerman, California; sandy loam (0.05-0.4 %OM); July          | 6-12 inches       | ND ()                              | ND (92)                                                      |
| M-36 | Field studies<br>(250 g a.i./ha    | 2865978              | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June | 0-3 inches        | 45.4 (9)                           | ND (366)                                                     |
|      | bare ground)                       |                      | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June | 12-18<br>inches   | ND ()                              | ND (366)                                                     |
|      |                                    |                      | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June | 30-36<br>inches   | ()                                 | (366)                                                        |
|      |                                    |                      | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June | 3-6 inches        | 13.9 ppb (29)                      | ND (366)                                                     |
|      |                                    |                      | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June | 6-12 inches       | ND ()                              | ND (366)                                                     |
| M-36 | Field studies<br>(250 g a.i./ha    | 2865979              | Seven Springs, North Carolina (0.13-0.56 % OM); July         | 0-3 inches        | 26.8 ppb (7)                       | (90)                                                         |

| ТР               | Fate Process<br>(Bold if<br>Major)                                     | Study<br>PMRA<br>No.                  | Study Characteristics                                                                                                                                                                                               | Label or<br>Depth                                                                       | Max %AR<br>(d) or ppb <sup>1</sup>                                                                                                                                                                  | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup>                                                                                                |
|------------------|------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | bare ground)                                                           |                                       | Seven Springs, North Carolina (0.13-0.56 %                                                                                                                                                                          | 12-18                                                                                   | ND ()                                                                                                                                                                                               | (90)                                                                                                                                                        |
|                  |                                                                        |                                       | OM); July                                                                                                                                                                                                           | inches                                                                                  |                                                                                                                                                                                                     |                                                                                                                                                             |
|                  |                                                                        |                                       | Seven Springs, North Carolina (0.13-0.56 %                                                                                                                                                                          | 30-36                                                                                   | ()                                                                                                                                                                                                  | (90)                                                                                                                                                        |
|                  |                                                                        |                                       | OM); July                                                                                                                                                                                                           | inches                                                                                  |                                                                                                                                                                                                     |                                                                                                                                                             |
|                  |                                                                        |                                       | Seven Springs, North Carolina (0.13-0.56 % OM); July                                                                                                                                                                | 3-6 inches                                                                              | 7.62 ppb (10)                                                                                                                                                                                       | (90)                                                                                                                                                        |
|                  |                                                                        |                                       | Seven Springs, North Carolina (0.13-0.56 %                                                                                                                                                                          | 6-12 inches                                                                             | ND ()                                                                                                                                                                                               | (90)                                                                                                                                                        |
|                  |                                                                        |                                       | OM); July                                                                                                                                                                                                           |                                                                                         |                                                                                                                                                                                                     |                                                                                                                                                             |
|                  | F                                                                      | P P P P P P P P P P P P P P P P P P P |                                                                                                                                                                                                                     |                                                                                         |                                                                                                                                                                                                     |                                                                                                                                                             |
| M.1              |                                                                        | M 20                                  |                                                                                                                                                                                                                     |                                                                                         |                                                                                                                                                                                                     |                                                                                                                                                             |
| Molecu<br>Molecu | lar Structure:<br>lar Formula: C <sub>16</sub> H<br>lar Weight: 458.81 |                                       |                                                                                                                                                                                                                     | -1                                                                                      | ND                                                                                                                                                                                                  | ND                                                                                                                                                          |
| Molecu           | lar Formula: C <sub>16</sub> H                                         | 15ClF4N2O5                            | рН 4, 50 °С                                                                                                                                                                                                         | ph<br>pyr                                                                               | ND                                                                                                                                                                                                  | ND                                                                                                                                                          |
| Molecu<br>Molecu | lar Formula: C <sub>16</sub> H<br>lar Weight: 458.81                   | 15ClF4N2O5                            | pH 4, 50 °C<br>pH 4, 50 °C                                                                                                                                                                                          | pyr                                                                                     | ND                                                                                                                                                                                                  | ND                                                                                                                                                          |
| Molecu<br>Molecu | lar Formula: C <sub>16</sub> H<br>lar Weight: 458.81                   | 15ClF4N2O5                            | pH 4, 50 °C<br>pH 4, 50 °C<br>pH 7, 35 °C                                                                                                                                                                           | pyr<br>ph                                                                               | ND<br>0.8 (21)                                                                                                                                                                                      | ND<br>ND (30)                                                                                                                                               |
| Molecu<br>Molecu | lar Formula: C <sub>16</sub> H<br>lar Weight: 458.81                   | 15ClF4N2O5                            | pH 4, 50 °C<br>pH 4, 50 °C<br>pH 7, 35 °C<br>pH 7, 35 °C                                                                                                                                                            | pyr<br>ph<br>pyr                                                                        | ND<br>0.8 (21)<br>ND                                                                                                                                                                                | ND<br>ND (30)<br>ND                                                                                                                                         |
| Molecu<br>Molecu | lar Formula: C <sub>16</sub> H<br>lar Weight: 458.81                   | 15ClF4N2O5                            | pH 4, 50 °C<br>pH 4, 50 °C<br>pH 7, 35 °C<br>pH 7, 35 °C<br>pH 7, 40 °C                                                                                                                                             | pyr<br>ph<br>pyr<br>ph                                                                  | ND           0.8 (21)           ND           4.8 (30)                                                                                                                                               | ND<br>ND (30)<br>ND<br><b>4.8 (30)</b>                                                                                                                      |
| Molecu<br>Molecu | lar Formula: C <sub>16</sub> H<br>lar Weight: 458.81                   | 15ClF4N2O5                            | pH 4, 50 °C         pH 4, 50 °C         pH 7, 35 °C         pH 7, 35 °C         pH 7, 40 °C         pH 7, 40 °C                                                                                                     | pyr<br>ph<br>pyr<br>ph<br>ph<br>pyr                                                     | ND           0.8 (21)           ND           4.8 (30)           4.7 (30)                                                                                                                            | ND<br>ND (30)<br>ND<br><b>4.8 (30)</b><br><b>4.7 (30)</b>                                                                                                   |
| Molecu<br>Molecu | lar Formula: C <sub>16</sub> H<br>lar Weight: 458.81                   | 15ClF4N2O5                            | pH 4, 50 °C<br>pH 4, 50 °C<br>pH 7, 35 °C<br>pH 7, 35 °C<br>pH 7, 40 °C<br>pH 7, 40 °C<br>pH 7, 45 °C                                                                                                               | pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph<br>ph                                               | ND           0.8 (21)           ND           4.8 (30)           4.7 (30)           2.4 (7)                                                                                                          | ND<br>ND (30)<br>ND<br><b>4.8 (30)</b><br><b>4.7 (30)</b><br>ND (10)                                                                                        |
| Molecu<br>Molecu | lar Formula: C <sub>16</sub> H<br>lar Weight: 458.81                   | 15ClF4N2O5                            | pH 4, 50 °C         pH 4, 50 °C         pH 7, 35 °C         pH 7, 35 °C         pH 7, 40 °C         pH 7, 45 °C         pH 7, 45 °C                                                                                 | pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph<br>pyr                                 | ND           0.8 (21)           ND           4.8 (30)           4.7 (30)           2.4 (7)           3.6 (10)                                                                                       | ND<br>ND (30)<br>ND<br><b>4.8 (30)</b><br><b>4.7 (30)</b><br>ND (10)<br><b>3.6 (10)</b>                                                                     |
| Molecu<br>Molecu | lar Formula: C <sub>16</sub> H<br>lar Weight: 458.81                   | 15ClF4N2O5                            | pH 4, 50 °C         pH 4, 50 °C         pH 7, 35 °C         pH 7, 35 °C         pH 7, 40 °C         pH 7, 40 °C         pH 7, 45 °C         pH 7, 45 °C         pH 9, 15 °C                                         | pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph                           | ND           0.8 (21)           ND           4.8 (30)           4.7 (30)           2.4 (7)           3.6 (10)           7.7 (14)                                                                    | ND<br>ND (30)<br>ND<br><b>4.8 (30)</b><br><b>4.7 (30)</b><br>ND (10)<br><b>3.6 (10)</b><br><b>7.7 (14)</b>                                                  |
| Molecu<br>Molecu | lar Formula: C <sub>16</sub> H<br>lar Weight: 458.81                   | 15ClF4N2O5                            | pH 4, 50 °C         pH 4, 50 °C         pH 7, 35 °C         pH 7, 35 °C         pH 7, 40 °C         pH 7, 40 °C         pH 7, 45 °C         pH 7, 45 °C         pH 9, 15 °C         pH 9, 15 °C                     | pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph<br>pyr                    | ND           0.8 (21)           ND           4.8 (30)           4.7 (30)           2.4 (7)           3.6 (10)           7.7 (14)           7 (14)                                                   | ND<br>ND (30)<br>ND<br><b>4.8 (30)</b><br><b>4.7 (30)</b><br>ND (10)<br><b>3.6 (10)</b><br><b>7.7 (14)</b><br><b>7 (14)</b>                                 |
| Molecu<br>Molecu | lar Formula: C <sub>16</sub> H<br>lar Weight: 458.81                   | 15ClF4N2O5                            | pH 4, 50 °C         pH 4, 50 °C         pH 7, 35 °C         pH 7, 35 °C         pH 7, 40 °C         pH 7, 40 °C         pH 7, 45 °C         pH 7, 45 °C         pH 9, 15 °C         pH 9, 20 °C                     | pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph              | ND           0.8 (21)           ND           4.8 (30)           4.7 (30)           2.4 (7)           3.6 (10)           7.7 (14)           7 (14)           5 (6)                                   | ND<br>ND (30)<br>ND<br>4.8 (30)<br>4.7 (30)<br>ND (10)<br>3.6 (10)<br>7.7 (14)<br>7 (14)<br>5 (6)                                                           |
| Molecu<br>Molecu | lar Formula: C <sub>16</sub> H<br>lar Weight: 458.81                   | 15ClF4N2O5                            | pH 4, 50 °C<br>pH 4, 50 °C<br>pH 7, 35 °C<br>pH 7, 35 °C<br>pH 7, 40 °C<br>pH 7, 40 °C<br>pH 7, 45 °C<br>pH 7, 45 °C<br>pH 9, 15 °C<br>pH 9, 15 °C<br>pH 9, 20 °C                                                   | pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph<br>pyr       | ND           0.8 (21)           ND           4.8 (30)           4.7 (30)           2.4 (7)           3.6 (10)           7.7 (14)           7 (14)           5 (6)           6 (6)                   | ND<br>ND (30)<br>ND<br><b>4.8 (30)</b><br><b>4.7 (30)</b><br>ND (10)<br><b>3.6 (10)</b><br><b>7.7 (14)</b><br><b>7 (14)</b><br><b>5 (6)</b><br><b>6 (6)</b> |
| Molecu<br>Molecu | lar Formula: C <sub>16</sub> H<br>lar Weight: 458.81                   | 15ClF4N2O5                            | pH 4, 50 °C         pH 4, 50 °C         pH 7, 35 °C         pH 7, 35 °C         pH 7, 40 °C         pH 7, 40 °C         pH 7, 45 °C         pH 7, 45 °C         pH 9, 15 °C         pH 9, 20 °C         pH 9, 25 °C | pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph | ND           0.8 (21)           ND           4.8 (30)           4.7 (30)           2.4 (7)           3.6 (10)           7.7 (14)           7 (14)           5 (6)           6 (6)           6.8 (5) | ND<br>ND (30)<br>ND<br>4.8 (30)<br>4.7 (30)<br>ND (10)<br>3.6 (10)<br>7.7 (14)<br>7 (14)<br>5 (6)<br>6 (6)<br>6.8 (5)                                       |
| Molecu<br>Molecu | lar Formula: C <sub>16</sub> H<br>lar Weight: 458.81                   | 15ClF4N2O5                            | pH 4, 50 °C<br>pH 4, 50 °C<br>pH 7, 35 °C<br>pH 7, 35 °C<br>pH 7, 40 °C<br>pH 7, 40 °C<br>pH 7, 45 °C<br>pH 7, 45 °C<br>pH 9, 15 °C<br>pH 9, 15 °C<br>pH 9, 20 °C                                                   | pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph<br>pyr       | ND           0.8 (21)           ND           4.8 (30)           4.7 (30)           2.4 (7)           3.6 (10)           7.7 (14)           7 (14)           5 (6)           6 (6)                   | ND<br>ND (30)<br>ND<br><b>4.8 (30)</b><br><b>4.7 (30)</b><br>ND (10)<br><b>3.6 (10)</b><br><b>7.7 (14)</b><br><b>7 (14)</b><br><b>5 (6)</b><br><b>6 (6)</b> |

| ТР   | Fate Process<br>(Bold if<br>Major) | Study<br>PMRA<br>No. | Study Characteristics                                            | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|------|------------------------------------|----------------------|------------------------------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
|      |                                    |                      | LAD-SCL-PF (light clay to clay; pH 8.1; $20 \pm 2$ °C)           | ph                | 8.3 (30)                           | ND (180)                                                     |
|      |                                    |                      | LAD-SCL-PF (light clay to clay; pH 8.1; 20 ± 2 °C)               | pyr               | 11.7 (60)                          | 6.7 (180)                                                    |
|      |                                    |                      | MCL-PF (light clay to clay loam; pH 7.2; $20 \pm 2$ °C)          | ph                | 6.1 (90)                           | ND (180)                                                     |
|      |                                    |                      | MCL-PF (light clay to clay loam; pH 7.2; $20 \pm 2$ °C)          | pyr               | 6.1 (150)                          | 3.8 (180)                                                    |
|      |                                    |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.3$ ; $20 \pm 2$ °C) | ph                | 7.5 (150)                          | 6.7 (180)                                                    |
|      |                                    |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.3$ ; $20 \pm 2$ °C) | pyr               | 10.5 (180)                         | 10.5 (180)                                                   |
| M-39 | Anaerobic<br>aquatic               | 2866094              | Calwich Abbey Lake (silt loam; pH 7.5)<br>Sediment               | ph                | 1.7 (50)                           | 1.1 (100)                                                    |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5)<br>Sediment               | pyr               | 3.6 (50)                           | 1.2 (100)                                                    |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5) Total                     | pyr               | 13.5 (50)                          | 8.1 (100)                                                    |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5) Total                     | ph                | 10.9 (50)                          | 7.7 (100)                                                    |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5) Water                     | ph                | 9.2 (50)                           | 6.6 (100)                                                    |
|      |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5) Water                     | pyr               | 9.9 (50)                           | 6.9 (100)                                                    |
|      |                                    |                      | Swiss lake (sand; pH 6.6) Sediment                               | ph                | 2.3 (75)                           | 2.3 (100)                                                    |
|      |                                    |                      | Swiss lake (sand; pH 6.6) Sediment                               | pyr               | 2.3 (50)                           | 1.4 (100)                                                    |
|      |                                    |                      | Swiss lake (sand; pH 6.6) Total                                  | ph                | 12.3 (50)                          | 10.6 (100)                                                   |
|      |                                    |                      | Swiss lake (sand; pH 6.6) Total                                  | pyr               | 13.3 (75)                          | 12.5 (100)                                                   |
|      |                                    |                      | Swiss lake (sand; pH 6.6) Water                                  | ph                | 10.3 (50)                          | 8.5 (100)                                                    |
|      |                                    |                      | Swiss lake (sand; pH 6.6) Water                                  | pyr               | 11.5 (75)                          | 11.1 (100)                                                   |

| ТР          | Fate Process<br>(Bold if<br>Major)   | Study<br>PMRA<br>No.                                           | Study Characteristics                        | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|-------------|--------------------------------------|----------------------------------------------------------------|----------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
| M-40 De     | etails                               | ·                                                              | ·                                            | ·                 | ·                                  |                                                              |
|             | F                                    | P<br>O<br>HN<br>N<br>O                                         |                                              |                   |                                    |                                                              |
| Molecul     | ar Structure:                        | F                                                              | M-40                                         |                   |                                    |                                                              |
| Molecul     | <b>ar Formula:</b> C <sub>18</sub> H | I <sub>18</sub> ClF <sub>4</sub> N <sub>3</sub> O <sub>6</sub> | S                                            |                   |                                    |                                                              |
| Molecul     | ar Weight: 515.8                     | 7                                                              |                                              |                   |                                    |                                                              |
| M-40        | Hydrolysis                           | 2866088                                                        | pH 4, 50 °C                                  | ph                | ND                                 | ND                                                           |
|             |                                      |                                                                | pH 4, 50 °C                                  | pyr               | ND                                 | ND                                                           |
|             |                                      |                                                                | рН 7, 35 °С                                  | ph                | ND                                 | ND                                                           |
|             |                                      |                                                                | рН 7, 35 °С                                  | pyr               | ND                                 | ND                                                           |
|             |                                      |                                                                | рН 7, 40 °С                                  | ph                | 0.9 (30)                           | 0.9 (30)                                                     |
|             |                                      |                                                                | рН 7, 40 °С                                  | pyr               | ND                                 | ND                                                           |
|             |                                      |                                                                | pH 7, 45 °C                                  | ph                | 1.1 (5)                            | ND (10)                                                      |
|             |                                      |                                                                | рН 7, 45 °С                                  | pyr               | ND                                 | ND                                                           |
|             |                                      |                                                                | рН 9, 15 °С                                  | ph                | 3.8 (10)                           | 1.8 (14)                                                     |
|             |                                      |                                                                | pH 9, 15 °C                                  | pyr               | 3.7 (14)                           | 3.7 (14)                                                     |
|             |                                      |                                                                | рН 9, 20 °С                                  | ph                | 3.8 (3)                            | 2.2 (6)                                                      |
|             |                                      |                                                                | рН 9, 20 °С                                  | pyr               | 3.3 (6)                            | 3.3 (6)                                                      |
|             |                                      |                                                                | рН 9, 25 °С                                  | ph                | 5.7 (5)                            | 5.7 (5)                                                      |
|             |                                      |                                                                | рН 9, 25 °С                                  | pyr               | 7.9 (5)                            | 7.9 (5)                                                      |
| <b>M-40</b> | Aerobic                              | 2866093                                                        | Calwich Abbey Lake (silt loam; pH 7.9)       | ph                | ND                                 | ND                                                           |
|             | aquatic                              |                                                                | Sediment                                     |                   |                                    |                                                              |
|             |                                      |                                                                | Calwich Abbey Lake (silt loam; pH 7.9)       | pyr               | ND                                 | ND                                                           |
|             |                                      |                                                                | Sediment                                     |                   |                                    |                                                              |
|             |                                      |                                                                | Calwich Abbey Lake (silt loam; pH 7.9) Total | ph                | ND                                 | ND                                                           |
|             |                                      |                                                                | Calwich Abbey Lake (silt loam; pH 7.9) Total | pyr               | ND                                 | ND                                                           |
|             |                                      |                                                                | Calwich Abbey Lake (silt loam; pH 7.9) Water | ph                | ND                                 | ND                                                           |
|             |                                      |                                                                | Calwich Abbey Lake (silt loam; pH 7.9) Water | pyr               | ND                                 | ND                                                           |
|             |                                      |                                                                | Swiss lake (sand; pH 6.7) Sediment           | ph                | ND                                 | ND                                                           |

| ТР     | Fate Process<br>(Bold if<br>Major)                                     | Study<br>PMRA<br>No.                                           | Study Characteristics                              | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|--------|------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
|        |                                                                        |                                                                | Swiss lake (sand; pH 6.7) Sediment                 | pyr               | ND                                 | ND                                                           |
|        |                                                                        |                                                                | Swiss lake (sand; pH 6.7) Total                    | ph                | 5.4 (100)                          | 5.4 (100)                                                    |
|        |                                                                        |                                                                | Swiss lake (sand; pH 6.7) Total                    | pyr               | 7.5 (100)                          | 7.5 (100)                                                    |
|        |                                                                        |                                                                | Swiss lake (sand; pH 6.7) Water                    | ph                | 5.4 (100)                          | 5.4 (100)                                                    |
|        |                                                                        |                                                                | Swiss lake (sand; pH 6.7) Water                    | pyr               | 7.5 (100)                          | 7.5 (100)                                                    |
| M-49 D | -                                                                      | F O F                                                          |                                                    |                   |                                    |                                                              |
| Molecu | lar Structure:<br>lar Formula: C <sub>17</sub> H<br>lar Weight: 472.84 | <sub>17</sub> ClF <sub>4</sub> N <sub>2</sub> O <sub>5</sub> S | M-49                                               |                   |                                    |                                                              |
| M-49   | Hydrolysis                                                             | 2866088                                                        | pH 4, 50 °C                                        | ph                | ND                                 | ND                                                           |
|        |                                                                        |                                                                | pH 4, 50 °C                                        | pyr               | ND                                 | ND                                                           |
|        |                                                                        |                                                                | рН 7, 35 °C                                        | ph                | 9.2 (30)                           | 9.2 (30)                                                     |
|        |                                                                        |                                                                | рН 7, 35 °C                                        | pyr               | 9.1 (30)                           | 9.1 (30)                                                     |
|        |                                                                        |                                                                | pH 7, 40 °C                                        | ph                | 10.6 (30)                          | 10.6 (30)                                                    |
|        |                                                                        |                                                                | pH 7, 40 °C                                        | pyr               | 9.9 (30)                           | 9.9 (30)                                                     |
|        |                                                                        |                                                                | pH 7, 45 °C                                        | ph                | 9.8 (7)                            | 9.2 (10)                                                     |
|        |                                                                        |                                                                | pH 7, 45 °C                                        | pyr               | 10.1 (10)                          | 10.1 (10)                                                    |
|        |                                                                        |                                                                | pH 9, 15 °C                                        | ph                | 7.8 (14)                           | 7.8 (14)                                                     |
|        |                                                                        |                                                                | pH 9, 15 °C                                        | pyr               | 7.7 (10)                           | 7.5 (14)                                                     |
|        |                                                                        |                                                                | pH 9, 20 °C                                        | ph                | 6.9 (6)                            | 6.9 (6)                                                      |
|        |                                                                        |                                                                | pH 9, 20 °C                                        | pyr               | 7.6 (6)                            | 7.6 (6)                                                      |
|        |                                                                        |                                                                | pH 9, 25 °C                                        | ph                | 6.8 (1)                            | 6.6 (5)                                                      |
|        |                                                                        |                                                                | pH 9, 25 °C                                        | pyr               | 8.7 (3)                            | 6.2 (5)                                                      |
| M-49   | Anaerobic<br>aquatic                                                   | 2866094                                                        | Calwich Abbey Lake (silt loam; pH 7.5)<br>Sediment | ph                | 0.1 (28)                           | ND (100)                                                     |
|        |                                                                        |                                                                | Calwich Abbey Lake (silt loam; pH 7.5)<br>Sediment | pyr               | 0.3 (14)                           | ND (100)                                                     |

| ТР      | Fate Process<br>(Bold if<br>Major)                       | Study<br>PMRA<br>No. | Study Characteristics                        | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|---------|----------------------------------------------------------|----------------------|----------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
|         |                                                          |                      | Calwich Abbey Lake (silt loam; pH 7.5) Total | pyr               | 5.8 (7)                            | ND (100)                                                     |
|         |                                                          |                      | Calwich Abbey Lake (silt loam; pH 7.5) Total | ph                | 5.8 (7)                            | ND (100)                                                     |
|         |                                                          |                      | Calwich Abbey Lake (silt loam; pH 7.5) Water | ph                | 5.8 (7)                            | ND (100)                                                     |
|         |                                                          |                      | Calwich Abbey Lake (silt loam; pH 7.5) Water | pyr               | 5.8 (7)                            | ND (100)                                                     |
|         |                                                          |                      | Swiss lake (sand; pH 6.6) Sediment           | ph                | 0.3 (14)                           | ND (100)                                                     |
|         |                                                          |                      | Swiss lake (sand; pH 6.6) Sediment           | pyr               | 0.5 (14)                           | ND (100)                                                     |
|         |                                                          |                      | Swiss lake (sand; pH 6.6) Total              | ph                | 10 (7)                             | ND (100)                                                     |
|         |                                                          |                      | Swiss lake (sand; pH 6.6) Total              | pyr               | 4.7 (14)                           | ND (100)                                                     |
|         |                                                          |                      | Swiss lake (sand; pH 6.6) Water              | ph                | 10 (7)                             | ND (100)                                                     |
|         |                                                          |                      | Swiss lake (sand; pH 6.6) Water              | pyr               | 4.2 (14)                           | ND (100)                                                     |
| Molecul | ar Structure: ˈ<br>ar Formula: C19H<br>ar Weight: 499.89 | )                    |                                              |                   | _                                  |                                                              |
| M-50    | Hydrolysis                                               | 2866088              | рН 4, 50 °С                                  | ph                | ND                                 | ND                                                           |
|         |                                                          |                      | pH 4, 50 °C                                  | pyr               | ND                                 | ND                                                           |
|         |                                                          |                      | рН 7, 35 °С                                  | ph                | ND                                 | ND                                                           |
|         |                                                          |                      | рН 7, 35 °С                                  | pyr               | ND                                 | ND                                                           |
|         |                                                          |                      | рН 7, 40 °С                                  | ph                | ND                                 | ND                                                           |
|         |                                                          |                      | рН 7, 40 °С                                  | pyr               | ND                                 | ND                                                           |
|         |                                                          |                      | рН 7, 45 °С                                  | ph                | 1.4 (1)                            | ND (7)                                                       |
|         |                                                          |                      | рН 7, 45 °С                                  | pyr               | 1 (1)                              | ND (10)                                                      |
|         |                                                          |                      | рН 9, 15 °С                                  | ph                | 7.6 (7)                            | 4.3 (14)                                                     |
|         |                                                          |                      | pH 9, 15 °C                                  | pyr               | 7.8 (3)                            | 4.8 (14)                                                     |
|         |                                                          |                      |                                              | ph                | 10.6 (3)                           |                                                              |
|         |                                                          |                      | рН 9, 20 °С                                  | 1                 |                                    | 4.8 (6)                                                      |
|         |                                                          |                      | рН 9, 20 °С                                  | pyr               | 10.4 (3)                           | 5.9 (6)                                                      |
|         |                                                          |                      |                                              | 1                 |                                    |                                                              |

| ТР      | Fate Process<br>(Bold if<br>Major) | Study<br>PMRA<br>No. | Study Characteristics                                   | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|---------|------------------------------------|----------------------|---------------------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
| M-50    | Anaerobic<br>aquatic               | 2866094              | Calwich Abbey Lake (silt loam; pH 7.5)<br>Sediment      | ph                | ND                                 | ND (100)                                                     |
|         | 1                                  |                      | Calwich Abbey Lake (silt loam; pH 7.5)<br>Sediment      | pyr               | ND                                 | ND (100)                                                     |
|         |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5) Total            | ph                | 9.3 (3)                            | ND (100)                                                     |
|         |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5) Total            | pyr               | 9.1 (3)                            | ND (100)                                                     |
|         |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5) Water            | ph                | 9.3 (3)                            | ND (100)                                                     |
|         |                                    |                      | Calwich Abbey Lake (silt loam; pH 7.5) Water            | pyr               | 9.1 (3)                            | ND (100)                                                     |
|         |                                    |                      | Swiss lake (sand; pH 6.6) Sediment                      | ph                | ND                                 | ND (100)                                                     |
|         |                                    |                      | Swiss lake (sand; pH 6.6) Sediment                      | pyr               | ND                                 | ND (100)                                                     |
|         |                                    |                      | Swiss lake (sand; pH 6.6) Total                         | ph                | 6.1 (7)                            | ND (100)                                                     |
|         |                                    |                      | Swiss lake (sand; pH 6.6) Total                         | pyr               | 5.7 (7)                            | ND (100)                                                     |
|         |                                    |                      | Swiss lake (sand; pH 6.6) Water                         | ph                | 6.1 (7)                            | ND (100)                                                     |
| M-53 De |                                    |                      | Swiss lake (sand; pH 6.6) Water                         | pyr               | 5.7 (7)                            | ND (100)                                                     |
|         | ar Structure:                      | F I 3CIF4N2O5        | M-53<br>S                                               |                   |                                    |                                                              |
|         | ar Weight: 444.79                  |                      | T                                                       | 1                 | 1                                  | 1                                                            |
| M-53    | Aerobic soil                       | 2866091              | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2$ °C)       | ph                | 14.3 (30)                          | 9.1 (180)                                                    |
|         |                                    |                      | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2$ °C)       | pyr               | 13.1 (30)                          | 7.4 (180)                                                    |
|         |                                    |                      | LAD-SCL-PF (light clay to clay; pH 8; 20 ± 2 °C)        | ph                | 21.3 (30)                          | 3 (180)                                                      |
|         |                                    |                      | LAD-SCL-PF (light clay to clay; pH 8; 20 ± 2 °C)        | pyr               | 17.8 (30)                          | 2.3 (180)                                                    |
|         |                                    |                      | MCL-PF (light clay to clay loam; pH 7.4; $20 \pm 2$ °C) | ph                | 44.9 (14)                          | 28.5 (180)                                                   |
|         |                                    |                      | MCL-PF (light clay to clay loam; pH 7.4; $20 \pm 2$ °C) | pyr               | 47.8 (14)                          | 25.4 (180)                                                   |

| ТР      | Fate Process<br>(Bold if<br>Major)                                  | Study<br>PMRA<br>No.                                         | Study Characteristics                                            | Label or<br>Depth              | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup>                                                                                       |
|---------|---------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|--------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                     |                                                              | MSL-PF (sandy clay loam to sandy loam; pH $6.8$ ; $20 \pm 2$ °C) | ph                             | 56.3 (90)                          | 39.4 (180)                                                                                                                                         |
|         |                                                                     |                                                              | MSL-PF (sandy clay loam to sandy loam; pH $6.8$ ; $20 \pm 2$ °C) | pyr                            | 50.4 (60)                          | 44.5 (180)                                                                                                                                         |
| M-53    | Field studies<br>(250 g a.i./ha<br>bare ground)                     | 2865977                                                      | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June               | All depths<br>when<br>measured | ND ()                              | ND (10)                                                                                                                                            |
| M-53    | Field studies<br>(250 g a.i./ha<br>bare ground)                     | 2865976                                                      | Kerman, California; sandy loam (0.05-0.4<br>%OM); July           | ND (92)                        |                                    |                                                                                                                                                    |
| M-53    | (250 g a.i./ha 1.7% C                                               | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June | 0-3 inches                                                       | 13.9 ppb (29)                  | ND (366)                           |                                                                                                                                                    |
|         | bare ground)                                                        |                                                              | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June     | 12-18<br>inches                | ()                                 | Study End (Study<br>Length, d) <sup>2</sup> 39.4 (180)           44.5 (180)           ND (10)           ND (92)           ND (366)           (366) |
|         |                                                                     |                                                              | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June     | 30-36<br>inches                | ()                                 | (366)                                                                                                                                              |
|         |                                                                     |                                                              | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June     | 3-6 inches                     | 10 ppb (310)                       | ND (366)                                                                                                                                           |
|         |                                                                     |                                                              | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June     | 6-12 inches                    | ()                                 | ND (366)                                                                                                                                           |
| M-53    | Field studies<br>(250 g a.i./ha<br>bare ground)                     | 2865979                                                      | Seven Springs, North Carolina (0.13-0.56 % OM); July             | All depths<br>when<br>measured | ND ()                              | ND (90)                                                                                                                                            |
| Molecul | etails<br> ar Structure:<br> ar Formula: C15H<br> ar Weight: 460.79 |                                                              | M-63                                                             |                                |                                    |                                                                                                                                                    |

| ТР   | Fate Process<br>(Bold if<br>Major)              | Study<br>PMRA<br>No. | Study Characteristics                                                                 | Label or<br>Depth              | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|------|-------------------------------------------------|----------------------|---------------------------------------------------------------------------------------|--------------------------------|------------------------------------|--------------------------------------------------------------|
| M-63 | Aerobic soil                                    | 2866091              | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2$ °C)                                     | ph                             | 8.4 (150)                          | 7.7 (180)                                                    |
|      |                                                 |                      | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2$ °C)                                     | pyr                            | 6.2 (180)                          | 6.2 (180)                                                    |
|      |                                                 |                      | LAD-SCL-PF (light clay to clay; pH 8; 20 ± 2 °C)                                      | ph                             | 2.1 (60)                           | 1.2 (180)                                                    |
|      |                                                 |                      | LAD-SCL-PF (light clay to clay; pH 8; $20 \pm 2$ °C)                                  | pyr                            | 1.7 (90)                           | 0.7 (180)                                                    |
|      |                                                 |                      | MCL-PF (light clay to clay loam; pH 7.4; $20 \pm 2$ °C)                               | ph                             | 25.3 (90)                          | 22.3 (180)                                                   |
|      |                                                 |                      | MCL-PF (light clay to clay loam; pH 7.4; $20 \pm 2$ °C)                               | pyr                            | 32.9 (30)                          | 20.2 (180)                                                   |
|      |                                                 |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.8$ ; $20 \pm 2$ °C)                      | ph                             | 20.8 (150)                         | 18 (180)                                                     |
|      |                                                 |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.8$ ; $20 \pm 2$ °C)                      | pyr                            | 21.2 (180)                         | 21.2 (180)                                                   |
| M-63 | Field studies<br>(250 g a.i./ha<br>bare ground) | 2865977              | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June                                    | All depths<br>when<br>measured | ()                                 | (10)                                                         |
| M-63 | Field studies<br>(250 g a.i./ha<br>bare ground) | 2865976              | Kerman, California; sandy loam (0.05-0.4 %OM); July                                   | All depths<br>when<br>measured | ()                                 | (92)                                                         |
| M-63 | Field studies<br>(250 g a.i./ha<br>bare ground) | 2865978              | Northwood, North Dakota; sandy loam (0.42-<br>.7% OM); June All depths ()<br>measured |                                | ()                                 | (366)                                                        |
| M-63 | Field studies<br>(250 g a.i./ha<br>bare ground) | 2865979              | Seven Springs, North Carolina (0.13-0.56 % OM); July                                  | All depths<br>when<br>measured | ()                                 | (90)                                                         |

| ТР      | Fate Process<br>(Bold if<br>Major)                                  | Study<br>PMRA<br>No. | Study Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Label or<br>Depth                                | Max %AR<br>(d) or ppb <sup>1</sup>                                                                                                                                | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup>                                                                                         |
|---------|---------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| M-69 De | etails<br>HI<br>HŅ                                                  |                      | U OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                                                                                                                                   |                                                                                                                                                      |
| Molecul | ar Structure:<br>ar Formula: C <sub>11</sub> H<br>ar Weight: 322.74 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                                                                                                                   |                                                                                                                                                      |
| M-69    | Aerobic soil                                                        | 2866091              | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2 \degree C$ )<br>CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2 \degree C$ )<br>LAD-SCL-PF (light clay to clay; pH 8; $20 \pm 2 \degree C$ )<br>LAD-SCL-PF (light clay to clay; pH 8; $20 \pm 2 \degree C$ )<br>MCL-PF (light clay to clay loam; pH 7.4; $20 \pm 2 \degree C$ )<br>MCL-PF (light clay to clay loam; pH 7.4; $20 \pm 2 \degree C$ )<br>MSL-PF (sandy clay loam to sandy loam; pH 6.8; $20 \pm 2 \degree C$ )<br>MSL-PF (sandy clay loam to sandy loam; pH 6.8; $20 \pm 2 \degree C$ ) | ph<br>pyr<br>ph<br>pyr<br>ph<br>pyr<br>ph<br>pyr | 13.5 (180)         ND         29.2 (120)         ND         ND | 13.5 (180)         ND (180)         21.8 (180)         ND (180)         ND (180)         ND (180)         ND (180)         ND (180)         ND (180) |
| M-69    | Field studies<br>(250 g a.i./ha<br>bare ground)                     | 2865977              | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | All depths<br>when<br>measured                   | ()                                                                                                                                                                | (10)                                                                                                                                                 |
| M-69    | Field studies<br>(250 g a.i./ha<br>bare ground)                     | 2865976              | Kerman, California; sandy loam (0.05-0.4 %OM); July                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | All depths<br>when<br>measured                   | ()                                                                                                                                                                | (92)                                                                                                                                                 |
| M-69    | Field studies<br>(250 g a.i./ha<br>bare ground)                     | 2865978              | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | All depths<br>when<br>measured                   | ()                                                                                                                                                                | (366)                                                                                                                                                |

| ТР      | Fate Process<br>(Bold if<br>Major)                                  | Study<br>PMRA<br>No.           | Study Characteristics                                | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|---------|---------------------------------------------------------------------|--------------------------------|------------------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
| M-69    | Field studies                                                       | 2865979                        | Seven Springs, North Carolina (0.13-0.56 %           | All depths        | ()                                 | (90)                                                         |
|         | (250 g a.i./ha                                                      |                                | OM); July                                            | when              |                                    |                                                              |
| M-71 D  | bare ground)                                                        |                                |                                                      | measured          |                                    |                                                              |
|         | F<br>F                                                              | O<br>N<br>O<br>CH <sub>3</sub> | , сı<br>`он                                          |                   |                                    |                                                              |
| Molecul | ar Structure:<br>ar Formula: C12<br>ar Weight: 338.65               |                                | N2 O3                                                |                   |                                    |                                                              |
| M-71    | Aqueous                                                             | 2866089                        | Dark control                                         | ph                | ND                                 | ND                                                           |
|         | Photo-                                                              |                                | Dark control                                         | pyr               | ND                                 | ND                                                           |
|         | transformatio                                                       |                                | Irradiated                                           | ph                | 8.5 (15)                           | 8.5 (15)                                                     |
|         | n                                                                   |                                | Irradiated                                           | pyr               | 7.2 (15)                           | 7.2 (15)                                                     |
| Molecul | ar Structure:<br>ar Formula: C <sub>12</sub> H<br>ar Weight: 402.71 | 7ClF4N2O5S                     | сі<br>9<br>У он<br>-72                               |                   |                                    |                                                              |
| M-72    | Aqueous                                                             | 2866089                        | Dark control                                         | ph                | ND                                 | ND (15)                                                      |
|         | Photo-                                                              |                                | Dark control                                         | pyr               | ND                                 | ND (15)                                                      |
|         | transformatio                                                       |                                | Irradiated                                           | ph                | 22.5 (15)                          | 22.5 (15)                                                    |
|         | n                                                                   |                                | Irradiated                                           | pyr               | 22.9 (15)                          | 22.9 (15)                                                    |
| M-72    | Aerobic soil                                                        | 2866091                        | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2$ °C)    | ph                | 10.2 (150)                         | 9.2 (180)                                                    |
|         |                                                                     |                                | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2$ °C)    | pyr               | 19.9 (150)                         | 12.4 (180)                                                   |
|         |                                                                     |                                | LAD-SCL-PF (light clay to clay; pH 8; $20 \pm 2$ °C) | ph                | 3.3 (30)                           | 1.2 (180)                                                    |

| ТР   | Fate Process<br>(Bold if<br>Major)              | Study<br>PMRA<br>No. | Study Characteristics                                            | Label or<br>Depth              | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|------|-------------------------------------------------|----------------------|------------------------------------------------------------------|--------------------------------|------------------------------------|--------------------------------------------------------------|
|      |                                                 |                      | LAD-SCL-PF (light clay to clay; pH 8; 20 ± 2 °C)                 | pyr                            | 6.2 (60)                           | 1.8 (180)                                                    |
|      |                                                 |                      | MCL-PF (light clay to clay loam; pH 7.4; $20 \pm 2$ °C)          | ph                             | 2.8 (90)                           | 1.4 (180)                                                    |
|      |                                                 |                      | MCL-PF (light clay to clay loam; pH 7.4; $20 \pm 2 \degree$ C)   | pyr                            | 6.1 (30)                           | 0.4 (180)                                                    |
|      |                                                 |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.8$ ; $20 \pm 2$ °C) | ph                             | 1.9 (150)                          | 1.7 (180)                                                    |
|      |                                                 |                      | MSL-PF (sandy clay loam to sandy loam; pH $6.8$ ; $20 \pm 2$ °C) | pyr                            | 2.4 (90)                           | 1.8 (180)                                                    |
| M-72 | Field studies<br>(250 g a.i./ha<br>bare ground) | 2865977              | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June               | All depths<br>when<br>measured | ()                                 | (10)                                                         |
| M-72 | Field studies<br>(250 g a.i./ha<br>bare ground) | 2865976              | Kerman, California; sandy loam (0.05-0.4 %OM); July              | All depths<br>when<br>measured | ()                                 | (92)                                                         |
| M-72 | Field studies<br>(250 g a.i./ha<br>bare ground) | 2865978              | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June     | All depths<br>when<br>measured | ()                                 | (366)                                                        |
| M-72 | Field studies<br>(250 g a.i./ha                 | 2865979              | Seven Springs, North Carolina (0.13-0.56 % OM); July             | 0-3 inches                     | 26.4 ppb (7)                       | ND (90)                                                      |
|      | bare ground)                                    |                      | Seven Springs, North Carolina (0.13-0.56 % OM); July             | 12-18<br>inches                | ND ()                              | ND (90)                                                      |
|      |                                                 |                      | Seven Springs, North Carolina (0.13-0.56 % OM); July             | 30-36<br>inches                | ND ()                              | ND (90)                                                      |
|      |                                                 |                      | Seven Springs, North Carolina (0.13-0.56 % OM); July             | 3-6 inches                     | 7.09 ppb (10)                      | ND (90)                                                      |
|      |                                                 |                      | Seven Springs, North Carolina (0.13-0.56 % OM); July             | 6-12 inches                    | ND ()                              | ND (90)                                                      |

| ТР      | Fate Process<br>(Bold if             | Study<br>PMRA    | Study Characteristics                                            | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study |
|---------|--------------------------------------|------------------|------------------------------------------------------------------|-------------------|------------------------------------|-----------------------------------|
|         | Major)                               | No.              |                                                                  | Deptii            |                                    | Length, d) <sup>2</sup>           |
| M-73 De | etails                               | F.               | CL                                                               |                   |                                    |                                   |
|         | F                                    |                  | от у                                                             |                   |                                    |                                   |
|         | ar Structure: 👘                      | FI               | M-73                                                             |                   |                                    |                                   |
| Molecul | <b>ar Formula:</b> C <sub>12</sub> H | $_9ClF_4N_2O_5S$ |                                                                  |                   |                                    |                                   |
|         | ar Weight: 404.72                    |                  |                                                                  |                   |                                    |                                   |
| M-73    | Aerobic soil                         | 2866091          | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2$ °C)                | ph                | 4.8 (180)                          | 4.8 (180)                         |
|         |                                      |                  | CA-SL (sand to loamy sand; pH 7.5; $20 \pm 2$ °C)                | pyr               | 10.4 (180)                         | 10.4 (180)                        |
|         |                                      |                  | LAD-SCL-PF (light clay to clay; pH 8; 20 ± 2 °C)                 | ph                | 8.1 (120)                          | 2.4 (180)                         |
|         |                                      |                  | LAD-SCL-PF (light clay to clay; pH 8; $20 \pm 2$ °C)             | pyr               | 2.5 (120)                          | 2.3 (180)                         |
|         |                                      |                  | MCL-PF (light clay to clay loam; pH 7.4; $20 \pm 2$ °C)          | ph                | 13.8 (150)                         | 13.6 (180)                        |
|         |                                      |                  | MCL-PF (light clay to clay loam; pH 7.4; $20 \pm 2$ °C)          | pyr               | 11.6 (150)                         | 9.2 (180)                         |
|         |                                      |                  | MSL-PF (sandy clay loam to sandy loam; pH $6.8$ ; $20 \pm 2$ °C) | ph                | 14 (180)                           | 14 (180)                          |
|         |                                      |                  | MSL-PF (sandy clay loam to sandy loam; pH $6.8$ ; $20 \pm 2$ °C) | pyr               | 10.9 (180)                         | 10.9 (180)                        |
| M-73    | Field studies<br>(250 g a.i./ha      | 2865977          | Ephrata, Washington; sand (0.1-0.23 % OM);<br>June               | All depths when   | ()                                 | (10)                              |
|         | bare ground)                         |                  |                                                                  | measured          |                                    |                                   |
| M-73    | Field studies                        | 2865976          | Kerman, California; sandy loam (0.05-0.4                         | All depths        | ()                                 | (92)                              |
|         | (250 g a.i./ha                       |                  | %OM); July                                                       | when              |                                    |                                   |
|         | bare ground)                         |                  |                                                                  | measured          |                                    |                                   |
| M-73    | Field studies<br>(250 g a.i./ha      | 2865978          | Northwood, North Dakota; sandy loam (0.42-<br>1.7% OM); June     | All depths when   | ()                                 | (366)                             |
|         | bare ground)                         |                  |                                                                  | measured          |                                    |                                   |

| ТР   | Fate Process<br>(Bold if<br>Major)                   | Study<br>PMRA<br>No. | Study Characteristics                                | Label or<br>Depth | Max %AR<br>(d) or ppb <sup>1</sup> | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|------|------------------------------------------------------|----------------------|------------------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------------|
| M-73 | Field studies<br>(250 g a.i./ha                      | 2865979              | Seven Springs, North Carolina (0.13-0.56 % OM); July | 0-3 inches        | ND ()                              | ND (90)                                                      |
|      | bare ground)                                         |                      | Seven Springs, North Carolina (0.13-0.56 % OM); July | 12-18<br>inches   | ND ()                              | ND (90)                                                      |
|      |                                                      |                      | Seven Springs, North Carolina (0.13-0.56 % OM); July | 30-36<br>inches   | 6.98 ppb (90)                      | 6.98 ppb (90)                                                |
|      |                                                      |                      | Seven Springs, North Carolina (0.13-0.56 % OM); July | 3-6 inches        | ND ()                              | ND (90)                                                      |
|      |                                                      |                      | Seven Springs, North Carolina (0.13-0.56 % OM); July | 6-12 inches       | 11.9 ppb (29)                      | ND (90)                                                      |
|      | F<br>H <sub>3</sub> C                                |                      |                                                      |                   |                                    |                                                              |
|      | lar Structure:                                       | M-8                  |                                                      |                   |                                    |                                                              |
|      | lar Formula: C <sub>24</sub> H<br>lar Weight: 670.94 |                      | $5_2$                                                |                   |                                    |                                                              |
| M-85 | Aqueous                                              | 2866089              | Dark control                                         | ph                | ND                                 | ND (15)                                                      |
|      | Photo-                                               |                      | Dark control                                         | pyr               | ND                                 | ND (15)                                                      |
|      | transformatio                                        |                      | Irradiated                                           | ph                | 11.6 (15)                          | 11.6 (15)                                                    |
|      | n                                                    |                      | Irradiated                                           | pyr               | 10.8 (15)                          | 10.8 (15)                                                    |

| ТР       | Fate Process<br>(Bold if<br>Major)                                     | Study<br>PMRA<br>No. | Study Characteristics                                                                                                                                    | Label or<br>Depth        | Max %AR<br>(d) or ppb <sup>1</sup>              | %AR or ppb at<br>Study End (Study<br>Length, d) <sup>2</sup> |
|----------|------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------|--------------------------------------------------------------|
| M-86 De  | etails                                                                 |                      |                                                                                                                                                          |                          |                                                 |                                                              |
| Molecula | ar Structure: <sup>M-86</sup><br>ar Formula: C4 H<br>ar Weight: 142.08 | I5 F3 O2             |                                                                                                                                                          |                          |                                                 |                                                              |
| M-86     | 0                                                                      |                      | CA-SL (sand to loamy sand; pH 7.4; 20 ± 2 °C)<br>LAD-SCL-PF (light clay to clay; pH 8.1; 20 ± 2<br>°C)<br>MCL-PF (light clay to clay loam; pH 7.2; 20 ±  | pyr<br>pyr<br>pyr        | 16.5 (180)         7.9 (180)         13.5 (150) | 16.5 (180)         7.9 (180)         11.5 (180)              |
|          |                                                                        |                      | 2 °C)<br>MSL-PF (sandy clay loam to sandy loam; pH $6.3$ ; $20 \pm 2$ °C)                                                                                | pyr                      | 8.6 (150)                                       | 7.7 (180)                                                    |
| M-86     | M-86 Aerobic 280<br>aquatic 280                                        |                      | Calwich Abbey Lake (silt loam; pH 7.9)<br>Sediment<br>Calwich Abbey Lake (silt loam; pH 7.9) Total                                                       | pyr<br>pyr               | 2.7 (28)<br>7.6 (14)                            | 0.4 (100)                                                    |
|          |                                                                        |                      | Calwich Abbey Lake (silt loam; pH 7.9) Water<br>Swiss lake (sand; pH 6.7) Sediment<br>Swiss lake (sand; pH 6.7) Total<br>Swiss lake (sand; pH 6.7) Water | pyr<br>pyr<br>pyr<br>pyr | 7.5 (10)<br>ND<br>ND<br>ND                      | 1 (100)<br>ND (100)<br>ND (100)<br>ND (100)                  |

<sup>1</sup>TP in **bold font** if reached  $\geq 10\%$  AR. <sup>2</sup>TP in **bold font** if reached peak concentration at end of study.

### Table 16 Effects of tiafenacil on terrestrial species

| Organism       | Exposure                 | Test<br>substance     | Endpoint Value <sup>1</sup>          | Degree of<br>toxicity <sup>2</sup> | PMRA #  |
|----------------|--------------------------|-----------------------|--------------------------------------|------------------------------------|---------|
| Invertebrates  |                          |                       |                                      |                                    |         |
| Honey bee      | Adult contact (48-<br>h) | Tiafenacil<br>(97.3%) | LD <sub>50</sub> > 100.5 µg a.i./bee | Practically<br>nontoxic            | 2866057 |
| Apis mellifera | Adult oral (48-h)        | Tiafenacil            | LD <sub>50</sub> > 109.5 µg a.i./bee | Practically                        | 2866057 |

| Organism                                   | Exposure                                           | Test<br>substance      | Endpoint Value <sup>1</sup>                                                        | Degree of<br>toxicity <sup>2</sup> | PMRA #  |
|--------------------------------------------|----------------------------------------------------|------------------------|------------------------------------------------------------------------------------|------------------------------------|---------|
|                                            |                                                    | (97.3%)                |                                                                                    | nontoxic                           |         |
|                                            | Adult (10-d)                                       | Tiafenacil<br>(97.82%) | NOEL (survival) = 49.8 μg<br>a.i./bee/day                                          | N/A                                | 2866058 |
|                                            | Larval (72-h)                                      | Tiafenacil<br>(98.6%)  | LD50 > 6.4 μg a.i./larva <sup>3</sup>                                              | Moderately<br>toxic                | 2866059 |
|                                            | Larval (19-d)                                      | Tiafenacil<br>(98.6%)  | NOEL (survival, growth) ≥ 20.1<br>µg a.i./larva/day <sup>3</sup>                   | N/A                                | 2866061 |
| Bumble bee                                 | Adult contact (48-<br>h)                           | Tiafenacil<br>(97.82%) | LD <sub>50</sub> > 400 µg a.i./bee                                                 | Practically<br>nontoxic            | 2966979 |
| Bombus terrestris                          | Adult oral (48-h)                                  | Tiafenacil<br>(97.82%) | LD <sub>50</sub> > 388.7 µg a.i./bee                                               | Practically<br>nontoxic            | 2966979 |
| Earthworm<br>Eisenia fetida                | Soil (14-d)                                        | Tiafenacil<br>(97.82%) | LC50 > 1000 mg a.i./kg soil dw <sup>3</sup>                                        | N/A                                | 2866071 |
|                                            | Soil (4-w)                                         | Tiafenacil<br>(97.82%) | NOEC (number of juveniles) =<br>171.5 mg a.i./kg soil dw                           | N/A                                | 2866072 |
| Springtail<br>Folsomia candida             | Reproduction test<br>in soil (14-d)                | Tiafenacil<br>(97.82%) | ER <sub>50</sub> (survival, reproduction) ><br>250 mg a.i./kg soil dw <sup>3</sup> | N/A                                | 2866074 |
| Predatory mite<br>Hypoaspis aculeifer      | Reproduction test<br>in soil (14-d)                | Tiafenacil<br>(97.82%) | ER50 (survival, reproduction) ><br>1000 mg a.i./kg soil dw <sup>3</sup>            | N/A                                | 2866073 |
|                                            | Acute laboratory<br>glass plate contact<br>study   | Tiafenacil<br>(5.1%)   | LR <sub>50</sub> = 64.9 g a.i./ha                                                  | N/A                                | 2866075 |
| Predatory mite<br>Typhlodromus pyri        | Chronic laboratory<br>glass plate contact<br>study | Tiafenacil<br>(5.1%)   | ER50 (eggs per female) = 13.15 g<br>a.i./ha                                        | N/A                                | 2866075 |
|                                            | Extended<br>laboratory study                       | Tiafenacil<br>(5.05%)  | ER <sub>50</sub> (reproduction) = 211.28 g<br>a.i./ha                              | N/A                                | 2866077 |
| Parasitic wasp<br>Aphidius<br>rhopalosiphi | Acute laboratory<br>glass plate contact<br>study   | Tiafenacil<br>(5.1%)   | LR50 = 50 g a.i./ha                                                                | N/A                                | 2866076 |

| Organism                                        | Exposure                                       | Test<br>substance      | Endpoint Value <sup>1</sup>                                                            | Degree of<br>toxicity <sup>2</sup> | PMRA #  |
|-------------------------------------------------|------------------------------------------------|------------------------|----------------------------------------------------------------------------------------|------------------------------------|---------|
|                                                 | Chronic laboratory<br>study (barley<br>plants) | Tiafenacil<br>(5.1%)   | ER50 (parisitisation) = 16.46 g<br>a.i./ha                                             | N/A                                | 2866076 |
|                                                 | Extended<br>laboratory study                   | Tiafenacil<br>(5.05%)  | ER <sub>50</sub> (survival, reproduction) > 345 g a.i./ha <sup>3</sup>                 | N/A                                | 2866078 |
| Rove beetle<br>Aleochara bilineata              | Extended<br>laboratory study                   | Tiafenacil<br>(5.05%)  | $ER_{50}$ (reproduction) > 405 g a.i./ha <sup>3</sup>                                  | N/A                                | 2866079 |
| Ladybird beetle<br>Coccinella<br>septempunctata | Extended<br>laboratory study                   | Tiafenacil<br>(5.09%)  | ER <sub>50</sub> (survival, reproduction) > 345<br>g a.i./ha <sup>3</sup>              | N/A                                | 2866080 |
| Birds                                           |                                                |                        |                                                                                        |                                    |         |
| Zebra finch<br><i>Taeniopygia guttata</i>       | Acute oral                                     | Tiafenacil<br>(98.04%) | LD <sub>50</sub> > 2000 mg a.i./kg bw/d                                                | Practically nontoxic               | 2866035 |
|                                                 | Acute oral                                     | Tiafenacil<br>(97.3%)  | LD <sub>50</sub> > 2250 mg a.i./kg bw/d                                                | Practically<br>nontoxic            | 2866036 |
| Bobwhite quail<br>Colinus virginianus           | Acute dietary (5-d)                            | Tiafenacil<br>(97.3%)  | LC50 > 1119 mg a.i./kg bw/d                                                            | Practically<br>nontoxic            | 2866038 |
|                                                 | Chronic dietary<br>(23-w)                      | Tiafenacil<br>(98.04%) | NOEC (eggshell thickness) = 5.2<br>mg a.i./kg bw/d                                     | N/A                                | 2866040 |
|                                                 | Acute oral                                     | Tiafenacil<br>(96.63%) | LD <sub>50</sub> > 2250 mg a.i./kg bw/d                                                | Practically<br>nontoxic            | 2866037 |
| Mallard                                         | Acute dietary (5-d)                            | Tiafenacil<br>(97.3%)  | LC <sub>50</sub> > 1987 mg a.i./kg bw/d                                                | Practically<br>nontoxic            | 2866039 |
| Anas platyrhyncos                               | Chronic dietary<br>(20-w)                      | Tiafenacil<br>(98.04%) | NOEC (viable embryos; hatchlings;<br>14-d survivors/eggs set)<br>= 186 mg a.i./kg bw/d | N/A                                | 2866041 |
| Small wild mammals                              |                                                |                        |                                                                                        |                                    |         |
| Laboratory Rat                                  | Acute oral                                     | Tiafenacil<br>(97.3%)  | LD <sub>50</sub> > 2000 mg a.i./kg bw/d                                                | Practically<br>nontoxic            | 2865996 |
| -                                               | Chronic dietary                                | Tiafenacil             | NOEL (reproductive toxicity;                                                           | N/A                                | 2866024 |

| Organism                           | ExposureTest<br>substanceEndpoint Value1 |                          | Exposure substanc                              |     | Degree of<br>toxicity <sup>2</sup> | PMRA # |
|------------------------------------|------------------------------------------|--------------------------|------------------------------------------------|-----|------------------------------------|--------|
|                                    |                                          | (97.82%)                 | males) $\geq$ 8.0 mg a.i./kg bw/d <sup>3</sup> |     |                                    |        |
| Vascular plants                    |                                          |                          |                                                |     |                                    |        |
| Four monocot and six dicot species | Seedling<br>Emergence                    | Tiafenacil<br>70WG (70%) | HR5 = 15.5 g a.i./ha                           | N/A | 2865776                            |        |
| Four monocot and six dicot species | Vegetative Vigor                         | Tiafenacil<br>70WG (70%) | HR5 = 0.440 g a.i./ha                          | N/A | 2865777                            |        |

<sup>1</sup>Bolded values were carried forward to the risk assessment.

<sup>2</sup>Atkins et al. (1981) for bees and USEPA classification for others, where applicable.

<sup>3</sup>No toxic effects in any treatment.

### Table 17 Effects of tiafenacil and transformation products on aquatic species

| Organism                    | Exposure                                                                                                                               | Test substance                 | Endpoint value <sup>1</sup>                                                     | Degree<br>of<br>toxicity <sup>2</sup> | PMRA #  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------|---------------------------------------|---------|
| Freshwater Specie           | es                                                                                                                                     | -                              |                                                                                 | -                                     |         |
|                             | 48-h Acute                                                                                                                             | Tiafenacil<br>(97.3%)          | EC50 (immobilization) > 80 mg a.i./L                                            | Slightly<br>toxic                     | 2866045 |
|                             | 48-h Acute                                                                                                                             | Tiafenacil<br>70WG<br>(71.27%) | EC <sub>50</sub> (immobilization) > 78.3 mg a.i./L                              | Slightly<br>toxic                     | 2865774 |
| Water flea<br>Daphnia magna | 48-h Acute                                                                                                                             | Tiafenacil 30%<br>SC           | EC <sub>50</sub> (immobilization) = 32 mg a.i./L                                | Slightly<br>toxic                     | 2966973 |
|                             | 48-h Acute                                                                                                                             | M-36<br>(97.6%)                | EC <sub>50</sub> > 100.1 mg a.i./L                                              | Practicall<br>y<br>nontoxic           | 2866046 |
|                             | 21-d Chronic                                                                                                                           | Tiafenacil<br>(98.04%)         | NOEC (neonate reproduction) = 0.605 mg<br>a.i./L                                | N/A                                   | 2886817 |
| Midge                       | 10-d Chronic (spiked<br>sediment); sedimentTiafenacil<br>(98.6%)NOEC (growth, survival, behaviour) $\geq$ 43 mg<br>a.i/kg <sup>3</sup> |                                | N/A                                                                             | 2866056                               |         |
| Chironomus<br>dilutus       | 10-d Chronic (spiked sediment); pore water                                                                                             | Tiafenacil<br>(98.6%)          | NOEC (growth, survival, behaviour) $\geq 5.1 \text{ mg}$<br>a.i./L <sup>3</sup> | N/A                                   | 2866056 |
|                             | 10-d Chronic (spiked                                                                                                                   | Tiafenacil                     | NOEC (survival, growth, behaviour) $\geq 0.0257$                                | N/A                                   | 2866056 |

| Organism                                | Exposure                                              | Test substance                 | Endpoint value <sup>1</sup>             | Degree<br>of<br>toxicity <sup>2</sup> | PMRA #                                 |
|-----------------------------------------|-------------------------------------------------------|--------------------------------|-----------------------------------------|---------------------------------------|----------------------------------------|
|                                         | sediment); overlying<br>water                         | (98.6%)                        | mg a.i./L <sup>3</sup>                  |                                       |                                        |
|                                         | 10-d Chronic (spiked sediment); sediment              | Tiafenacil<br>(98.6%)          | NOEC (growth) = 8.1 mg a.i./kg          | N/A                                   | 2866054                                |
| Freshwater<br>amphipod                  | 10-d Chronic (spiked sediment); pore water            | Tiafenacil<br>(98.6%)          | NOEC (growth) = 2.5 mg a.i./L           | N/A                                   | 2866054                                |
| Hyalella azteca                         | 10-d Chronic (spiked<br>sediment); overlying<br>water | Tiafenacil<br>(98.6%)          | NOEC (growth) = 0.032 mg a.i./L         | N/A                                   | 2866054                                |
| Rainbow trout<br>Oncorhynchus<br>mykiss | 96-h Acute                                            | Tiafenacil<br>(97.3%)          | LC <sub>50</sub> > 79 mg a.i./L         | Slightly<br>toxic                     | 2866042                                |
|                                         | 96-h Acute                                            | Tiafenacil<br>(97.3%)          | LC <sub>50</sub> > 80 mg a.i./L         | Slightly<br>toxic                     | 2866044                                |
| Common carp<br>Cyprinus carpio          | 96-h Acute                                            | Tiafenacil<br>70WG<br>(71.27%) | LC <sub>50</sub> > 96.6 mg a.i./L       | Slightly<br>toxic                     | 2865773                                |
|                                         | 96-h Acute                                            | Tiafenacil 30%<br>SC           | $LC_{50} = 31 \text{ mg a.i./L}$        | Slightly<br>toxic                     | 2966972                                |
| Japanese medaka<br>Oryzias latipes      | 96-h Acute                                            | Tiafenacil<br>(97.3%)          | LC <sub>50</sub> > 106 mg a.i./L        | Practicall<br>y non-<br>toxic         | 2966980                                |
|                                         | 96-h Acute                                            | Tiafenacil<br>(98.6%)          | LC <sub>50</sub> > 78.7 mg a.i./L       | Slightly<br>toxic                     | 2866043                                |
| Fathead minnow                          | 34-d Early Life Stage                                 | Tiafenacil<br>(98.6%)          | NOEC (growth) = 0.016 mg a.i./L         | N/A                                   | 2866050                                |
| Pimephales<br>promelas                  | 34-d Early Life Stage                                 | Tiafenacil                     | NOEC (growth) = 0.00102 mg a.i./L       | N/A                                   | LDPH<br>conversion<br>(USEPA,<br>2016) |
| Green algae<br><i>Raphidocelis</i>      | 72-h Acute                                            | Tiafenacil<br>(97.3%)          | $E_y C_{50} = 0.0034 \text{ mg a.i./L}$ | N/A                                   | 2966978                                |

| Organism                                    | Exposure                                              | Test substance                 | Endpoint value <sup>1</sup>                                       | Degree<br>of<br>toxicity <sup>2</sup> | PMRA #  |
|---------------------------------------------|-------------------------------------------------------|--------------------------------|-------------------------------------------------------------------|---------------------------------------|---------|
| subcapitata<br>(formerly                    | 96-h Acute                                            | Tiafenacil<br>(97.82%)         | $E_bC_{50} = 0.0038 \text{ mg a.i./L}$                            | N/A                                   | 2866065 |
| Pseudokirchnerie<br>lla subcapitata)        | 96-h Acute                                            | Tiafenacil<br>70WG<br>(71.47%) | $E_bC_{50} = 0.0040 \text{ mg a.i./L}$                            | N/A                                   | 2865775 |
|                                             | 96-h Acute                                            | Tiafenacil 30%<br>SC           | $E_{b,y}C_{50} = 0.0029 \text{ mg a.i./L}$                        | N/A                                   | 2966977 |
|                                             | 96-h Acute M-36 $E_r C_{50} = 0.77 \text{ mg a.i./L}$ |                                | N/A                                                               | 2866066                               |         |
|                                             | 96-h Acute                                            | M-53                           | $E_bC_{50} = 1.3 \text{ mg a.i./L}$                               | N/A                                   | 2866067 |
| Blue-green algae<br>Anabaena flos-<br>aquae | 96-h Acute                                            | Tiafenacil<br>(97.82%)         | $Ey, rC_{50} > 52 mg a.i./L$                                      | N/A                                   | 2866070 |
| Diatom<br>Navicula<br>pelliculosa           | 96-h Acute                                            | Tiafenacil<br>(97.82%)         | $E_bC_{50} = 0.0040 \text{ mg a.i./L}$                            | N/A                                   | 2866068 |
|                                             | 7-d                                                   | Tiafenacil<br>(98.04%)         | E <sub>y</sub> C <sub>50</sub> (frond number) = 0.00573 mg a.i./L | N/A                                   | 2866062 |
| Duckweed                                    | 7-d                                                   | Tiafenacil<br>70WG<br>(71.47%) | E <sub>y</sub> C <sub>50</sub> (frond number) = 0.00557 mg a.i./L | N/A                                   | 2865778 |
| Lemna gibba —                               | 7-d                                                   | Tiafenacil 30%<br>SC           | E <sub>y</sub> C <sub>50</sub> (frond number) = 0.00558 mg a.i./L | N/A                                   | 2966976 |
|                                             | 7-d                                                   | M-36                           | $E_yC_{50}$ (frond number) = 0.35 mg a.i./L                       | N/A                                   | 2866063 |
|                                             | 7-d                                                   | M-53                           | $E_yC_{50}$ (biomass) = 1.1 mg a.i./L                             | N/A                                   | 2866064 |
| Marine species                              |                                                       |                                |                                                                   |                                       |         |
| Mysid shrimp                                | 96-h Acute                                            | Tiafenacil<br>(98.04%)         | $LC_{50} = 0.65 \text{ mg a.i./L}$                                | Highly<br>toxic                       | 2866048 |
| Americamysis<br>Dahia                       | 30-d Chronic                                          | Tiafenacil<br>(98.6%)          | NOEC (reduced reproduction) = 0.086 mg<br>a.i./L                  | N/A                                   | 2886818 |
| Eastern oyster<br>Crassostrea               | 96-h Acute                                            | Tiafenacil<br>(97.82%)         | EC <sub>50</sub> (shell deposition) > 10.7 mg a.i./L              | Slightly<br>toxic                     | 2866047 |

| Organism                          | Exposure                                              | Test substance         | Endpoint value <sup>1</sup>                                       | Degree<br>of<br>toxicity <sup>2</sup> | PMRA #  |
|-----------------------------------|-------------------------------------------------------|------------------------|-------------------------------------------------------------------|---------------------------------------|---------|
| virginica                         |                                                       |                        |                                                                   |                                       |         |
|                                   | 10-d Chronic (spiked sediment); sediment              | Tiafenacil<br>(98.6%)  | NOEC (survival, behaviour) $\geq 10 \text{ mg a.i./kg}^3$         | N/A                                   | 2866055 |
| Marine amphipod<br>Leptocheirus   | 10-d Chronic (spiked sediment); pore water            | Tiafenacil<br>(98.6%)  | <b>NOEC</b> (survival, behaviour) $\ge$ 23 mg a.i./L <sup>3</sup> | N/A                                   | 2866055 |
| plumulosus                        | 10-d Chronic (spiked<br>sediment); overlying<br>water | Tiafenacil<br>(98.6%)  | NOEC (survival, behaviour) ≥ 1.78 mg a.i./L <sup>3</sup>          | N/A                                   | 2866055 |
| Sheepshead<br>minnow              | 96-h Acute                                            | Tiafenacil<br>(98.04%) | LC <sub>50</sub> > 13.6 mg a.i./L                                 | Slightly<br>toxic                     | 2866049 |
| Cyprinodon<br>variegatus          | 34-d Early Life Stage                                 | Tiafenacil<br>(98.6%)  | NOEC (survival) = 0.12 mg a.i./L                                  | N/A                                   | 2866051 |
| Diatom<br>Skeletonema<br>costatum | 96-h Acute                                            | Tiafenacil<br>(98.04%) | $E_bC_{50} = 0.0058 \text{ mg a.i./L}$                            | N/A                                   | 2866069 |

<sup>1</sup>Bolded values were carried forward to the risk assessment. Transformation products M-36 and M-53 showed less toxicity than parent tiafenacil, therefore the risk assessment was conducted using parent-based effects metrics. <sup>2</sup>USEPA classification, where applicable.

<sup>3</sup>No toxic effects in any treatment.

Subscript endpoints for algae and plant studies: b=biomass; r=rate; y=yield.

#### Table 18 Endpoints, uncertainty factors, and levels of concern used in the risk assessment for tiafenacil

| Organism<br>class    | Organism                            | Test<br>Substance      | Exposure<br>(scenario) <sup>1</sup> | Endpoint                | Value                  | Study # | Uncertainty<br>Factor | Level of<br>Concern |
|----------------------|-------------------------------------|------------------------|-------------------------------------|-------------------------|------------------------|---------|-----------------------|---------------------|
| <b>Terrestrial O</b> | rganisms                            | -                      |                                     |                         |                        | -       |                       |                     |
|                      |                                     | Tiafenacil<br>(97.3%)  | Acute contact adult                 | 48-h LD <sub>50</sub>   | > 100.5 μg<br>a.i./bee | 2866057 | 1                     | 0.4                 |
| Pollinators          | Honey Bee<br>(Apis mellifera<br>L.) |                        | Acute oral adult                    | 48-h LD <sub>50</sub>   | > 109.5 μg<br>a.i./bee | 2866057 | 1                     | 0.4                 |
|                      |                                     | Tiafenacil<br>(97.82%) | Chronic oral<br>adult               | 10-d NOEL<br>(survival) | 49.8 μg<br>a.i./bee    | 2866058 | 1                     | 1                   |
|                      |                                     | Tiafenacil             | Acute oral                          | 72-h LD <sub>50</sub>   | > 6.4 µg               | 2866059 | 1                     | 0.4                 |

| Organism<br>class                    | Organism                                                 | Test<br>Substance      | Exposure<br>(scenario) <sup>1</sup>                         | Endpoint                                             | Value                                                                                    | Study # | Uncertainty<br>Factor | Level of<br>Concern |
|--------------------------------------|----------------------------------------------------------|------------------------|-------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------|---------|-----------------------|---------------------|
|                                      |                                                          | (98.6%)                | larvae                                                      |                                                      | a.i./larva                                                                               |         |                       |                     |
|                                      |                                                          | Tiafenacil             | Chronic oral                                                | 19-d NOEL                                            | $\geq$ 20.1 µg                                                                           | 2866061 | 1                     | 1                   |
|                                      |                                                          | (98.6%)                | larvae                                                      | (survival, growth)                                   | a.i./larva/day                                                                           | 2000001 | -                     | -                   |
|                                      | Earthworm                                                | Tiafenacil<br>(97.82%) | Acute                                                       | 14-d LC <sub>50</sub>                                | > 1000 mg<br>a.i./kg soil dw                                                             | 2866071 | 2                     | 1                   |
|                                      | (Eisenia fetida)                                         | Tiafenacil<br>(97.82%) | Chronic                                                     | NOEC                                                 | 171.5 mg<br>a.i./kg soil dw                                                              | 2866072 | 1                     | 1                   |
| Soil-dwelling<br>invertebrates       | Springtail<br>(Folsomia<br>candida)                      | Tiafenacil<br>(97.82%) | Chronic                                                     | 14-d ER <sub>50</sub><br>(survival,<br>reproduction) | > 250 mg<br>a.i./kg soil dw                                                              | 2866074 | 1                     | 1                   |
|                                      | Predatory mite<br>(Hypoaspis<br>aculeifer)               | Tiafenacil<br>(97.82%) | Chronic                                                     | 14-d ER <sub>50</sub><br>(survival,<br>reproduction) | $\begin{array}{c c} 14-d \ ER_{50} \\ (survival, \\                                    $ |         | 1                     | 1                   |
|                                      | Predatory mite<br>( <i>Typhlodromus</i><br><i>pyri</i> ) | hlodromus              | Acute<br>contact<br>(glass<br>surface)                      | 7-d LR <sub>50</sub>                                 | 64.9 g a.i./ha                                                                           | 2866075 | 1                     | 2                   |
| Folior                               |                                                          |                        | Chronic<br>contact<br>(glass<br>surface;<br>screening)      | 14-d ER <sub>50</sub><br>(reproduction)              | 13.15 g a.i./ha                                                                          | 2866075 | 1                     | 1                   |
| Foliar-<br>dwelling<br>invertebrates |                                                          | Tiafenacil<br>(5.05%)  | Chronic<br>(extended<br>laboratory<br>study;<br>refinement) | ER50<br>(reproduction)                               | 211.28 g<br>a.i./ha                                                                      | 2866077 | 1                     | 1                   |
|                                      | Parasitic wasp<br>(Aphidius<br>rhopalosiphi)             | Tiafenacil<br>(5.1%)   | Acute<br>contact<br>(glass<br>surface)                      | 48-h LR <sub>50</sub>                                | 50 g a.i./ha                                                                             | 2866076 | 1                     | 2                   |
|                                      | ποραιοειρπι)                                             |                        | Chronic<br>(barley                                          | 13-d ER <sub>50</sub><br>(reproduction and           | 16.46 g a.i./ha                                                                          | 2866076 | 1                     | 1                   |

| Organism<br>class                 | Organism                                 | Test<br>Substance              | Exposure<br>(scenario) <sup>1</sup>                         | Endpoint                                  | Value                          | Study # | Uncertainty<br>Factor | Level of<br>Concern |
|-----------------------------------|------------------------------------------|--------------------------------|-------------------------------------------------------------|-------------------------------------------|--------------------------------|---------|-----------------------|---------------------|
|                                   |                                          |                                | plants;<br>screening)                                       | parisitisation)                           |                                |         |                       |                     |
|                                   |                                          | Tiafenacil<br>(5.05%)          | Chronic<br>(extended<br>laboratory<br>study;<br>refinement) | ER <sub>50</sub><br>(reproduction)        | > 345 g a.i./ha                | 2866078 | 1                     | 1                   |
|                                   | Zebra finch<br>(Taeniopygia<br>guttata)  | Tiafenacil<br>(98.04%)         | Acute oral                                                  | LD <sub>50</sub>                          | > 2000 mg<br>a.i./kg bw        | 2866035 | 10                    | 1                   |
| Birds                             | Bobwhite quail<br>(Colinus               | Tiafenacil<br>(97.3%)          | Acute<br>dietary                                            | 5-d LD <sub>50</sub>                      | > 1119 mg<br>a.i./kg bw/d      | 2866038 | 10                    | 1                   |
|                                   | virginianus)                             | Tiafenacil<br>(98.04%)         | Chronic<br>dietary                                          | NOEC<br>(reproduction)                    | 5.2 mg a.i./kg<br>bw/d         | 2866040 | 1                     | 1                   |
| Wild                              | Mammals                                  | Tiafenacil<br>(97.3%)          | Acute oral                                                  | $LD_{50}$                                 | > 2000 mg<br>a.i./kg bw/d      | 2865996 | 10                    | 1                   |
| Mammals                           | (Rat)                                    | Tiafenacil<br>(97.82%)         | Chronic<br>dietary                                          | NOEC<br>(reproduction)                    | $\geq$ 8.01 mg<br>a.i./kg bw/d | 2866024 | 1                     | 1                   |
| Terrestrial<br>vascular<br>plants | Standard<br>terrestrial plant<br>species | Tiafenacil<br>70WG<br>(70%)    | Vegetative<br>vigor                                         | HR5                                       | 0.440 g a.i./ha                | 2865777 | 1                     | 1                   |
| <b>Aquatic Orga</b>               | nisms                                    |                                | -                                                           |                                           |                                |         |                       |                     |
|                                   |                                          | Tiafenacil<br>339SC<br>(30.7%) | Acute<br>(overspray,<br>drift)                              | 48-h EC <sub>50</sub><br>(immobilization) | 32 mg a.i./L                   | 2966973 | 2                     | 1                   |
| Freshwater<br>pelagic             | Water flea<br><i>(Daphnia</i>            | Tiafenacil<br>70WG<br>(71.27%) | Acute<br>(overspray,<br>drift)                              | 48-h EC <sub>50</sub><br>(immobilization) | > 78.3 mg<br>a.i./L            | 2865774 | 2                     | 1                   |
| invertebrates                     | magna)                                   | Tiafenacil<br>(97.3%)          | Acute<br>(overspray,<br>runoff)                             | 48-h EC <sub>50</sub><br>(immobilization) | > 80 mg a.i./L                 | 2866045 | 2                     | 1                   |
|                                   |                                          | Tiafenacil<br>(98.04%)         | Chronic<br>(overspray,                                      | 21-d NOEC<br>(reproduction)               | 0.605 mg<br>a.i./L             | 2886817 | 1                     | 1                   |

| Organism<br>class                      | Organism                                   | Test<br>Substance              | Exposure<br>(scenario) <sup>1</sup>                                     | Endpoint              | Value                | Study # | Uncertainty<br>Factor | Level of<br>Concern |
|----------------------------------------|--------------------------------------------|--------------------------------|-------------------------------------------------------------------------|-----------------------|----------------------|---------|-----------------------|---------------------|
|                                        |                                            |                                | drift, runoff)                                                          |                       |                      |         |                       |                     |
| Freshwater<br>benthic<br>invertebrates | Freshwater<br>amphipod                     | Tiafenacil<br>(98.6%)          | Chronic<br>(overlying<br>water;<br>overspray,<br>drift, runoff)         | 10-d NOEC<br>(growth) | 0.032 mg<br>a.i./L   | 2866054 | 1                     | 1                   |
| Inverteorates                          | (Hyalella azteca)                          |                                | Chronic<br>(pore water;<br>runoff)                                      | 10-d NOEC<br>(growth) | 2.5 mg a.i./L        | 2866054 | 1                     | 1                   |
|                                        | Carp (Cyprinus<br>carpio)                  | Tiafenacil<br>339SC<br>(30.7%) | Acute<br>(overspray,<br>drift)                                          | 96-h LC <sub>50</sub> | 31 mg a.i./L         | 2966972 | 10                    | 1                   |
|                                        | Carp (Cyprinus<br>carpio)                  | Tiafenacil<br>70WG<br>(71.27%) | Acute<br>(overspray,<br>drift)                                          | 96-h LC <sub>50</sub> | > 96.6 mg<br>a.i./L  | 2865773 | 10                    | 1                   |
| Freshwater<br>fish                     | Fathead minnow<br>(Pimephales<br>promelas) | Tiafenacil<br>(98.6%)          | Acute<br>(overspray,<br>runoff)                                         | 96-h LC <sub>50</sub> | > 78.7 mg<br>a.i./L  | 2866043 | 10                    | 1                   |
|                                        | Fathead minnow<br>(Pimephales<br>promelas) | Tiafenacil<br>(98.6%)          | Chronic<br>ELS –<br>LDPH<br>conversion<br>(overspray,<br>drift, runoff) | 34-d NOEC<br>(growth) | 0.00102 mg<br>a.i./L | 2866050 | 1                     | 1                   |
|                                        | Amphibians                                 | Tiafenacil<br>339SC<br>(30.7%) | Acute<br>(overspray,<br>drift)                                          | 96-h LC <sub>50</sub> | 31 mg a.i./L         | 2966972 | 10                    | 1                   |
| Aquatic-<br>phase<br>amphibians        | (Carp and fathead minnow                   | Tiafenacil<br>70WG<br>(71.27%) | Acute<br>(overspray,<br>drift)                                          | 96-h LC <sub>50</sub> | > 96.6 mg<br>a.i./L  | 2865773 | 10                    | 1                   |
|                                        | as surrogates)                             | Tiafenacil<br>(98.6%)          | Acute<br>(overspray,<br>runoff)                                         | 96-h LC <sub>50</sub> | > 78.7 mg<br>a.i./L  | 2866043 | 10                    | 1                   |

| Organism<br>class                | Organism                                             | Test<br>Substance              | Exposure<br>(scenario) <sup>1</sup>             | Endpoint                     | Value                | Study # | Uncertainty<br>Factor | Level of<br>Concern |
|----------------------------------|------------------------------------------------------|--------------------------------|-------------------------------------------------|------------------------------|----------------------|---------|-----------------------|---------------------|
|                                  |                                                      | Tiafenacil<br>(98.6%)          | Chronic<br>ELS<br>(overspray,<br>drift, runoff) | 34-d NOEC<br>(growth)        | 0.016 mg<br>a.i./L   | 2866050 | 1                     | 1                   |
|                                  |                                                      | Tiafenacil<br>339SC<br>(30.7%) | Acute<br>(overspray,<br>drift)                  | 7-d EC <sub>50</sub>         | 0.00558 mg<br>a.i./L | 2966976 | 2                     | 1                   |
| Freshwater<br>vascular<br>plants | Aquatic vascular<br>plant<br>( <i>Lemna gibba</i> )  | Tiafenacil<br>70WG<br>(71.47%) | Acute<br>(overspray,<br>drift)                  | 7-d EC <sub>50</sub>         | 0.00557 mg<br>a.i./L | 2865778 | 2                     | 1                   |
|                                  |                                                      | Tiafenacil<br>(98.04%)         | Acute<br>(overspray,<br>runoff)                 | 7-d EC <sub>50</sub>         | 0.00573 mg<br>a.i./L | 2866062 | 2                     | 1                   |
|                                  |                                                      | Tiafenacil<br>339SC<br>(30.7%) | Acute<br>(overspray,<br>drift)                  | 96-h EC <sub>50</sub>        | 0.0029 mg<br>a.i./L  | 2966977 | 2                     | 1                   |
| Freshwater<br>algae              | Green algae<br>( <i>Raphidocelis</i><br>subcapitata) | Tiafenacil<br>70WG<br>(71.47%) | Acute<br>(overspray,<br>drift)                  | 96-h EC <sub>50</sub>        | 0.0040 mg<br>a.i./L  | 2865775 | 2                     | 1                   |
|                                  |                                                      | Tiafenacil<br>(97.82%)         | Acute<br>(overspray,<br>runoff)                 | 96-h EC <sub>50</sub>        | 0.0038 mg<br>a.i./L  | 2866065 | 2                     | 1                   |
| Marine/<br>estuarine             | Mysid shrimp<br>(Americamysis                        | Tiafenacil<br>(98.04%)         | Acute<br>(overspray,<br>drift, runoff)          | 96-h LC <sub>50</sub>        | 0.65 mg a.i./L       | 2866048 | 2                     | 1                   |
| pelagic (An<br>invertebrates     | (Americamysis<br>bahia)                              | Tiafenacil<br>(98.6%)          | Chronic<br>(overspray,<br>drift, runoff)        | 30-d NOEC<br>(reproduction)  | 0.086 mg<br>a.i./L   | 2886818 | 1                     | 1                   |
| Marine/<br>estuarine<br>mollusc  | Eastern oyster<br>(Crassostrea<br>virginica)         | Tiafenacil<br>(97.82%)         | Acute<br>(overspray,<br>drift, runoff)          | 96-h EC50 (shell deposition) | > 10.7 mg<br>a.i./L  | 2866047 | 2                     | 1                   |
| Marine/<br>estuarine             | Estuarine<br>amphipod                                | Tiafenacil<br>(98.6%)          | Chronic<br>(overlying                           | 10-d NOEC<br>(survival,      | ≥ 1.78 mg<br>a.i./L  | 2866055 | 1                     | 1                   |

| Organism<br>class             | Organism                                      | Test<br>Substance      | Exposure<br>(scenario) <sup>1</sup>      | Endpoint                 | Value               | Study # | Uncertainty<br>Factor | Level of<br>Concern |
|-------------------------------|-----------------------------------------------|------------------------|------------------------------------------|--------------------------|---------------------|---------|-----------------------|---------------------|
| benthic                       | (Leptocheirus                                 |                        | water;                                   | behaviour)               |                     |         |                       |                     |
| invertebrates                 | plumulosus)                                   |                        | overspray,<br>drift, runoff)             |                          |                     |         |                       |                     |
|                               |                                               |                        | Chronic                                  | 10-d NOEC                |                     |         |                       |                     |
|                               |                                               |                        | (pore water;<br>runoff)                  | (survival,<br>behaviour) | $\geq$ 23 mg a.i./L | 2866055 | 1                     | 1                   |
| Marine/                       | Sheepshead<br>minnow                          | Tiafenacil<br>(98.04%) | Acute<br>(overspray,<br>drift, runoff)   | 96-h LC <sub>50</sub>    | > 13.6 mg<br>a.i./L | 2866049 | 10                    | 1                   |
| estuarine fish                | (Cyprinodon<br>variegatus)                    | Tiafenacil<br>(98.6%)  | Chronic<br>(overspray,<br>drift, runoff) | 34-d NOEC<br>(survival)  | 0.12 mg a.i./L      | 2866051 | 1                     | 1                   |
| Marine/<br>estuarine<br>algae | Saltwater diatom<br>(Skeletonema<br>costatum) | Tiafenacil<br>(98.04%) | Acute<br>(overspray,<br>drift, runoff)   | 96-h EC <sub>50</sub>    | 0.0058 mg<br>a.i./L | 2866069 | 2                     | 1                   |

<sup>1</sup>Exposure scenarios for the aquatic risk assessment include direct overspray, runoff, and spray drift. Where available, toxicity endpoints derived using end use products containing tiafenacil will be used for the direct overspray and spray drift exposure scenarios, whereas toxicity endpoints derived using the technical grade active ingredient will be used for the runoff exposure scenarios. For benthic invertebrates exposed via sediment-water systems, toxicity endpoints based on overlying water concentrations are used for EECs in the water column, whereas toxicity endpoints based on pore water concentrations are used for pore water EECs in the runoff scenario.

# Table 19 Screening level risk from tiafenacil exposure to terrestrial invertebrates and non-target terrestrial plants (on-field exposure)

| Organism Class<br>(Species) | Exposure            | Endpoint and<br>Uncertainty<br>Factor | Endpoint<br>Value | On-field<br>EEC <sup>1</sup> | Units<br>(a.i.) | RQ <sup>2</sup> | LOC <sup>3</sup> | LOC<br>Exceeded |
|-----------------------------|---------------------|---------------------------------------|-------------------|------------------------------|-----------------|-----------------|------------------|-----------------|
|                             | Adult contact acute | LD <sub>50</sub>                      | > 100.5           | 0.120                        | µg/bee/day      | < 0.00119       | 0.4              | No              |
| Pollinators                 | Adult oral acute    | LD <sub>50</sub>                      | > 109.5           | 1.43                         | µg/bee/day      | < 0.0131        | 0.4              | No              |
| (Honey Bee)                 | Adult oral chronic  | NOEL                                  | 49.8              | 1.43                         | µg/bee/day      | 0.0287          | 1                | No              |
|                             | Larvae oral acute   | LD <sub>50</sub>                      | > 6.4             | 0.606                        | µg/larva/day    | < 0.0946        | 1                | No              |

| Organism Class<br>(Species)                        | Exposure                        | Endpoint and<br>Uncertainty<br>Factor | Endpoint<br>Value | <b>On-field</b><br>EEC <sup>1</sup> | Units<br>(a.i.) | RQ <sup>2</sup>            | LOC <sup>3</sup> | LOC<br>Exceeded |
|----------------------------------------------------|---------------------------------|---------------------------------------|-------------------|-------------------------------------|-----------------|----------------------------|------------------|-----------------|
|                                                    | Larvae oral chronic             | NOEL                                  | ≥ 20.1            | 0.606                               | µg/larva/day    | $\leq$ 0.0301              | 1                | No              |
| Soil-dwelling<br>invertebrates                     | Acute                           | LC <sub>50</sub> /2                   | > 500             | 0.0222                              | mg/kg soil      | <<br>4.44x10 <sup>-5</sup> | 1                | No              |
| (Earthworm)                                        | Chronic                         | NOEC                                  | 171.5             | 0.0222                              | mg/kg soil      | 1.30x10 <sup>-4</sup>      | 1                | No              |
| Soil-dwelling<br>invertebrates<br>(Springtail)     | Chronic                         | ER <sub>50</sub>                      | > 250             | 0.0222                              | mg/kg soil      | <<br>8.87x10 <sup>-5</sup> | 1                | No              |
| Soil-dwelling<br>invertebrates<br>(Predatory mite) | Chronic                         | ER <sub>50</sub>                      | > 1000            | 0.0222                              | mg/kg soil      | <<br>2.22x10 <sup>-5</sup> | 1                | No              |
| Foliar-dwelling<br>invertebrates                   | Acute contact<br>(glass plates) | LR <sub>50</sub>                      | 64.9              | 50                                  | g/ha            | 0.770                      | 2                | No              |
| (Predatory mite)                                   | Chronic (glass plates)          | ER <sub>50</sub>                      | 13.15             | 50                                  | g/ha            | 3.80                       | 1                | Yes             |
| Foliar-dwelling<br>invertebrates                   | Acute contact<br>(glass plates) | LR <sub>50</sub>                      | 50                | 50                                  | g/ha            | 1.00                       | 2                | No              |
| (Parasitic wasp)                                   | Chronic (barley plants)         | ER <sub>50</sub>                      | 16.46             | 50                                  | g/ha            | 3.04                       | 1                | Yes             |
| Vascular plants                                    | Vegetative vigor                | HC5                                   | 0.440             | 50                                  | g/ha            | 114                        | 1                | Yes             |

 $^{1}$ EEC = Estimated Environmental concentration.

• The soil EEC of 0.0222 mg a.i./kg was calculated based on the maximum proposed single application rate of 50 g a.i./ha and was used for soil-dwelling organisms. This concentration was calculated assuming that the product is evenly distributed in the top 0 to 15 cm depth of soil with a bulk density of 1.5 g/cm<sup>3</sup>.

• The foliar EEC of 50 g a.i./ha was calculated based on the maximum proposed single application rate of 50 g a.i./ha and was used for foliar-dwelling organisms and vegetative vigour effects metrics.

• The pollinator EECs were calculated using the single maximum application rate of 50 g a.i./ha as follows:

```
Estimated contact exposure = 2.4 \ \mu g \ a.i./bee \times 0.050 \ kg \ a.i./ha;
```

```
Estimated dietary exposure = 98 \ \mu g \ a.i./g \times 0.292 \ g/day \times 0.050 \ kg \ a.i./ha; and
```

Estimated brood exposure = 98  $\mu$ g a.i./g × 0.124 g/day × 0.050 kg a.i./ha.

 $^{2}RQ = Risk$  Quotient. The RQ is calculated by dividing the EEC by the endpoint value (RQ = EEC/endpoint value)

 $^{3}LOC =$  Level of Concern. The RQ is compared to the LOC.

## Table 20 Further characterization of risk from tiafenacil to terrestrial invertebrates and non-target terrestrial plants (off-field exposure)

| Organism<br>Class<br>(Representative<br>Species)     | Exposure                                     | Endpoint         | Endpoint<br>Value | Off-<br>field<br>EEC <sup>1</sup> | Units<br>(a.i.) | RQ <sup>2</sup> | LOC <sup>3</sup> | LOC<br>Exceeded |
|------------------------------------------------------|----------------------------------------------|------------------|-------------------|-----------------------------------|-----------------|-----------------|------------------|-----------------|
| Foliar-dwelling<br>invertebrates<br>(Predatory mite) | Chronic<br>(extended<br>laboratory<br>study) | ER <sub>50</sub> | 211.28            | 3                                 | g/ha            | 0.0142          | 1                | No              |
| Foliar-dwelling<br>invertebrates<br>(Parasitic wasp) | Chronic<br>(extended<br>laboratory<br>study) | ER <sub>50</sub> | > 345             | 3                                 | g/ha            | <<br>0.00870    | 1                | No              |
| Vascular plants                                      | Vegetative<br>vigor                          | HR5              | 0.440             | 3                                 | g/ha            | 7.00            | 1                | Yes             |

 $^{1}$ EEC = Estimated Environmental Concentration, which is calculated as 6% of the maximum application rate for offfield exposure.

• The further characterized EECs for off-field exposure to non-target terrestrial plants accounted for a 6% drift factor for groundboom applications at 50 g a.i./ha using an ASAE medium spray quality.

 ${}^{2}RQ = Risk$  Quotient. The RQ is calculated by dividing the EEC by the endpoint value (RQ = EEC/endpoint value)  ${}^{3}LOC = Level of Concern.$  The RQ is compared to the LOC. The LOC = 2 for predatory mites and parasitic wasp tested on glass plates (otherwise LOC = 1). The LOC =1.0 for earthworms, chronic exposure in bees and vascular plants. The LOC = 0.4 for acute exposure in bees. If the screening level risk quotient is below the level of concern, the risk is considered negligible and no further risk characterization is necessary.

| Tabla 21  | Screening | loval risks t | to hirds ov  | nosod to tig | afonacil (ar | n-field exposure | • |
|-----------|-----------|---------------|--------------|--------------|--------------|------------------|---|
| I able 21 | Screening | level lisks t | lo bii us ex | poseu to na  | alenach (of  | i-neiu exposure  | ) |

| Bird Size /<br>Endpoint | Toxicit<br>y (mg<br>a.i./kg<br>bw/d) | Food Guild (Food<br>Item) <sup>1</sup> | EDE<br>(mg<br>a.i./k<br>g<br>bw) <sup>2</sup> | RQ <sup>3</sup> | LOC<br>4 | LOC<br>Exceede<br>d |  |  |  |
|-------------------------|--------------------------------------|----------------------------------------|-----------------------------------------------|-----------------|----------|---------------------|--|--|--|
| Small Bird (0.02 kg)    | Small Bird (0.02 kg)                 |                                        |                                               |                 |          |                     |  |  |  |
| Acute                   | 200.00                               | Insectivore                            | 4.07                                          | 0.020           | 1        | No                  |  |  |  |
| Reproduction            | 5.20                                 | Insectivore                            | 4.07                                          | 0.783           | 1        | No                  |  |  |  |
| Medium-Sized Bird (     | Medium-Sized Bird (0.1 kg)           |                                        |                                               |                 |          |                     |  |  |  |
| Acute                   | 200.00                               | Insectivore                            | 3.18                                          | 0.015<br>9      | 1        | No                  |  |  |  |
| Reproduction            | 5.20                                 | Insectivore                            | 3.18                                          | 0.611           | 1        | No                  |  |  |  |

| Bird Size /<br>Endpoint | Toxicit<br>y (mg<br>a.i./kg<br>bw/d) | Food Guild (Food<br>Item) <sup>1</sup> | EDE<br>(mg<br>a.i./k<br>g<br>bw) <sup>2</sup> | RQ <sup>3</sup> | LOC<br>4 | LOC<br>Exceede<br>d |
|-------------------------|--------------------------------------|----------------------------------------|-----------------------------------------------|-----------------|----------|---------------------|
| Large-Sized Bird (1 k   | (g)                                  |                                        | -                                             | -               | -        |                     |
| Acute                   | 200.00                               | Herbivore (short grass)                | 2.05                                          | 0.010 3         | 1        | No                  |
| Reproduction            | 5.20                                 | Herbivore (short grass)                | 2.05                                          | 0.395           | 1        | No                  |

<sup>1</sup>Specialized feeding guilds are considered for each category of animal weights to help determine exposure (herbivore, frugivore, insectivore and granivore).

 ${}^{2}\text{EDE}$  = Estimated dietary exposure; is calculated using the following formula: (FIR/BW) × EEC, where: FIR: Food Ingestion Rate, BW: Body Weight, EEC: Estimated Environmental Concentration. For generic birds with body weight less than or equal to 200 g, the "passerine" equation was used; for generic birds with body weight greater than 200 g, the "all birds" equation was used: Passerine Equation (BW < or = 200 g): FIR (g dry weight/day) = 0.398(BW in g)<sup>0.850</sup>

All birds Equation (body weight > 200 g): FIR (g dry weight/day) =  $0.648(BW \text{ in g})^{0.651}$ .

 ${}^{3}RQ = Risk$  Quotient. The RQ is calculated by dividing the EDE by the endpoint value (RQ = EDE/endpoint value).  ${}^{4}LOC = Level of Concern.$  The RQ is then compared to the level of concern (LOC = 1).

| Mammal Size / Endpoint    | Toxicity<br>(mg<br>a.i./kg<br>bw/d) | Feeding Guild (food<br>item) <sup>1</sup> | EDE<br>(mg<br>a.i./kg<br>bw) <sup>2</sup> | RQ <sup>3</sup> | LOC <sup>4</sup> | LOC<br>Exceeded |  |
|---------------------------|-------------------------------------|-------------------------------------------|-------------------------------------------|-----------------|------------------|-----------------|--|
| Small Mammal (0.015 kg)   |                                     |                                           |                                           |                 |                  |                 |  |
| Acute                     | 200.00                              | Insectivore                               | 2.34                                      | 0.0117          | 1                | No              |  |
| Reproduction              | $\geq 8.01$                         | Insectivore                               | 2.34                                      | ≤ 0.292         | 1                | No              |  |
| Medium-Sized Mammal (     | 0.035 kg)                           |                                           |                                           |                 |                  |                 |  |
| Acute                     | 200.00                              | Herbivore (short grass)                   | 4.54                                      | 0.0227          | 1                | No              |  |
| Reproduction              | $\geq 8.01$                         | Herbivore (short grass)                   | 4.54                                      | $\leq 0.567$    | 1                | No              |  |
| Large-Sized Mammal (1 kg) |                                     |                                           |                                           |                 |                  |                 |  |
| Acute                     | 200.00                              | Herbivore (short grass)                   | 2.43                                      | 0.0121          | 1                | No              |  |
| Reproduction              | $\geq 8.01$                         | Herbivore (short grass)                   | 2.43                                      | $\leq$ 0.303    | 1                | No              |  |

<sup>1</sup>Specialized feeding guilds are considered for each category of animal weights to help determine exposure (herbivore, frugivore, insectivore and granivore).

 $^{2}$ EDE = Estimated dietary exposure; is calculated using the following formula: (FIR/BW) × EEC, where: FIR: Food Ingestion Rate, BW: Body Weight, EEC: Estimated Environmental Concentration. For mammals, the "all mammals" equation was used: FIR (g dry weight/day) = 0.235(BW in g)<sup>0.822</sup>

 ${}^{3}RQ = Risk$  Quotient. The RQ is calculated by dividing the EDE by the endpoint value (RQ = EDE/endpoint value).  ${}^{4}LOC = Level of Concern.$  The RQ is then compared to the level of concern (LOC = 1).

### Table 23 Screening level risk from tiafenacil to aquatic organisms exposed to tiafenacil from direct overspray

| Organism Class<br>(Species)                          | Exposure                                             | Endpoint and<br>Uncertainty | Endpoint<br>Value | Direct<br>Overspray<br>EEC <sup>1</sup> | RQ <sup>2</sup>         | LOC <sup>3</sup> | LOC<br>Exceeded |  |
|------------------------------------------------------|------------------------------------------------------|-----------------------------|-------------------|-----------------------------------------|-------------------------|------------------|-----------------|--|
|                                                      |                                                      | Factor Applied              | (mg               | a.i./L)                                 |                         |                  |                 |  |
| <b>Freshwater species</b>                            |                                                      |                             |                   |                                         |                         |                  |                 |  |
|                                                      | Acute (339SC)                                        | $LC_{50}/2$                 | 16                | 0.00625                                 | 3.91x10 <sup>-4</sup>   | 1                | No              |  |
|                                                      | Acute (70WG)                                         | $LC_{50}/2$                 | > 39.2            | 0.00625                                 | < 1.60x10 <sup>-4</sup> | 1                | No              |  |
| Pelagic<br>invertebrates<br>(Water flea)             | Acute<br>(Technical<br>Grade Active<br>Ingredient)   | LC <sub>50</sub> /2         | > 40              | 0.00625                                 | < 1.56x10 <sup>-4</sup> | 1                | No              |  |
|                                                      | Chronic<br>(Technical<br>Grade Active<br>Ingredient) | NOEC                        | 0.605             | 0.00625                                 | 0.0103                  | 1                | No              |  |
| Benthic<br>invertebrates<br>(Freshwater<br>amphipod) | Chronic<br>(Technical<br>Grade Active<br>Ingredient) | NOEC (overlying<br>water)   | 0.032             | 0.00625                                 | 0.195                   | 1                | No              |  |
| FF/                                                  | Acute (339SC)                                        | LC <sub>50</sub> /10        | 3.1               | 0.00625                                 | 0.00202                 | 1                | No              |  |
|                                                      | Acute (70WG)                                         | LC <sub>50</sub> /10        | > 9.66            | 0.00625                                 | < 6.47x10 <sup>-4</sup> | 1                | No              |  |
| Fish (Carp, fathead minnow)                          | Acute<br>(Technical<br>Grade Active<br>Ingredient)   | LC <sub>50</sub> /10        | > 7.87            | 0.00625                                 | < 7.94x10 <sup>-4</sup> | 1                | No              |  |
|                                                      | Chronic<br>(Technical<br>Grade Active<br>Ingredient) | NOEC (LDPH)                 | 0.00102           | 0.00625                                 | 6.10                    | 1                | Yes             |  |
| Aquatic-phase                                        | Acute (339SC)                                        | LC <sub>50</sub> /10        | 3.1               | 0.0333                                  | 0.0107                  | 1                | No              |  |
| amphibians                                           | Acute (70WG)                                         | LC <sub>50</sub> /10        | > 9.66            | 0.0333                                  | 0.00345                 | 1                | No              |  |
| (Fathead minnow<br>as surrogate)                     | Acute<br>(Technical                                  | LC <sub>50</sub> /10        | > 7.87            | 0.0333                                  | 0.00424                 | 1                | No              |  |

| Organism Class<br>(Species)                         | Exposure                                             | Endpoint and<br>Uncertainty | Endpoint<br>Value | Direct<br>Overspray<br>EEC <sup>1</sup> | RQ <sup>2</sup> | LOC <sup>3</sup> | LOC<br>Exceeded |
|-----------------------------------------------------|------------------------------------------------------|-----------------------------|-------------------|-----------------------------------------|-----------------|------------------|-----------------|
|                                                     |                                                      | Factor Applied              | (mg               | a.i./L)                                 |                 |                  |                 |
|                                                     | Grade Active<br>Ingredient)                          |                             |                   |                                         |                 |                  |                 |
|                                                     | Chronic<br>(Technical<br>Grade Active<br>Ingredient) | NOEC                        | 0.016             | 0.0333                                  | 2.08            | 1                | Yes             |
|                                                     | Acute (339SC)                                        | EC <sub>50</sub> /2         | 0.00279           | 0.00625                                 | 2.24            | 1                | Yes             |
|                                                     | Acute (70WG)                                         | EC <sub>50</sub> /2         | 0.00279           | 0.00625                                 | 2.24            | 1                | Yes             |
| Vascular plants<br>(Duckweed)                       | Acute<br>(Technical<br>Grade Active<br>Ingredient)   | EC <sub>50</sub> /2         | 0.00287           | 0.00625                                 | 2.18            | 1                | Yes             |
|                                                     | Acute (339SC)                                        | EC <sub>50</sub> /2         | 0.00145           | 0.00625                                 | 4.31            | 1                | Yes             |
|                                                     | Acute (70WG)                                         | EC <sub>50</sub> /2         | 0.0020            | 0.00625                                 | 3.13            | 1                | Yes             |
| Algae (Green<br>algae)                              | Acute<br>(Technical<br>Grade Active<br>Ingredient)   | EC <sub>50</sub> /2         | 0.0019            | 0.00625                                 | 3.29            | 1                | Yes             |
| Marine/Estuarine s                                  | pecies                                               |                             |                   |                                         |                 |                  |                 |
| Pelagic                                             | Acute                                                | LC <sub>50</sub> /2         | 0.325             | 0.00625                                 | 0.0192          | 1                | No              |
| invertebrates<br>(Mysid shrimp)                     | Chronic                                              | NOEC                        | 0.086             | 0.00625                                 | 0.0727          | 1                | No              |
| Mollusc (Eastern<br>oyster)                         | Acute                                                | EC <sub>50</sub> /2         | > 5.35            | 0.00625                                 | < 0.00117       | 1                | No              |
| Benthic<br>invertebrates<br>(Estuarine<br>amphipod) | Chronic                                              | NOEC (overlying<br>water)   | ≥ 1.78            | 0.00625                                 | ≤ 0.00351       | 1                | No              |
| Fish (Sheepshead                                    | Acute                                                | LC <sub>50</sub> /10        | > 1.36            | 0.00625                                 | < 0.00459       | 1                | No              |
| minnow)                                             | Chronic                                              | NOEC                        | 0.12              | 0.00625                                 | 0.0521          | 1                | No              |
| Algae (Saltwater                                    | Acute                                                | EC <sub>50</sub> /2         | 0.0029            | 0.00625                                 | 2.15            | 1                | Yes             |

| Organism Class<br>(Species) | Exposure | Endpoint and<br>Uncertainty | Endpoint<br>Value | Direct<br>Overspray<br>EEC <sup>1</sup> | RQ <sup>2</sup> | LOC <sup>3</sup> | LOC<br>Exceeded |
|-----------------------------|----------|-----------------------------|-------------------|-----------------------------------------|-----------------|------------------|-----------------|
|                             |          | Factor Applied              | (mg               | a.i./L)                                 |                 |                  |                 |
| diatom)                     |          |                             |                   |                                         |                 |                  |                 |

EEC = Estimated Environmental Concentration. Calculated assuming a maximum application rate of 50 g a.i./ha to water bodies of 80 cm depth (fish) and 15 cm depth (amphibian).

 ${}^{2}RQ$  = Risk quotient. The RQ is calculated by dividing the EEC by the endpoint value (RQ = EEC/endpoint value).

 $^{3}LOC =$  Level of concern. The RQ is compared to the LOC. If the screening level risk quotient is below the level of concern, the risk is considered negligible and no further risk characterization is necessary.

#### Table 24 Further characterization of risk from tiafenacil to aquatic organisms exposed to tiafenacil from spray drift

| Organism Class              | Exposure         | Endpoint and<br>Uncertainty | Endpoint<br>Value | Spray Drift<br>EEC <sup>1</sup> | RQ <sup>2</sup> | LOC <sup>3</sup> | LOC<br>exceeded |
|-----------------------------|------------------|-----------------------------|-------------------|---------------------------------|-----------------|------------------|-----------------|
|                             |                  | <b>Factor Applied</b>       | (mg a             | a.i./L)                         |                 |                  | exceeded        |
| Freshwater species          | -                | -                           |                   |                                 |                 | -                | -               |
| Fish                        | Chronic          | NOEC (LDPH) <sup>4</sup>    | 0.00102           | 0.000375                        | 0.366           | 1                | No              |
| Aquatic-phase<br>amphibians | Chronic          | NOEC                        | 0.016             | 0.00200                         | 0.125           | 1                | No              |
| Vecesion alerate            | Acute<br>(339SC) | EC <sub>50</sub> /2         | 0.00279           | 0.000375                        | 0.135           | 1                | No              |
| Vascular plants             | Acute<br>(70WG)  | EC <sub>50</sub> /2         | 0.00279           | 0.000375                        | 0.134           | 1                | No              |
| Algae                       | Acute<br>(339SC) | EC <sub>50</sub> /2         | 0.00145           | 0.000375                        | 0.259           | 1                | No              |
| Algae                       | Acute<br>(70WG)  | EC <sub>50</sub> /2         | 0.0020            | 0.000375                        | 0.188           | 1                | No              |
| Marine species              |                  |                             |                   |                                 |                 |                  |                 |
| Algae                       | Acute            | EC <sub>50</sub> /2         | 0.0029            | 0.000375                        | 0.129           | 1                | No              |

<sup>1</sup>EEC = Estimated Environmental Concentration, which is calculated as 6% of the maximum application rate for spray drift exposure. Calculated assuming a maximum application rate of 50 g a.i./ha to water bodies of 80 cm depth (fish) and 15 cm depth (amphibian).

<sup>2</sup>RQ = Risk quotient. The RQ is calculated by dividing the EEC from spray drift by the endpoint value (RQ = EEC/endpoint value).

 $^{3}LOC =$  Level of concern. The RQ is compared to the LOC.

| Organism Class              | Exposure | Uncertainty<br>Factor Applied | Endpoint<br>value | Runoff<br>EEC <sup>1</sup> | RQ <sup>2</sup> | LOC <sup>3</sup> | LOC<br>exceeded |
|-----------------------------|----------|-------------------------------|-------------------|----------------------------|-----------------|------------------|-----------------|
|                             | -        | to Endpoint                   | (mg a.i           | l./L)                      |                 | -                | -               |
| Freshwater species          | 1        | 1                             | r                 | T                          | P               |                  | r               |
| Fish                        | Chronic  | NOEC (LDPH) <sup>4</sup>      | 0.00102           | 0.0039                     | 3.82            | 1                | Yes             |
| Aquatic-phase<br>amphibians | Chronic  | NOEC                          | 0.016             | 0.019                      | 1.19            | 1                | Yes             |
| Vascular plants             | Acute    | EC <sub>50</sub> /2           | 0.00287           | 0.0040                     | 1.39            | 1                | Yes             |
| Algae                       | Acute    | EC <sub>50</sub> /2           | 0.0019            | 0.0040                     | 2.11            | 1                | Yes             |
| Marine species              |          |                               |                   |                            |                 |                  |                 |
| Algae                       | Acute    | EC <sub>50</sub> /2           | 0.0029            | 0.0040                     | 1.38            | 1                | Yes             |

#### Table 25 Further characterization of risk from to aquatic organisms exposed to tiafenacil from runoff

<sup>1</sup>EEC = Estimated Environmental Concentration. Calculated assuming a maximum application rate of 50 g a.i./ha to water bodies of 80 cm depth (fish) and 15 cm depth (amphibian).

 $^{2}$ RQ = Risk quotient. The RQ is calculated by dividing the EEC from spray drift by the endpoint value (RQ = EEC/endpoint value).

 $^{3}LOC =$  Level of concern. The RQ is compared to the LOC.

| TSMP Track 1<br>Criteria                                                                                                           | TSMP Track                                                    | 1 Criterion value                                                  | Tiafenacil Endpoints                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Toxic or toxic<br>equivalent as<br>defined by the<br><i>Canadian</i><br><i>Environmental</i><br><i>Protection Act</i> <sup>1</sup> | Yes                                                           |                                                                    | Yes                                                                                                                                                                                        |
| Predominantly<br>anthropogenic <sup>2</sup>                                                                                        | Yes                                                           |                                                                    | Yes                                                                                                                                                                                        |
| Persistence <sup>3</sup>                                                                                                           | Soil                                                          | Half-life<br>≥ 182 days                                            | No: DT <sub>50</sub> 0.6 to 1 hour                                                                                                                                                         |
|                                                                                                                                    | Water                                                         | Half-life $\geq 182$ days                                          | No: DT <sub>50</sub> 3.16 to 7.79 days (whole system)                                                                                                                                      |
|                                                                                                                                    | Sediment                                                      | Half-life<br>≥ 365 days                                            |                                                                                                                                                                                            |
|                                                                                                                                    | Air                                                           | Half-life ≥ 2<br>days or<br>evidence of<br>long range<br>transport | Not determined. The AOPWIN<br>model is not suited for predicting<br>the atmospheric half-life of<br>tiafenacil given the large fraction<br>expected to be sorbed to airborne<br>particles. |
| Bioaccumulation <sup>4</sup>                                                                                                       | $\frac{\text{Log } K_{\text{ow}} \ge 5}{\text{BCF} \ge 5000}$ |                                                                    | No: 1.95 to 2<br>Not available                                                                                                                                                             |
| T (1 1 1 1 m                                                                                                                       | $BAF \ge 5000$                                                | ( 11 0                                                             | Not available                                                                                                                                                                              |
| Is the chemical a Ta<br>criteria must be me                                                                                        | t)?                                                           | <b>`</b>                                                           | No, does not meet TSMP Track 1<br>criteria.                                                                                                                                                |
| -                                                                                                                                  |                                                               | -                                                                  | ent for the purpose of initially<br>nent of the CEPA toxicity criteria may                                                                                                                 |

Table 26 Toxic Substances Management Policy Considerations - Comparison to TSMP Track 1 Criteria

be refined if required (in other words, all other TSMP criteria are met).

<sup>2</sup>The policy considers a substance "predominantly anthropogenic" if, based on expert judgement, its concentration in the environment medium is largely due to human activity, rather than to natural sources or releases.

<sup>3</sup> If the pesticide and/or the transformation product(s) meet one persistence criterion identified for one media (soil, water, sediment or air) than the criterion for persistence is considered to be met.

<sup>4</sup>Field data (for example, BAFs) are preferred over laboratory data (for example, BCFs) which, in turn, are preferred over chemical properties (for example,  $\log K_{ow}$ ).

| Items            | Label claims that are supported                                                                                       |
|------------------|-----------------------------------------------------------------------------------------------------------------------|
| Active           | All host crops and use sites: 25-50 g a.i./ha.                                                                        |
| application rate | Higher rates within the rate range may be used when there are dense                                                   |
| range            | and/or mature weed infestations.                                                                                      |
| Product          | Tiafenacil 70WG: 36 to 72 g product/ha.                                                                               |
| application rate | Tiafenacil 339SC: 74 to 148 mL product/ha.                                                                            |
| range            |                                                                                                                       |
| Adjuvant         | Methylated seed oil (MSO) must be added to the spray solution at $1\% \text{ v/v}$ .                                  |
| Efficacy claims  | Early-season suppression: redroot pigweed, tall waterhemp, common                                                     |
|                  | lamb's-quarters, prickly lettuce and wild buckwheat.                                                                  |
|                  | Early-season control: velvetleaf, kochia and Russian thistle.                                                         |
| Host crops, use  | Preplant and/or pre-emergence (to crop; postemergence to weeds), as a                                                 |
| sites and timing | broadcast spray, in field corn, soybean and spring wheat;                                                             |
|                  |                                                                                                                       |
|                  | postemergence (to crop and weed) as a directed spray in grape; and,                                                   |
|                  | postemergence (to weed) as a broadcast spray when a crop is not present                                               |
|                  | (in other words, non-crop areas and summerfallow).                                                                    |
| Application      | Apply in a minimum of 140 L water/ha using ground application                                                         |
| method           | equipment.                                                                                                            |
|                  | When targeting dense weed populations and/or larger weeds, use higher                                                 |
|                  | spray volumes.                                                                                                        |
| Sequential       | For field corn, soybean and spring wheat, a preplant application may be                                               |
| applications     | followed with a second application at the pre-emergence timing (2                                                     |
|                  | applications total; to a maximum of 50 g a.i./ha per year) provided the applications are made at least 2 weeks apart; |
|                  | applications are made at least 2 weeks apart;                                                                         |
|                  | for grapes, up to two applications may be made (to a maximum of 50 g                                                  |
|                  | a.i./ha per year) provided the applications are made at least 3 weeks apart;                                          |
|                  | and,                                                                                                                  |
|                  | uno,                                                                                                                  |
|                  | for summerfallow and non-crop areas, up to two applications may be                                                    |
|                  | made (to a maximum of 50 g a.i./ha per year) provided the applications                                                |
|                  | are made at least 2 weeks apart.                                                                                      |
| Rotational       | Field corn, soybeans and spring wheat: Immediate.                                                                     |
| restrictions     | All other rotational crops: 9 months.                                                                                 |

## Appendix II Supplemental Maximum Residue Limit Information— International Situation and Trade Implications

Tiafenacil is an active ingredient that is concurrently being registered in Canada and the United States for use on corn, wheat and soybeans as a preplant and/or pre-emergence application, and on grapes as a directed spray postemergence to the crop. In the United States only, tiafenacil is being registered for use on cotton and popcorn as preplant and pre-emergent application and cotton for postemergent desiccant use.

Once established, the American tolerances for tiafenacil will be listed in the <u>Electronic Code of</u> <u>Federal Regulations</u>, 40 CFR Part 180, by pesticide.

Currently, there are no Codex MRLs<sup>10</sup> listed for tiafenacil in or on any commodity on the Codex Alimentarius <u>Pesticide Index</u> website.

Table 1 compares the MRLs proposed for tiafenacil in Canada with corresponding American tolerances.

| Food Commodity                                                                   | Canadian MRL (ppm) | American Tolerance<br>(ppm) |
|----------------------------------------------------------------------------------|--------------------|-----------------------------|
| Fat, meat and meat<br>byproducts of goats,<br>hogs, horses, poultry<br>and sheep | 0.01               | Not established             |
| Milk                                                                             | 0.01               | Not established             |
| Eggs                                                                             | 0.01               | Not established             |

#### Table 1 Comparison of Canadian MRLs and American Tolerances (where different)

MRLs may vary from one country to another for a number of reasons, including differences in pesticide use patterns and the locations of the field crop trials used to generate residue chemistry data. For animal commodities, differences in MRLs can be due to different livestock feed items and practices.

<sup>&</sup>lt;sup>10</sup> The <u>Codex Alimentarius Commission</u> is an international organization under the auspices of the United Nations that develops international food standards, including MRLs.

# References

### A. List of Studies/Information Submitted by Registrant

# 1.0 Chemistry

| PMRA     | Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Document |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Number   | 2018 Drodwat Chamistry Studies for Technical Tisfuncil (DCC 2825)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2865993  | 2018, Product Chemistry Studies for Technical Tiafenacil (DCC-3825) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | Series 61 -, DACO: 2.11.1,2.11.2,2.11.3,2.11.4,2.13.2,IIA 1.8.1,IIA 1.8.2,IIA 2.5.2.1,IIA 2.5.2.3,IIA 2.5.2.4 CBI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2865994  | 2017, Product Chemistry Studies for Technical Tiafenacil (DCC-3825) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2003994  | Series 62 -, DACO: 2.12.1,2.12.2,2.13.1,2.13.3,IIA 1.11.1,IIA 1.11.2,IIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | 1.9.2,IIA 4.2.1 CBI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2865995  | 2010, Product Chemistry Studies for Technical Tiafenacil (DCC-3825) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2803993  | Series 63 -, DACO: 2.14.1,2.14.10,2.14.11,2.14.12,2.14.13, 2.14.14,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | 2.14.2,2.14.3,2.14.4,2.14.5,2.14.6,2.14.7,2.14.8,2.14.9,2.16,8.2.3.2,IIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | 2.14.2,2.14.3,2.14.4,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14.3,2.14,2.14,2.14,2.14,2.14,2.14,2.14,2.14 |
|          | 2.17.1,IIA 2.17.2,IIA 2.2,IIA 2.3.1,IIA 2.4.1,IIA 2.4.2,IIA 2.5.1.1,IIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | 2.6,IIA 2.7,IIA 2.8.1,IIA 2.9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2866123  | 2017, DCC-3825-M-36: Octanol/Water Partition Coefficient Test, DACO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2000125  | 2.14.11,IIA 2.8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2866124  | 2017, DCC3825-M-53 : Octanol/Water Partition Coefficient Test, DACO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2000121  | 2.14.11,IIA 2.8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2866143  | 2018, Part 2 Chemistry Requirements for Registration of a Technical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | Grade of Active Ingredient, DACO: 2.1,2.10,2.2,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | .3,2.3.1,2.4,2.5,2.6,2.7,2.8,2.9,IIA 1.1,IIA 1.2,IIA 1.3,IIA 1.4,IIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | 1.5.1,IIA 1.5.2,IIA 1.5.3,IIA 1.6,IIA 1.7 CBI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2866081  | 2016, Residue Analytical Method of Tiafenacil and Its Metabolites in Soil,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | DACO: 8.2.2.1,IIA 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2866082  | 2018, Independent Laboratory Validation of Dongbu Farm Hannong Co.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | Ltd.'s Residue Analytical Method for the Determination of Tiafenacil and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | Metabolites in Soil, DACO: 8.2.2.1, IIA 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2866083  | 2017, Validation of an analytical method for the determination of DCC-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | 3825 and its metabolites (M-01, M-12, M-13, M-36, M-53) in Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | water and Drinking water, DACO: 8.2.2.3, IIA 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2866084  | 2018, Independent Laboratory Validation of Method MFT03717E:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | "Validation of an analytical method for the determination of DCC-3825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | and its metabolites (M-01, M-12, M-13, M-36, M-53) in surface water and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | drinking water", DACO: 8.2.2.3, IIA 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2866085  | 2017, Validation of an analytical method for the determination of DCC-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | 3825 and its metabolites (M-01, M-12, M-13, M-36, M-53) in Sediment,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | DACO: 8.2.2.2,IIA 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| PMRA     | Reference                                                                                                                                                                                                                                                                                                           |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Document |                                                                                                                                                                                                                                                                                                                     |
| Number   |                                                                                                                                                                                                                                                                                                                     |
| 2866086  | 2017, Independent Laboratory Validation of Method MFT03817E:<br>"Validation of an analytical method for the determination of DCC-3825<br>and its metabolites (M-01, M-12, M-13, M-36, M-53) in Sediment",<br>DACO: 8.2.2.2, IIA 4.6                                                                                 |
| 2865771  | 2018, Tiafenacil 70WG Herbicide PART 3.1 Product Identification,<br>DACO: 3.1.1,3.1.2,3.1.3,3.1.4,IIIA 1.1,IIIA 1.2.1,IIIA 1.3                                                                                                                                                                                      |
| 2865772  | 2017, Product Chemistry Studies for Tiafenacil 70 WG - Series 61 -,<br>DACO: 3.2.1,3.2.2,3.2.3,IIIA 1.2.3,IIIA 1.4.5.1,IIIA 1.4.5.2 CBI                                                                                                                                                                             |
| 2865779  | 2017, Product Chemistry Studies for Tiafenacil (DCC-3825) 70WG<br>Herbicide - Series 63 -, DACO: 3.5.1,3.5.10,3.5.11,3.5.12,3.5.13, 3.5.14,<br>3.5.15,3.5.2,3.5.3,3.5.6,3.5.7,3.5.8,3.5.9,IIIA 2.1,IIIA 2.11,IIIA 2.12,IIIA<br>2.13,IIIA 2.2.1,IIIA 2.2.2,IIIA 2.3.2,IIIA 2.4.1,IIIA 2.5.2,IIIA 2.6.1,IIIA<br>2.7.5 |
| 2865781  | 2018, Product Chemistry Studies for Tiafenacil 70WG Herbicide - Series<br>62, DACO: 3.3.1,3.3.2,3.4.1,IIIA 1.4.2,IIIA 5.2.1 CBI                                                                                                                                                                                     |
| 2866782  | 2018, Tiafenacil 339SC Herbicide PART 3.1 Product Identification,<br>DACO: 3.1.1,3.1.2,3.1.3,3.1.4,IIIA 1.1,IIIA 1.2.1,IIIA 1.3                                                                                                                                                                                     |
| 2866783  | 2017, Product Chemistry Studies for Tiafenacil 339SC - Series 61 -,<br>DACO: 3.2.1,3.2.2,3.2.3 CBI                                                                                                                                                                                                                  |
| 2866784  | 2018, Product Chemistry Studies for Tiafenacil 339SC Herbicide (DCC-<br>3825 30%SC) - SERIES 62 -, DACO: 3.3.1,3.4,3.4.1 CBI                                                                                                                                                                                        |
| 2866785  | 2017, Product Chemistry Studies for Tiafenacil 339SC (DCC-3825<br>30%SC) Herbicide (Test material identified as DCC-3825 30%SC) -<br>Series 63 -, DACO:<br>3.5.1,3.5.10,3.5.11,3.5.12,3.5.13,3.5.14,3.5.15,3.5.2,3.5.3,<br>3.5.6,3.5.7,3.5.8,3.5.9                                                                  |

#### 2.0 Human and Animal Health

| <b>PMRA Document</b> | Reference                                                             |
|----------------------|-----------------------------------------------------------------------|
| Number               |                                                                       |
| 2865960              | 2017, DCC-3825 70 WG (DCC-3825 70%WG): Single Oral Dose Toxicity      |
|                      | Study in Sprague-Dawley Rats, DACO: 4.6.1, IIIA 7.1.1                 |
| 2865961              | 2017, DCC-3825 70 WG (DCC-3825 70%WG): Single Dermal Dose             |
|                      | Toxicity Study in Sprague-Dawley Rats Amended Final Report, DACO:     |
|                      | 4.6.2, IIIA 7.1.2                                                     |
| 2865962              | 2017, DCC-3825 70% WG: Acute Inhalation Toxicity Study in Sprague-    |
|                      | Dawley Rats, DACO: 4.6.3, IIIA 7.1.3                                  |
| 2865963              | 2016, DCC-3825 70 WG (DCC-3825 70%WG): Acute Dermal                   |
|                      | Irritation/Corrosion Study in New Zealand White Rabbits, DACO: 4.6.5, |
|                      | IIIA 7.1.4                                                            |

| PMRA Document<br>Number | Reference                                                                                                                               |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 2865964                 | 2016, DCC-3825 70 WG (DCC-3825 70%WG): Acute Eye<br>Irritation/Corrosion Study in New Zealand White Rabbits, DACO: 4.6.4,<br>IIIA 7.1.5 |
| 2865965                 | 2017, A Skin Sensitisation Test of DCC-3825 70% WG Using the Local Lymph Node Assay in Mice, DACO: 4.6.6, IIIA 7.1.6                    |
| 2865996                 | 2017, DCC 3825: Acute Oral Toxicity to the Rat (Acute Toxic Class<br>Method) Amended Final Report, DACO: 4.2.1, IIA 5.2.1               |
| 2865997                 | 2017, DCC 3825: Dermal Toxicity to the Rat Amended Final Report, DACO: 4.2.2, IIA 5.2.2                                                 |
| 2865998                 | 2017, DCC-3825: Acute Inhalation Toxicity Study in Wistar Rats Amended<br>Final Report, DACO: 4.2.3, IIA 5.2.3                          |
| 2865999                 | 2017, DCC-3825: Eye Irritation to the Rabbit Amended Final Report, DACO: 4.2.4, IIA 5.2.5                                               |
| 2866000                 | 2017, DCC-3825: Skin Irritation to the Rabbit Amended Final Report, DACO: 4.2.5, IIA 5.2.4                                              |
| 2866001                 | 2017, DCC-3825: Contact Hypersensitivity in Albino Guinea Pigs,<br>Maximization-Test Amended Final Report, DACO: 4.2.6, IIA 5.2.6       |
| 2866002                 | 2017, A Skin Sensitisation Test of DCC-3825 Using the Local Lymph<br>Node Assay in Mice, DACO: 4.2.6, IIA 5.2.6                         |
| 2866003                 | 2016, Acute Neurotoxicity Study of DCC-3825 by Oral (Gavage)<br>Administration in Rats, DACO: 4.5.12, IIA 5.7.1                         |
| 2866004                 | 2016, A 14 Day Dose Range Finding Study of DCC-3825 by Oral (Dietary)<br>Administration in Rats, DACO: 4.3.3, IIA 5.3.1                 |
| 2866005                 | 2016, A 14 Day Dose Range Finding Study of DCC-3825 by Oral (Dietary)<br>Administration in Mice, DACO: 4.3.3, IIA 5.3.1                 |
| 2866006                 | 2016, A 28 Day Toxicity Study of DCC-3825 by Oral (Dietary)<br>Administration in Rats, DACO: 4.3.3, IIA 5.3.1                           |
| 2866007                 | 2016, A 28 Day Toxicity Study of DCC-3825 by Oral (Dietary)<br>Administration in Mice, DACO: 4.3.3, IIA 5.3.1                           |
| 2866008                 | 2017, DCC-3825: 28-Day Toxicity Study by Oral Capsule Administration to Beagle Dogs Amended Final Report, DACO: 4.3.3, IIA 5.3.1        |
| 2866009                 | 2016, A 90 Day Toxicity Study of DCC-3825 by Oral (Dietary)<br>Administration in Rats, DACO: 4.3.1, IIA 5.3.2                           |
| 2866010                 | 2016, A 90 Day Toxicity Study of DCC-3825 by Oral (Dietary)<br>Administration in Mice, DACO: 4.3.1, IIA 5.3.2                           |
| 2866011                 | 2016, A 90 Day Toxicity Study of DCC-3825 by Oral (Dietary)<br>Administration in Mice, DACO: 4.3.1, IIA 5.3.2                           |
| 2866012                 | 2016, DCC-3825: 90 Day Toxicity Study by Oral Capsule Administration<br>to Beagle Dogs Amended Final Report, DACO: 4.3.2, IIA 5.3.3     |
| 2866013                 | 2016, A 28 Day Toxicity Study of DCC-3825 by Dermal Administration in<br>Rats, DACO: 4.3.5, IIA 5.3.7                                   |
| 2866014                 | 2018, Waiver Request for a 90-Day Inhalation Toxicity Study with<br>Technical Tiafenacil, DACO: 4.3.6, IIA 5.3.6                        |

| PMRA Document<br>Number | Reference                                                                                                                                                                                         |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2866015                 | 2018, A 90 Day Neurotoxicity Study of DCC-3825 by Oral (Dietary)<br>Administration in Rats Report Amendment 1, DACO: 4.5.13, IIA 5.7.4                                                            |
| 2866016                 | 2017, A 104 Week Carcinogenicity Study with a Combined 52 Week<br>Toxicity Study of DCC-3825 by Dietary Administration in Rats Report<br>Amendment 1, DACO: 4.4.1,4.4.2,4.4, IIA 5.5.1, IIA 5.5.2 |
| 2866017                 | 2016, DCC-3825: 52 Week Toxicity Study by Oral Capsule Administration to Beagle Dogs, DACO: 4.3.2, IIA 5.3.4                                                                                      |
| 2866018                 | 2016, DCC-3825: Carcinogenicity Study by Dietary Administration to the CD-1 Mouse for 78 Weeks, DACO: 4.4.3, IIA 5.5.3                                                                            |
| 2866019                 | 2016, Preliminary Developmental Toxicity Study of DCC-3825 by Oral<br>Gavage Administration in Rats, DACO: 4.5.2, IIA 5.6.10                                                                      |
| 2866020                 | 2016, Preliminary Development Toxicity Study of DCC-3825 by Oral<br>(Gavage) Administration in the Rabbit, DACO: 4.5.3, IIA 5.6.11                                                                |
| 2866021                 | 2016, A Developmental Toxicity Study of DCC-3825 by Oral Gavage<br>Administration in Rats, DACO: 4.5.2, IIA 5.6.10                                                                                |
| 2866022                 | 2016, A Developmental Toxicity Study of DCC-3825 by Oral Gavage in<br>Rabbits Report Amendment 1, DACO: 4.5.3, IIA 5.6.11                                                                         |
| 2866023                 | 2016, Tiafenacil TGAI: Rat One-Generation Preliminary Reproduction<br>Study, DACO: 4.5.1, IIA 5.6.1                                                                                               |
| 2866024                 | 2016, Tiafenacil TGAI: Reproduction Toxicity Study in Rats, DACO: 4.5.1, IIA 5.6.1                                                                                                                |
| 2866025                 | 2017, DCC-3825: Bacterial Reverse Mutation Test Amended Final Report, DACO: 4.5.4, IIA 5.4.1                                                                                                      |
| 2866026                 | 2017, DCC-3825: In Vitro Mutation Test Using Mouse Lymphoma<br>L5178Y Cells Amended Final Report, DACO: 4.5.5, IIA 5.4.2                                                                          |
| 2866027                 | 2017, DCC-3825: In Vitro Mammalian Chromosome Aberration Test In<br>Human Lymphocytes Amended Final Report, DACO: 4.5.6, IIA 5.4.3                                                                |
| 2866028                 | 2017, DCC-3825: Mouse In Vivo Micronucleus Test Amended Final<br>Report, DACO: 4.5.7, IIA 5.4.4                                                                                                   |
| 2866029                 | 2016, DCC-3825: The Metabolism of Two Radiolabelled Forms of [14C]-<br>DCC-3825 in the Rat, DACO: 4.5.9, IIA 5.1.1                                                                                |
| 2866030                 | 2017, A 28 Day Oral (Dietary) Immunotoxicity Study of DCC-3825 in<br>Mice, DACO: 4.2.9,4.3.8,4.4.5,4.5.8,4.8, IIA 5.10                                                                            |
| 2866031                 | 2017, DCC-3825-M-36: Acute Oral Toxicity Study in Sprague-Dawley<br>Rats, DACO: 4.2.1, IIA 5.2.1                                                                                                  |
| 2866032                 | 2017, DCC-3825-M-53: Acute Oral Toxicity Study in Sprague-Dawley<br>Rats, DACO: 4.2.1, IIA 5.2.1                                                                                                  |
| 2866033                 | 2017, Bacterial Reverse Mutation Study of DCC-3825 M-36, DACO: 4.8, IIA 5.8                                                                                                                       |
| 2866034                 | 2017, Bacterial Reverse Mutation Study of DCC-3825 M-53, DACO: 4.8, IIA 5.8                                                                                                                       |

| PMRA Document<br>Number | Reference                                                                                                                                                                             |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2866131                 | 2017, Validation of Methodologies for the Formulation and Analysis of DCC-3825 in Oral (Gavage) Dosing Formulations, DACO: 4.5.12,4.5.2, IIA 5.6.10, IIA 5.7.1                        |
| 2866132                 | 2015, Validation of Methodologies for the Formulation and Analysis of DCC-3825 in Rat and Mouse No. 1 Dietary Formulations, DACO: 4.3.1,4.3.3, IIA 5.3.1, IIA 5.3.2                   |
| 2866786                 | 2016, DCC-3825 30%SC: Acute Oral Toxicity Study in Sprague-Dawley<br>Rats, DACO: 4.6.1                                                                                                |
| 2866787                 | 2016, DCC-3825 30% SC: Single Dermal Dose Toxicity Study in Sprague-<br>Dawley Rats, DACO: 4.6.2                                                                                      |
| 2866788                 | 2017, DCC-3825 30%SC (liquid): Acute Inhalation Toxicity (Nose only)<br>Study in the Rat, DACO: 4.6.3                                                                                 |
| 2866789                 | 2017, DCC-3825 30% SC: Acute Eye Irritation/Corrosion Study in New Zealand White Rabbits, DACO: 4.6.4                                                                                 |
| 2866790                 | 2017, DCC-3825 30% SC: Acute Dermal Irritation/Corrosion Study in New Zealand White Rabbits, DACO: 4.6.5                                                                              |
| 2866791                 | 2017, Skin sensitization study of DCC-3825 30% SC in mouse (BrdU-<br>ELISA), DACO: 4.6.6                                                                                              |
| 2988672                 | 2017, Amended Final Report DCC-3825: Modified Irwin Study in Male<br>Rats (Single Oral Administration), DACO: 4.5                                                                     |
| 2988673                 | 2017, Amended Final DCC-3825: Effects on hERG Tail Current Recorded from Stably Transfected HEK-293 Cells, DACO: 4.5                                                                  |
| 2988674                 | 2017, Amended Final DCC-3825: Telemetric Evaluation of Cardiovascular Effects in the Conscious Dog (Oral Capsule Administration), DACO: 4.5                                           |
| 2988675                 | 2017, Amended Final DCC-3825: Evaluation of Respiratory Parameters in the Conscious Rat using Whole Body Bias Flow Plethysmography (Single Oral Administration), DACO: 4.5            |
| 2988676                 | 2017, Neutral Red Uptake Phototoxicity Assay of DCC-3825 in BALB/c<br>3T3 Mouse Fibroblasts, DACO: 4.5                                                                                |
| 3008505                 | 2019, Expert Statement Charles River Study No. 523210 and 525328, DACO: 4.5.12,4.5.13                                                                                                 |
| 3008506                 | 2017, Validation of the Functional Observation Battery in Rats, DACO: 4.5.12,4.5.13                                                                                                   |
| 3008507                 | 2005, "Acrylamide/Trimethyltin Chloride Neurotoxicity Studies in Rats:<br>Revalidation of Methodology (2004), DACO: 4.5.12,4.5.13                                                     |
| 3080620                 | 2020, Historical Histopathology Data 78-week studies CD-1 Mice Selected neoplastic findings Studies starting between 2001 and 2016, DACO: 4.4.3                                       |
| 3080621                 | 2020, IET Historical Control Data on tumor incidence in control ICR<br>(Crj:CD1) mice for Carcinogenicity Study, DACO: 4.4.3                                                          |
| 3080622                 | 2017, Incidence of Spontaneous Tumors in Control ICR (CD-1) Mice, in<br>New Toxicologic Histopathology, Japanese Society of Toxicologic<br>Pathology (ed), 731-735, 2017, DACO: 4.4.3 |

| PMRA Document<br>Number | Reference                                                                                                                                                                                                                                                                                |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3085833                 | 2020, HCD (No.496140: Developmental study of rabbit with DCC-3825) - 2007 to 2012, DACO: 4.5.3                                                                                                                                                                                           |
| 3086549                 | 2020, HCD (No.496140: Developmental study of rabbit with DCC-3825) - 2007 to 2012, DACO: 4.5.3                                                                                                                                                                                           |
| 3086550                 | 2020, Historical control data on viability index in Crl:CD(SD) rats from IET reproduction toxicity studies, DACO: 4.5.1                                                                                                                                                                  |
| 3089462                 | 2020, CRL Expert Statement - Study No. 496135, DACO: 4.5.2                                                                                                                                                                                                                               |
| 3150576                 | 2020, Inhibition of PPO activity of Human and Mouse by Tiafenacil and Saflufenacil, DACO: 4.8                                                                                                                                                                                            |
| 3129071                 | 2020, Inhibition of PPO activity of Human, Rabbit, Rat and Mouse by Tiafenacil, DACO: 4.8                                                                                                                                                                                                |
| 3129070                 | 2018, DCC-3825: A Two-Week Repeated Dose Study for Identification of The Mechanism of Hepatocyte Hypertrophy in ICR Mouse, DACO: 4.8                                                                                                                                                     |
| 3141070                 | 2020, Tiafenacil ADI White Paper for PMRA, DACO: 4.1                                                                                                                                                                                                                                     |
| 3129069                 | 2018, Opinion Concerning Pigmented Kupffer cells reported in a 78-weeks<br>mouse dietary carcinogenicity study with Tiafenacil (Envigo Project<br>Identity TBF0025, DACO: 4.4, 4.8                                                                                                       |
| 2865782                 | 2018, Validation of Extraction Efficiency for the DCC-3825 Crop Residue<br>Method by Comparison to a Method Used to Extract Radioactive Residues<br>from Primary and Rotational Crops, DACO: 7.2.1, 7.2.2, 7.2.3, 7.2.4, 7.2.5,<br>IIIA 5.3.1                                            |
| 2865969                 | 2018, Freezer Storage Stability of Tiafenacil and Metabolites in Grape,<br>Raisin, Grape Juice, Soybean Seed, Wheat Forage, Wheat Straw and Wheat<br>Grain, DACO: 7.3, IIIA 8.1.1                                                                                                        |
| 2865970                 | 2017, Magnitude and Decline of the Residues of Tiafenacil and its<br>Metabolites in/on Corn Raw Agricultural and Processed Commodities<br>Following One Pre-plant or Pre-emergence Application of DCC-3825<br>70WG Herbicide (2015), DACO: 7.4.1,7.4.2,7.4.6,9.9,IIA 8.5.1,IIIA 8.3.1    |
| 2865971                 | 2017, Magnitude and Decline of the Residues of Tiafenacil and its<br>Metabolites in/on Soybean Raw Agricultural and Processed Commodities<br>Following One Pre-plant or Pre-emergence Application of DCC-3825<br>70WG Herbicide (2015), DACO: 7.4.1,7.4.2,7.4.6,9.9,IIA 8.5.1,IIIA 8.3.1 |
| 2865972                 | 2017, Magnitude and Decline of the Residues of Tiafenacil and its<br>Metabolites in/on Wheat Raw Agricultural and Processed Commodities<br>Following One Pre-plant or Pre-emergence Application of DCC-3825<br>70WG Herbicide (2015), DACO: 7.4.1,7.4.2,7.4.6,9.9,IIA 8.5.1,IIIA 8.3.1   |
| 2865973                 | 2017, Magnitude and Decline of the Residues of Tiafenacil and its<br>Metabolites in/on Grape Raw Agricultural and Processed Commodities<br>Following a Single Directed Application of DCC-3825 70WG Herbicide<br>(2015), DACO: 7.4.1,7.4.2,7.4.6,9.9,IIA 8.5.1,IIIA 8.3.1                |
| 2865974                 | 2017, Uptake and Metabolism of [ <sup>14</sup> C]-DCC-3825 in Confined Rotational<br>Crops, DACO: 7.4.3,7.4.4,IIIA 8.6                                                                                                                                                                   |

| PMRA Document | Reference                                                                          |
|---------------|------------------------------------------------------------------------------------|
| Number        |                                                                                    |
| 2865975       | 2018, Magnitude of the Residue of DCC-3825 in/on Wheat as a Rotational             |
|               | Crop, DACO: 7.4.3,7.4.4,9.9,IIA 8.5.1,IIIA 8.6                                     |
| 2866113       | 2016, The Metabolism of [ <sup>14</sup> C]-DCC-3825 in Maize, DACO: 6.3, IIA 6.2.1 |
| 2866114       | 2016, The Metabolism of [ <sup>14</sup> C]-DCC-3825 in Potatoes Following a Pre-   |
|               | Emergent Treatment, DACO: 6.3, IIA 6.2.1                                           |
| 2866115       | 2016, The Metabolism of [ <sup>14</sup> C]-DCC-3825 in Mandarin Trees, DACO:       |
|               | 6.3,IIA 6.2.1                                                                      |
| 2866119       | 2017, The Metabolism of [ <sup>14</sup> C]-DCC-3825 in the Laying Hen, DACO:       |
|               | 6.2,IIA 6.2.2                                                                      |
| 2866120       | 2017, The Metabolism of [ <sup>14</sup> C]-DCC-3825 in the Lactating Goat, DACO:   |
|               | 6.2,IIA 6.2.3                                                                      |
| 2866121       | 2017, Method Validation for the Determination of DCC-3825 and                      |
|               | Metabolites in Bovine Muscle, Fat, Liver, Kidney, Milk, and Hen Eggs               |
|               | Amended Report, DACO: 7.2.1,7.2.4,8.2.2.4,IIA 4.3,IIA 4.8                          |
| 2866122       | 2017, Independent Laboratory Validation (ILV) of the Determination of              |
|               | Residues of DCC-3825 and its Metabolites in Bovine Liver, Kidney,                  |
|               | Muscle, Fat, Milk and Poultry Eggs, DACO: 7.2.1,7.2.4,8.2.2.4,IIA 4.3,IIA          |
|               | 4.8                                                                                |
| 2886815       | 2018, Validation of Extraction Efficiency for the DCC-3825 Livestock               |
|               | Residue Method by Comparison to a Method Used to Extract Radioactive               |
|               | Residues from Livestock Matrices, DACO: 7.2.3B                                     |
| 2886816       | 2018, Independent Laboratory Validation of Ishihara Sangyo Kaisha (ISK)            |
|               | Residue Analytical Method for the Determination of DCC-3825 and Its                |
|               | Metabolites in Apple, Grape and Soybean (Document Number:                          |
|               | IRA15016N), DACO: 171 - 4a,171 - 4c,171 - 4m,171-4a-4b,171-4c-                     |
|               | 4d,7.2.3A,860.1300,860.1340,860.1360,IIA 4.2.6,IIIA 5.3.1,b,d                      |
| 2996931       | 2018, Freezer Storage Stability of Tiafenacil and Metabolites in Grape,            |
|               | Raisin, Grape Juice, Soybean Seed, Wheat Forage, Wheat Straw and Wheat             |
|               | Grain, DACO: 7.3                                                                   |
| 3040405       | 2019, Analytical Method for the Determination of Tiafenacil and its                |
|               | Metabolites in Crops by LC-MS/MS, DACO: 7.2                                        |
| 3040422       | 2019, Analytical Method for the Determination of Tiafenacil and its                |
|               | Metabolites in Crops by LC-MS/MS, DACO: 7.2                                        |

## 3.0 Environment

| PMRA Document | Reference                                                      |
|---------------|----------------------------------------------------------------|
| Number        |                                                                |
| 2865773       | 2017, DCC-3825 70 WG (DCC-3825 70% WG): Acute Toxicity Test in |
|               | Common carp (Cyprinus carpio), DACO: 9.5.4, IIIA 10.2.2.1      |
| 2865774       | 2017, DCC-3825 70 WG (DCC-3825 70% WG): Acute Toxicity Test in |
|               | Daphnia magna, DACO: 9.3.2,IIIA 10.2.2.2                       |

| PMRA Document<br>Number | Reference                                                                                                                                                    |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2865775                 | 2017, DCC-3825 70%WG: A 96-Hour Toxicity Test With The Freshwater Alga ( <i>Pseudokirchneriella subcapitata</i> ), DACO: 9.8.2,IIIA 10.2.2.3                 |
| 2865776                 | 2017, DCC-3825 70 WG: Seedling Emergence and Seedling Growth Test<br>Amended Final Report, DACO: 9.8.4,IIIA 10.8.1.1                                         |
| 2865777                 | 2017, DCC-3825 70 WG: Vegetative Vigor, DACO: 9.8.4,IIIA 10.8.1.2                                                                                            |
| 2865778                 | 2017, DCC-3825 70%WG: A 7-Day Static-Renewal Toxicity Test With<br>Duckweed ( <i>Lemna gibba</i> G3) Amended Report, DACO: 9.8.5,IIIA<br>10.8.2.1            |
| 2865976                 | 2017, Terrestrial Field Dissipation of Tiafenacil (DCC-3825) in Kerman,<br>California, USA-2015, DACO: 8.3.2.1,8.3.2.2,8.3.2.3,IIIA 9.2.1                    |
| 2865977                 | 2017, Terrestrial Field Dissipation of Tiafenacil (DCC-3825) in Ephrata,<br>Washington, USA-2015, DACO: 8.3.2.1,8.3.2.2,8.3.2.3,IIIA 9.2.1                   |
| 2865978                 | 2018, Terrestrial Field Dissipation of Tiafenacil (DCC-3825) in<br>Northwood, North Dakota, USA - 2015, DACO: 8.3.2.1, 8.3.2.2, 8.3.2.3,<br>IIIA 9.2.1       |
| 2865979                 | 2018, Terrestrial Field Dissipation of Tiafenacil (DCC-3825) in Seven<br>Springs, North Carolina, USA - 2015, DACO: 8.3.2.1, 8.3.2.2, 8.3.2.3, IIIA<br>9.2.1 |
| 2866035                 | 2016, DCC-3825: An Acute Oral Toxicity Study With The Zebra Finch, DACO: 9.6.2.3, IIA 8.1.1                                                                  |
| 2866036                 | 2017, DCC-3825: An Acute Oral Toxicity Studywith The Northern<br>Bobwhite Amended Report, DACO: 9.6.2.1,IIA 8.1.1                                            |
| 2866037                 | 2017, DCC-3825: An Acute Oral Toxicity Studywith The Mallard<br>Amended Report, DACO: 9.6.2.2, IIA 8.1.1                                                     |
| 2866038                 | 2017, DCC-3825: A Dietary LC50 Study With The Northern Bobwhite<br>Amended Report, DACO: 9.6.2.4, IIA 8.1.2                                                  |
| 2866039                 | 2017, DCC-3825: A Dietary LC50 Study With The Mallard Amended<br>Report, DACO: 9.6.2.5,IIA 8.1.2                                                             |
| 2866040                 | 2017, DCC-3825: Assessment To Determine The Effects On Reproduction<br>In The Bobwhite Quail Amended Final Report, DACO: 9.6.3.1,IIA 8.1.4                   |
| 2866041                 | 2016, DCC-3825: A Reproduction Study With The Mallard, DACO: 9.6.3.2, IIA 8.1.4                                                                              |
| 2866042                 | 2010, 96-Hour Acute Toxicity Study In Rainbow Trout With DCC-3825<br>(Static), DACO: 9.5.2.1,IIA 8.2.1.1                                                     |
| 2866043                 | 2017, DCC-3825 TGAI: Acute Toxicity to <i>Pimephales promelas</i> (fathead minnow) in a 96-hour Semi Static Test, DACO: 9.5.2.2, IIA 8.2.1.2                 |
| 2866044                 | 2010, 96-Hour Acute Toxicity Study In Carp With DCC-3825 (Static),<br>DACO: 9.5.2.3,IIA 8.2.1.2                                                              |
| 2866045                 | 2010, Acute Toxicity Study In <i>Daphnia magna</i> With DCC-3825 (Static), DACO: 9.3.2,IIA 8.3.1.1                                                           |
| 2866046                 | 2017, DCC-3825-M-36: Acute Toxicity Test in <i>Daphnia magna</i> , DACO: 9.3.2,IIA 8.3.1.1                                                                   |

| PMRA Document<br>Number | Reference                                                                                                                                                             |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2866047                 | 2015, DCC-3825: A 96-Hour Shell Deposition Test With The Eastern<br>Oyster ( <i>Crassostrea virginica</i> ), DACO: 9.4.4,IIA 8.11.1                                   |
| 2866048                 | 2015, DCC-3825: DCC-3825: A 96-Hour Flow-Through Acute Toxicity<br>Test With The Saltwater Mysid ( <i>Americamysis bahia</i> ), DACO:<br>9.4.2,9.4.3,9.4.4,IIA 8.11.1 |
| 2866049                 | 2015, DCC-3825: A 96-Hour Static-Renewal Acute Toxicity Test With<br>The Sheepshead Minnow ( <i>Cyprinodon variegatus</i> ), DACO: 9.5.2.4                            |
| 2866050                 | 2017, DCC-3825 TGAI: An Early Life-Stage Toxicity Test With The Fathead Minnow ( <i>Pimephales promelas</i> ), DACO: 9.5.3.1,IIA 8.2.4                                |
| 2866051                 | 2017, DCC-3825 TGAI: An Early Life-Stage Toxicity Test With The Sheepshead Minnow ( <i>Cyprinodon variegatus</i> ), DACO: 9.5.3.1,IIA 8.2.4                           |
| 2866052                 | 2017, Analytical Method Verification For The Determination Of DCC-<br>3825 In Sediment, DACO: 9.9,IIA 8.5.1                                                           |
| 2866053                 | 2018, Waiver Request for a Fish Bioaccumulation Study with Tiafenacil, DACO: 9.5.6, IIA 8.2.6.1                                                                       |
| 2866054                 | 2017, DCC-3825: A 10-Day Acute Toxicity Test With The Freshwater<br>Amphipod ( <i>Hyalella azteca</i> ) Using Spiked Whole Sediment, DACO:<br>9.9,IIA 8.5.1           |
| 2866055                 | 2017, DCC-3825: A 10-Day Toxicity Test With The Saltwater Amphipod<br>( <i>Leptocheirus plumulosus</i> ) Using Spiked Whole Sediment, DACO: 9.9,IIA<br>8.5.1          |
| 2866056                 | 2017, DCC-3825: A 10-Day Acute Toxicity Test With The Midge<br>( <i>Chironomus dilutus</i> ) Using Spiked Whole Sediment, DACO: 9.9, IIA 8.5.1                        |
| 2866057                 | 2010, Effects of DCC-3825 (Acute Contact and Oral) on Honey Bees ( <i>Apis mellifera</i> L.) in the Laboratory, DACO: 9.2.4.1,9.2.4.2,IIA 8.7.1,IIA 8.7.2             |
| 2866058                 | 2017, DCC-3825 TGAI: Chronic Oral Toxicity Test on the Honey Bee<br>( <i>Apis mellifera</i> L.) in the Laboratory, DACO: 9.2.4.4, IIA 8.16.1                          |
| 2866059                 | 2017, DCC-3825 TGAI: Honey Bee ( <i>Apis mellifera</i> L.) Larval Toxicity<br>Test, Single Exposure, DACO: 9.2.4.3,IIA 8.7.4                                          |
| 2866060                 | 2017, Analytical Method Verification for the Determination Of DCC-3825<br>in Larval Diet, DACO: 9.2.4.3,IIA 8.7.4                                                     |
| 2866061                 | 2017, DCC-3825: A Chronic Larval Toxicity Study With the Honey Bee ( <i>Apis mellifera</i> ), DACO: 9.2.4.3,IIA 8.7.4                                                 |
| 2866062                 | 2015, DCC-3825: A 7-Day Static-Renewal Toxicity Test With Duckweed ( <i>Lemna gibba</i> G3), DACO: 9.8.5,IIA 8.6                                                      |
| 2866063                 | 2017, M-36: A 7-Day Static-Renewal Toxicity Test With Duckweed ( <i>Lemna gibba</i> G3), DACO: 9.8.5,IIA 8.6                                                          |
| 2866064                 | 2017, M-53: A 7-Day Static-Renewal Toxicity Test With Duckweed ( <i>Lemna gibba</i> G3), DACO: 9.8.5,IIA 8.6                                                          |
| 2866065                 | 2016, DCC-3825: A 96-Hour Toxicity Test With The Freshwater Alga<br>( <i>Pseudokirchneriella subcapitata</i> ), DACO: 9.8.2, IIA 8.4                                  |
| 2866066                 | 2017, M-36: A 96-Hour Toxicity Test With The Freshwater Alga ( <i>Pseudokirchneriella subcapitata</i> ), DACO: 9.8.2,IIA 8.4                                          |

| PMRA Document<br>Number | Reference                                                                                                                                                                                                  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2866067                 | 2017, M-53: A 96-Hour Toxicity Test With The Freshwater Alga ( <i>Pseudokirchneriella subcapitata</i> ), DACO: 9.8.2,IIA 8.4                                                                               |
| 2866068                 | 2015, DCC-3825: Toxicity to <i>Navicula pelliculosa</i> in a 96-Hour Algal<br>Growth Inhibition Test, DACO: 9.8.2,IIA 8.4                                                                                  |
| 2866069                 | 2015, DCC-3825: A 96-Hour Toxicity Test With The Marine Diatom ( <i>Skeletonema costatum</i> ), DACO: 9.8.2,9.8.3,IIA 8.4                                                                                  |
| 2866070                 | 2015, DCC-3825: Toxicity to <i>Anabaena flos-aquae</i> in a 96-Hour Algal Growth Inhibition Test, DACO: 9.8.2,IIA 8.4                                                                                      |
| 2866071                 | 2017, DCC-3825: Acute Toxicity (LC50) to the Earthworm, DACO: 9.2.3.1,IIA 8.9.1                                                                                                                            |
| 2866072                 | 2016, DCC-3825: To Determine the Effects on Reproduction and Growth of the Earthworm <i>Eisenia fetoda</i> , DACO: 9.2.3.1, IIA 8.9.2                                                                      |
| 2866073                 | 2016, DCC-3825 TGAI: Effects on Reproduction of the Predatory Mite <i>Hypoaspis aculeifer</i> in Artificial Soil with 5% Peat, DACO: 9.2.7,IIA 8.8.2.5                                                     |
| 2866074                 | 2016, DCC-3825 TGAI: Effects on Reproduction of the <i>Collembola</i><br><i>Folsomia candida</i> in Artificial Soil with 5% Peat, DACO: 9.2.7, IIA 8.8.2.5                                                 |
| 2866075                 | 2017, DCC-3825 5% ME Acute Toxicity to <i>Typhlodromus pyri</i> in the Laboratory Amended Final Report, DACO: 9.2.5, IIA 8.8.1.2                                                                           |
| 2866076                 | 2017, DCC-3825 5% ME Acute Toxicity to <i>Aphidius rhopalosiphi</i> in the Laboratory Amended Final Report, DACO: 9.2.6,IIA 8.8.1.1                                                                        |
| 2866077                 | 2016, DCC-3825 5% ME: Effects on the Predatory Mite <i>Typhlodromus pyri</i> , Extended Laboratory Study - Dose Response Test -, DACO: 9.2.5,IIA 8.8.2.2                                                   |
| 2866078                 | 2017, DCC-3825 5% ME: Effects on the Parasitoid <i>Aphidius rhopalosiphi</i> ,<br>Extended Laboratory Study - Dose Response Test DACO: 9.2.6, IIA 8.8.2.1                                                  |
| 2866079                 | 2017, DCC-3825 5% ME: Effects on the Reproduction of Rove Beetles<br><i>Aleochara bilineata</i> - Extended Laboratory Study Dose Response Test<br>Includes Report Amendment No. 1, DACO: 9.2.5,IIA 8.8.2.3 |
| 2866080                 | 2017, DCC-3825 5% ME: Effects on the Ladybird Beetle <i>Coccinella</i><br><i>septempunctata</i> , Extended Laboratory Study - Dose Response Test -,<br>DACO: 9.2.5,IIA 8.8.2.4                             |
| 2866081                 | 2016, Residue Analytical Method of Tiafenacil and Its Metabolites in Soil, DACO: 8.2.2.1,IIA 4.4                                                                                                           |
| 2866082                 | 2018, Independent Laboratory Validation of Dongbu Farm Hannong Co.,<br>Ltd Residue Analytical Method for the Determination of Tiafenacil and<br>Metabolites in Soil, DACO: 8.2.2.1,IIA 4.4                 |
| 2866083                 | 2017, Validation of an analytical method for the determination of DCC-<br>3825 and its metabolites (M-01, M-12, M-13, M-36, M-53) in Surface<br>water and Drinking water, DACO: 8.2.2.3,IIA 4.5            |

| PMRA Document<br>Number | Reference                                                                                                                                                                                                                                                                                       |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2866084                 | 2018, Independent Laboratory Validation of Method MFT03717E:<br>Validation of an analytical method for the determination of DCC-3825 and<br>its metabolites (M-01, M-12, M-13, M-36, M-53) in surface water and<br>drinking water. DACO: 8.2.2.3,IIA 4.5                                        |
| 2866085                 | 2017, Validation of an analytical method for the determination of DCC-<br>3825 and its metabolites (M-01, M-12, M-13, M-36, M-53) in Sediment,<br>DACO: 8.2.2.2,IIA 4.6                                                                                                                         |
| 2866086                 | 2017, Independent Laboratory Validation of Method MFT03817E:<br>Validation of an analytical method for the determination of DCC-3825 and<br>its metabolites (M-01, M-12, M-13, M-36, M-53) in Sediment, DACO:<br>8.2.2.2,IIA 4.6                                                                |
| 2866087                 | 2017, Further Extraction of Residues from the Aerobic Soil, Anaerobic<br>Soil, Aerobic Aquatic Sediment and Anaerobic Aquatic Sediment<br>Metabolism Studies on DCC-3825, DACO: 8.2.3.4.2, 8.2.3.4.4, 8.2.3.5.2,<br>8.2.3.5.4, 8.2.3.5.5, 8.2.3.5.6, IIA 7.1.1, IIA 7.1.2, IIA 7.8.1, IIA 7.8.2 |
| 2866088                 | 2017, Hydrolysis of [14C]-DCC-3825 as a Function of pH Final Report<br>Amendment 1, DACO: 8.2.3.2,IIA 7.5                                                                                                                                                                                       |
| 2866089                 | 2018, Photodegradation of [14C]-DCC-3825 in Buffer Report Amendment<br>1, DACO: 8.2.3.3.2,IIA 7.6                                                                                                                                                                                               |
| 2866090                 | 2017, Photolysis of [14C]-DCC-3825 on Dry Soil Amended Report,<br>DACO: 8.2.3.3.1,IIA 7.1.3                                                                                                                                                                                                     |
| 2866091                 | 2016, The Transformation of [14C]-DCC-3825 in Four Soils Under<br>Aerobic Conditions, DACO: 8.2.3.4.2, IIA 7.1.1                                                                                                                                                                                |
| 2866092                 | 2016, The Transformation of [14C]-DCC-3825 in Four Soils Under<br>Anaerobic Conditions, DACO: 8.2.3.4.4,IIA 7.1.2                                                                                                                                                                               |
| 2866093                 | 2016, The Transformation of [14C]-DCC-3825 in Two Aquatic Sediment<br>Systems under Aerobic Conditions, DACO: 8.2.3.5.2,8.2.3.5.4,IIA 7.8.1                                                                                                                                                     |
| 2866094                 | 2016, The Transformation of [14C]-DCC-3825 in Two Aquatic Sediment<br>Systems under Anaerobic Conditions, DACO: 8.2.3.5.5,8.2.3.5.6,IIA 7.8.2                                                                                                                                                   |
| 2866095                 | 2018, Adsorption/Desorption of [14C]-DCC-3825 in Soil REPORT<br>Amendment 1, DACO: 8.2.4.2,IIA 7.4.1                                                                                                                                                                                            |
| 2866096                 | 2016, DCC-3825: Estimation of Adsorption Coefficient (Koc) on Soil and<br>Sewage Sludge using HPLC, DACO: 8.2.4.2, IIA 7.4.1                                                                                                                                                                    |
| 2866097                 | 2017, DCC-3825-M-01: Adsorption/Desorption Test on Soils, DACO:<br>8.2.4.2,IIA 7.4.1                                                                                                                                                                                                            |
| 2866098                 | 2017, DCC 3825-M-07 : Adsorption/Desorption Test on Soils, DACO:<br>8.2.4.2,IIA 7.4.1                                                                                                                                                                                                           |
| 2866099                 | 2017, DCC-3825-M-12: Adsorption/Desorption Test on Soils, DACO:<br>8.2.4.2, IIA 7.4.1                                                                                                                                                                                                           |
| 2866100                 | 2017, DCC 3825-M-13: Adsorption/Desorption Test on Soils, DACO:<br>8.2.4.2,IIA 7.4.1                                                                                                                                                                                                            |
| 2866101                 | 2017, DCC 3825-M-20: Adsorption/Desorption Test on Soils, DACO:<br>8.2.4.2,IIA 7.4.1                                                                                                                                                                                                            |

| PMRA Document<br>Number | Reference                                                                    |
|-------------------------|------------------------------------------------------------------------------|
| 2866102                 | 2017, DCC 3825-M-29 : Adsorption/Desorption Test on Soils, DACO:             |
|                         | 8.2.4.2,IIA 7.4.1                                                            |
| 2866103                 | 2017, DCC 3825-M-30 : Adsorption/Desorption Test on Soils, DACO:             |
|                         | 8.2.4.2,IIA 7.4.1                                                            |
| 2866104                 | 2017, DCC 3825-M-35: Adsorption/Desorption Test on Soils, DACO:              |
|                         | 8.2.4.2,IIA 7.4.1                                                            |
| 2866105                 | 2017, DCC 3825-M-36: Adsorption/Desorption Test on Soils, DACO:              |
| ••••                    | 8.2.4.2,IIA 7.4.1                                                            |
| 2866106                 | 2017, DCC 3825-M-39: Adsorption/Desorption Test on Soils, DACO:              |
|                         | 8.2.4.2,IIA 7.4.1                                                            |
| 2866107                 | 2017, DCC 3825-M-53: Adsorption/Desorption Test on Soils, DACO:              |
|                         | 8.2.4.2,IIA 7.4.1                                                            |
| 2866108                 | 2017, DCC 3825-M-63 : Adsorption/Desorption Test on Soils, DACO:             |
|                         | 8.2.4.2,IIA 7.4.1                                                            |
| 2866109                 | 2017, DCC 3825-M-69: Adsorption/Desorption Test on Soils, DACO:              |
|                         | 8.2.4.2,IIA 7.4.1                                                            |
| 2866110                 | 2017, DCC 3825-M-72: Adsorption/Desorption Test on Soils, DACO:              |
|                         | 8.2.4.2,IIA 7.4.1                                                            |
| 2866111                 | 2017, DCC 3825-M-73: Adsorption/Desorption Test on Soils, DACO:              |
|                         | 8.2.4.2,IIA 7.4.1                                                            |
| 2866112                 | 2017, DCC 3825-M-10 : Adsorption/Desorption Test on Soils, DACO:             |
|                         | 8.2.4.2,IIA 7.4.1                                                            |
| 2866796                 | 2018, PART 8.4.1 Tiafenacil 339SC Herbicide - Storage Disposal               |
|                         | Decontamination, DACO: 8.4.1                                                 |
| 2886817                 | 2016, DCC-3825: <i>Daphnia magna</i> Reproduction Toxicity Test, DACO: 9.3.3 |
| 2886818                 | 2017, DCC-3825: A Flow-Through Life-Cycle Toxicity Test With The             |
|                         | Saltwater Mysid (Americamysis bahia), DACO: 9.4.5                            |
| 2965560                 | 2018, Amended Final Report DCC 3825-M-07 : Adsorption/Desorption             |
|                         | Test on Soils, DACO: 8.2.4.2                                                 |
| 2965561                 | 2018, Amended Final Report DCC 3825-M-20 : Adsorption/Desorption             |
|                         | Test on Soils, DACO: 8.2.4.2                                                 |
| 2965562                 | 2018, Amended Final Report DCC 3825-M-29 : Adsorption/Desorption             |
|                         | Test on Soils, DACO: 8.2.4.2                                                 |
| 2965563                 | 2018, Amended Final Report DCC 3825-M-35 : Adsorption/Desorption             |
|                         | Test on Soils, DACO: 8.2.4.2                                                 |
| 2965564                 | 2018, Amended Final Report DCC 3825-M-69 : Adsorption/Desorption             |
|                         | Test on Soils, DACO: 8.2.4.2                                                 |
| 2965565                 | 2018, Amended Final Report DCC 3825-M-72 : Adsorption/Desorption             |
|                         | Test on Soils, DACO: 8.2.4.2                                                 |
| 2965566                 | 2018, Amended Final Report DCC 3825-M-73 : Adsorption/Desorption             |
|                         | Test on Soils, DACO: 8.2.4.2                                                 |

| PMRA Document<br>Number | Reference                                                                                                                                                                                                                                                                  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2965567                 | 2018, Amended Final Report DCC 3825-M-01 : Adsorption/Desorption<br>Test on Soils, DACO: 8.2.4.2                                                                                                                                                                           |
| 2965568                 | 2018, Amended Final Report DCC 3825-M-12 : Adsorption/Desorption<br>Test on Soils, DACO: 8.2.4.2                                                                                                                                                                           |
| 2965569                 | 2018, Amended Final Report DCC 3825-M-13 : Adsorption/Desorption<br>Test on Soils, DACO: 8.2.4.2                                                                                                                                                                           |
| 2965570                 | 2018, Amended Final Report DCC 3825-M-53 : Adsorption/Desorption<br>Test on Soils, DACO: 8.2.4.2                                                                                                                                                                           |
| 2965571                 | 2017, DCC 3825-M-10 : Adsorption/Desorption Test on Soils, DACO: 8.2.4.2                                                                                                                                                                                                   |
| 2965572                 | 2017, DCC 3825-M-63 : Adsorption/Desorption Test on Soils, DACO: 8.2.4.2                                                                                                                                                                                                   |
| 2965573                 | 2017, DCC 3825-M-39: Adsorption/Desorption Test on Soils, DACO: 8.2.4.2                                                                                                                                                                                                    |
| 2965574                 | 2017, DCC 3825-M-36: Adsorption/Desorption Test on Soils, DACO: 8.2.4.2                                                                                                                                                                                                    |
| 2965575                 | 2017, DCC 3825-M-30 : Adsorption/Desorption Test on Soils, DACO: 8.2.4.2                                                                                                                                                                                                   |
| 2966972                 | 2017, DCC-3825 30%SC: A 96-Hour Static-Renewal Acute Toxicity Test<br>With The Common Carp ( <i>Cyprinus carpio</i> ), DACO: 9.5.4                                                                                                                                         |
| 2966973                 | 2017, DCC-3825 30%SC: A 48-Hour Static-Renewal Acute Toxicity Test<br>With The Cladoceran ( <i>Daphnia magna</i> ), DACO: 9.3.2                                                                                                                                            |
| 2966976                 | 2017, DCC-3825 30%SC: A 7-Day Static-Renewal Toxicity Test With Duckweed ( <i>Lemna gibba</i> G3), DACO: 9.8.5                                                                                                                                                             |
| 2966977                 | 2017, DCC-3825 30%SC: A 96-Hour Toxicity Test With The Freshwater Alga ( <i>Pseudokirchneriella subcapitata</i> ), DACO: 9.8.2                                                                                                                                             |
| 2966978                 | 2017, Fresh water algal growth inhibition test with DCC-3825, DACO: 9.8.2                                                                                                                                                                                                  |
| 2966979                 | 2016, DCC-3825 TGAI: Effects (Acute Contact and Oral) on Bumble Bees ( <i>Bombus terrestris</i> L.) in the Laboratory, DACO: 9.2.4.1,9.2.4.2                                                                                                                               |
| 2966980                 | 2017, Acute toxicity test of DCC-3825 with Medaka ( <i>Oryzias latipes</i> ), DACO: 9.5.2.3                                                                                                                                                                                |
| 3129072                 | 2018, DCC-3825: Aerobic Mineralisation of [14C]-DCC-3825 in Surface Water, DACO: 8.2.3                                                                                                                                                                                     |
| 3129073                 | 2019, DCC-3825-M-20: Rate of Degradation of DCC-3825-M-20 and the<br>Rate of Formation and Decline of Subsequent Degradation Product DCC-<br>3825-M-69 in 4 Soils under Aerobic Conditions, DACO: 8.2.3,8.2.3.4.2                                                          |
| 3129074                 | 2020, DCC-3825-M-36: Rate of Degradation of DCC-3825-M-36 and the Rate of Formation and Decline of Subsequent Degradation Products DCC-3825-M-69, DCC-3825-M-53, DCC-3825-M-29, DCC-3825-M-35 and DCC-3825-M-72 in 4 Soils under Aerobic Conditions, DACO: 8.2.3,8.2.3.4.2 |

| PMRA Document | Reference                                                                                                                                                                                                                               |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number        |                                                                                                                                                                                                                                         |
| 3129075       | 2019, DCC-3825-M-63: Rate of Degradation of DCC-3825-M-63 and the<br>Rate of Formation and Decline of Subsequent Degradation Products DCC-<br>3825-M-30 and DCC-3825-M-73 in 4 Soils under Aerobic Conditions,<br>DACO: 8.2.3,8.2.3.4.2 |
| 3141069       | 2020, Hydrolysis of Tiafenacil Metabolites in pH 7 Buffered Water, DACO: 8.2.3,8.2.3.2                                                                                                                                                  |
| 3141071       | 2020, Kinetic Assessment of Tiafenacil (DCC-3825) and metabolites soil aerobic soil degradation, DACO: 8.2.3.4                                                                                                                          |
| 3141072       | 2020, Refined Groundwater Exposure Assessment of Tiafenacil (DCC-<br>3825) and Metabolites in Canada, DACO: 8.6.2                                                                                                                       |
| 3141073       | 2020, The Application of Models to Predict Hydrolysis and Degradation<br>Half-lives of Tiafenacil and its Metabolites in Water, DACO: 8.6.2                                                                                             |

### 4.0 Value

| PMRA Document | Reference                                                           |
|---------------|---------------------------------------------------------------------|
| Number        |                                                                     |
| 2865788       | 2013, EXP-3825/Efficacy/PRE Burndown, DACO: 10.2.3.4, IIIA 6.1.3.   |
| 2865790       | 2013, EXP-3825/Efficacy/PRE Burndown, DACO: 10.2.3.4, IIIA 6.1.3.   |
| 2865791       | 2013, EXP-3825/Efficacy/PRE Burndown, DACO: 10.2.3.4, IIIA 6.1.3.   |
| 2865792       | 2013, EXP-3825/Efficacy/PRE Burndown, DACO: 10.2.3.4, IIIA 6.1.3.   |
| 2865793       | 2013, EXP-3825/Efficacy/PRE Burndown, DACO: 10.2.3.4, IIIA 6.1.3.   |
| 2865794       | 2013, EXP-3825/Efficacy/PRE Burndown, DACO: 10.2.3.4, IIIA 6.1.3.   |
| 2865795       | 2013, EXP-3825/Efficacy/PRE Burndown, DACO: 10.2.3.4, IIIA 6.1.3.   |
| 2865796       | 2013, EXP-3825 / Efficacy / PRE Burndown, DACO: 10.2.3.4, IIIA      |
|               | 6.1.3.                                                              |
| 2865802       | 2014, IB 6002/Efficacy/Permanent Crops- Grape, DACO: 10.2.3.4, IIIA |
|               | 6.1.3.                                                              |
| 2865803       | 2014, IB 6002/Efficacy/Permanent Crops- Grape, DACO: 10.2.3.4, IIIA |
|               | 6.1.3.                                                              |
| 2865804       | 2014, IB6002/Efficacy/PRE Burndown, DACO: 10.2.3.4, IIIA 6.1.3.     |
| 2865805       | 2014, IB6002/Efficacy/PRE Burndown prior to corn and soybean        |
|               | planting, DACO: 10.2.3.4, IIIA 6.1.3.                               |
| 2865806       | 2014, IB6002/Efficacy/PRE Burndown, DACO: 10.2.3.4, IIIA 6.1.3.     |
| 2865807       | 2014, IB6002/Efficacy/PRE Burndown, DACO: 10.2.3.4, IIIA 6.1.3.     |
| 2865808       | 2014, IB6002/Efficacy/PRE Burndown, DACO: 10.2.3.4, IIIA 6.1.3.     |
| 2865809       | 2014, IB6002/Efficacy/PRE Burndown, DACO: 10.2.3.4, IIIA 6.1.3.     |
| 2865810       | 2014, IB6002/Efficacy/PRE Burndown, DACO: 10.2.3.4, IIIA 6.1.3.     |
| 2865812       | 2014, IB6002/Efficacy/PRE Burndown, DACO: 10.2.3.4, IIIA 6.1.3.     |
| 2865813       | 2014, IB6002/Efficacy/PRE Burndown, DACO: 10.2.3.4, IIIA 6.1.3.     |
| 2865814       | 2014, IB6002/Efficacy/PRE Burndown, DACO: 10.2.3.4, IIIA 6.1.3.     |
| 2865815       | 2014, IB6002/Efficacy/PRE Burndown, DACO: 10.2.3.4, IIIA 6.1.3.     |

| PMRA Document<br>Number | Reference                                                             |
|-------------------------|-----------------------------------------------------------------------|
| 2865816                 | 2014, IB 6002/Efficacy/Pre Burndown in Corn and Soybean in Central    |
|                         | Kansas in 2014 (DAR 14-143), DACO: 10.2.3.4, IIIA 6.1.3.              |
| 2865817                 | 2014, IB6002/Efficacy/ PRE Burndown, DACO: 10.2.3.4, IIIA 6.1.3.      |
| 2865818                 | 2014, IB6002/Efficacy/PRE Burndown, DACO: 10.2.3.4, IIIA 6.1.3.       |
| 2865819                 | 2014, IB6002/Efficacy/PRE Burndown, DACO: 10.2.3.4, IIIA 6.1.3.       |
| 2865820                 | 2014, IB6002/Efficacy/PRE Burndown, DACO: 10.2.3.4, IIIA 6.1.3.       |
| 2865821                 | 2014, IB6002/Efficacy/PRE Burndown, DACO: 10.2.3.4, IIIA 6.1.3.       |
| 2865822                 | 2014, Evaluate efficacy of IB 6002 for preemergence weed burndown for |
|                         | corn and soybeans, DACO: 10.2.3.4, IIIA 6.1.3.                        |
| 2865823                 | 2014, IB6002/Efficacy/PRE Burndown, DACO: 10.2.3.4, IIIA 6.1.3.       |
| 2865824                 | 2014, IB 6002/Efficacy/Fallow - Study 1, DACO: 10.2.3.4, IIIA 6.1.3.  |
| 2865825                 | 2014, IB 6002/Efficacy/Fallow, DACO: 10.2.3.4, IIIA 6.1.3.            |
| 2865830                 | 2014, EXP-3825/Efficacy/Adjuvants, DACO: 10.2.3.4, IIIA 6.1.3.        |
| 2865831                 | 2014, EXP-3825/Efficacy/Adjuvants, DACO: 10.2.3.4, IIIA 6.1.3.        |
| 2865832                 | 2014, EXP-3825/Efficacy/Adjuvants, DACO: 10.2.3.4, IIIA 6.1.3.        |
| 2865833                 | 2014, EXP-3825/Efficacy/Adjuvants, DACO: 10.2.3.4, IIIA 6.1.3.        |
| 2865834                 | 2014, EXP-3825/Efficacy/Adjuvants, DACO: 10.2.3.4, IIIA 6.1.3.        |
| 2865835                 | 2014, EXP-3825/Efficacy/Adjuvants, DACO: 10.2.3.4, IIIA 6.1.3.        |
| 2865840                 | 2015, DCC-3825/Efficacy/Burndown, DACO: 10.2.3.4, IIIA 6.1.3.         |
| 2865841                 | 2015, DCC-3825/Efficacy/Burndown, DACO: 10.2.3.4, IIIA 6.1.3.         |
| 2865842                 | 2015, DCC-3825/Efficacy/Permanent Crops- Grape, DACO: 10.2.3.4,       |
|                         | IIIA 6.1.3.                                                           |
| 2865843                 | 2015, DCC-3825/Efficacy/Permanent Crops- Grape, DACO: 10.2.3.4,       |
|                         | IIIA 6.1.3.                                                           |
| 2865844                 | 2015, DCC-3825/Efficacy/Permanent Crops- Grape, DACO: 10.2.3.4,       |
|                         | IIIA 6.1.3.                                                           |
| 2865845                 | 2015, DCC-3825/Efficacy/Permanent Crops- Grape, DACO: 10.2.3.4,       |
|                         | IIIA 6.1.3.                                                           |
| 2865846                 | 2015, DCC-3825 70% WG/Efficacy/PRE Burndown - Rate Definition,        |
|                         | DACO: 10.2.3.4, IIIA 6.1.3.                                           |
| 2865847                 | 2015, DCC-3825 70% WG/Efficacy/PRE Burndown - Rate Definition,        |
|                         | DACO: 10.2.3.4, IIIA 6.1.3.                                           |
| 2865848                 | 2015, DCC-3825 70% WG/Efficacy/PRE Burndown - Rate Definition,        |
|                         | DACO: 10.2.3.4, IIIA 6.1.3.                                           |
| 2865849                 | 2015, DCC-3825 70% WG/Efficacy/PRE Burndown - Rate Definition,        |
|                         | DACO: 10.2.3.4, IIIA 6.1.3.                                           |
| 2865850                 | 2015, DCC-3825 70% WG/Efficacy/Pre Burndown-Rate Definition,          |
|                         | DACO: 10.2.3.4, IIIA 6.1.3.                                           |
| 2865851                 | 2015, DCC-3825/Efficacy/Burndown, DACO: 10.2.3.4, IIIA 6.1.3.         |
| 2865852                 | 2015, DCC-3825/Efficacy/Burndown, DACO: 10.2.3.4, IIIA 6.1.3.         |
| 2865853                 | 2015, DCC-3825/Efficacy/Burndown, DACO: 10.2.3.4, IIIA 6.1.3.         |
| 2865854                 | 2015, DCC-3825 Efficacy Burndown, DACO: 10.2.3.4, IIIA 6.1.3.         |
| 2865855                 | 2015, DCC-3825/Efficacy/Burndown, DACO: 10.2.3.4, IIIA 6.1.3.         |

| PMRA Document | Reference                                                              |
|---------------|------------------------------------------------------------------------|
| Number        |                                                                        |
| 2865856       | 2015, DCC-3825/Efficacy/Burndown, DACO: 10.2.3.4, IIIA 6.1.3.          |
| 2865857       | 2015, DCC-3825/Efficacy/Burndown, DACO: 10.2.3.4, IIIA 6.1.3.          |
| 2865858       | 2015, DCC-3825/Efficacy/Burndown, DACO: 10.2.3.4, IIIA 6.1.3.          |
| 2865859       | 2015, DCC-3825/Efficacy/Burndown, DACO: 10.2.3.4, IIIA 6.1.3.          |
| 2865860       | 2015, DCC-3825/Efficacy/Burndown, DACO: 10.2.3.4, IIIA 6.1.3.          |
| 2865861       | 2015, DCC-3825/Efficacy/Burndown, DACO: 10.2.3.4, IIIA 6.1.3.          |
| 2865862       | 2015, DCC-3825/Efficacy/Burndown, DACO: 10.2.3.4, IIIA 6.1.3.          |
| 2865863       | 2015, DCC-3825/Efficacy/Burndown, DACO: 10.2.3.4, IIIA 6.1.3.          |
| 2865865       | 2015, DCC-3825/Efficacy/Burndown, DACO: 10.2.3.4, IIIA 6.1.3.          |
| 2865866       | 2015, DCC-3825/Efficacy/Burndown, DACO: 10.2.3.4, IIIA 6.1.3.          |
| 2865867       | 2015, DCC-3825/Efficacy/Burndown, DACO: 10.2.3.4, IIIA 6.1.3.          |
| 2865868       | 2015, DCC-3825/Efficacy/Burndown, DACO: 10.2.3.4, IIIA 6.1.3.          |
| 2865869       | 2015, DCC-3825/Efficacy/Burndown, DACO: 10.2.3.4, IIIA 6.1.3.          |
| 2865890       | 2016, Tolerance and weed control with DCC-3825 applied early           |
|               | preplant, preplant and preemergence in wheat, DACO: 10.2.3.4, IIIA     |
|               | 6.1.3.                                                                 |
| 2865891       | 2016, Cereal Grain Tolerance and Weed Control with DCC-3825            |
|               | Applied Early Preplant, Preplant, and Preemergence in Canada, DACO:    |
|               | 10.2.3.4, IIIA 6.1.3.                                                  |
| 2865892       | 2016, Cereal Grain Tolerance and Weed Control with DCC-3825            |
|               | Applied Early Preplant, Preplant, and Pre-emgence in Canada, DACO:     |
|               | 10.2.3.4, IIIA 6.1.3.                                                  |
| 2865893       | 2016, DCC-3825/Efficacy/Permanent Crops, DACO: 10.2.3.4, IIIA          |
|               | 6.1.3.                                                                 |
| 2865895       | 2016, Corn Tolerance and Weed Control with DCC-3825 Applied Early      |
|               | Preplant, Preplant, and Preemgence, DACO: 10.2.3.4, IIIA 6.1.3.        |
| 2865897       | 2016, Corn Tolerance and Weed Control with DCC-3825 Applied Early      |
|               | Preplant, Preplant, and Preemgence, DACO: 10.2.3.4, IIIA 6.1.3.        |
| 2865898       | 2016, Corn Tolerance and Weed Control in Corn with DCC-3825            |
|               | Applied Early Preplant, Preplant, and Preemgence, DACO: 10.2.3.4, IIIA |
|               | 6.1.3.                                                                 |
| 2865899       | 2016, Corn Tolerance and Weed Control with DCC-3825 Applied Early      |
|               | Preplant, Preplant, and Preemgence, DACO: 10.2.3.4, IIIA 6.1.3.        |
| 2865900       | 2016, Corn Tolerance and Weed Control with DCC-3825 Applied Early      |
|               | Preplant, Preplant, and Preemgence, DACO: 10.2.3.4, IIIA 6.1.3.        |
| 2865901       | 2016, Corn Tolerance and Weed Control with DCC-3825 Applied Early      |
|               | Preplant, Preplant, and Preemgence, DACO: 10.2.3.4, IIIA 6.1.3.        |
| 2865902       | 2016, Corn Tolerance and Weed Control with DCC-3825 Applied Early      |
|               | Preplant, Preplant, and Preemgence, DACO: 10.2.3.4, IIIA 6.1.3.        |
| 2865903       | 2016, Cereal Grain Tolerance and Weed Control with DCC-3825            |
|               | Applied Early Preplant, Preplant, and Preemgence, DACO: 10.2.3.4, IIIA |
|               | 6.1.3.                                                                 |

| PMRA Document<br>Number | Reference                                                                                                                                             |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2865904                 | 2016, Cereal Grain Tolerance and Weed Control with DCC-3825<br>Applied Early Preplant, Preplant, and Preemgence, DACO: 10.2.3.4, IIIA<br>6.1.3.       |
| 2865905                 | 2016, Cereal Grain Tolerance and Weed Control with DCC-3825<br>Applied Early Preplant, Preplant, and Preemgence, DACO: 10.2.3.4, IIIA<br>6.1.3.       |
| 2865906                 | 2016, Cereal Grain Tolerance and Weed Control with DCC-3825<br>Applied Early Preplant, Preplant, and Preemgence, DACO: 10.2.3.4, IIIA<br>6.1.3.       |
| 2865919                 | 2016, Corn Tolerance and Weed Control in Soybean with DCC-3825<br>Applied Early Preplant, Preplant, and Preemgence, DACO: 10.2.3.4, IIIA<br>6.1.3.    |
| 2865920                 | 2016, Corn Tolerance and Weed Control in Soybean with DCC-3825<br>Applied Early Preplant, Preplant, and Preemgence, DACO: 10.2.3.4, IIIA<br>6.1.3.    |
| 2865921                 | 2016, Corn Tolerance and Weed Control in Soybean with DCC-3825<br>Applied Early Preplant, Preplant, and Preemgence, DACO: 10.2.3.4, IIIA<br>6.1.3.    |
| 2865922                 | 2016, Soybean Tolerance and Weed Control in Soybean with DCC-3825<br>Applied Early Preplant, Preplant, and Preemgence, DACO: 10.2.3.4, IIIA<br>6.1.3. |
| 2865923                 | 2016, Tolerance and Weed Control in Soybean with DCC-3825 Applied Early Preplant, Preplant, and Preemgence, DACO: 10.2.3.4, IIIA 6.1.3.               |
| 2865924                 | 2016, Corn Tolerance and Weed Control in Soybean with DCC-3825<br>Applied Early Preplant, Preplant, and Preemgence, DACO: 10.2.3.4, IIIA<br>6.1.3.    |
| 2865926                 | 2017, DCC-3825 Corn Preemergence Burndown Tolerance, DACO: 10.2.3.4, IIIA 6.1.3.                                                                      |
| 2865927                 | 2017, DCC-3825 Corn Preemergence Burndown Tolerance, DACO: 10.2.3.4, IIIA 6.1.3.                                                                      |
| 2865928                 | 2017, DCC-3825 Corn Preemergence Burndown Tolerance, DACO: 10.2.3.4, IIIA 6.1.3.                                                                      |
| 2865929                 | 2017, DCC-3825 Corn Preemergence Burndown Tolerance, DACO: 10.2.3.4, IIIA 6.1.3.                                                                      |
| 2865930                 | 2017, DCC-3825 Corn Preemergence Burndown Tolerance, DACO: 10.2.3.4, IIIA 6.1.3.                                                                      |
| 2865931                 | 2017, DCC-3825 Corn Preplant Burndown Mixtures, DACO: 10.2.3.4, IIIA 6.1.3.                                                                           |
| 2865932                 | 2017, DCC-3825 Corn Preplant Burndown Mixtures, DACO: 10.2.3.4, IIIA 6.1.3.                                                                           |
| 2865933                 | 2017, DCC-3825 Corn Preplant Burndown Mixtures, DACO: 10.2.3.4, IIIA 6.1.3.                                                                           |

| PMRA Document<br>Number | Reference                                                                                                       |
|-------------------------|-----------------------------------------------------------------------------------------------------------------|
| 2865934                 | 2017, DCC-3825 Corn Preplant Burndown Mixtures, DACO: 10.2.3.4, IIIA 6.1.3.                                     |
| 2865935                 | 2017, DCC-3825 Corn Preplant Burndown Mixtures, DACO: 10.2.3.4,<br>IIIA 6.1.3.                                  |
| 2865947                 | 2017, DCC-3825 Soybean Preemergence Burndown Tolerance, DACO: 10.2.3.4, IIIA 6.1.3.                             |
| 2865948                 | 2017, DCC-3825 Soybean Preemergence Burndown Tolerance, DACO:                                                   |
| 2865949                 | 10.2.3.4, IIIA 6.1.3.<br>2017, DCC-3825 Soybean Preemergence Burndown Tolerance, DACO:<br>10.2.3.4, IIIA 6.1.3. |
| 2865950                 | 2017, DCC-3825 Soybean Preemergence Burndown Tolerance, DACO:                                                   |
| 2865951                 | 10.2.3.4, IIIA 6.1.3.<br>2017, DCC-3825 Soybeean preplant burndown mixtures, DACO:<br>10.2.3.4, IIIA 6.1.3.     |
| 2865952                 | 2017, DCC-3825 Soybean Preplant Burndown Mixtures, DACO:<br>10.2.3.4, IIIA 6.1.3.                               |
| 2865953                 | 2017, DCC-3825 Soybean Preplant Burndown Mixtures, DACO:<br>10.2.3.4, IIIA 6.1.3.                               |
| 2865954                 | 2017, DCC-3825 Soybean Preplant Burndown Mixtures, DACO:<br>10.2.3.4, IIIA 6.1.3.                               |
| 2865955                 | 2017, DCC-3825 Soybean Preplant Burndown Mixtures, DACO:<br>10.2.3.4, IIIA 6.1.3.                               |
| 2926796                 | 2018, Efficacy of DCC-3825 and the metabolites for Post and Pre application, DACO: 10.3.3.                      |
| 2972300                 | 2018, Burndown weed control with tiafenacil in fallow, DACO: 10.1, 10.2.3.3(B).                                 |
| 2972301                 | 2018, Burndown weed control with tiafenacil in fallow, DACO: 10.1, 10.2.3.3(B).                                 |
| 2972302                 | 2018, Burndown weed control with tiafenacil in fallow, DACO: 10.1, 10.2.3.3(B).                                 |
| 2972303                 | 2018, Burndown weed control with tiafenacil in fallow, DACO: 10.1, 10.2.3.3(B).                                 |
| 2972304                 | 2018, ISK Biosciences - Burndown weed control with tiafenacil in fallow 2018, DACO: 10.1, 10.2.3.3(B).          |
| 2972305                 | 2018, Burndown weed control with tiafenacil in fallow, DACO: 10.1, 10.2.3.3(B).                                 |
| 2972306                 | 2018, Burndown weed control with tiafenacil in fallow, DACO: 10.1, 10.2.3.3(B).                                 |
| 2972307                 | 2018, Burndown weed control with tiafenacil in fallow, DACO: 10.1, 10.2.3.3(B).                                 |
| 2972308                 | 2018, Burndown weed control with tiafenacil in fallow, DACO: 10.1, 10.2.3.3(B).                                 |

| PMRA Document | Reference                                                                                                                           |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Number        |                                                                                                                                     |
| 2972309       | 2018, Post (directed) burndown weed control with applications of tiafenacil in grapes, DACO: 10.1, 10.2.3.3(B).                     |
| 2972310       | 2018, Post (directed) burndown weed control with applications of tiafenacil in grapes, DACO: 10.1, 10.2.3.3(B).                     |
| 2972311       | 2018, Post (directed) burndown weed control with applications of tiafenacil in grapes, DACO: 10.1, 10.2.3.3(B).                     |
| 2972312       | 2018, Post (directed) burndown weed control with applications of tiafenacil in grapes, DACO: 10.1, 10.2.3.3(B).                     |
| 3009582       | 2016, DCC-3825 Preplant and Preemergence Applications for Crop<br>Tolerance in Soybean, DACO: 10.1, 10.2.3.3(B).                    |
| 3009583       | 2016, DCC-3825 Preplant and Preemergence Applications for Crop<br>Tolerance in Soybean, DACO: 10.1, 10.2.3.3(B).                    |
| 3009586       | 2016, DCC-3825 Preplant and Preemergence Applications for Crop<br>Tolerance in Soybean, DACO: 10.1, 10.2.3.3(B).                    |
| 3009587       | 2016, DCC-3825 Preplant and Preemergence Applications for Crop Tolerance in Soybean, DACO: 10.1, 10.2.3.3(B).                       |
| 3022231       | 2019, Tiafenacil Formulation comparison, DACO: 10.2.3.3.                                                                            |
| 3022232       | 2019, Formulation comparison large weeds, DACO: 10.2.3.3.                                                                           |
| 3022233       | 2019, New 3825 Fallow on Kochia, DACO: 10.2.3.3.                                                                                    |
| 3022235       | 2019, New 3825 Fallow on Sow Thistle, DACO: 10.2.3.3.                                                                               |
| 3022236       | 2019, Comparison of DCC-3825 SC to DCC-3825 WG For Weed<br>Control When Applied to Fallow/Non-Crop, DACO: 10.2.3.3.                 |
| 3022237       | 2015, DCC-3825 70% WG/Efficacy/PRE Burndown - Rate Definition, DACO: 10.2.3.3.                                                      |
| 3022238       | 2016, Corn Tolerance and Weed Control in Soybean with DCC-3825<br>Applied Early Preplant, Preplant, and Preemgence, DACO: 10.2.3.3. |
| 3022239       | 2016, Tolerance and Weed Control in Soybean with DCC-3825 Applied Early Preplant, Preplant, and Preemgence, DACO: 10.2.3.3.         |
| 3064645       | 2018, Burndown Weed Control With Tiafenacil in Fallow, DACO: 10.2.3.3(B).                                                           |
| 3080617       | 2015, Corn and Soybean Plantback Safety with DCC 3825, DACO: 10.2.3.3(B).                                                           |

### **B.** Additional Information Considered

#### i) Published Information

#### 1.0 Human and Animal Health

Park J, Ahn YO, Nam JW, Hong MK, Song N, Kim T, Yu GH, Sung SK. Biochemical and physiological mode of action of tiafenacil, a new protoporphyrinogen IX oxidase-inhibiting herbicide. Pestic Biochem Physiol. 2018 Nov;152:38-44.