

Evaluation Report for Category A, Subcategory 1.3 Application

Application Number:	2015-0222
Application:	New active ingredient – Maximum residue limits (MRLs) only
Product:	Dithianon Technical
Registration Number:	#####
Active ingredient (a.i.):	Dithianon
PMRA Document Number	: 2761500

Purpose of Application

The purpose of this application was to establish maximum residue limits (MRLs) for the active ingredient dithianon on several imported commodities.

1.0 Chemistry Assessment

1.1 Identity of the Active Ingredient

Active substance	Dithianon
Function	Fungicide
Chemical name	
1. International Union of Pure and Applied Chemistry (IUPAC)	5,10-dioxo-5,10-dihydronaphtho[2,3- <i>b</i>][1,4]dithiine-2,3-dicarbonitrile
2. Chemical Abstracts Service (CAS)	5,10-dihydro-5,10-dioxonaphtho[2,3- <i>b</i>]-1,4-dithiin-2,3-dicarbonitrile
CAS number	3347-22-6
Molecular formula	$C_{14}H_4N_2O_2S_2$
Molecular weight	296.3
Structural formula	

Purity of the active ingredient

96.2% nominal

1.2 Physical and Chemical Properties of the Active Ingredient

Ditnianon Technical			
Property	Result		
Colour and physical state	Brown solid		
Odour	Faint musty		
Melting range	221.6°C		
Boiling point or range	N/A		
Density	1.514 g/cm^3		
Vapour pressure at 20°C	5.8×10^{-12} Pa (extrapolated)		
Ultraviolet (UV)-visible spectrum	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Solubility in water at 20°C	pH=4 0.26 mg/L pH=7 0.20 mg/L pH=9 0.21 mg/L In demineralized water: 0.19 mg/L		
Solubility in organic solvents at 20°C	SolventSolubility (g/100mL)methanol0.09toluene1.95n-heptane0.0015ethyl acetate0.88dichloromethane2.36acetone1.67		
<i>n</i> -Octanol-water partition coefficient (K_{ow})	$\log K_{ow} = 3.2$		
Dissociation constant (pK_a)	N/A. Dithianon has no chemical functionality which dissociates in water.		
Stability (temperature, metal)	Stable at 54°C for 2 weeks (slight decrease is still within certified limits), contact with metals may cause corrosion of the metal; not stable in sunlight.		

Dithianon Technical

2.0 Method of Analysis

2.1 Methods for Analysis of the Active Ingredient

The methods provided for the analysis of the active ingredient and impurities in the technical product have been validated and assessed to be acceptable for the determinations.

2.2 Method for Formulation Analysis

Methods for analysis of the end-use product are not required for this submission.

2.3 Methods for Residue Analysis

Several liquid- or gas-chromatography methods (HPLC-UV, GC-ECD) were developed for data generation purposes. A high performance liquid chromatography method with tandem mass spectrometric detection (HPLC-MS/MS) was developed and proposed for enforcement purposes in plant matrices. This method fulfilled the requirements with regards to specificity, accuracy and precision at the method limit of quantitation. Acceptable recoveries (70-120%) were obtained in plant matrices. The proposed enforcement method was successfully validated in plant matrices by an independent laboratory. The extraction solvents used in the metabolism studies were comparable to those in the proposed enforcement method, so the enforcement method is expected to adequately extract bioincurred residues of dithianon.

3.0 Health Assessments

3.1 Toxicology Summary

A detailed review of the toxicological database for dithianon, a quinone fungicide, was conducted. The database is complete, consisting of the full array of toxicity studies currently required for hazard assessment purposes. All required studies were carried out in accordance with Good Laboratory Practices and followed currently accepted international testing protocols or protocols that were considered acceptable at the time the studies were conducted. Specialized investigative studies were also provided in support of a proposed mode of action (MOA) for kidney tumour formation in female rats. Additionally, relevant published investigations of dithianon were included for the hazard assessment. In general, the scientific quality of the data was high and the database is considered adequate to define the majority of the toxic effects that may result from exposure to dithianon.

The toxicokinetics and metabolism were investigated in rats. Dithianon was isotopically labelled (14 C or 13 C) at either the 5(10)-carbonyl carbon atoms of the quinone moiety, or the 2,3-cyano carbon atoms of the dithiine ring moiety. Treatments included gavage administration of single or repeated low doses or a single high dose. Regardless of the dosing regimen, absorption was rapid and dose-proportional, but incomplete. Absorption was 31-43% of the administered dose (AD) for single doses and repeated low doses. Plasma concentrations were measurable within 15 minutes and maximal at 6 hours post-administration. No dose- or sex-related differences in absorption were evident.

Once absorbed, dithianon and/or its metabolites were rapidly and widely distributed. The lowest concentrations occurred in the brain. Following administration of a single low dose, most organ/tissue concentrations were concordant with plasma kinetics and did not exceed maximum plasma concentrations. On this basis, uptake into most tissues was inferred to be passive and largely responsive to kinetics in the blood. The kidneys and male thyroid gland were exceptions, with maximum concentrations exceeding those of plasma by 2- to 4-fold. In both sexes, these targets had the slowest apparent elimination kinetics. Slower elimination kinetics were also apparent in the adrenal glands, bone marrow and whole blood in both sexes, as well as in the ovary. Comparable time-course information on early tissue concentrations was not available for single high dosing or for repeated low doses.

Metabolism of dithianon was rapid, extensive and complete. Unchanged dithianon was present at only trace levels in the feces and was not detected in the urine. Three major metabolites, (individually, 12-37% AD), and many minor metabolites (< 2-3% AD) were identified. Numerous fractions were also partially characterized. The three major metabolites were detected only in the urine. These included a glucuronide of the 1,4-dihydroxynaphthalene ring moiety (M216F020) and two dithiine ring metabolites (M216F029, M216F030). The main transformation steps in rats included oxidation of the sulfur atoms, cleavage of the dithiine ring, reduction of the 1,4-naphthoquinone moiety with further glucuronidation, as well as substitution of the carbonitrile moieties by amino and carboxy groups. The metabolic pathways were complex but the identified metabolites appeared generally similar in males and females. The chemical names of dithianon metabolites are listed in Table 1 of Appendix 1.

Elimination was rapid and complete, with no evident bioaccumulation. The majority was eliminated within 48 hours of dosing regardless of the dose level. Absorbed dithianon was eliminated primarily via the urine (24-33% AD) and to a lesser extent via the bile (7-12% AD). Only trace amounts were eliminated via expired air. Unabsorbed dithianon (57-72% AD) was completely degraded and/or metabolised within the gastrointestinal tract prior to elimination via the feces.

There was a small, toxicologically relevant, sex-dependent difference in the kinetics of dithianon elimination. Single-dosed females had slightly greater area under the curve (AUC) values, compared to males. This implies greater effective acute systemic exposure in females. At 48 hours, high-dose females had decreased elimination via the urine, increased retention in the carcass and no change in biliary elimination, compared to males. This pattern indicates delayed urinary elimination in females, which is consistent with acutely reduced kidney function. Female-specific acute cytotoxicity of the kidney tubule epithelium occurred at this dose level elsewhere in the toxicology database.

With repeated low dosing, elimination in females shifted slightly away from the urinary route and towards the fecal route compared to single-dosed females; this is consistent with an adaptive hepatobiliary response. Comparable changes were not evident in repeat low-dose males. In a published study, dithianon-treated mice exhibited sex-specific differences in the metabolic response of the liver, kidney and lungs following single and repeated oral exposures (PMRA# 2742219). This possibility was not explicitly investigated in rats.

In eukaryotic cells, dithianon reacts broadly with sulfhydryl groups (for example, glutathione) and interferes with thiol-dependent biological processes. For instance, in published studies dithianon modified the catalytically active sulfhydryl groups of key glycolytic enzymes, thereby potently inhibiting glycolysis (PMRA# 2742220, 2742221). Thus, dithianon's cytotoxic potential may be the result of perturbation of cellular redox-dependent processes. Notably, dithianon's cytotoxicity was generally reduced in bacterial and mammalian cell assays by metabolic activation using rat liver supernatant fraction nine (S9).

Dithianon had high acute oral toxicity in rats. At lethal doses, signs of toxicity were evident within 1-2 hours of dosing and included impaired and poor general state, dyspnoea, staggering, piloerection, smeared fur and diarrhea; death occurred within 1-4 days.

Following short-term dosing via the diet, mice, rats and dogs exhibited kidney toxicity, altered red blood cell parameters and thyroid hormone changes. In dogs, there was evidence of liver toxicity, but in rodents the liver-specific changes were considered primarily adaptive. At higher dose levels, all three species exhibited decreases in body weight and/or body weight gain as well as decreases in food consumption. Decreased food efficiency was also observed at higher dose levels, but only in rats. In rats and dogs, effects on body weight and food consumption were more evident in females than in males. Also, body weight and food consumption effects in mice and dogs were observed only following short-term dosing, whereas such effects persisted chronically in rats.

All three of the above test species exhibited increases in liver weight with short-term dietary dosing. In rodents, this persisted no longer than 28 days, with little evidence of concordant adverse functional and/or histopathological liver change. In female mice, iron deposition occurred in Kupffer cells at 28 days along with altered red blood cell parameters and increased kidney weight; increased liver weight manifested at a higher dose. Rodents dosed chronically exhibited no clear adverse liver effects. In contrast, liver weights in dogs, particularly in females, were increased at relatively low dose levels, and dose-concordant liver histopathology and liver-related clinical chemistry changes were observed following one year of dietary administration.

Thyroid hormone levels were perturbed at relatively low dose levels in rodents and dogs following short-term dietary dosing. In rats dosed with relatively high levels of dithianon, there was evidence that this perturbation persisted following longer dosing. Nevertheless, gross effects on the thyroid gland manifested only at higher dose levels, regardless of the species or duration of dosing. With short-term dosing in rodents, males exhibited a greater propensity for thyroid hormone perturbation and/or thyroid gland weight increase than females. Physiologically, the observed thyroid hormone changes in male rats tended to resemble hypothyroidism. Regardless, concordant increases in thyroid stimulating hormone (TSH) levels and thyroid gland weight occurred only at relatively high dose levels. The overall pattern of change suggests adequate homeostatic compensation of triiodothyronine (T₃) and thyroxine (T₄) levels at lower dose levels in rats. In dogs, thyroid hormones were only minimally investigated. Nevertheless, increased thyroid gland weight and histopathology (lymphocytic thyroiditis) occurred at high doses only, and with no obvious sex-specificity. Regardless of species or duration, concern for thyroid-related effects was minimal due to the nature of the effects and the dose levels at which they occurred.

Red blood cell (RBC) numbers and other closely related parameters were decreased with shortterm dietary dosing in rodents and dogs. Such effects were evident at lower dose levels in females compared to males in all three species, but particularly so in dogs. In both sexes, RBC effects were consistently associated with kidney toxicity. Consequently, an acute decrease in the ratio of polychromatic to normochromatic erythrocytes (PCE/NCE) in female rats following a single high dose in a bone marrow micronucleus assay is consistent with acutely impaired erythropoiesis, but it may not be due to a direct toxic effect within the bone marrow. In addition, in a study published in the scientific literature, dithianon potently inhibited glycolysis in cultured mammalian cells (PMRA# 2742221). In rats dosed at relatively high dithianon levels, demonstrably achievable concentrations in the blood fall within a range that could begin to interfere with RBC glycolysis. Thus, a direct effect on mature RBC viability may be a contributing factor given their exclusive reliance on glycolysis for energy metabolism. Although net decreases in circulating RBCs were modest with repeated dosing in rodents, evidence of compensatory increases in RBC production was evident; this manifested as decreased mean corpuscular hemoglobin (MCH) in female mice and increased reticulocytes in rats. This could have masked the absolute magnitude of RBC loss in rodents. In dogs, where RBC decreases were greatest, there was no evidence of compensatory change in erythropoiesis. In mice and dogs, the toxicological impact of short-term RBC destruction was evident in the liver as iron deposition within histiocytes/Kupffer cells.

The kidney was the primary target organ for toxicity in rodents and dogs, regardless of the duration of dosing. Kidney toxicity effects were more evident in rodents than in dogs and occurred at lower doses in females compared to males in all species tested. Overall, females exhibited a greater range and/or severity of kidney effects, or exhibited effects at lower dose levels compared to males. A critical aspect of dithianon-induced kidney toxicity that sets female rats apart from males appears to be a selectively increased cytotoxicity of the tubular epithelial cells within the transitional (S2) and straight (S3) segments of the proximal tubules. Given what is . Although the epithelium of all three segments are expected to play a critical role in eliminating and detoxifying dithianon, the segments with the greatest reliance on glycolysis appeared uniquely sensitive to dithianon and/or its metabolites. The earliest manifestation of cytotoxicity in these cells was mitochondrial degradation; this was observed within one to two days of exposure, depending on the dose level. Consequently, the cellular events causing mitochondrial damage and ensuing cell death were considered to have resulted from a single acute exposure to dithianon.

Kidney toxicity occurred for all exposure durations, from acute to chronic. In all three species, the number and severity of effects in the kidney increased as the dose level and exposure duration were increased. Observed effects appeared to be generally comparable in rodents and dogs, but the greatest observational detail was available for rats. In rats exposed acutely to high oral levels of dithianon, the most immediate adverse effect was tubular epithelial cell cytotoxicity, which consisted of mitochondrial damage, hydropic degeneration, dilated rough endoplasmic reticulum and nuclear degeneration. Acute cellular effects in rats administered a high oral dose of dithianon were accompanied by an increase in kidney weight and, based on toxicokinetic information, a slight but immediate decline in kidney function in female rats. Within one day of these acute effects in rats, there was also evidence of compensatory repair of the tubule epithelium.

The tubule repair response was investigated in dietary short-term mechanistic studies. At low dose levels the tubule cell response was evident as decreased apoptosis, increased cell proliferation, and increased expression of kidney injury molecule-one (KIM-1) protein. At higher dose levels, apoptosis was increased, rather than decreased; this suggests the existence of an exposure threshold beyond which the tubule repair response could become overwhelmed, resulting in increased cell death. This evident threshold is considered of relevance to the formation of tubule epithelial cell tumours in female rats (discussed in a later section).

Rats given repeated low dietary doses of dithianon exhibited transient increases in kidney weight and pallor, which did not persist beyond 28 days. Increased liver weight and greater apparent elimination via the biliary route also occurred within this time frame in female rats given repeated low doses. Thus, the transience of low-dose effects in the kidney likely reflects the time needed for a systemic adaptive response to manifest. At sufficiently high dose levels, increased kidney weight persisted in rodents and dogs, regardless of the duration of exposure. This is consistent with the existence of a dose-response threshold within the kidney. At low dose levels in rats, regardless of whether kidney weight was increased concurrently, there was further evidence of ongoing kidney toxicity (increased epithelial cells, blood, and protein in the urine, as well as kidney histopathology); these effects were observed as early as 90 days but extended to chronic durations of exposure. Within the same subchronic to chronic time frame, high dose levels of dithianon resulted in elevated blood urea nitrogen levels, indicating that kidney metabolism was also adversely affected. In addition, chronic high dose levels in female rats resulted in histopathological changes in the kidney that reflect a greater severity of tubular cell damage (multifocal), involving atypical cell division (nuclear enlargement, karyomegaly), abnormal cell cycle regulation (atypical tubule hyperplasia, proliferating tubules), and the formation of tubule epithelial cell tumours. The kidney tumours had no adverse impact on survival in females. In addition, there was no evidence of a decrease in the latency of tumour formation at a dose that closely approached the maximum tolerated dose (MTD).

With chronic dietary dosing in mice, effects on the kidney and thyroid were generally consistent with those observed in the rat. As in rats, kidney tubule effects in females were more pronounced at lower dose levels compared to males, but in both sexes there was no evidence of tumour formation in the kidney or elsewhere.

Dithianon tested negative for genotoxicity in a majority of assays, including two bacterial reverse mutation assays, a mammalian cell (lung fibroblasts, V79) gene forward mutation assay, in vitro and in vivo unscheduled DNA synthesis assays in rat hepatocytes, in vivo chromosomal aberration (bone marrow) and micronucleus assays in rats and mice. It also tested negative in one of two acute in vivo comet assays using rat kidney cells, and there was minimal evidence that dithianon could bind covalently to DNA in liver and kidney tissues in rats. Conversely, in the rat kidney there was evidence of considerable non-covalent interaction between DNA and dithianon, and/or its metabolites. In addition, dithianon produced positive results using an in vitro forward mutation assay in mammalian cells (V79) with metabolic activation, and using an in vitro chromosomal aberration assay (V79) with and without metabolic activation. Both of these positive in vitro results occurred at, or very near, the threshold for in vitro cytotoxicity. One of the two in vivo single-dose comet assays using rat kidney cells was positive, but only at doses that were demonstrably cytotoxic to the proximal tubule epithelium. Thus, under in vitro and in vivo conditions at sufficiently high concentrations, dithianon exhibited mutagenic and clastogenic potential.

There were limitations in the conduct of both comet assays. However, the positive assay was considered superior in design because the cell isolation technique (perfusion with collagenase digestion) and the positive control chemical, streptozotocin (STZ), were considered more appropriate for dithianon. The respective consequences of these study features were that the total population of cells investigated was considered more likely to have included the most susceptible kidney cells, those of the proximal tubule epithelium, and that this expectation was specifically confirmed via the STZ-induced positive response. In the kidney, STZ is expected to selectively induce cytotoxicity/genotoxicity and subsequent cell death (necrosis/apoptosis) only in the proximal tubule epithelium, due to the expression of the GLUT 2 isoform of the facilitative glucose transporter in these cells (PMRA# 2742222, 2742223, 2742228, 2742229). Importantly, the results of this study clearly demonstrate that dithianon's in vivo cytotoxic and genotoxic

potential were closely associated in the kidney; at sufficiently low doses, cytotoxicity occurred without evident genotoxicity, whereas genotoxicity never manifested in the absence of cytotoxicity. Thus, the apparent genotoxicity in this study is considered threshold-dependent and secondary to dithianon's cytotoxic effects. Overall, the weight of evidence did not suggest primary genotoxic potential for dithianon.

The results from specialized mechanistic studies in rats were sufficiently robust to support cytotoxicity-dependent regenerative hyperplasia as the probable causative MOA for the observed female-specific kidney tubule epithelial cell tumours. The initiating key event, cytotoxicity-induced death, is a compensable, threshold-dependent event. Key precursor events of the proposed tumourigenic MOA were temporally-, spatially- and dose-concordant with tumour formation. Male rats also exhibited the key initiating cytotoxicity, but affected kidney cells were distributed diffusely and there were no treatment-related tumours. In females, cytotoxicity and cell death appeared to more specifically affect the epithelium of the straight proximal tubules within the inner cortex. This region is where most of the tumours appeared to have formed. The tumours appear to result from a unique confluence of sex-specific exposure circumstances within the kidney, rather than from a primary or generalized genotoxic effect of dithianon. Although the tumours manifested at a dose level that was possibly nearing the MTD, cytotoxicity-induced cell death was evident at lower doses. Overall, the data supported the use of a threshold approach for the cancer risk assessment. The kidney tumours were considered relevant to humans.

In a 28-day gavage neurotoxicity study, rats exhibited increased piloerection and decreased rearing in both sexes at the end of the study at the highest dose tested (HDT). Decreased motor activity also occurred in males at the same dose level, together with decreases in body weight and food efficiency. Females dosed at this level had decreases in body weight gain and food consumption. Although decreased rearing and motor activity are potentially related to an effect on the nervous system, they may also manifest due to more general or indirect causes. Given the high level of dosing and lack of corroborative neurohistopathological change, there was insufficient evidence to conclude that dithianon was selectively neurotoxic. Finally, no other potential signs of neurotoxicity were noted in the toxicology database.

Following in utero exposure, where maternal animals received dithianon via gavage, developmental toxicity included increased early intra-uterine deaths and/or abortions and postimplantation loss in rats and rabbits, and increased pre-implantation loss in rabbits. Consequently, there were concomitant decreases in live fetuses per maternal animal in both species. There was no evidence of treatment-related malformations. In both species, the observed developmental toxicity occurred in the presence of decreased body weight, body weight gain and food consumption in maternal animals. In rats, fetal body weight was decreased at twice the dose at which this effect was observed in maternal animals. At dose levels higher than the maternal lowest observable adverse effect level (LOAEL) in rats, there were increased mortalities in dams as well as gross pathology in the stomach and intestines, including enlarged Peyer's patches and a severely reddened mucosa. Although some limitations were identified in the rabbit developmental toxicity study, it was considered acceptable.

In a two-generation dietary reproductive toxicity study in rats, there were no treatment-related effects on reproductive performance. The primary target organs (kidney, liver) were not weighed in this study and the kidney was not examined histologically, but these were adequately

investigated at comparable dose levels in other studies. Systemic toxicity observed in parental animals was consistent with those reported in other repeated-dose dietary studies in rats and included reductions in body weight, body weight gain and food consumption. No treatment-related effects were observed in the offspring of either generation.

Results of the toxicology studies conducted on laboratory animals with dithianon are summarized in Table 2 of Appendix I. The toxicology reference values for use in the human health risk assessment are summarized in Table 3 of Appendix I.

Incident Reports

Since April 26, 2007, registrants have been required by law to report incidents to the PMRA, including adverse effects to Canadian health or the environment. Diathianon is not registered for use in Canada or the United States. As such, there are no incident reports on file with the PMRA.

3.1.1 PCPA Hazard Characterization

For assessing risks from potential residues in food or from products used in or around homes or schools, the *Pest Control Products Act* (PCPA) requires the application of an additional 10-fold factor to threshold effects to take into account completeness of the data with respect to the exposure of, and toxicity to, infants and children, and potential prenatal and postnatal toxicity. A different factor may be determined to be appropriate on the basis of reliable scientific data.

With respect to the completeness of the toxicity database as it pertains to the toxicity to infants and children, the standard complement of required studies were available for risk assessment including gavage developmental toxicity studies in rats and rabbits and a dietary reproductive toxicity study in rats.

With respect to potential prenatal and postnatal toxicity, there was no indication of increased susceptibility of fetuses or offspring compared to parental/maternal animals in the dietary reproductive and gavage developmental toxicity studies. In the dietary reproductive toxicity study, parental animals exhibited bodyweight and food consumption effects at the HDT. At the same dose level, there were no evident effects in the offspring. In the developmental toxicity studies, there were increased early intra-uterine deaths and/or abortions and post-implantation loss in rats and rabbits, and increased pre-implantation loss in rabbits. In both species, these serious effects occurred in the presence of more generalized maternal effects (decreased body weight, body weight gain and food consumption); the maternal/developmental no observable adverse effect level (NOAEL) was lowest in rats. Thus, in both species a serious endpoint (increased fetal loss) was demonstrated in the presence of maternal toxicity.

Overall, the database is adequate for determining the sensitivity of the young. There was a low level of concern for sensitivity of the young and effects on the young are well characterized. Although increased fetal loss in the developmental toxicity studies was considered a serious endpoint, concern for this finding was tempered by the fact that maternal toxicity was evident at the same dose level. Accordingly, the 10-fold PCPA factor was reduced to 3-fold for exposure scenarios using the toxicological endpoint from the rat developmental toxicity study. For all other exposure scenarios, the PCPA factor was reduced to 1-fold.

3.2 Determination of Acute Reference Dose

Females 13-49 Years of Age

To estimate acute dietary risk, the developmental toxicity study in the rat with a maternal/developmental NOAEL of 20 mg/kg bw/day was selected. At the LOAEL of 50 mg/kg bw/day, an increase in early resorptions was observed, and maternal animals also appeared thin, had reduced body weights and food consumption. The possibility that the fetal loss could be the result of a single exposure could not be ruled out; this endpoint is therefore considered relevant to an acute risk assessment. An increase in early resorptions was also observed in the developmental toxicity study in the rabbit, but the NOAEL established in the rat study was lower. Standard uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability were applied. As discussed in the PCPA Hazard Characterization section, the PCPA factor was reduced to 3-fold. **Thus, the composite assessment factor (CAF) is 300.**

The ARfD is calculated according to the following formula:

ARfD (females 13-49) = $\frac{\text{NOAEL}}{\text{CAF}} = \frac{20 \text{ mg/kg bw/day}}{300} = 0.07 \text{ mg/kg bw}$

General Population (excluding females 13-49 years of age)

To estimate acute dietary risk, the 7-day nephrotoxicity study in the rat with a NOAEL of 12 mg/kg bw/day was selected for risk assessment. At the LOAEL of 60 mg/kg bw/day, kidney tubule cellular damage was observed. These effects were evident as early as two days following dosing, and are therefore relevant to an acute risk assessment. Comparable cellular and subcellular damage, or immunohistological evidence of such damage, occurred in three single-dose studies at doses above the NOAEL established in the nephrotoxicity study. Standard uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability were applied. As discussed in the PCPA Hazard Characterization section, the PCPA factor was reduced to 1-fold. **Thus, the CAF is 100.**

The ARfD is calculated according to the following formula:

ARfD (general population) = $\frac{\text{NOAEL}}{\text{CAF}} = \frac{12 \text{ mg/kg bw/day}}{100} = 0.1 \text{ mg/kg bw}$

3.3 Determination of Acceptable Daily Intake

To estimate risk from repeat dietary exposure to dithianon, the chronic dietary toxicity/oncogenicity study in the rat with a NOAEL of 1 mg/kg bw/day was selected for risk assessment. At the LOAEL of 6 mg/kg bw/day, evidence of kidney damage was observed. This study provides the lowest NOAEL in the database. Standard uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability were applied. As discussed in the PCPA Hazard Characterization section, the PCPA factor was reduced to 1-fold. **Thus, the CAF is 100.**

The ADI is calculated according to the following formula:

 $ADI = \underline{NOAEL} = \underline{1 \text{ mg/kg bw/day}} = 0.01 \text{ mg/kg bw/day}$ $CAF = \underline{100}$

The ADI provides respective margins of 600 and 2000 to the NOAELs for renal epithelial tumours and early resorptions observed in female rats.

Cancer Assessment

Kidney tubule epithelial cell tumours were observed in female rats administered a high dose of dithianon following chronic dosing. The proposed MOA for tumour formation was deemed plausible and was adequately supported by the data provided; dose and temporal concordance, as well as spatial concordance within the kidney, were considered adequately characterized and coherent. Although there was adequate evidence to support a threshold-based approach to risk assessment for the renal epithelial tumours in female rats, the human relevance of these tumours could not be discounted. The established toxicology reference values provide a sufficient margin to this tumour.

3.5 Food Residues Exposure Assessment

3.5.1 Residues in Plant and Animal Foodstuffs

The residue definition for risk assessment and enforcement in plant commodities is dithianon. The data gathering/enforcement analytical methods are valid for the quantitation of dithianon residues in crop matrices. The residues of dithianon are stable in apples, pears, cherries and plums for 24 months, grapes for 21 months, and hops for 6 months when stored in a freezer at \leq -15°C. Therefore, adequate storage stability data are available to support the storage conditions and intervals in the field and processing trials. The raw agricultural commodities of apples, cherries, plums, grapes and dried hops were processed, and dithianon residues concentrated in raisins only (1.6x). Crop field trials conducted in Germany, France, Australia, the Netherlands, UK, Italy, Spain, Denmark, Belgium, and Greece using end-use products containing dithianon (at approved or exaggerated rates) in or on apples, pears, cherries (sweet and tart), plums, grapes and dried hops are sufficient to support the proposed MRLs.

3.5.2 Dietary Risk Assessment

Acute and chronic dietary risk assessments were conducted using the Dietary Exposure Evaluation Model (DEEM-FCIDTM, Version 4.02, 05-10-c), which incorporates food consumption data from the National Health and Nutritional Examination Survey, What We Eat in America (NHANES/ WWEIA) dietary survey for the years 2005-2010 available through CDC's National Center for Health Statistics (NCHS).

3.5.2.1 Chronic Dietary Exposure Results and Characterization

The following criteria were applied to the intermediate chronic analysis for dithianon: 100% crop treated, default and experimental processing factors (when available), and residues of the petitioned crops based on supervised trial median residue (STMdR) values. The intermediate chronic dietary exposure from all supported dithianon food uses (alone) for the total population, including infants and children, and all representative population subgroups is less than 15% of the ADI. The highest exposure and risk estimate is for children 1-2 years old at 45% (0.004446 mg/kg bw/day) of the ADI, which is not of health concern.

3.5.2.2 Acute Dietary Exposure Results and Characterization

The following assumptions were applied in the intermediate acute analysis for dithianon: 100% crop treated, default and experimental processing factors (when available), and residues of the petitioned crops based on maximum residue values. The intermediate acute dietary exposure for all supported dithianon imported commodities was estimated to be 16% (0.011093 mg/kg bw/day) of the ARfD for females 13-49 years old (95th percentile, deterministic), and 9-62% of the ARfD for all other population subgroups (95th percentile, deterministic), which is considered acceptable.

3.5.3 Maximum Residue Limits

Table 3.1

The recommendation for MRLs for dithianon was based upon the submitted field trial data from the exporting countries, and the guidance provided in the <u>OECD MRL Calculator</u>. MRLs to cover residues of dithianon in/on crops and processed commodities are proposed as shown in Table 3.1. Residues in processed commodities not listed in Table 3.1 are covered under the proposed MRLs for the raw agricultural commodities (RACs).

Summary of Field Trial and Processing Data Used to Sunnort Maximum

Table 5.1. Summary of Field That and Frocessing Data Used to Support Maximum						
Residue Limits	Residue Limits (MRLs)					
Commodity	Application Method/ Total Application	PHI	Residues (ppm)		Experimental Processing	Recommended MRL
	Rate (kg a.i./ha)	(days)	LAFT	HAFT	Factor	(ppm)
Apples	Foliar broadcast/ 5.6-7.4	21	0.11	1.90	-	5
Pears	Foliar broadcast/ 13.6-22.3	21	1.71	3.67	-	8
Cherries (sweet and tart)	Foliar broadcast/ 1.5-1.6	13-14	0.08	1.50	-	3
Plums	Foliar broadcast/ 0.63-0.70	14-15	< 0.02	0.13	-	0.5
Grapes	Foliar broadcast/ 3.5-4.5	41-43	0.25	7.36	Raisins (1.6x)	8 (RAC) 12 (Raisins)
Hops (dried)	Foliar broadcast/ 10.0-12.1	14	4.1	95.5	-	300

LAFT = Lowest Average Field Trial; HAFT = Highest Average Field Trial

4.0 Environmental and Value Assessments

Environmental and value assessments were not required for this application.

5.0 Conclusion

The Pest Management Regulatory Agency has completed an assessment of the information provided in support of this application.

The toxicology database submitted for dithianon is adequate to define the majority of toxic effects that may result from exposure. In short- and long-term studies with adult animals, the targets of toxicity were the kidney, liver, thyroid gland and red blood cells. There was no evidence of disregulation of the immune system, and no evidence that dithianon was selectively neurotoxic. In the rat reproductive toxicity study and in the developmental toxicity studies in rats and rabbits, there was no evidence of increased sensitivity of the young. In the developmental toxicity studies, increased fetal loss, considered a serious endpoint, was observed in the presence of maternal toxicity. There was no evidence of carcinogenicity in mice after longer-term dosing. Chronic dosing with dithianon resulted in kidney tumours in female rats. Based on the mechanistic data provided, a proposed MOA for kidney tumours in rats was considered plausible and was supported by the data. The risk assessment protects against the toxic effects noted above by ensuring that the level of human exposure is well below the lowest dose at which these effects occurred in animal tests.

The nature of the residues in plants is adequately understood. The residue definition for enforcement is dithianon in plant products. The proposed use of dithianon on apples, pears, cherries (sweet and tart), plums, grapes and dried hops does not constitute a risk of concern for chronic or acute dietary exposure (food alone) to any segment of the population, including infants, children, adults and seniors. Sufficient crop residue data have been reviewed to recommend MRLs on imported commodities. The PMRA recommends that the following MRLs be specified for residues of dithianon.

Commodity	Recommended MRL (ppm)
Hops (dried)	300
Raisins	12
Grapes, pears	8
Apples	5
Sweet cherries, tart cherries	3
Plums	0.5

List of Abbreviations

1		increase
\downarrow	decreas	Se
→ 0+ ^r 0	female	
		male
#		number
∞		infinity
μg		micrograms
abs		absolute
AD		administered dose
ADI		acceptable daily intake
a.i.		active ingredient
ALT		alanine aminotransferase
ALK		alkaline phosphatase
ARfD		acute reference dose
AST		aspartate aminotransferase
AUC		area under the curve
BrdU		bromodeoxyuridine
bw		body weight
bwg		bodyweight gain
CAF		composite assessment factor
CAS		Chemical Abstracts Service
CDC/N	ICHS	Centers for Disease Control and Prevention/National Center for Health Statistics
CI		confidence interval
cm		centimetre(s)
CYP		cytochrome P-450 enzyme
DEEM	-FCID	Dietary Exposure Evaluation Model-Food Commodity Intake Database
DNA		deoxyribonucleic acid
EAC		Ehrlich acites carcinoma cells
EM		electron microscopy
EMS		ethyl methanesulfonate
F_1		first generation
fc		food consumption
fe		food efficiency
g		gram(s)
G6PDH	H	glucose-6-phosphate dehydrogenase enzyme
GAPD	H	glyceraldehyde-3-phosphate dehydrogenase enzyme
GC-EC	CD	gas chromatography with electron capture detection
gen		generation
GGT		gamma-glutamyl transferase
h		hour(s)
ha		hectare(s)
HAFT		Highest Average Field Trial
HCT		hematocrit
HDT		highest dose tested
HGB		hemoglobin

HK	hexokinase enzyme
HPLC	high performance liquid chromatography
IUPAC	International Union of Pure and Applied Chemistry
i.p.	intraperitoneal
kg	kilogram(s)
KIM-1	kidney injury molecule-1
$K_{ m ow}$	<i>n</i> -octanol-water partition coefficient
L	litre(s)
LAFT	Lowest Average Field Trial
LD_{50}	lethal dose to 50%
LOAEL	lowest observed adverse effect level
mg	milligram(s)
mĽ	millilitre(s)
MCH	mean corpuscular hemoglobin
MCV	mean corpuscular volume
MOA	mode of action
MRL	maximum residue limit
MS	mass spectrometry
MTD	maximum tolerated dose
N/A	not applicable
NCE	normochromatic erythrocytes
NHANES/W	WEIA National Health and Nutritional Exam Survey/What We Eat in America
NOAEL	no observed adverse effect level
OECD	Organisation for Economic Co-operation and Development
OSOM	outer stripe of the outer medulla of the kidney
Р	parental generation
Ра	Pascal(s)
PC	positive control
PCE	polychromatic erythrocytes
PCPA	Pest Control Products Act
PCV	packed cell volume
PHI	preharvest interval
p <i>K</i> a	dissociation constant
PLT	platelet cell count
PMRA	Pest Management Regulatory Agency
ppm	parts per million
RAC	raw agricultural commodity
RBC	red blood cell
rel	relative
RER	rough endoplasmic reticulum
Rf	retention factor (relative migration distance using TLC)
RQ	respiratory quotient
S 1	segment 1 (convoluted) of kidney proximal tubule
S2	segment 2 (transitional) of kidney proximal tubule
S 3	segment 3 (straight, pars recta) of kidney proximal tubule
S9	supernatant fraction nine (metabolic activator agent)
STMdR	supervised trial median residue

STZ	streptozotocin
T ₃	tri-iodothyronine
T_4	thyroxine
TH	testosterone hydroxylase
TLC	thin layer chromatography
TRR	total radioactive residue
TSH	thyroid stimulating hormone
TUNEL	terminal deoxynucleotidyl transferase dUTP nick end labeling
UV	ultraviolet
WBC	white blood cell
wc	water consumption
wk	week
wt	weight

Appendix I Tables and Figures

Metabolite Identifier	Chemical name
M216F004	partially saturated thiazine-derivative of parent compound
M216F008	partially saturated, carboxy substituted, thiazine-derivative of parent compound
M216F012	2-amino-(1,4)-naphthoquinone
M216F013	2-sulfonato-3-acetoamido-1,4-dihydroxynaphthalene
M216F020	glucuronide of 1,4-dihydroxynaphthalene
M216F026	glucuronide of the hydroquinone of parent compound
M216F028	glucuronide of the hydroquinone of parent compound
M216F029	maleonitrile sulfonic acid
M216F030	S-methyl-dimercaptomaleonitrile
M216F031	S-methyl-dimercaptofumaronitrile (E-isomer of M216F030)
M216F036	isomeric glucuronide of 2-acetoamido-1,4-dihydronaphthalene
M216F037	isomeric glucuronide of 2-acetoamido-1,4-dihydronaphthalene
M216F038	glucuronide of the hydroquinone of parent compound
M216F039	1-sulfato-4-hydroxynaphthalene

Table 1Metabolite Identification

Table 2Toxicity Profile of Technical Dithianon

[Effects are known or assumed to occur in both sexes unless otherwise noted; in such cases, sex-specific effects are separated by semi-colons. Organ weight effects reflect both absolute organ weights and relative organ to bodyweights unless otherwise noted. Effects observed above the LOAEL(s) as well as non-adverse effects observed below the LOAEL(s) have not been reported in this table for most studies for reasons of brevity.]

Study Type/	Study Results
Animal/ PMRA#	

Study Type/	Study Results
Animal/ PMRA#	
Excretion,	Rats were administered a single oral dose of 50 mg/kg bw (high dose) of $(5/10)$ h h h 14 C $(5/10)$ h h h 14 C
metabolism (gavage, preliminary, 2007)	quinone-labelled dithianon (5(10)-label; 14 C and 13 C).
	Excretion: Excretion was rapid and nearly complete within 48-72 h (>95%
Rat, Sprague-Dawley	AD at 72 h). It occurred primarily via the feces (~69% AD), and to a lesser extent via the urine (~28% AD), regardless of the sex.
PMRA# 2493485	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Metabolism: Dithianon degrades rapidly and was not detected in the
	excreta. In the feces, most likely due to alkaline hydrolytic
	instability/reactivity of dithianon and its metabolites, there were a very
	large number of minor metabolites/degradates. In the urine, there was a
	single main transformation product (>15% AD, a glucuronic acid
	metabolite, identified as M216F020 in PMRA# 2493486). Except for
	M216F20 in the urine, metabolites/degradates were less than 5% AD,
	regardless of the sex and sampling interval. The major transformation
	reactions included: 1) ring cleavage, 2) oxidation/reduction, 3) reaction
	with nucleophiles, 4) subsequent conjugation.
	Supplemental

Study Type/ Animal/ PMRA#	Study Results
Distribution, excretion, metabolism (gavage, 2009)	Rats were administered a single oral dose of 10 mg/kg bw (low dose) or 50 mg/kg bw (high dose) of quinone-labelled dithianon (5(10)-label; ^{14}C and ^{13}C).
Rat, Sprague-Dawley	No major differences were observed in absorption, excretion (kinetics and recoveries), or metabolism (metabolite patterns and pathway) according to the sex or the dose level, where such comparisons could be made.
PMRA# 2493486	Absorption: Not assessed quantitatively, but apparently rapid and estimated to be ~40% AD.
	Distribution: The TRR at 6 h was quantified in the liver (~0.1-0.3% AD, 0.82-2.0 mg/kg TRR), kidneys (~0.1-0.4% AD, 5.7-8.4 mg/kg TRR), plasma (~0.03-0.1% AD, 1.4-3.4 mg/kg TRR); comparatively low TRR occurred in bone marrow. There were no major dose- or sex-related differences in the reported TRRs.
	Excretion: Excretion was rapid and nearly complete within 48-72 h (>95% AD at 72 h). It occurred primarily via the feces (~69% AD), and to a lesser extent via the urine (~28% AD), regardless of the sex.
	Metabolism: Dithianon was extensively metabolized, likely as a consequence of its reactive structure. Key transformation steps were thought to include 1) oxidation of the sulphur atoms, 2) cleavage of the dithiine ring, 3) reduction of the 1,4-naphthoquinone moiety and further glucuronidation, as well as 4) substitution of the carbonitrile moieties by amino and carboxy groups. Identified metabolites were from fractions extracted using acetonitrile.
	In the urine, the most predominant metabolite was M216F020 (9-10% AD, a glucuronic acid derivative of the (1,4)-dihydroxylated naphthalene moiety). Another 18 minor to negligible metabolites, of varying polarity, were identified in urine (<1-2% AD). A majority lacked the dithiine ring moiety of dithianon.
	In the feces, five metabolites dominated (of ~30 total extracted), but all were quantitatively minor (<1% AD). Nine other quantitatively negligible metabolites were identified, but many others were not identified; most were characterized as being polar to semi-polar. The most predominant feces metabolite was M216F012 (0.4-0.6% AD, 2- amino-(1,4)- naphthoquinone). A significant fraction of total radioactivity appeared tightly bound in the feces, as it was difficult to extract using various additional methods. A huge number of metabolites, with a broad range of polarity, were detected among the extracted radioactivity, but no unchanged parent was detected.
	-18- In the liver, numerous metabolites occurred (8 identified) but none predominated; there was a qualitative overlap with metabolites identified in feces. In the kidney, there were numerous metabolites (8 identified) but

Study Type/	Study Results
Animal/ PMRA#	
Excretion kinetics	\bigcirc rats were administered a single oral dose of 9.8 mg/kg bw (low dose) or
and radioactive	8.3 mg/kg bw (low dose) of quinone-labelled (5(10)-label; ¹⁴ C) or
residue levels in	dithiine-labelled (2,3-cyano-label; ¹⁴ C) dithianon, respectively.
blood plasma and	
bone marrow	Absorption: Rapid
(gavage, 2009)	
	Excretion: Rate and extent of excretion via urine was greater for 2,3-cyano
Rat, Sprague-Dawley	label than 5(10) label. For the 5(10) label 59% AD was excreted within 24
	h (34% AD urine, 26% AD feces). For the 2,3-cyano label 84% AD was
PMRA# 2493487	excreted within 24 h (63% AD urine, 21% AD feces). At 24 h, the TRR
	levels were low in blood plasma ($\leq 0.05\%$ AD) and bone marrow (\leq
	0.0004% AD) regardless of the label.
	Samples obtained in this study were investigated further in a metabolism
	study (PMRA# 2633539) and in a DNA binding study (PMRA# 2493484)

Study Type/	Study Results
Animal/ PMRA#	
Metabolism (gavage, 2010)	\bigcirc rats were administered a single oral dose of 9.8 mg/kg bw (low dose) or 8.3 mg/kg bw (low dose) of quinone-labelled (5(10)-label; ¹⁴ C) or dithiane-labelled (2,3-cyano-label; ¹⁴ C) dithianon, respectively.
Rat, Sprague-Dawley	
PMRA# 2633539	Metabolism: Extensive, with very few major metabolites, many minor metabolites, and fractions which were partially characterized according to polarity.
	In the urine (0-24h) there were three predominant metabolites, M216F020 (14% AD, 5(10)-label), M216F030 (37% AD, 2,3-cyano label) and M216F029 (12% AD, 2,3-cyano label) with individual remaining metabolites generally accounting for \leq 3% AD, regardless of the label. Identification of 5(10) and 2,3-cyano labelled metabolites was 20% and 54% AD, respectively. Partial characterization of 5(10) and 2,3-cyano-labelled metabolites was 14% (mostly semi-polar substances) and 8% AD (mostly polar), respectively. The only metabolite common to the 5(10) and 2,3-cyano labels was M216F038 (0.9% AD and 0.4% AD, respectively).
	In the feces (0-24 h) there were many 5(10)-labelled metabolites (46 as HPLC peaks, each < 2% AD), with the two most predominant peaks identified as M216F004 (1.2% AD) and M216F008 (0.8% AD). There were also many unidentified 2,3-cyano-labelled metabolites (44 as HPLC peaks, each < 0.6% AD, wide range of polarity), with one predominant peak (2.6% AD, not identified). Only trace amounts of unchanged dithianon were identified. Identification of 5(10)- and 2,3-cyano-labelled metabolites was 2% and 0% AD, respectively. Characterization of 5(10)- and 2,3-cyano-labelled metabolites was 12% (mostly semi-polar to non-polar substances) and 12% AD (mostly non-polar), respectively.
	Overall, for the 0-24 h urine and feces combined, identification of labelled metabolites was 76% AD and all but 13% of this was accounted for by the three main urine metabolites. In the plasma, none of the metabolites at 24 h post-dose was quantitatively significant in terms of % AD.
	The main transformations included 1) cleavage of dithiine ring to dimercaptomaleonitrile followed by 2) S-methylation (M216F030 and E-isomer, M216F031, trace), or 3) thiol oxidation to maleonitrile sulfonic acid (M216F029, dithiine ring degradate), 4) reduction of the naphthoquinone moiety and subsequent glucuronidation (M216F020) or sulfation (M216F039, trace).
	Minor transformation products of the 1,4-dihydroxynaphthalene moiety, bearing an acetamido group, were identified; they include two isomeric glucuronides (M216F036 and M216F037) and the sulphonate of 3- acetamido-1,4-dihydroxynaphtalene (M216F013). A partially saturated carboxy-substituted thiggine-derivative of the parent (M216F008), and a corresponding decarboxylated metabolite (M216F004) were also identified as minor metabolites. In addition, reduction and glucuronidation of the naphthoguinone moiety of uncleaved dithianon (M216F026):

Study Type/	Study Results
Animal/ PMRA# Absorption,	Rats were administered a single oral dose of 10 mg/kg bw (low dose) or
metabolism,	50 mg/kg bw (high dose), or repeated (14 days) oral doses of 10 mg/kg bw
distribution,	of quinone labelled (5,6,9,10-label; ¹⁴ C) dithianon.
excretion (gavage,	of quinone faberied (5,0,9,10-faber, C) diffication.
1989)	Absorption: Absorption was rapid, but incomplete. Based on biliary excretion information ~57 to 72% of total fecal excretion was inferred to
Rat, Sprague-Dawley PMRA# 2493491, 2493490	be unabsorbed dithanon and/or its transformation products. After single oral doses, mean peak plasma concentrations occurred at 6 h in both sexes and declined thereafter, regardless of the dose. Mean terminal half-lives were 55.8/56.8 h ($3/2$, low dose) and 46.4/ 56.7 h ($3/2$, high dose). The
2475470	AUC _{0-∞} values were 24 to 35% greater in \bigcirc compared to \bigcirc , regardless of the dose level. This indicates that the effective systemic dose likely was slightly greater in \bigcirc than in \bigcirc .
	Excretion: Elimination was rapid and complete. Essentially, no radioactivity was eliminated via expired air (<0.05% AD). In general, after a single oral dose at 10 or 50 mg/kg bw, broadly similar proportions of radioactivity was excreted via the urine (~31% AD) and feces (~66% AD), regardless of the sex; elimination was approximately 97% complete within 48 h for both routes. An exception to this occurred in high dose canulated animals, in which there was diminished urinary excretion in \mathfrak{P} compared to \mathfrak{F} (33/24% AD, $\mathfrak{F}/\mathfrak{P}$). Generally, after a single oral dose, biliary excretion was approx. 7-12% AD in \mathfrak{F} and \mathfrak{P} .
	The pattern of excretion in \mathcal{J} for single and repeated low doses was essentially the same. In contrast, with repeated dosing, \mathcal{Q} exhibited slightly greater reliance on fecal elimination (~72% AD) and a correspondingly diminished reliance on urine elimination (~27% AD); likely this reflects enhanced reliance on adaptive hepatic elimination via the biliary route, rather than diminished absorption.
	Distribution: After a single oral low dose, the highest absolute tissue concentrations (µg equivalents/g or mL) of radioactivity occurred at 6 h post-dose (gastrointestinal tract: 97/110, \Im/\Im ; kidneys: 2.7/2.0, \Im/\Im ; plasma: 0.76/0.75, \Im/\Im); the kidney in both sexes, and the thyroid gland in \Im , were the only organs/tissues which had maximum concentrations of absorbed radioactivity that exceeded peak levels in the blood plasma. Concentrations of radioactivity in most tissues and organs diminished rapidly with time and generally according to blood plasma kinetics. Exceptions to this general pattern of elimination included the kidneys, thyroid gland, bone marrow, adrenal glands and whole blood in both sexes, as well as the ovary; these organs and tissues exhibited slower tissue-specific elimination kinetics compared with that of the blood plasma.
	At 120 h after a single high dose, retention in the kidneys and thyroid gland was approximately 4-fold and 8-fold higher, respectively, compared to the low dose results. Nevertheless, radioactivity at 168 h after a single low dose of dithianon was below the limit of detection in most organs and

Study Type/	Study Results
Animal/ PMRA# Metabolism, excretion (gavage, 1994)	Rats were administered a single oral dose of 50 mg/kg bw (high dose) of quinone labelled (5,6,9,10-label; ¹⁴ C and ¹³ C) dithianon.
,	Clinical signs: diarrhea (0 - 24 h)
Rat, Sprague-Dawley PMRA# 2493488, 2493489 (amendment)	Excretion: Most of the urinary radioactivity was excreted between 6-24 h post-dose (15/12% AD \Im/\Im); 0-24 h post-dose fecal amounts represented 49/27% AD \Im/\Im . Recoveries (86/70% AD \Im/\Im) were lower than the precedent study due to diarrhea from 0-24 h.
	Metabolism: Dithianon degradation was rapid and complete. There were large numbers of minor, mostly polar, degradates. A small number were identified, including 2-amino-1,4-naphthoquinone and 4,9-dioxo-4,9- dihydronaphtho[2,3-b]thiophene-2,3-dicarbonitrile, and a penta- fluorobenzyl conjugate of 2-hydroxy-3-mercapto-1, 4-naphthoquinone.
	The proposed metabolic steps included cleavage of the dithiine ring between positions 3 and 4, 4 and 4' and their symmetrical counterparts by nucleophilic agents, possible hydroxylation in different positions of the phenyl ring and the different degrees of oxidation of the sulfur atoms, resulting in a variety of reactive polar products. As there were apparently no preferential pathways, a plurality of products were formed which all appear to occur in trace amounts only.
	There were no apparent sex-related differences in metabolism or excretion.
Acute oral (gavage, 2005)	$LD_{50} (\stackrel{\frown}{\uparrow}) = 300 \text{ mg/kg bw}$
Rat, Wistar	High toxicity
PMRA# 2493416	\geq 300 mg/kg: impaired and poor general state, dyspnoea, staggering, piloerection, smeared fur and diarrhea observed from 1 h post-dose until study day 6 after administration (\bigcirc)
Acute oral (gavage, 1987)	$LD_{50}(3/2) = 702 \text{ mg/kg bw } (95\% \text{ CI: } 528-1015 \text{ mg/kg bw})$ $LD_{50}(3) = 720 \text{ mg/kg bw } (95\% \text{ CI: } 597-893 \text{ mg/kg bw})$ $LD_{50}(2) = 678 \text{ mg/kg bw/day } (95\% \text{ CI: } 557-1171 \text{ mg/kg bw})$
Rat, Wistar	
PMRA# 2493418,	Moderate toxicity
2493417 (amendment)	\geq 600 mg/kg bw: bw, sedation and ruffled fur with increased incidence, dyspnea, curved body position, diarrhea, emaciation
(

Study Type/ Animal/ PMRA#	Study Results
28-day oral (dietary, range-finding, 1987)	NOAEL and LOAEL were not established as study was considered supplemental.
Mouse, CD-1	\geq 75 mg/kg bw/day: \downarrow T ₃ ; \downarrow T ₄ (\circlearrowleft); \downarrow HGB, PCV, \uparrow kidney wt, \uparrow iron deposition in Kupffer cells of liver (\bigcirc)
PMRA# 2493438	150 mg/kg bw/day: \downarrow bw, bwg (wk 0-1), fc (wk 1), HGB, PCV, MCH; \downarrow T ₄ , \uparrow liver wt, kidney wt (rel. only) (\bigcirc)
	Study was considered supplemental as several parameters were not evaluated.
28-day oral (dietary, range-finding, 1966)	NOAEL and LOAEL were not established as study was considered supplemental.
Rat, Sprague-Dawley	≥125 mg/kg bw/day: inappetence, growth suppression, empty alimentary canals, lung congestion
PMRA# 2493439	500 mg/kg bw/day: mortality, clinical signs (piloerection, alopecia, dyspnea, torpor, ptosis)
	Study was considered supplemental as several parameters were not evaluated.
90-day oral (dietary, 1987)	NOAEL = $15/3.0 \text{ mg/kg bw/day} (\Im/\Im)$ LOAEL = $87/16 \text{ mg/kg bw/day} (\Im/\Im)$
Rat, Sprague-Dawley PMRA# 2493432,	Effects at the LOAEL: \downarrow bw, bwg, terminal bw, \downarrow RBC, HCT, HGB, \uparrow reticulocytes, WBC, \downarrow T ₃ , T ₄ , \uparrow TSH, blood urea, total protein, albumin, globulin, α 1-globulin, adrenal wt, thyroid wt (\Im); \uparrow kidney wt (\Im)
2493430, 2493431, 2493440	Effects that persisted following a 4-week recovery period: \downarrow RBC; \downarrow T ₄
90-day oral (dietary,	$(\Im); \uparrow$ kidney wt, adrenal wt (\Im) NOAEL = 3.0 mg/kg bw/day
1989)	LOAEL = 13 mg/kg bw/day
Dog, Beagle	Effects at the LOAEL: \downarrow glucose, \uparrow ALK, liver wt, kidney wt, \downarrow thymus wt; \downarrow bw, fc, \uparrow T ₄ (\bigcirc)
PMRA# 2493436, 2493434, 2493435, 2493437	

Study Type/	Study Results
Animal/ PMRA#	
52-week oral	NOAEL (\bigcirc) = 5.2 mg/kg bw/day
(dietary, 1987)	LOAEL (\circlearrowleft) = 27 mg/kg bw/day
Dog, Beagle	Effects at the \Im LOAEL: \downarrow fc, \downarrow RBC, HGB, PCV, \uparrow PLT, codocytes, ALK, AST, ALT, \uparrow liver wt, thyroid wt, kidney wt, hepatocellular
PMRA# 2493433	hypertrophy (clear or lacey cytoplasm), intranuclear eosinophilic inclusions and sinusoidal foci of pigmented histiocytes in liver (iron- positive), severity of proximal tubular cell pigment (fine brown granules) in kidney, \uparrow thyroid wt with lymphocytic thyroiditis
	NOAEL (\bigcirc) = 1.9 mg/kg bw/day LOAEL (\bigcirc) = 9.6 mg/kg bw/day
	Effects at the \bigcirc LOAEL: \downarrow RBC, HGB, PCV, \uparrow blood in urine, \downarrow urine specific gravity, \uparrow liver wt, kidney wt, \uparrow hepatocellular hypertrophy (clear or lacey cytoplasm), \uparrow proximal tubular cell pigment (fine brown granules)
	in kidney
80-week oral	NOAEL (\bigcirc) = 15 mg/kg bw/day
(dietary,	LOAEL (\bigcirc) = 75 mg/kg bw/day
oncogenicity, 1990)	
Mouse, CD-1	Effects at the ♂ LOAEL: ↓ survival, ↑ fur staining, water consumption, kidney wt, rel thyroid wt, kidney cortical cysts, kidney infarcts, chronic nephrosis of cortical tubules of kidneys (dilated tubules with flocculent
PMRA# 2493442	material)
	NOAEL (\mathcal{Q}) = 3 mg/kg bw/day
	LOAEL $(\bigcirc) = 15 \text{ mg/kg bw/day}$
	Effects of the OLOAEL A hidrogenet showing members is after the
	Effects at the \bigcirc LOAEL: \uparrow kidney wt, chronic nephrosis of cortical tubules of kidneys (dilated tubules with flocculent material)
	tubules of kidneys (diluted tubules with frocedicit indefinit)
	No evidence of oncogenicity.
104-week oral	NOAEL ~1 mg/kg bw/day
(dietary, combined chronic	LOAEL ~6 mg/kg bw/day
toxicity/oncogenicity, 1991)	Effects at the LOAEL: \uparrow proteinuria, blood in urine; \uparrow GGT (\circlearrowleft); \uparrow eosinophilic inclusions (degraded renal tubule epithelial cells), epithelial
	cells in urine, tubular nephrosis, basophilic tubules, atypical tubule
Rat, Sprague-Dawley	hyperplasia, glomerulonephropathy (\bigcirc)
PMRA# 2493441	Evidence of oncogenicity (renal epithelial tumours in \bigcirc at the HDT of 30 mg/kg bw/day, which was approaching but did not exceed the MTD.)

Study Type/	Study Results
Animal/ PMRA#	
Two-generation	Parental NOAEL = $13/16 \text{ mg/kg bw/day} \left(\frac{3}{2} \right)$
reproductive toxicity	Parental LOAEL = $39/47 \text{ mg/kg bw/day} \left(\frac{3}{7} \right)$
(dietary, 1991)	
	Effects at the parental LOAEL: \downarrow bw, bwg (F ₁ gen premating), fc (P, F ₁
Rat, Sprague-Dawley	gen premating); \downarrow bw, bwg, (P gen premating and mating) (\circlearrowleft); \downarrow bwg (P
	gen lactation), fc (P, F ₁ gen gestation) (\bigcirc)
PMRA# 2633528	
	Reproductive NOAEL = $39/47 \text{ mg/kg bw/day} \left(\frac{3}{2} \right)$
	Reproductive LOAEL was not established. No treatment-related
	reproductive toxicity was observed.
	Offspring NOAEL = 47 mg/kg bw/day (\bigcirc)
	Offspring LOAEL was not established. No treatment-related offspring
	toxicity was observed.
Developmental	NOAELs and LOAELs were not established as study was considered
toxicity (gavage,	supplemental.
preliminary, 1989)	
	Maternal effects:
Rat, Sprague-Dawley	\geq 40 mg/kg bw/day: \downarrow live fetuses/dam (slight)
	\geq 70 mg/kg bw/day: \downarrow bwg (slight), \uparrow post-implantation loss
PMRA# 2493452,	100 mg/kg bw/day: \downarrow bw, \uparrow wc, excessive urination
2493451	
	Developmental effects:
	100 mg/kg bw/day: ↓ fetal wt
	Supplemental
Developmental	Maternal NOAEL = 20 mg/kg bw/day
toxicity (gavage,	Maternal LOAEL = 50 mg/kg bw/day
1991)	
	Effects at the maternal LOAEL: thin appearance, \downarrow bw, bwg, fc, \uparrow post-
Rat, Sprague-Dawley	implantation loss, early intra-uterine deaths/abortions, \$\press\$ live fetuses/dam
PMRA# 2493453	Developmental NOAEL = 20 mg/kg bw/day
	Developmental LOAEL = 50 mg/kg bw/day
	Efforts at the developmental LOAEL A past implementation loss and inter-
	Effects at the developmental LOAEL: \uparrow post-implantation loss, early intra- uterine deaths/abortions, \downarrow live fetuses/dam
	Evidence of developmental toxicity / serious endpoint (fetal loss) in the
	presence of maternal toxicity.
	presence of maternal toxicity.

Study Type/ Animal/ PMRA#	Study Results
Developmental	NOAELs and LOAELs were not established as study was considered
toxicity (gavage,	supplemental.
preliminary, 1989)	
Rabbit, New Zealand White	Maternal effects at 40 mg/kg bw/day: ↓ bw, bwg, fc, wc, ↑ abortions, total intra-uterine death, ↓ litter wt, total number live fetuses, ↑ total number intrauterine deaths, early resorptions, post-implantation loss
PMRA# 2493455, 2493454	Developmental effects at 40 mg/kg bw/day: ↑ total intra-uterine death, ↓ litter wt (due to smaller litter size), total number live fetuses, ↑ total number intrauterine deaths, early resorptions, post-implantation loss
	Supplemental
Developmental	Maternal NOAEL = 25 mg/kg bw/day
toxicity (gavage, 1990)	Maternal LOAEL = 40 mg/kg bw/day
	Effects at the maternal LOAEL: \downarrow bw, bwg, fc, \uparrow abortions, \uparrow pre- and
Rabbit, New Zealand White	post-implantation loss, \downarrow number fetuses/doe
	Developmental NOAEL = 25 mg/kg bw/day
PMRA# 2633538	Developmental LOAEL = 40 mg/kg bw/day
	Effects at the developmental LOAEL: ↑ post-implantation loss, ↓ number fetuses/doe
	Evidence of developmental toxicity / serious endpoint (fetal loss) in the presence of maternal toxicity.
28-day oral	NOAEL = 15 mg/kg bw/day
neurotoxicity (gavage, 2003)	LOAEL = 30 mg/kg bw/day
	Effects at the LOAEL: dark discoloured urine, urine staining of anogenital
Rat, Wistar	region
PMRA# 2493450	Effects at the next higher dose of 60 mg/kg bw/day: \uparrow piloerection, \downarrow bwg, fc, rearing; \uparrow salivation, \downarrow bw, fe, motor activity (\Diamond)
	No evidence of selective neurotoxicity

Study Type/	Study Results
Animal/ PMRA#	
7-day oral (dietary,	NOAEL not established as study was considered supplemental. Only \eth
2009) study of kidney	investigated in this study. KIM-1 was investigated at the high dose only.
S-phase cell cycle	
histopathology and	\geq 6.5 mg/kg bw/day: \downarrow fc, \uparrow basophilic tubules in renal cortex, cell
immunochemistry	proliferation (BrdU, diffuse only, OSOM region only), apoptosis (TUNEL
response in \mathcal{J}	positive, renal cortex), \downarrow apoptosis (TUNEL positive, OSOM region)
Rat, Sprague-Dawley	33 mg/kg bw/day: ↓ bwg, cell proliferation (BrdU, cortex region), ↑ KIM-
	1 expression (similar extent in whole kidney, cortex and OSOM)
PMRA# 2493496,	
2493502	Supplemental.
7-day oral (dietary,	NOAEL not established as study was considered supplemental. Only \bigcirc
2009) study of kidney	investigated in this study. KIM-1 was investigated at the high dose only.
S-phase cell cycle	
histopathology and	$\geq 8.0 \text{ mg/kg bw/day:} \downarrow \text{fc}, \uparrow \text{kidney wt}$
immunochemistry	
response in $\stackrel{\bigcirc}{\rightarrow}$	41 mg/kg bw/day: ↓ bwg, fe, ↑ liver wt, multifocal vacuolar degeneration
	(proximal tubule epithelial cells, OSOM and cortex), cell proliferation
Rat, Sprague-Dawley	(BrdU, band-like, stripe-like or spot-like patterns, OSOM and cortex
	regions, OSOM > cortex), KIM-1 protein expression (cortex > whole
PMRA# 2493498,	kidney or OSOM)
2493500	Supplemental
28-day oral (dietary,	Supplemental. NOAEL not established as study was considered supplemental. Only ♂
2009) study of kidney	investigated in this study.
S-phase cell cycle	nivestigated in this study.
histopathology and	≥6.8 mg/kg bw/day: ↑ kidney wt, basophilic tubules in renal cortex, cell
immunochemistry	proliferation (BrdU, diffuse only, OSOM region only), apoptosis
response in \mathcal{J}	(TUNEL, OSOM > cortex)
Rat, Sprague-Dawley	34 mg/kg bw/day: ↑ liver wt
PMRA# 2493495,	Supplemental.
2493501	

Study Type/	Study Results
Animal/ PMRA#	
28-day oral (dietary,	NOAEL not established as study was considered supplemental. Only \bigcirc
2009) study of kidney	investigated in this study. KIM-1 was investigated at the high dose only.
S-phase cell cycle	
histopathology and	\geq 8.2 mg/kg bw/day: \downarrow bwg, fc
immunochemistry	
response in \mathcal{Q}	44 mg/kg bw/day: ↓ bw, fe, terminal bw, ↑ kidney wt, multifocal vacuolar
	degeneration (proximal tubule epithelial cells, OSOM and cortex), cell
Rat, Sprague-Dawley	proliferation (BrdU, diffuse and stripe-like pattern, OSOM and cortex),
	apoptosis (TUNEL, cortex > OSOM), KIM-1 protein expression (cortex >
PMRA# 2493497,	whole kidney or OSOM)
2493499	
	Supplemental.
7-day oral (dietary,	NOAEL = 12 mg/kg bw/day
1991) nephrotoxicity	LOAEL = 60 mg/kg bw/day
study of	
histopathology using	Effects at the LOAEL:
light and electron	mitochondrial damage within single proximal tubule cells (small focal
microscopy	lesions of minimal severity, 2 days via EM only, $2 \ge 3$), swollen
	mitochondria and intercellular edema (proximal cells, days 4 and 7, $2 > 3$),
Rat, Sprague-Dawley	hydropic degeneration in proximal tubular cells (days 4 and 7, $2 > 3$), foci
	of basophilic tubules (day 7, $2 \ge 3$); \uparrow dilated RER and some nuclear
PMRA# 2493505	degeneration (days 4 and 7), 'lipofuscin' type granules (proximal tubule
	cells, day 4), lysosomes with inclusions of osmiophilic material (proximal
	tubule cells, day 7) (\bigcirc)
28-day oral (dietary,	NOAEL not established as study was considered supplemental. Only \bigcirc
1993) study of renal	investigated in this study.
cell proliferation in \mathcal{Q}	
	$\geq 2 \text{ mg/kg bw/day:} \uparrow \text{kidney discolouration}$ (as combined incidences, 7 to
Rat, Sprague-Dawley	28 days)
PMRA# 2493504	\geq 12 mg/kg bw/day: \uparrow kidney wt (rel day 7; day 14), cell proliferation
	(BrdU), hydropic degeneration (swollen cells, pyknotic nuclei, S2 segment
	of proximal tubules)
	60 mg/kg hu/day 1 kidnay yet (ahg day 7 and 29) haganhilis tyl-1-
	60 mg/kg bw/day: ↑ kidney wt (abs day 7 and 28), basophilic tubules
	(combined incidences, 7 to 28 days)
	Supplemental
	Supplemental.

Study Type/	Study Results
Animal/ PMRA# Acute oral (gavage,	NOAEL not established as study was considered supplemental.
2011) study of kidney cytotoxicity and	≥50 mg/kg bw: \uparrow KIM-1 expression in OSOM and whole kidney ($\bigcirc > \bigcirc$)
histopathology Rat, Sprague-Dawley	≥100 mg/kg bw: piloerection, lethargy
PMRA# 2493481	≥200 mg/kg bw: \uparrow diarrhea, bw loss, minimal-moderate tubular degeneration in kidneys; \downarrow bw (\Diamond)
	300 mg/kg bw: 1 mortality/sex, \uparrow KIM-1 expression in cortex of kidney $(\bigcirc > \Im); \downarrow$ bw (\bigcirc)
	Supplemental.
Acute oral (gavage, 2009) study of the	NOAEL not established as study was considered supplemental.
potential for DNA binding in the liver and kidney in \mathcal{Q}	\bigcirc rats were administered a single oral dose of 9.8 mg/kg bw or 8.3 mg/kg bw (low doses) of quinone-labelled (5(10)-label; ¹⁴ C) or dithiine-labelled (2,3-cyano-label; ¹⁴ C) dithianon, respectively. (Samples from PMRA# 2493487).
Rat, Sprague-Dawley	8.3 or 9.8 mg/kg bw: Negative. There was minimal evidence of covalent
PMRA# 2493484	binding to DNA in liver and kidney* tissues at the dose levels investigated.
	The PC (acetylaminofluorene) induced a high level of covalent binding to DNA.
	*Although covalent binding to DNA is unlikely based on the results of this study, there appeared to be a considerable degree of non-covalent interaction between dithianon and DNA and/or chromatin protein in the kidney.
	Supplemental.
Bacterial reverse mutation assay	Negative
(1986)	Tested up to cytotoxic concentrations.
S. typhimurium TA98, TA100,	
TA1535, TA1537, TA1538	
PMRA# 2493458, 2493457	

Study Type/ Animal/ PMRA#	Study Results
Bacterial reverse	Negative
mutation assay	
(1987)	Tested up to cytotoxic and precipitating concentrations.
S. typhimurium TA98, TA100,	
TA1535, TA1537, TA1538	
PMRA# 2493460, 2493459	
In vitro mammalian cell gene forward	Positive
mutation assay in V79 lung fibroblasts	Tested up to cytotoxic concentrations.
(1993)	Without activation (-S9) in 1 of 3 experiments at 1.33μ g/mL (markedly cytotoxic concentration, relative cloning efficiency = 1%).
Hamster, Chinese	With activation (+S9) in 2 of 4 experiments at $\geq 1.00 \ \mu g/mL$ in the absence
PMRA# 2493462, 2493461	of excessive cytotoxicity.
In vitro mammalian cell gene mutation	Negative
assay in V79 lung fibroblasts (1984)	Tested up to cytotoxic concentrations.
Hamster, Chinese	
PMRA# 2493466, 2493465, 2493467	
In vitro Chromosome	Positive
aberration assay in	
V79 lung fibroblasts (1988)	Tested up to cytotoxic concentrations. Cytotoxicity greater in absence than in presence of S9.
Hamster, Chinese	\pm S9 (7, 18 h, non-excessive to possibly excessive cytotoxicity, based on mitotic index), +S9 (28 h fixation, non-excessive cytotoxicity, based on
PMRA# 2493469, 2493468	mitotic index).

Study Type/	Study Results
Animal/ PMRA#	
In vitro unscheduled	Negative
DNA synthesis assay	
in hepatocytes (1986)	Tested up to cytotoxic concentrations.
Rat, Wistar	
PMRA# 2493472, 2493470, 2493471	
In vivo acute oral bone marrow	Negative
chromosome	Tested up to the MTD, as determined in a pre-test
aberration assay	
(gavage, 1990)	Effects at 394 mg/kg bw included a reduction of the spontaneous activity, eyelid closure and apathy $(3/2)$
Rat, Wistar	
PMRA# 2493475,	
2493474	
In vivo acute oral	Negative (\mathcal{Q} , only)
unscheduled DNA	
synthesis assay in	Effects at 36 mg/kg bw included clinical signs (diarrhea)
hepatocytes (gavage,	
2009)	
Rat, Wistar	
PMRA# 2493480	
In vivo acute oral	Negative
micronucleus assay	
in bone marrow	Effects \geq 50 mg/kg bw/day included severe clinical signs (piloerecetion,
(gavage, 2009)	hunched posture, irregular respiration and diarrhea) within 4-6 h post-dose
Rat, Wistar	Effects at 75 mg/kg bw/day included \downarrow PCE/NCE ratio at 6 and 24 h (\bigcirc)
PMRA# 2493473	
In vivo acute oral	Negative
micronucleus assay	
in bone marrow	Tested up to a dose resulting in clinical signs of overt toxicity. Exposure
(gavage, 1984)	to bone marrow was not confirmed.
Mouse, NMRI	Effects at 100 mg/kg bw included clinical signs (dyspnoea, ptosis, diarrhea, \downarrow activity); \downarrow bw (\Diamond)
PMRA# 2493476	

Study Type/ Animal/ PMRA#	Study Results
In vivo acute oral	Positive (secondary to cytotoxicity)
comet assay in rat kidney cells (gavage, 2009)	Genotoxicity occurred only at doses (≥50 mg/kg bw) that also produced cytotoxicity within the kidney proximal tubule epithelium. At a sufficiently low dose (25 mg/kg bw/day) cytotoxicity was evident in the
Rat, Wistar	absence of genotoxicity.
PMRA# 2493479, 2493478, 2493483, 2733094	1 st comet experiment: Effects at 50 mg/kg bw: ↑ tail intensity at 24 h, ↑ clinical signs (piloerection, hunched posture, irregular respiration) (♀)
	2 nd comet experiment: Effects at 50 and 75 mg/kg bw: ↑ tail intensity at 24 h, ↑ clinical signs (piloerection, hunched posture, irregular respiration) (♀)
	3 rd comet experiment: Effects at 75 mg/kg bw: ↑ tail intensity at 24 h (incidence > concurrent negative control)
	Streptozotocin (STZ) and ethyl methanesulfonate (EMS) induced positive responses.
	Concurrent cell pathology / cytotoxicity (EM) at 24 h:
	\geq 25 mg/kg bw: \uparrow proximal tubular epithelial cell degenerative lesions in single cells (mitochondria - slightly to moderately enlarged and swollen with a primarily involvement of inner chamber/matrix, matrix -decreased density due to matrix dilution, with cristae reduced in number, shortened, disorientated and displaced to the periphery), \uparrow signs of cell organelle degradation (whorled membranous bodies with myelin figures in single tubular epithelial cells) (\bigcirc)
	≥50 mg/kg bw: ↑ proximal tubular epithelial cell dilation of cytoplasmic tubular system in single cells (cytoplasmic vacuolation)
	75 mg/kg bw: ↑ clinical signs (piloerection, irregular respiration, diarrhea) (♀)

Study Type/ Animal/ PMRA#	Study Results	
In vivo acute oral	Negative	
comet assay in rat		
kidney cells (gavage,	Ethyl methanesulfonate (EMS) induced a positive response.	
2011)		
	\geq 50 mg/kg bw: diarrhea, ↓ fc, urine volume; ↑ kidney wt (24 h) (♂); ↓ wc,	
Rats, Sprague-	\uparrow KIM-1 expression (OSOM, 6 and 24 h) (\bigcirc)	
Dawley		
	\geq 100 mg/kg bw: piloerection, \downarrow bw (7-8%); \downarrow wc, \uparrow kidney wt (6 h), \uparrow	
PMRA# 2493482,	KIM-1 expression (OSOM, 24 h) (3)	
2733095	200 med/se have letters u clicht tabaler deconcretion in react contex (0)	
In vitro mechanistic,	200 mg/kg bw: lethargy; slight tubular degeneration in renal cortex (\bigcirc)	
cell metabolism	Evidence that dithianon was generally reactive towards cellular thiol groups, and selectively inhibits glycolytic enzymes (HK, GAPDH,	
(1980)	G6PDH) due to their catalytically active thiol groups. The main metabolic	
(1900)	effects on EAC cells were inhibition of glycolysis and respiration (energy	
Ehrlich acites	metabolism); exogenous reduced glutathione is protective against this	
carcinoma cells	inhibition.	
(EAC) and yeasts (S.		
cerevisiae)	$\geq 2 \ \mu g/ml$: \downarrow adenine and valine incorporation (EAC cells)	
× ···		
Šturdík and	\geq 5 µg/ml: \downarrow aerobic and anaerobic glycolysis (EAC cells), \downarrow glycolytic	
Drobnica, 1980	enzyme activities (HK, GAPDH, G6PDH; EAC homogenates); \downarrow glucose	
PMRA# 2742221	consumption, growth, \uparrow RQ (all yeasts)	
	\geq 31.25 µg/ml: \downarrow total reduced thiols (66-84%; EAC homogenates)	
	Supplemental	
In vivo mechanistic	Mice were administered dithianon (using corn oil) as a single i.p. dose of	
study of CYP	3 mg/kg bw (low dose) or 6 mg/kg bw (high dose), or repeated (3 days)	
enzymes (i.p. route,	oral doses of 3 mg/kg bw. CYP induction/suppression assayed in	
1999)	microsomes via testosterone hydroxylase (TH) activities.	
Mouse, CD1	There was evidence of complex dithianon-mediated organ-specific and	
	sex-specific changes in induction or suppression of TH substrate-specific	
Pozzetti et al., 1999	CYP activities in isolated microsomes from the liver, kidneys, and lungs.	
PMRA# 2742219		
	Overall effects: In the liver, included induction ($3>$, suppression	
	$(\Im > \Im)$ for single dose, and suppression $(\Im > \Im)$ for repeated doses. In the	
	kidney, included induction ($3>2$), suppression ($2>3$) for single dose, and	
	induction $(\partial \sim \varphi)$ for repeated doses. In the lung, included mixed induction	
	and suppression for single dose, and induction $(\mathcal{A} \sim \mathcal{A})$ for repeated doses.	

Table 3 Toxiclogy Reference Values for Use in Health Risk Assessment for Dithianon

Exposure	Study	Point of Departure and Endpoint	CAF ¹
Scenario			

Acute dietary	7-day nephrotoxicity	NOAEL = 12 mg/kg bw/day	100
general	dietary study in rats	Kidney tubular damage occurring as early as 2	
population		days following dosing	
	ARfD = 0.1 mg/kg bw		
Acute dietary	Developmental toxicity	NOAEL = 20 mg/kg bw/day	300
females 13-49	gavage study in rats	Fetal loss	
years of age			
	ARfD = 0.07 mg/kg bw		
Repeated dietary	Chronic/carcinogenicity	NOAEL = 1 mg/kg bw/day	100
-	dietary study in rats	Kidney pathology, including tubular damage	
	ADI = 0.01 mg/kg bw/day	,	
Cancer	A threshold-dependent mode of action for kidney epithelial cell tumours in female rats		
	was supported by the data. The risk assessment for chronic effects is considered		
	protective of any cancer et	ffect.	

¹ CAF (composite assessment factor) refers to a total of uncertainty and PCPA factors for dietary assessments.

References

A. List of Studies/Information Submitted by Registrant

1.0 Chemistry

PMRA	Reference
Document	
Number	
2493377	2014, Dithianon TC Manufacturing Summary, DACO: 2.11.1,2.11.2,2.11.3 CBI
2493378	2010, Dithianon: Structure elucidation of [CBI removed], DACO: 2.11.4 CBI
2493379	2012, BAS 216 F (Dithianon): Discussion of formation of impurities, DACO: 2.11.4 CBI
2493380	2015, DACO 2 - Chemistry requirements for the registration of a technical grade of active ingredient (TGAI) or an integrated system product , DACO: 2.12.1 CBI
2493381	1998, Comparison of high pressure liquid chromatography method CFS M 13/1/P to UV method CIPAC 153/TC for the determination of [CBI removed] in technical grade Dithianon and revision of the Dithianon specification (Report Amendment 1), DACO: 2.13.1 CBI
2493382	2009, Analytical method APL0582/01: Determination of the impurities in BAS 216 F TGAI (technical grade active ingredient), DACO: 2.13.1 CBI
2493383	2009, Validation of analytical method APL0582/01: Determination of the impurities in BAS 216 F TGAI (technical grade active ingredient), DACO: 2.13.1 CBI
2493384	2009, Dithianon: Additional validation data to report BASF DocID 2009/1011372, DACO: 2.13.1 CBI
2493385	2009, Confirmation of identity of minor components in technical-grade BAS 216 F (Dithianon), DACO: 2.13.1 CBI
2493389	2010, Validation of the analytical method APL0582/03 for Reg.No. 4 349 826 and Reg.No. 4 627 420 with the title: Determination of the impurities in BAS 216 F TGAI (technical grade active ingredient), DACO: 2.13.1 CBI
2493393	2008, UV/VIS spectra of Dithianon PAI (Reg. No. 49638, BAS 216 F), DACO: 2.13.2,2.14.12 CBI
2493394	2010, Composition of seven typical production batches of Dithianon technical grade active ingredient, DACO: 2.13.3 CBI

PMRA	Reference
Document	
Number	
2493395	2014, DACO 2- Chemistry requirements for the registration of a technical grade of active ingredient (TGAI) or an integrated system product., DACO: 2.13.4 CBI
2493396	2015, Summary of physical and chemical properties of the active substance - Dithianon, DACO: 2.14
2493397	2008, Physical properties of Dithianon technical grade active ingredient (TC/TGAI), DACO: 2.14.1,2.14.2,2.14.3,2.14.4,2.14.9
2493398	1992, Dithianon: Determination of the Stability, DACO: 2.14.13 CBI
2493399	1993, Determination of the storage stability of Dithianon (SAG 107), DACO: 2.14.14 CBI
2493400	2014, DACO 2.14- Chemical and Physical Properties for the registration of a technical grade
	of active ingredient (TGAI), DACO: 2.14.10,2.14.5
2493401	2014, pH value, density and bulk density of technical Dithianon, DACO:
	2.14.15,2.14.6,830.7000
2493402	2009, Determination of solubility in water and of the n-Octanol/water partition coefficient log
	pow for Dithianon technical grade active ingredient (TC/TGAI), DACO: 2.14.11,2.14.7
2493404	2005, Determination of the solubility in organic solvents at 20?C of Dithianon (BAS 216 F,
	Reg.No. 049 638) TGAI, DACO: 2.14.8
2618298	2016, Part 2 BASF Response to PMRA Clarification request dated February 24 2016, DACO:
	2.11.3,2.13.3,2.15 CBI
2629745	2016, Dithianon TGAI - Description of manufacturing process, DACO: 2.11.3 CBI
2638961	2016, BASF Response- Part 2, DACO: 2.11.3 CBI

2.0 Human and Animal Health

PMRA	Reference
Document	
Number	
2493416	2005, BAS 216 F (Dithianon) - Acute oral toxicity study in rats, DACO: 4.2.1
2493417	1993, 1st Amendment to Report - Acute Oral Toxicity Study With Dithianon In Rats, DACO:
	4.2.1
2493418	1987, Acute Oral Toxicity Study With Dithianon In Rats, DACO: 4.2.1
2493430	1990, Addendum No.1 to 90-Day Feeding Study of Dithianon, Balch No. 15 C/86, in Sprague-
	Dawley Rats, DACO: 4.3.1
2493431	1990, Addendum No.2 to 90-Day Feeding Study of Dithianon, Balch No. 15 C/86, in Sprague-
	Dawley Rats, DACO: 4.3.1
2493432	1987, 90-day feeding study of Dithianon, batch no. 15C/86, in Sprague-Dawley rats, DACO:
	4.3.1
2493433	1991, Dithianon: 52 week oral (dietary administration) toxicity study in the beagle, DACO:
	4.3.2
2493434	1989, Addendum No.1 to 90-Day Feeding Study of Dithianon, Batch No. 15 C/86, in Beagle
	Dogs, DACO: 4.3.2
2493435	1990, Addendum No.2 to 90-Day Feeding Study of Dithianon, Batch No. 15 C/86, in Beagle
	Dogs, DACO: 4.3.2
2493436	1989, 90-Day Feeding Study Of Dithianon, Batch No. 15 C/86, In Beagle Dogs, DACO: 4.3.2
2493437	1991, Addendum No.3 to 90-Day Feeding Study of Dithianon, Batch No. 15 C/86, in Beagle
	Dogs, DACO: 4.3.2
2493438	1987, Dithianon: 4 week oral (dietary administration) dose range-finding study in the mouse,
	DACO: 4.3.3
	DAC0: 4.3.3

PMRA Document	Reference	
Number	1066 Dishion on Parliminany non so finding tonisity test in sets DACO: 422	
2493439	1966, Dithianon: Preliminary range-finding toxicity test in rats, DACO: 4.3.3	
2493440	1991, Summary Report on Short-term Studies on Dithianon and Results of Slide Reviews from a 90-day Study, DACO: 4.3.8	
2493441	1991, Dithianon: 104 week oral (dietary administration) carcinogenicity and toxicity study in the rat - Volume I, DACO: 4.4.1,4.4.2,4.4.4	
2493442	1990, Dithianon: 80 week oral (dietary administration) carcinogenicity study in the mouse, DACO: 4.4.3	
2493447	2009, Expert re-evaluation of renal histopathology from a two-year carcinogenicity study of Dithianon administered orally to Sprague-Dawley rats in the diet, DACO: 4.4.5	
2493448	1991, Review of kidney histopathology in female rats given Dithianon in a carcinogenicity study, DACO: 4.4.5	
2493450	2003, BAS 216 F - Subacute neurotoxicity study in Wistar rats; Administration by gavage for 4 weeks, DACO: 4.5.12	
2493451	1993, Amendment NO. 1 to Final Report - Dithianon preliminary oral (gavage) embryotoxicity study in the rat, DACO: 4.5.2	
2493452	1989, Dithianon preliminary oral (gavage) embryotoxicity study in the rat, DACO: 4.5.2	
2493453	1991, Dithianon oral (gavage) teratogenicity study in the rat, DACO: 4.5.2	
2493454	1993, Amendment NO. 1 to Final Report - Dithianon preliminary oral (gavage) embryotoxicity study in the rabbit, DACO: 4.5.3	
2493455	1989, Dithianon preliminary oral (gavage) embryotoxicity study in the rabbit, DACO: 4.5.3	
2493457	1993, 1st Amendment to report - Induction of gene mutations in mutant strains of Salmonella	
2493458	 typhimurium (AMES test) without and with metabolic activation, DACO: 4.5.4 1986, Induction of gene mutations in mutant strains of Salmonella typhimurium (AMES test) without and with metabolic activation, DACO: 4.5.4 	
2493459	1993, 1st Amendment to report - Induction of gene mutations In mutant strains of Salmonella typhimurium (Ames test) without and with metabolic activation, DACO: 4.5.4	
2493460	1987, Induction of gene mutations In mutant strains of Salmonella typhimurium (Ames test) without and with metabolic activation, DACO: 4.5.4	
2493461	1993, Report Amendment Number 1 - Evaluation of the mutagenic activity of Dithianon in an in vitro mammalian cell gene mutation test with v79 chinese hamster cells (with independent repeat), DACO: 4.5.5	
2493462	1993, Evaluation of the mutagenic activity of Dithianon in an in vitro mammalian cell gene mutation test with v79 chinese hamster cells (with independent repeat), DACO: 4.5.5	
2493465	1993, 1st Amendment to report - Mutations affecting the hypoxanthine-guanine phosphoribosyl transferase locus in V79 cells: HGPRT-test, DACO: 4.5.5	
2493466	1984, Mutations affecting the hypoxanthine-guanine phosphoribosyl transferase locus in V79 cells: HGPRT-test, DACO: 4.5.5	
2493467	1984, Amendment to report - Mutations affecting the hypoxanthine-guanine phosphoribosyl transferase locus in V79 cells: HGPRT-test, DACO: 4.5.5	
2493468	1993, 1st Amendment to Report - Chromosome aberration assay in chinese hamster V79 cells in vitro with Dithianon technical, DACO: 4.5.6	
2493469	1988, Chromosome aberration assay in chinese hamster V79 cells in vitro with Dithianon technical, DACO: 4.5.6	
2493470	1991, 1st Amendment to Report - Unscheduled DNA synthesis in hepatocytes of male rats in vitro (UDS test), DACO: 4.5.6	
2493471	1993, 1st Amendment to Report - Unscheduled DNA synthesis in hepatocytes of male rats in vitro (UDS test), DACO: 4.5.6	

PMRA Document	Reference
Number 2493472	1986, Unscheduled DNA synthesis in hepatocytes of male rats in vitro (UDS test), DACO:
2493472	4.5.6
2493473	2009, BAS 216 F (Dithianon) - Micronucleus Test in Bone Marrow Cells of the Rat, DACO:
2493473	4.5.7
2493474	1993, 1st Amendment to Report - Chromosome aberration assay in bone marrow cells of the
2193171	rat with Dithianon, DACO: 4.5.7
2493475	1990, Chromosome aberration assay in bone marrow cells of the rat with Dithianon, DACO:
	4.5.7
2493476	1984, Micronucleus test in mice after oral administration, DACO: 4.5.7
2493478	2009, Amendment No. 1 to the report: BAS 216 F (Dithianon) - In vivo comet assay in rat
	kidney cells, DACO: 4.5.8
2493479	2009, BAS 216 F (Dithianon): In vivo comet assay in rat kidney cells, DACO: 4.5.8
2493480	2009, BAS 216 F (Dithianon): In vivo unscheduled DNA synthesis (UDS) assay in rat
	hepatocytes, DACO: 4.5.8
2493481	2011, Dithianon (BAS 216 F): Evaluation of toxicity and cytotoxicity by assessing clinical
	signs of toxicity - Histopathology changes in kidneys tissue after a single administration of
	Dithianon with 72 hr post-dose observation period, DACO: 4.5.8
2493482	2011, Dithianon (BAS 216 F): Evaluation of DNA damage in rat kidney cells following a
	single oral administration (Comet assay), DACO: 4.5.8
2493483	2010, Amendment NO. 2 to the Report BAS 216 F (Dithianon) in vivo Comet Assay in Rat
	Kidney Cells, DACO: 4.5.8
2493484	2009, 14C-BAS 216 F (Dithianon): Investigation of the potential for DNA binding in rats,
	DACO: 4.5.8
2493485	2007, Interim report: Dithianon (BAS 216 F): Preliminary results of the investigations on the
2402405	metabolic pathway in rats, DACO: 4.5.9
2493486	2009, The metabolism of 14C-Dithianon (14C-BAS 216 F) in rats, DACO: 4.5.9
2493487	2009, 14C-BAS 216 F (Dithianon): Study on the kinetics in rats, DACO: 4.5.9
2493488	1994, 14C- Dithianon: Investigation on the nature of metabolites occurring in rats, DACO:
2402490	4.5.9
2493489	1994, 14C-Dithianon: Investigation on the nature of metabolites occurring in rats - amended report, DACO: 4.5.9
2493490	1993, The biokinetics and metabolism of 14C-Dithianon in the rat (1st Amendment), DACO:
2493490	4.5.9
2493491	1989, The biokinetics and metabolism of 14-C Dithianon in the rat, DACO: 4.5.9
2493495	2009, BAS 216 F (Dithianon): S-Phase response study in male Sprague Dawley rats -
2193195	Administration in the diet for 28 days, DACO: 4.8
2493496	2009, BAS 216 F (Dithianon): S-Phase response study in male Sprague Dawley rats -
	Administration in the diet for 7 days, DACO: 4.8
2493497	2009, BAS 216 F (Dithianon): S-Phase response study in female Sprague Dawley rats -
	Administration in the diet for 28 days, DACO: 4.8
2493498	2009, BAS 216 F (Dithianon): S-Phase response study in female Sprague Dawley rats -
-	Administration in the diet for 7 days, DACO: 4.8
2493499	2010, Amendment No. 1 to the Report - BAS 216 F (Dithianon) S-Phase Response Study in
	female Sprague Dawley Rats; Administration in the diet for 28 days, DACO: 4.8
2493500	2010, Amendment No. 1 to the Report - BAS 216 F (Dithianon) S-Phase Response Study in
	female Sprague Dawley Rats; Administration in the diet for 7 days, DACO: 4.8

PMRA	Reference
Document	
Number	
2493501	2010, Amendment No. 1 to the Report - BAS 216 F (Dithianon) S-Phase Response Study in
	male Sprague Dawley Rats; Administration in the diet for 28 days, DACO: 4.8
2493502	2010, Amendment No. 1 to the Report - BAS 216 F (Dithianon) S-Phase Response Study in
	male Sprague Dawley Rats; Administration in the diet for 7 days, DACO: 4.8
2493504	1993, Dithianon: Short-term study on the renal cell turnover in the female Sprague-Dawley
	rat, DACO: 4.8
2493505	1991, Short term study (7 days) on the nephrotoxicity of Dithianon on male and female
	Sprague-Dawley rats, DACO: 4.8
2633528	1991, Dithianon two generation oral (dietary administration) reproduction toxicity study in
	the rat (one litter per generation), DACO: 4.5.1
2633529	1993, Study of the neurotoxicity of 3,3-Iminodipropionitrile in 99S0120/89004 conjunction
	with the functional observational battery in rats - Administration 1 x i. p. followed by a 4-
	week observation period without test substance administration, DACO: 4.5.12
2633530	2001, Carbaryl - Positive control study for neurotoxicity - Single intraperitoneal
	administration to Wistar rats, DACO: 4.5.12
2633531	2001, Carbaryl - Nomifensin - Diazepam - Positive control study for neurotoxicity in Wistar
	rats, DACO: 4.5.12
2633532	2001, Carbaryl - Positive control study for neurotoxicity - Single intraperitoneal
	administration, DACO: 4.5.12
2633533	2001, Carbaryl - Positive control study for neurotoxicity - Single intraperitoneal
	administration to Wistar rats, DACO: 4.5.12
2633534	2001, Acrylamide - Positive control study for neurotoxicity repeated oral administration by
	gavage, DACO: 4.5.12
2633535	2001, Trimethyltinchloride - Positive control study for neurotoxicity in Wistar rats, DACO:
	4.5.12
2633536	2002, Acrylamide - Positive control study for neurotoxicity - Repeated oral administration by
	gavage, DACO: 4.5.12
2633537	2002, Carbaryl (1-Naphthylmethylcarbamat) - Positive control study for neurotoxicity - Single
	oral administration, DACO: 4.5.12
2633538	1990, Dithianon - Oral (gavage) teratogenicity study in the rabbit , DACO: 4.5.3
2633539	2010, The metabolism of 14C-Dithianon (14C-BAS 216 F) in female rats, DACO: 4.5.9
2733094	2016, Amendment No. 3 to the Report BAS 216 F (Dithianon) in vivo Comet Assay in Rat
	Kidney Cells, DACO: 4.8
2733095	2017, Amendment to the Report Dithianon (BAS 216 F): Evaluation of DNA Damage in Rat
	Kidney Cells Following a Single Oral Administration (Comet Assay), DACO: 4.8
2493512	1994, 14C-Dithianon: Investigation on the nature of metabolites occurring in wheat, DACO:
	6.3
2493513	1996, 14C-Dithianon: Investigation on the nature of metabolites occurring in oranges, DACO:
	6.3
2493514	1998, 14C-Dithianon (CL 37114): Further investigation on the nature of metabolites occurring
	in oranges, DACO: 6.3
2493515	1998, 14C-Dithianon (CL 37114): Further investigation on the nature of metabolites occurring
	in wheat, DACO: 6.3
2493516	1994, 14C-Dithianon: Investigation on the nature of metabolites occurring in oranges, DACO:
a 40 c = 1 =	6.3
2493517	1996, 14C-Dithianon: Investigation on the nature of metabolites occurring in wheat, DACO:
	6.3

PMRA	Reference
Document	
Number	
2493518	1991, 14C-Dithianon: Nature of the residue in citrus, DACO: 6.3
2493519	1991, Amendment No. 1 to the Final Report 14C-Dithianon: Nature of the residue in citrus,
	DACO: 6.3
2493520	1993, The metabolism of 14C-Dithianon after application to apples (Amendment no. 1),
	DACO: 6.3
2493521	1991, The metabolism of 14C-Dithianon after application to apples, DACO: 6.3
2493522	1991, The metabolism of 14C-Dithianon in wheat, DACO: 6.3
2493523	1994, 14C-Dithianon: The metabolism in oranges, DACO: 6.3
2493524	1994, The metabolism of 14C-Dithianon in wheat, DACO: 6.3
2493525	2000, Dithianon (CL 37114): Metabolism of 14C-Dithianon in spinach, DACO: 6.3
2493531	2001, Amendment 1 to Validation of a method to determine dithianon residues In apples and
	their processed commodities., DACO: 7.2.1
2493532	2001, Amendment 2 to Technical Report RLG 4615 (Validation of a method to determine
	dithianon residues in apples and their processed commodities.), DACO: 7.2.1
2493533	2001, Validation of a method to determine Dithianon residues in apples and their processed
	commodities, DACO: 7.2.1
2493535	2011, Validation of BASF method L0152/01: Method for the determination of Dithianon
	(BAS 216 F) and its metabolite (Reg.No. 4110904) in plant matrices, DACO: 7.2.1
2493536	2014, Validation of BASF Method L0152/01: Method for the Determination of Dithianon
	(BAS 216 F) and its Metabolite (Reg. No. 4110904) in Plant Matrices, DACO: 7.2.1
2493537	1996, Dithianon (CL37114): Validation of analytical method FAMS 028-02 for the
	determination of active ingredient in apples (Germany, 1995), DACO: 7.2.1
2493538	1989, Certificate of analysis - The determination of Dithianon residues in samples of apples
	and pears, DACO: 7.2.1
2493539	2006, Validation of a residue enforcement method for the determination of Dithianon (BAS
	216 F), Pyraclostrobin (BAS 500 F), and its metabolite BF500-3 in plant materials, DACO:
	7.2.1,7.2.2
2493540	2007, Independent laboratory validation (ILV) of the SOP-PA.0281 for the determination of
	Dithianon (BAS 216 F) - Residues in wheat, sunflower, lettuce, green-apple and hop, DACO:
	171 - 4a,171 - 4c,171 - 4m,171-4a-4b,171-4c-4d,7.2.3A,860.1300,860.1340,860.1360,IIA
	4.2.6,IIIA 5.3.1,b,d
2493541	2010, Additional information - Dithianon (BAS 216 F): Residue analytical methods in food of
	plant origin (Reporting table: Comment A1(53)), DACO: 171 - 4a,171 - 4c,171 - 4m,171-4a-
2402542	4b,171-4c-4d,7.2.3A,860.1300,860.1340,860.1360,IIA 4.2.6,IIIA 5.3.1,b,d
2493542	2014, DACO 7.2.3B - Extraction Efficiency for Dithianon, DACO: 7.2.3B
2493544	2013, Investigation of the storage stability of incurred BAS 216 F residues (Dithianon) in
2402545	apples, DACO: 7.3
2493545	2005, Freezer storage stability of BAS 216 F (Dithianon) in wine, grape juice, grape pomace,
2402546	grape must and apple sauce, DACO: 7.3
2493546	1992, Dithianon stability in pears, DACO: 7.3
2493547	1992, Dithianon stability in apples, DACO: 7.3
2493548	1994, Freezer storage stability of Dithianon in apple and pear, DACO: 7.3
2493549	2002, BAS 216 03 F (Dithianon) 700 g as/kg WG (SF 09321): At harvest residue study on Dithianon in annual tasks 2000, DACO: 7.4.1
2402550	Dithianon in apples - Italy, 2000, DACO: 7.4.1
2493550	2001, BAS 216 03 F (Dithianon) 700 g as/kg WG (SF 09321): At harvest residue study on Dithianon in annual South France, 2000, DACO: 7.4.1
2402551	Dithianon in apples - South France, 2000, DACO: 7.4.1
2493551	1990, Dithianon, Captan - Residue Determination in Apples, DACO: 7.4.1,7.4.2

PMRA	Reference
Document	
Number	
2493553	1990, Collection of samples of apples treated with Dithianon for residue analysis in normal
	French agricultural conditions., DACO: 7.4.1,7.4.2
2493555	2010, Study on the residue behaviour of Dithianon in plums after application of BAS 216 03
	F under field condition in Northern France, Italy, Spain and Germany, 2009, DACO:
	7.4.1,7.4.2
2493556	2012, Study on the residue behaviour of Dithianon in cherry (sour and sweet) after application
	of BAS 216 03 F under field condition in The Netherlands, UK, Southern France, Greece,
	Italy and Germany, 2010, DACO: 7.4.1,7.4.2
2493557	2011, Study on the residue behaviour of Dithianon in plum after application of BAS 216 03 F
	under field condition in Northern France, Belgium, Italy, Spain and Germany, 2010, DACO:
2402559	7.4.1,7.4.2
2493558	2004, Study on the residue behaviour of Dimethomorph and Dithianon in grapes after application of BAS 553 00 F under field conditions in Germany, France (N/S), Italy and
	Spain, 2003, DACO: 7.4.1,7.4.2
2493559	2003, Study on the residue behaviour of BAS 216 F in grape vines after application of BAS
2475557	216 03 F under field conditions in Italy, France South and Spain, 2002, DACO: 7.4.1,7.4.2
2493560	2003, Study on the residue behaviour of BAS 216 F in grapes after application of BAS 216 03
2475500	F under field conditions in Germany, Spain, France (N), Italy, Greece, 2001, DACO:
	7.4.1,7.4.2
2493561	2002, BAS 216 03 F (Dithianon) 700 g as/kg WG (SF 09321): Decline curve residue study on
	Dithianon in apples - Italy, 2000, DACO: 7.4.1,7.4.2
2493562	2002, Study on the residue behaviour of BAS 216 F in apples after application of BAS 216 03
	F under field conditions in Spain, Italy, Greece, 2001, DACO: 7.4.1,7.4.2
2493563	2003, Report amendment No. 1 to final report: Study on the residue behaviour of BAS 216 F
-	in grapes after application of BAS 216 03 F under field conditions in Germany, Spain, France
	(N), Italy, Greece, 2001, DACO: 7.4.1,7.4.2
2493564	2001, BAS 216 03 F (Dithianon) 700g as/kg WG (SF 09321): Decline curve residue study on
-	Dithianon in apples - South France, 2000, DACO: 7.4.1,7.4.2
2493570	1986, Report on residue trials with Dithianon in apples, DACO: 7.4.1,7.4.2
2493572	1986, Report form for residue analyses with crop protection products: Dithianon - Apples,
	DACO: 7.4.1,7.4.2
2493574	1986, Report form for residue analyses with crop protection products: Dithianon - Apples,
2402576	DACO: 7.4.1,7.4.2
2493576	1998, Field trials, crop residue summary - Dithianon residues in grapes in Germany, DACO:
2493577	7.4.1,7.4.2 1988, Residue Program and Test Evaluation on Wine Grapes, DACO: 7.4.1,7.4.2
2493577	1988, Residue Program and Test Evaluation on Wine Grapes, DACO: 7.4.1,7.4.2 1988, Residue Program and Test Evaluation on Wine Grapes, DACO: 7.4.1,7.4.2
2493578	1988, Residue Program and Test Evaluation on White Grapes, DACO. 7.4.1,7.4.2 1988, Residue Program and Test Evaluation: Dithianon on Wine Grapes, DACO: 7.4.1,7.4.2
2493579	1988, Residue Frogram and Test Evaluation. Difficition on white Grapes, DACO. 7.4.1,7.4.2 1988, Residue Studies with Plant Protection Agents: Dithianon - Wine Grapes, DACO:
2493380	7.4.1,7.4.2
2493581	1997, Dimethomorph / Dithianon (CL 336379 / CL 37114) 150/350 g ai/kg WG (SF09392):
2493301	Decline curve residue study on CL 336379 and CL37114 in vine (Germany, 1995), DACO:
	7.4.1,7.4.2
2493582	1996, Dithianon (CL 37114) 700 g ai/kg WG (SF 09321): Decline curve residue study in
	apples - (Germany, 1995), DACO: 7.4.1,7.4.2
2493583	1999, Dithianon (CL 37114) 700 g ai/kg WG (SF09321): Decline curve residue study on
	Dithianon (CL 37114) in plums (France-North, 1998), DACO: 7.4.1,7.4.2

PMRA	Reference
Document	
Number	1007 D'11 (01 27114) 700 '4 WG (05 00201) D 1'
2493584	1996, Dithianon (CL 37114) - 700 g ai/kg WG (SF 09321): Decline curve residue study in
2402595	vine (Germany, 1995), DACO: 7.4.1,7.4.2
2493586	1991, Report form for residue analyses with crop protection products: Aktuan SC - Grapes, DACO: 7.4.1,7.4.2
2493588	1990, Residues of Dithianon in grapes grown in Germany in 1990 after treatment with Aktuan
2495500	SC - Field trial data, DACO: 7.4.1,7.4.2
2493590	1994, Report form for residue analyses with crop protection products: Dithianon (Aktuan 35
	WP) - Grapes, DACO: 7.4.1,7.4.2
2493591	1992, Dithianon: The Determination of residues in apples from France, DACO: 7.4.1,7.4.2
2493592	2011, Residue study (decline) with BAS 216 03 F applied to sweet and sour cherries in
	Germany, Northern France, the Netherlands and the UK in 2009 and in Spain, Greece,
	Southern France and Italy in 2010, DACO: 7.4.1,7.4.2
2493593	2011, Residue study (decline) with BAS 584 00 F applied to apples in Germany, The UK,
	Belgium, The Netherlands, Northern France, Southern France, Greece, Italy and Spain in
	2010, DACO: 7.4.1,7.4.2
2493594	2004, Study on the residue behaviour of BAS 216 F, BAS 500 F, BF 500-3 and BAS 510 F in
	apples after application of either BAS 584 GB F, BAS 216 03 F or BAS 516 01 F under field
	conditions in France, Belgium, Italy and the Netherlands, 2003, DACO: 7.4.1,7.4.2
2493595	2005, Study on the residue behaviour of Dithianon in wine grapes after treatment with BAS
	216 03 F under field conditions in Spain and Italy, 2003, DACO: 7.4.1,7.4.2
2493596	2005, Study on the residue behaviour of BAS 550 F and BAS 216 F in vine after treatment
	with BAS 553 00 F under field conditions in Germany, Northern and Southern France,
	Greece, Italy and Spain, 2004, DACO: 7.4.1,7.4.2
2493597	2005, Study on the residue behaviour of Dithianon in pears after treatment with BAS 216 03 F
	under field conditions in Denmark, Germany, Northern France and the Netherlands, 2004,
	DACO: 7.4.1,7.4.2
2493598	1990, Translation of Protocol 1 - Collection of samples of apples treated with Dithianon for
2402500	residue analysis in normal French agricultural conditions., DACO: 7.4.1,7.4.2
2493600	1990, Translation of Protocol 2: collection of samples of apples treated with Dithianon for
2402602	residue analysis in normal French agricultural conditions., DACO: 7.4.1,7.4.2
2493603	1992, Report form for residue analyses with crop protection products: Dithianon - Grapes,
2493605	DACO: 7.4.1,7.4.2 1992, Report form for residue analyses with crop protection products: Dithianon (Aktuan WP)
2493003	- Grapes, DACO: 7.4.1,7.4.2
2493606	1987, Residue Studies with Plant Protection Agent: Residues on Dithianon Treated Grapes,
2473000	DACO: 7.4.1,7.4.2
2493607	1987, Residue Studies with Plant Protection Agents: Residues on Wine Grapes, DACO:
2195007	7.4.1,7.4.2
2493609	1995, Report form for residue analyses with crop protection products: Aktuan 35 WP -
	Grapes, DACO: 7.4.2
2493611	1994, Report form for residue analyses with crop protection products: Dithianon - Apples,
,	DACO: 7.4.2
2493613	1994, Report form for residue analyses with crop protection products: Dithianon - Apples,
	DACO: 7.4.2
2493615	1997, Aerial Parts Treatment Delan 70 WG on shot hole disease in plum trees, DACO: 7.4.2
2493616	2010, Determination of residues of BAS 216 F (Dithianon) in cherries and their processed
	products after three applications of BAS 216 03 F in Germany, DACO: 7.4.5

PMRA	Reference
Document	
Number	
2493617	2011, Determination of residues of BAS 216 F (Dithianon) in plums and their processed
	products after three applications of BAS 216 03 F in Germany, DACO: 7.4.5
2493618	2011, Determination of residues of BAS 216 F (Dithianon) in apples and their processed
	products after four applications of BAS 216 03 F in Germany, DACO: 7.4.5
2493619	2012, Determination of residues of BAS 216 F (Dithianon) in grapes and their processed
	products after four applications of BAS 216 03 F in Germany, DACO: 7.4.5
2565044	2001, Validation of method RLA 12616 to include Dithianon residues in grapes, juice, wine
	and beer, DACO: 7.2.1
2565045	1992, Dithianon: Stability in grape samples, DACO: 7.3
2565046	1994, Storage stability of Dithianon in hops and processed matrices, DACO: 7.3
2565047	1999, Dithianon (CL 37114) / Cymoxanil (CL 309806): Storage stability of residues of
	Dithianon and Cymoxanil in wine grapes at less than -18?C (Germany, 1997), DACO: 7.3
2565049	1991, Dithianon: The determination of residues in pears from Australia, DACO: 7.4.1
2565051	1992, Dithianon: The determination of residues in pears from Australia, DACO: 7.4.1
2594865	1992, Dithianon: The validation of method FAMS 009-01 for the determination of residues in
	must, red and white wine, DACO: 171 - 4a,171 - 4c,171 - 4m,171-4a-4b,171-4c-
	4d,7.2.3A,860.1300,860.1340,860.1360,IIA 4.2.6,IIIA 5.3.1,b,d
2633547	1991, Rueckstandsuntersuchungen mit Pflanzenschutzmitteln - Rueckstaende Hopfen, DACO:
	7.4.1,7.4.2
2633552	1991, Rueckstandsuntersuchungen mit Pflanzenschutzmitteln - Rueckstaende Hopfen, DACO:
	7.4.1,7.4.2
2633553	1991, Rueckstandsuntersuchungen mit Pflanzenschutzmitteln - Rueckstaende Hopfen, DACO:
	7.4.1,7.4.2
2633554	1991, Rueckstandsuntersuchungen mit Pflanzenschutzmitteln - Rueckstaende Hopfen, DACO:
	7.4.1,7.4.2
2635511	1988, Dithianon (Praeparat Aktuan) - Rueckstaende Hopfen, DACO: 7.4.1,7.4.2
2635512	1988, Dithianon (Aktuan) - Rueckstaende Hopfen, DACO: 7.4.1,7.4.2
2635513	1990, Rueckstandsuntersuchungen auf Dithianon an Hopfen, DACO: 7.4.1,7.4.2
2635514	1990, Rueckstandsuntersuchungen auf Dithianon an Hopfen, DACO: 7.4.1,7.4.2
2635515	1990, Rueckstandsuntersuchungen auf Dithianon an Hopfen, DACO: 7.4.1,7.4.2
2635516	1990, Rueckstandsuntersuchungen auf Dithianon an Hopfen, DACO: 7.4.1,7.4.2

B. Additional Information Considered

i) Published Information

1.0 Human and Animal Health

PMRA	Reference
Document	
Number	
2742219	L Pozzetti, M Paolini, J Barillari, and G Cantelli-Forti, 1999, Induction and suppression of murine CYP-mediated biotransformation by dithianon: organ- and sex-related differences, DACO: 4.8
2742220	L Drobnica, E Sturdik, K Horakova, and M Miko, 1978, Cytotoxic and Cancerostatic Effect of 1,4-Dithiaanthraquinone-2,3-Dicarbonitrile, DACO: 4.8

2742221	E Sturdik and L Drobnica, 1980, Effect of 2,3-dinitrilo-1,4-dithia-9,10-antraquinone on Ehrlich Ascites Carcinoma and Yeast Cells, DACO: 4.8
2742222	B Thorens, Z-Q Cheng, D Brown, and HF Lodish, 1990, Liver glucose transporter: a basolateral protein in hepatocytes and intestine and kidney cells, DACO: 4.8
2742223	B Thorens, HF Lodish, and D Brown, 1990, Differential localization of two glucose transporter isoforms in rat kidney, DACO: 4.8
2742228	E Chin, J Zhou, and C Bondy, 1993, Anatomical and Developmental Patterns of Facilitative Glucose Transporter Gene Expression in the Rat Kidney, DACO: 4.8
2742229	CO Eleazu, KC Eleazu, S Chukwuma, and UN Essien, 2013, Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans, DACO: 4.8

ISSN: 1911-8082

8 Her Majesty the Queen in Right of Canada, represented by the Minister of Public Works and Government Services Canada 2016

All rights reserved. No part of this information (publication or product) may be reproduced or transmitted in any form or by any means, electronic, mechanical photocopying, recording or otherwise, or stored in a retrieval system, without prior written permission of the Minister of Public Works and Government Services Canada, Ottawa, Ontario K1A 0S5.